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SUMMARY

Disease cases are often clustered within herds or generally groups that share common

characteristics. Sample size formulae must adjust for the within-cluster correlation of the primary

sampling units. Traditionally, the intra-cluster correlation coefficient (ICC), which is an average

measure of the data heterogeneity, has been used to modify formulae for individual sample size

estimation. However, subgroups of animals sharing common characteristics, may exhibit

excessively less or more heterogeneity. Hence, sample size estimates based on the ICC may not

achieve the desired precision and power when applied to these groups. We propose the use of the

variance partition coefficient (VPC), which measures the clustering of infection/disease for

individuals with a common risk profile. Sample size estimates are obtained separately for those

groups that exhibit markedly different heterogeneity, thus, optimizing resource allocation.

A VPC-based predictive simulation method for sample size estimation to substantiate freedom

from disease is presented. To illustrate the benefits of the proposed approach we give two

examples with the analysis of data from a risk factor study on Mycobacterium avium subsp.

paratuberculosis infection, in Danish dairy cattle and a study on critical control points for

Salmonella cross-contamination of pork, in Greek slaughterhouses.
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1. INTRODUCTION

Disease cases, of either infectious or non-infectious

cause, are usually clustered within groups (i.e. litters,

pens, herds) due to their contagious nature [1] and/or

the effect of managerial, environmental or nutritional

factors. In the presence of disease clustering, individ-

ual sample size formulae should be inflated to adjust

for the correlation of disease cases within the clusters.

Traditionally, measures like the variance inflation

factor (VIF) or comparable quantities [2–4], which are

based on the intra-cluster correlation coefficient

(ICC), have been used to modify sample size for-

mulae. The ICC is an average measure of clustering

in the population under study. However, it would

normally be expected that subgroups of individuals
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exposed to different risk factors have different het-

erogeneity patterns. Therefore, sample size estimates

based on the ICC may not be adequate for such sub-

groups of individuals who have a heterogeneity pat-

tern largely deviating from the overall heterogeneity

of the population under study. For instance, a larger

sample size may be required for subgroups with ex-

cessive heterogeneity and ICC-based sample sizes may

in this case lead to an increased risk of type-I error.

Contrarily, higher than needed sample size estimates

and, hence, unnecessary allocation of resources,

occurs for subgroups of individuals with markedly

less heterogeneity. Measures of clustering, which are

specific to subgroups with a common heterogeneity

pattern should, therefore, be preferred to the ICC.

Additionally, the overall heterogeneity – as measured

by the ICC – may be due to the mix of distinct risk

profiles present in the population. In these instances

identifying these profiles leads to the formulation

of more homogeneous subgroups with a significant

impact/reduction in the required sample sizes.

The variance partition coefficient (VPC), which has

been recently introduced [5], quantifies the percentage

of variability explained by clustering for individ-

uals that share a combination of characteristics/

covariates, i.e. the same covariate pattern/risk profile.

Marked differences in VPCs identify groups of indi-

viduals that exhibit markedly greater or lesser

heterogeneity when compared to the average hetero-

geneity of the data. Furthermore, the VPC estimate

from a model without fitted covariates (an intercept-

only model) is a measure of the heterogeneity in the

whole population [6]. This is equal to the ICC esti-

mate in the case of standard random intercept models.

The VPC of the intercept-only model can be com-

pared to the VPCs from models that contain co-

variates to measure the amount of heterogeneity in

the whole population that is explained by the fitted

covariates [6, 7]. A larger reduction of the un-

explained heterogeneity between clusters leads to

more homogeneous subgroups of clusters. Differences

in the heterogeneity profiles are attenuated if VPC

estimation methods ignore the imperfect sensitivity

(Se) and specificity (Sp) of the diagnostic process used

to classify the disease outcome [7].

In this paper we propose a stratified approach to

sample size estimation in the presence of clustering.

Our approach is based on VPCs because they quantify

the unexplained heterogeneity for identified sub-

groups of individuals, while, at the same time, reveal

the amount of heterogeneity that was explained by the

fitted covariates. We present methods for the incor-

poration of VPCs in the estimation of sample size for

substantiation of freedom-from-disease surveys. All

methods adjust for the non-differential or – whenever

present – differential Se and Sp of the diagnostic pro-

cess. Two examples are given using data from a risk

factor study on Mycobacterium avium subsp. para-

tuberculosis (MAP) infection, in Danish dairy cattle

and on critical control points for Salmonella cross-

contamination of pork, in Greek slaughterhouses.

These examples illustrate the application of VPC-

based sample size estimation in two extreme cases,

where the fitted covariates explain little or most of the

heterogeneity in the whole population.

2. MATERIALS AND METHODS

2.1. VPC estimation in binary data

We have recently presented predictive simulation

methods for VPC estimation through random-effects

logistic regression models that adjusted for the im-

perfect Se and Sp of the diagnostic process for the

outcome variable, i.e. the disease/infection status of

the ith individual in the jth population/herd [7]. Here

these models are modified to allow for adjustments in

the presence of differential misclassification: Se and

Sp of the diagnostic process that varies depending on

the exposure to a k-level factor (e.g. diagnostic test

usually have different Se and Sp for different age

groups). Briefly, for a binary (0/1) response, the ob-

served test outcome of the ith individual, in the kth

factor level (e.g. the age-specific category) in the jth

population/herd, yikj, can be assumed to follow a

Bernoulli distribution:

yikj� Bernoulli (pikjSek+(1 � pikj)(1xSpk)), (1)

where pikj denotes the probability that the ikjth indi-

vidual is diseased/infected, and Sek and Spk are the Se

and Sp of the diagnostic process for individuals falling

in the kth category [8]. We fit a random effects logistic

regression model for the probability of infection for

the ikjth individual as follows:

logit(pikj)=XT
ikjb+uj, (2)

where Xikj
T is a vector of known predictor variables

and the expression Xikj
T b is referred to as the linear

predictor [9]. To account for clustering within popu-

lations/herds we include normally distributed random

effects uj.

uj � N(0, tau), (3)
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where tau is the precision parameter, tau=1/s2
u. A

standard non-informative gamma prior is given on

tau y gamma(0.001, 0.001). In a fully Bayesian

framework, a previously proposed method [10] can be

used to impose priors on the regression coefficients (b)

of the covariate vector, while prior information on the

Se and Sp can be incorporated in the form of beta

distributions, beta(a, b).

Sek � beta(aSek , bSek ), (4)

Spk � beta(aSpk , bSpk), (5)

Subsequently, from the fitted model VPCs are esti-

mated using a predictive simulation approach [6, 7].

Briefly, at every Markov Chain Monte Carlo

(MCMC) iteration, we draw simulated values from

the posterior predictive distribution of replicated

data yikj
rep.

yrepikj � Bernoulli (prepikj ), (6)

with

logit (prepikj )=X
T(rep)
ikj b+uj, (7)

where Xikj
T(rep)b is the linear predictor for a selected

covariate pattern (combination of covariates), pikj
rep

and yikj
rep the predicted probability of disease/infection

and the predicted disease/infection status of the ikjth

individual under Xikj
T(rep)b, respectively.

For each considered Xikj
T(rep)b, the covariate-

pattern-specific VPC
X

T(rep)

ikj
b

is calculated as the

fraction of the total variation that can be ascribed

to the higher level of organization. We have pre-

viously given detailed description and extensively

explained WinBUGS codes for the abovementioned

process [7].

2.2. Use of VPCs and predicted risks to formulate

prevalence priors

Sample size estimation for either prevalence or

freedom-from-disease surveys requires an a priori

estimate on the mean expected prevalence and its

heterogeneity. We advocate that, for subgroups of

individuals with a common covariate pattern, the in-

formation conveyed in the predicted risk of disease/

infection pikj
rep and the corresponding VPC

X
T(rep)

ikj
b
, under

the fitted model (section 2.1) should be used for prior

derivation about the prevalence of disease/infection

and its heterogeneity.

For individuals that possess a specific covariate

pattern Xikj
T(rep)b a prior on the probability of being

infected can be modelled using a beta distribution:

prev
X

T(rep)

ikj
b
�beta E(prepikj )yX

T(rep)

ikj
b
,y

X
T(rep)

ikj
b
(1xE(prepikj ))

� �
,

(8)

with E(pikj
rep) the mean predicted risk of disease/

infection for the considered covariate pattern and

y
XT(rep)

ikj
b
related to the variability of this risk with

larger values corresponding to less variability. The

covariate-pattern-specific VPC can be utilized to

derive a prior on y
X

T(rep)

ikj
b
by the use of formulae

that describe the relationship between measures of

clustering (ICC or, here, VPC) and the within- and

between-herd prevalence of infection [11] :

y
X

T(rep)

ikj
b
=

1xVPC
X

T(rep)

ikj
b

� �
E(prepikj )tXT(rep)

ikj
b
x1

� �

VPC
X

T(rep)

ikj
b

E(prepikj )tXT(rep)

ikj
b
x1

� �
+E(prepikj ) 1xt

X
T(rep)

ikj
b

� �
(9)

where E(pikj
rep) is as previously defined and t

X
T(rep)

ikj
b
is the

probability that the subgroups of individuals under

consideration are free of infection. When disease/

infection is known to be present, i.e. t
X

T(rep)

ikj
b
=1,

equation (9) simplifies to:

y
X

T(rep)

ikj
b
=

1xVPC
X

T(rep)

ikj
b

VPC
XT(rep)

ikj
b

: (10)

Subsequently, we can simulate (m times) the expected

outcome y.predikj for each of the sampled animals

within each of the j herds that possess the covariate

pattern under consideration:

y:predikj � Bernoulli prev
X

T(rep)

ikj
b
Sek

�

+ 1xprev
X

T(rep)

ikj
b

� �
1xSpkð Þ

�
, (11)

2.3. Sample size calculations for surveys to

substantiate freedom from disease

Following equation (11), the possibility of herds being

entirely free of disease can be modelled as previously

suggested by Branscum and colleagues [12] :

prev
XT(rep)

ikj
b
=

prev
X

T(rep)

ikj
b

with probability t
X

T(rep)

ikj
b

0 with probability 1xt
XT(rep)

ikj
b

(

(12)
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Those authors [12] also allowed for the possibility (c)

that the entire region is free of infection:

t
X

T(rep)

ikj
b
=

t
X

T(rep)

ikj
b

with probability c

0 1xwith probability 1xc

�
(13)

If disease is known to be present in the region,

this step can be excluded or c can be simply set

equal to 1.

To estimate the required sample size to substantiate

freedom from disease we adopt the Bayesian predic-

tive simulation approach described by these authors

[12]. Here, we modify this approach in order to apply

for subgroups of clusters/herds with a common co-

variate pattern. Implicitly, this simulation approach

assesses the required sample combination of i in j

herds to substantiate freedom from disease when

testing against the hypothesis that, if disease/infection

is present, it would have a distribution pattern defined

by the priors set on the t
X

T(rep)

ikj
b
, E(pikj

rep) and yikj

(through prev
X

T(rep)

ikj
b
). Initially, future survey data are

generated under equation (11), assuming freedom

from disease/infection (i.e. t
X

T(rep)

ikj
b
=0). That is :

y:predikj � Bernoulli (1xSpk), (14)

Generated data are then analysed under the model

described in equations (11–13), which incorporates

covariate-pattern-specific prior information on the

prev
XT(rep)

ikj
b
. Subsequently, the predictive probability of

t
X

T(rep)

ikj
b
=0 at a pre-specified level of confidence

(usually 95%) is calculated. This procedure is re-

peated for different combinations of j and n, to de-

termine the required herd and within-herd sample size

to effectively substantiate freedom from disease at the

specified confidence level. The computational details

of this approach have been extensively described

elsewhere [12].

The series of the modelling steps taken to calculate

the minimum sample size requirements to substan-

tiate freedom from disease are given in Figure 1.

2.4. Goodness-of-fit tests and convergence diagnostics

Goodness of fit for the VPC estimation model (section

2.1) is assessed through posterior predictive checking.

Breifly, if the model fits the data well, then replicated

data under the fitted model should be similar to the

observed data. Simulated values under the fitted

model are drawn from the posterior predictive distri-

bution of replicated data and compared to the ob-

served data. Subsequently, the replicated values are

plotted against the observed data in a scatter plot. The

scatter plot must be symmetric about the 45o line [13].

Fit random-effects logistic regression

for groups of clusters with a
common risk profile

Estimate the risk
of disease/infection

Estimate the heterogeneity
of disease/infection

Generate prior on the minimum expected
prevalence of disease/infection

Estimate the VPC

Calculate sample size
to substantiate freedom from disease 

Fig. 1. Flow diagram illustrating the proposed modelling approach for sample size estimation to substantiate freedom from

disease. VPC, Variance partition coefficient.
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This was true in the following applications (see sec-

tions 3.1 and 3.2).

2.5. Assessment of model convergence

Convergence diagnostics for MCMC sampling are

not foolproof. Therefore, a combination of diag-

nostics plus visual inspection of the trace plots and

summary statistics is recommended [14]. Use of stan-

dard diagnostic procedures [15–17] in the following

applications (sections 3.1 and 3.2) did not reveal any

convergence problems. We also checked the auto-

correlation plots and visually inspected the posterior

distributions of the parameters. Parameter estimates

and 95% credible intervals (CrIs) were based on the

analytical summaries of 10 000 iterations of three

parallel MCMC chains, with a thinning interval of 1

and a burn-in phase of 5000 iterations.

2.6. Statistical software

Models were run in WinBUGS [18] through R [19].

The code with detailed step-by-step explanation for

sections 2.2 and 2.3 is provided as Supplementary

material. The code for section 2.1 has been given

previously [7]. BetaBuster software [20] was used to

derive priors on Se and Sp.

3. EXAMPLES

The presented sample size estimation is of greater

practical importance when considering subgroups of

clusters that differ at higher levels of organization,

such as the herd level, due to the infectious nature of

most infections/diseases and/or the effect of manage-

ment, nutritional and environmental factors that vary

at this level. In the case of freedom from disease,

definition of subgroups of clusters within the herd

would not be applicable or biologically plausible.

Thus, the following examples, which demonstrate the

usefulness of these models, consider the inclusion of

higher-level covariates. That is, the linear predictor is

X..j
Tb rather than Xikj

T b and, hence, VPCs and predicted

risks of disease/infection are the same for individuals

within the same higher-level unit.

3.1. Sample size estimation for Danish dairy herds

with different risk profiles of MAP infection

Individual animal records on the MAP antibody milk

ELISA status and age were retrieved from the Danish

Cattle database for 64 945 animals in 633 herds.

Subsequently, details on the corresponding manage-

ment practices regarding colostrum and milk feeding

were recorded. Detailed information and a thorough

descriptive analysis of the test responses and the

distribution of these by feeding practice are given

elsewhere [21].

A random-effects logistic regression model was

used to assess the association between milk and col-

ostrum feeding practices and the risk of MAP infec-

tion, adjusting for the differential (i.e. depending

on the age) Se and Sp of the diagnostic process.

Specifically, the Se and Sp of the milk ELISA for

paratuberculosis is age dependent. Hence, herds with

varying age distribution are expected to have different

overall Se and Sp. Based on previously published

estimates [22], we chose to split each herd into two

groups: animals aged f3 and >3 years. Thus, our

model and subsequent VPC estimation adjusted for

the age-specific Se and Sp of the milk ELISA.

For cattle aged f3 years we were certain that the

most probable value for Se was 0.15 and that the 5th

percentile could not be less than 0.06; this translates

to a beta(4.32, 19.84) prior. For Sp the most probable

value was set to 0.99 and we were certain that the 5th

percentile was not less than 0.98, which translates to a

beta(560.72, 6.65) prior. Corresponding values for

cattle aged >3 years were, for Se, an expectation of

around 0.50 and a 5th percentile of 0.35, resulting in a

beta(14.59, 14.59) prior and for Sp an expectation of

around 0.98 and a 5th percentile of 0.95, resulting in a

beta(151.77, 4.08) prior.

From the fitted model, VPCs and corresponding

predicted risks of MAP infection were obtained for all

possible covariate patterns. For the covariate patterns

that exhibited the highest and lowest heterogeneity, as

dictated by the VPC, we estimated the required i and j

for substantiation of freedom from disease, via the

predictive simulation approach described in section

2.3. The prior on y was derived according to Bedrick

and colleagues [10] because the region was known to

be infected with MAP, thus, t=1. Due to the different

priors set for the age-specific Se and Sp, the y.predijk is

affected by the age distribution within the herd. Based

on the available data, we assumed a 2:3 ratio between

younger (f3 years) and older (>3 years) animals in

all simulations. For each covariate pattern the VPC

and the corresponding mean predicted risk of MAP

infection were used to formulate our prevalence priors

according to equation (8). Simulations to determine

the required sample size for freedom from disease

allowed j to vary but used a constant number of 50
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animals sampled within each of the j herds to save

simulation time.

Herds feeding colostrum to calves only from their

own dam and/or using milk replacer exhibited the

lowest risk of MAP infection and were of the least

heterogeneous (i.e. had the lowest VPCs). The highest

risk of MAP infection was in herds feeding colostrum

from multiple cows and/or allowing suckling from

foster cows. These herds were the most heterogeneous

and hence had the highest VPCs. The VPC from the

intercept-only model was comparable to the ones

under the fitted model (Table 1). Estimated sample

sizes are given in Table 3. Sampling requirements for

the whole population, which were estimated from an

intercept-only model, are also given for comparisons.

3.2. Critical control points for Salmonella

cross-contamination on pork

We have re-analysed data from a study aimed at

identifying critical control points for pork carcass

contamination during the slaughter process. Samples

were collected from two slaughterhouses located in

Northern Greece, which were visited bi-monthly for

22 consecutive visits.

A random-effects logistic model was used to model

the association between the Salmonella status of the

individual pig carcass with the Salmonella daily status

of the eviscerator and the excessive extra-muscular-fat

trimmer. Sampling day was included as a higher-level

random effect [7]. Priors for Se and Sp were elicited

from previously published relevant estimates [23].

A priori, the most probable value for Se of the

Salmonella culture was thought to be 30% and we

were 95% certain that it was not more than 50%,

resulting in a beta(6.28, 13.32) prior. For Sp, we

allowed for about one false positive in 1000 tests, to

acknowledge the fact that false positive results can

occasionally occur due to the unlikely yet existent

possibility of cross-contamination/mix-up during

sample processing, i.e. a beta(999, 1) prior.

VPCs and predicted risks of carcass cross-

contamination are given in Table 2. The highest risk

of carcass cross-contamination was predicted when

both the trimmer and the eviscerator had Salmonella

on their hands/knives, while the risk was the lowest

when neither of the sites was Salmonella positive.

The VPC from the intercept-only model was high,

suggesting that carcass cross-contamination varied

daily. Inclusion of the day-level status of the trimmer

and the eviscerator in the fitted model led to VPC es-

timates with median values that were practically zero.

Required sample sizes to substantiate freedom from

disease are given in Table 3 (as previously, the number

of pork carcasses sampled in each of j sampling days

was set to a constant – in this case 30 – to save simu-

lation time). Sample size requirements are also given

under an intercept-only model.

4. DISCUSSION

We suggest that estimation of required sample sizes

should be specific to subgroups of data/clusters with a

common risk profile, which may possess a different

Table 1. Estimated VPCs (medians and 95% credible intervals) and predicted risk of Mycobacterium avium

subsp. paratuberculosis (MAP) infection for subgroups of herds that share common characteristics – common

covariate pattern. Estimations were based on models that adjusted for the age-specific diagnostic accuracy of the

milk ELISA for MAP. Estimates from an intercept-only model are also given

VPC Risk

Intercept-only model 0.114 (0.071–0.171) 0.177 (0.132–0.221)

Covariate patterns under the fitted model
Source of colostrum
for calves

Milk source for heifer calves

Own dam Milk powder 0.112 (0.069–0.175) 0.163 (0.121–0.210)
Milk from cows with high somatic cell count 0.125 (0.081–0.186) 0.213 (0.131–0.325)
Milk powder and milk from cows with high
somatic cell count

0.140 (0.093–0.201) 0.316 (0.145–0.556)

Multiple dams Milk powder 0.125 (0.080–0.187) 0.215 (0.128–0.333)
Milk from cows with high somatic cell count 0.136 (0.090–0.197) 0.275 (0.139–0.474)
Milk powder and milk from cows with high

somatic cell count

0.146 (0.100–0.205) 0.394 (0.153–0.701)

VPC, Variance partition coefficient.
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heterogeneity pattern than that of the overall popu-

lation. In such instances, sample size estimates based

on average measures of heterogeneity, like the ICC,

will lead to under- or over-estimation of the required

sample sizes. Our examples suggest that different

sample sizes are required depending on the attained

risk as described by the different covariate patterns.

Furthermore, a significant reduction in the total

sample size requirements is achieved when a portion

of the heterogeneity in the whole population is ex-

plained by the subgrouping characteristics, i.e. the

fitted covariates. We give examples of two extreme

cases where, under the fitted model, the unexplained

heterogeneity either remains approximately equal to

the estimate under the intercept-only model (section

3.1) or is markedly reduced (section 3.2). Most of the

heterogeneity in the risk of MAP infection, in Danish

dairy cattle, remained unexplained despite the in-

clusion of significant herd-level predictors in the fitted

model (Table 1). This indicates that additional,

unmeasured or immeasurable factors exist, which

operate at the herd level and were not accounted for,

thus, contributing to the between-herd heterogeneity

of MAP infection [6, 7]. Contrarily, the inclusion of

Table 3. Estimated number of herds (j) required for sampling to substantiate freedom from (i) MAP infection

(assuming a within-herd sample of i=50 animals) and (ii) Salmonella cross-contamination (assuming a within-day

sample of i=30 pork carcasses), for selected covariate patterns that exhibit markedly greater or less heterogeneity.

Estimates are based on the analysis of 100 simulated datasets for each considered combination of i and j. For each

selected covariate pattern, priors on the minimum expected prevalence (m) were based on the mean predicted risk of

MAP infection and carcass cross-contamination for (i) and (ii), respectively. Priors on the variability of the within-

herd prevalence (y) were based on the corresponding VPC estimates. Estimates from an intercept-only model that

ignored the covariate-pattern-specific heterogeneity and correspond to the whole population are also given for

comparisons

Risk profiles of MAP infection in Danish dairy herds. m y j

Intercept-only model 0.177 7.772 130
Selected covariate patterns under the fitted model

Source of calf colostrum Milk source for heifer calves
Own dam Milk powder 0.163 7.913 110
Own dam Milk powder and milk from cows with high somatic cell count 0.316 6.143 35

Multiple dams Milk powder and milk from cows with high somatic cell count 0.394 5.849 50
Risk profiles for Salmonella cross-contamination on pork
Intercept-only model 0.110 0.45 220

Selected covariate patterns under the fitted model
Eviscerator status Trimmer status
Salmonella (+) Salmonella (x) 0.90 99 35
Salmonella (x) Salmonella (+) 0.89 99 40

Salmonella (+) Salmonella (+) 0.99 99 35

MAP, Mycobacterium avium subsp. paratuberculosis ; VPC, variance partition coefficient.

Table 2. Medians (95% credible intervals) of VPCs and predicted risk of carcass cross-contamination with

Salmonella. Significant fitted covariates are the daily Salmonella status of the eviscerator and the trimmer.

Estimates from an intercept-only model are also given

VPC Risk

Intercept-only model 0.69 (0.40–0.94) 0.11 (0.08–0.15)
Covariate patterns under the fitted model

Eviscerator status Trimmer status
Salmonella (x) Salmonella (x) 0.00 (0.00–0.17) 0.03 (0.01–0.07)
Salmonella (+) Salmonella (x) 0.00 (0.00–0.30) 0.90 (0.54–1.00)
Salmonella (x) Salmonella (+) 0.00 (0.00–0.29) 0.89 (0.58–1.00)

Salmonella (+) Salmonella (+) 0.00 (0.00–0.03) 1.00 (0.99–1.00)

VPC, Variance partition coefficient.
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higher-level covariate information about the day-level

Salmonella status of the eviscerators’ and trimmers’

hands/knives led to VPCs that were practically zero

(Table 2). Practically, the observed heterogeneity of

carcass cross-contamination among sampling days

can be totally ascribed to the daily status of the

trimmer and the eviscerator. The latter case is an ideal

paradigm where the fitted covariates practically ac-

counted for the whole heterogeneity in the risk of

carcass cross-contamination between sampling days.

Hence, covariate-pattern specific subgrouping led to

the formulation of homogeneous groups and a sig-

nificant reduction in the required sample sizes

(Table 3). To put it simply, these results indicate that

daily pig-carcass contamination levels depend on the

status of the trimmer and/or the eviscerator; the de-

livered message is that daily samples at these points of

the slaughter line are sufficient to provide information

on the status of the daily contamination levels of the

individual pig carcasses. The reduction to the required

sample size is an additional advantage of the proposed

approach to sample size estimation. Evidently, the

benefits are higher when a larger part of the higher level

heterogeneity is explained under the fitted model.

We have integrated methods of measuring the

heterogeneity for subgroups of individuals with a

common risk profile/covariate pattern [6, 7] in the

predictive simulation approach to sample size esti-

mation for substantiation of freedom from disease

[12]. Central to our approach is the formulation of a

prevalence prior [equation (8)] to quantify our belief

on the expected mean within-cluster/-herd prevalence

of disease/infection (m) and its variability (y) among

disease/infected clusters/herds, which is specific to

subgroups with a common risk profile; i.e. the same

covariate pattern. The mean predicted risk of disease/

infection and the corresponding VPCs, under the

fitted models, were used to derive the corresponding

priors on m and y. Alternatively, more conservative

estimates, such as the 5th percentile of the posterior

distribution for the risk of disease/infection, can be

used to generate the latter priors. The presented pre-

dictive simulation approach for freedom from disease

simulates data points (animals sampled from herds)

under the assumed distribution of disease/infection

and subsequently assesses whether the specified j and i

are sufficient to prove disease/infection freedom – at

the required precision – when testing vs. a disease/

infection pattern described by the abovementioned

prior specifications. Essentially, under this predictive

simulation approach [12], the specified priors on c, t,

m and y, implicitly express our perceived risk of

disease/infection for the whole area, the proportion of

the infected herds and the between and within infected

herds dispersion of infection, had the infection been

present. These explicitly fall within the concept of

specifying a minimum expected prevalence: disease is

either present at the specified minimum level or not

present at all. Specification of the minimum expected

prevalence is normally based on biological grounds

and quantifies the expected spread of disease due to its

contagiousness and/or the presence of a specific mix-

ture of risk factors, as was in our case. In other case

specification of the minimum expected prevalence can

be on the grounds that below a threshold value it will

move towards extinction without intervention due to

non-sustainable transmission rates. Finally, from a

managerial/economical point of view the minimum

expected prevalence, refers to a threshold value under

which disease/infection is small enough to be con-

sidered negligible or not of major concern [24].

Several simulations – not shown here – have been

performed to explore how various combinations of

j and i affect our confidence in freedom from disease.

In accordance with previous work [12] our confidence

increased with increasing j and/or i, with increasing

j being the more efficient approach in reducing the

total (i*j) sample size. In the presence of clustering,

increasing the number of clusters to be sampled is the

more efficient method of achieving the required pre-

cision with a smaller sample size [2]. The total sample

size is minimized if just one animal is sampled from

every cluster. In practice, however, the optimum i and

j is an informed decision that takes into account the

relative costs of sampling different clusters (e.g. herds)

to sampling units (e.g. animals) within the same

cluster. Furthermore, we have assessed the impact of

different scenarios on the distribution of disease/

infection within herds. Increasing m and y (which is

equivalent to assuming a higher risk and more diver-

sified distribution of within-herd prevalence) resulted

in achieving the required confidence with a smaller

sample size. The latter demonstrated the plausible idea

that when the within-herd prevalence is expected to be

high a smaller sample size is needed to differentiate a

disease-free from a diseased/infected population.

We have extended our previous work [6, 7] to adjust

for differential test errors on a specific exposure

(section 3.1). Taking into account the presence of

differential misclassification is crucial because a cer-

tain trend does not exist for differential errors.

This can result in either over- or underestimation
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of measures of association such as the odds ratio.

Contrarily, non-differential misclassification (i.e. Se

and Sp invariant to exposure status) always leads to

the underestimation of such measures [25]. Hence, it is

wrong, to use an average Se and Sp estimate for the

whole data and falsely treat differential misclassifi-

cation rates as invariant to exposure status because

a difference from the true trend may be observed.

We have recently demonstrated the severe impact on

VPC underestimation that occurs when disregarding

misclassification rates [7] while previous work has re-

vealed an analogous effect on the ICC [11]. Ignoring

differential or non-differential test errors would have

a severe impact on the covariate-pattern-specific

(i) VPCs and (ii) predicted risk of disease/infection

and the corresponding sample size estimates.

We have integrated and developed methods for a

simulation-based approach to sample size estimation

to prove freedom from disease, which is specific to

subgroups with a common risk profile. Clearly, the

utility of the proposed model depends heavily on the

availability of relevant data, which have to be specific

to subgroups of clusters, in order to generate appro-

priate priors and correctly estimate the corresponding

sample sizes. Such data may be difficult to obtain in a

real life situation. Yet, the application of automated

monitoring systems at the farm, clinic and national

level, such as the Danish control scheme on MAP

does and will increasingly provide such data in the

future. We advocate that this approach betters

resource allocation and, thus, falls within the context

of a risk-based approach to surveillance, which is of

great importance due to the currently increasing

limits of human and financial resources available

for disease surveillance, control and preventive

measures. For greatly heterogeneous populations,

sample size estimations specific to clusters with a

common disease/infection risk profile would improve

resource allocation and could, in several instances,

significantly reduce sample size requirements.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper

visit http://dx.doi.org/10.1017/S0950268812001938.
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