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Abstract

A notion of normal submonoid of a monoid M is introduced that generalizes the normal subgroups of
a group. When ordered by inclusion, the set NorSub(M) of normal submonoids of M is a complete
lattice. Joins are explicitly described and the lattice is computed for the finite full transformation monoids
Tn, n ≥ 1. It is also shown that NorSub(M) is modular for a specific family of commutative monoids,
including all Krull monoids, and that it, as a join semilattice, embeds isomorphically onto a join
subsemilattice of the lattice Cong(M) of congruences on M. This leads to a new strategy for computing
Cong(M) consisting of computing NorSub(M) and the so-called unital congruences on the quotients
of M modulo its normal submonoids. This provides a new perspective on Malcev’s computation of the
congruences on Tn.
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1. Introduction

It is well known that congruences on a group G and normal subgroups of G are
essentially the same. Thus, every congruence on G is completely determined by the
equivalence class of the identity element 1 ∈ G, this equivalence class is always a
normal subgroup of G, and every normal subgroup N of G is the identity element
equivalence class of a congruence on G (namely, the smallest congruence on G
containing {1} × N). In other words, there is a canonical bijection

ΨG : Cong(G)→ NorSub(G)

mapping every congruence R to the equivalence class [1]R whose inverse

ΦG : NorSub(G)→ Cong(G)

maps each normal subgroup N to the unique congruence RN such that [1]RN = N and
whose equivalence classes are the (left or right) cosets of G modulo N. In fact, bothΨG
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and ΦG are lattice isomorphisms when the domain and the codomain are ordered by
inclusion. Indeed, both ΨG and ΦG are order-preserving, and every order-preserving
bijection between lattices with an order-preserving inverse automatically preserves
joins and meets because the lattice operations can be defined in terms of the ordering.

As it is also well known, things are not so simple for arbitrary monoids. In fact, the
equivalence class of the identity element modulo a congruence no longer determines
the congruence. Thus, if M is a monoid and I is any ideal of M (a nonempty subset I
such that MIM ⊆ I), the equivalence relation RI on M given by

(a, b) ∈ RI ⇐⇒ a = b or a, b ∈ I

is a congruence, called the Rees congruence of I. It follows that for every proper ideal
I of M, the congruence RI is what we call a unital congruence, that is, a congruence R
such that [1]R = {1}. In general, these are not the only unital congruences on a monoid.
Otherwise, finding all congruences on a given monoid is much easier, as becomes clear
in the following (compare with Theorem 3.15 below). For instance, if M is the additive
monoid N+ = (N,+, 0), it is easy to check that

Rm,n = ΔN ∪ {(i, j) ∈ N × N : i, j ≥ m, i ≡ j (mod. n)} ⊆ N × N

is a congruence on N+ for each m ≥ 0 and n ≥ 1. In particular, all congruences
Rm,n with m > 0 are unital, but only the congruences Rm,1 for every m > 0 are Rees
congruences.

The main purpose of this paper is to prove a weaker version of the above lattice
isomorphism NorSub(G) � Cong(G) that holds true for arbitrary monoids, and to
discuss a strategy for computing the lattice of congruences of a monoid that follows
from it. The key notion is that of a normal submonoid of a monoid. It plays the role of
a normal subgroup of a group.

The paper is organized as follows. In Section 2, a notion of normal submonoids
of a monoid M is introduced that we argue plays the role of the normal subgroups of
a group. Thus, we see that the preimage f −1(1) for every monoid homomorphism
f : M → N, and the equivalence class of the identity element 1 ∈ M modulo any
congruence on M are both normal submonoids of M in our sense (Propositions 2.8
and 3.5, respectively), and that every normal submonoid of M is the preimage f −1(1)
of some monoid homomorphism f : M → N (Corollary 3.8). As expected, the set
NorSub(M) of normal submonoids of a monoid M, when ordered by inclusion, is
a lattice with meets and joins respectively given by the intersection and the normal
closure of the union. The normal closure of an arbitrary subset A of the monoid
is explicitly described in terms of A (Proposition 2.15). As an example, the lattice
NorSub(Tn) of the finite full transformation monoids Tn is computed for each n ≥ 1.
In particular, it is shown that Tn is ‘normally simple’, that is, such that its only
proper normal submonoids are the normal subgroups of its group of units (Proposition
2.22). The modularity of the lattice NorSub(M) is shown for a particular type
of monoid, including all free commutative monoids and, more generally, all Krull
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monoids (Theorem 2.27 and Example 2.28). In Section 3, a weakening is shown
of the lattice isomorphism NorSub(G) � Cong(G) that holds for arbitrary monoids.
More specifically, it is shown that for every monoid M, the map ΦM : NorSub(M)→
Cong(M) sending each normal submonoid S of M to the smallest congruence RS on
M containing {1} × S is join-preserving, and is a one-to-one map with a left inverse
given by the map ΨM : Cong(M)→ NorSub(M) sending each congruence to the
equivalence class of the identity element (Theorem 3.6). This leads to a possible
strategy to compute the lattice of congruences on a monoid M, which essentially
consists of finding the lattice of normal submonoids of M, and the lattices of unital
congruences on the so-called ‘normal quotients’ of M, that is, the quotients of M
modulo the congruences in the image of ΦM (Theorem 3.15). This way, the problem
of computing the congruences on the monoids reduces to just computing the unital
ones. This strategy provides a new perspective on the classical theorem by Malcev
describing all congruences on the finite full transformation monoids [10], and it shows
that these monoids are ‘congruentially simple’, that is, such that all congruences are
completely determined by the equivalence class of the identity element except when
this class reduces to {1}. Although this result is an easy consequence of the Malcev
theorem, we prove it without using this theorem.

Note. One week before finishing this work, Martins-Ferreira and Sobral put on the web
a preprint [11] where the same notion of normal submonoid is used. In Remark 1 of
this preprint, the authors mention a paper by Facchini and Rodaro [6] where this notion
seems to be introduced for the first time. The present work has been done completely
independently from both papers.

2. Normal submonoids of a monoid

In what follows, M = (M, ·, 1) stands for a monoid and U(M) for its group of units
(that is, the elements x ∈ M having a two-sided inverse x−1 ∈ M). For every subset
T ⊆ M, we denote by 〈T〉 the smallest submonoid containing T. Thus, 〈T〉 consists
of all finite products of elements in T, including the empty product (equal to 1 by
convention). If M is commutative, we use additive notation. In particular, the identity
element is denoted by 0 instead of 1.

2.1. Groupal, invariant, and normal submonoids. By a subgroup of a monoid M,
it is usually meant a subsemigroup (that is, a nonempty subset closed with respect to ·)
which is a group with the induced binary operation. Notice that the identity element of
a generic subgroup of M need not coincide with the identity 1 of M so that a generic
subgroup of M need not be a submonoid. For instance, for every idempotent e � 1 of
M, the set {e} is a subgroup of M but not a submonoid.

Together with this notion, however, there is also the following one, of more interest
to us, which also reduces to the notion of a subgroup when M is a group.

DEFINITION 2.1. A groupal submonoid of M is a submonoid S ⊆ M closed under
inverses, that is, such that x−1 ∈ S for each x ∈ S ∩ U(M).
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Clearly, every subgroup H of U(M) is a groupal submonoid, but the converse is false in
general. Thus, if U(M) = {1} (for instance, if M is the additive monoid N+ = (N,+, 0)
of natural numbers), every nontrivial submonoid of M is automatically a groupal
submonoid not included in U(M). However, in a generic monoid, there are submonoids
that are not groupal. For instance, for every n × n invertible matrix A whose inverse
is not a power of itself, the subset {Ak : k ≥ 0} is a submonoid of the multiplicative
monoid Mn(k) of all n × n matrices but not a groupal submonoid.

For every subset T ⊆ M, we denote by 〈T〉′ the smallest groupal submonoid
containing T (equivalently, the intersection of all groupal submonoids containing T).
In general, it is different from the submonoid 〈T〉 generated by T because it consists of
all finite products of elements of T and/or their inverses (when invertible). For instance,
if M = M2(R), then 〈(

1 0
0 2

)〉
=

⎧⎪⎪⎨⎪⎪⎩
(

1 0
0 2

)k

: k ≥ 0

⎫⎪⎪⎬⎪⎪⎭ ,

while 〈(
1 0
0 2

)〉′
=

⎧⎪⎪⎨⎪⎪⎩
(

1 0
0 2

)k

: k ∈ Z
⎫⎪⎪⎬⎪⎪⎭ .

Actually, we are interested in the analog for monoids of the normal subgroups of a
group. We want them to be a particular type of submonoid such that the equivalence
class of the identity element modulo any congruence is of this type. At first sight, we
might be tempted to take as our analog the groupal submonoids S that are invariant
under conjugation by arbitrary invertible elements in M (that is, such that xSx−1 ⊆ S
for every x ∈ U(M)) or, more generally, such that xSy ⊆ S for each x, y ∈ M such that
xy ∈ S. For every congruence, the equivalence class of the identity element indeed
satisfies this condition. However, this condition turns out to be too weak if we also
want every ‘normal submonoid’ to be the identity element equivalence class modulo
some congruence on M, as is the case for the normal subgroups of a group. In fact,
if S is invariant in this sense, it may happen that the smallest congruence R on M for
which S ⊆ [1]R is a congruence such that S � [1]R. If so, there is no congruence with S
as the equivalence class of 1. The fact that this can indeed happen becomes clear in the
following. As argued below, the right notion of invariance turns out to be as follows.

DEFINITION 2.2. A subset A ⊆ M is called invariant if for each x, y ∈ M, the following
conditions are equivalent:

(i) xAy ⊆ A;
(ii) xy ∈ A;
(iii) (xAy) ∩ A � ∅.

It is worth introducing the (two-sided) ‘stability set’ of any subset A, and its
generalized conjugates, and to restate the invariance condition of a submonoid in terms
of it.
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DEFINITION 2.3. The (two-sided) stability set (relative to M) of a subset A ⊆ M is the
set

XA := {(x, y) ∈ M ×M : (xAy) ∩ A � ∅}.

The subsets xAy for each (x, y) ∈ XA are called the generalized conjugates of A (in M).

It readily follows from the definition that XA ⊆ XB if A ⊆ B. Moreover, for a
submonoid S, the stability set XS contains S × S as well as the set {(x, x−1) : x ∈ U(M)}.
This is why the subsets xAy for each (x, y) ∈ XA are called the generalized conjugates
of A: when A is a submonoid S, they include the usual conjugates xSx−1 of S for each
x ∈ U(M). In general, however, XS contains many pairs other than these. For instance,

X{1} = {(x, y) ∈ M ×M : xy = 1},

and the equation xy = 1 may have solutions that are neither in S × S nor of the form
(x, x−1) for some x ∈ U(M). Finally, let us remark that when M is commutative, XS is a
submonoid of M ×M (containing the submonoid S × S).

In terms of the stability set, and the generalized conjugates, the invariance condition
on a submonoid S can be restated as follows.

PROPOSITION 2.4. A submonoid S ⊆ M is invariant if and only if

xSy ⊆ S for all (x, y) ∈ XS, (2-1)

that is, if and only if all of its generalized conjugates are subsets of itself.

PROOF. If A is a submonoid S, not just a subset, condition (i) in the definition of
invariant subset implies condition (ii) because xy = xey ∈ A, and condition (ii) implies
condition (iii) because xy = xey ∈ (xAy) ∩ A. Hence, conditions (i)–(iii) are equivalent
if and only if condition (iii) implies condition (i). �

Notice that every submonoid satisfying Equation (2-1) is invariant in the previous
weaker sense, but not conversely. For instance, a submonoid of a monoid with a trivial
group of units is automatically invariant in the weak sense, but not necessarily in our
stronger sense. An example is provided by the monoid N+ (see Proposition 2.9 below).
This leads us to the following analog for arbitrary monoids of the normal subgroups
of a group.

DEFINITION 2.5. A normal submonoid of a monoid M is a submonoid that is both
groupal and invariant.

REMARK 2.6. Usually, a submonoid S of a monoid M is called normal when xS =
Sx for each x ∈ M. (For instance, this is the notion of ‘normal submonoid’ that
appears in the groupprops webpage; see https://groupprops.subwiki.org/wiki/Normal_
submonoid.) In fact, every subgroup H of U(M) normal in this sense is a normal
submonoid in our sense, as the reader may easily check. However, even restricting
to subgroups H of U(M), this condition is not equivalent to the invariance condition
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in Equation (2-1). For instance, U(Tn) = Sn is a normal submonoid of Tn in our sense
(see Proposition 2.19 below), but it is not true that f Sn = Sn f for every transformation
f ∈ Tn if n > 1 (just take n = 2 and f any constant map). The same problem persists
with the (nonequivalent) condition xSx−1 ⊆ S for each invertible element x ∈ U(M).

If S is a normal submonoid of M, we write S �M. Clearly, if S �M and N is a
submonoid of M containing S, then S � N. However, a normal submonoid of a normal
submonoid of M need not be a normal submonoid of M. In fact, this is already so when
M is a group.

The following results provide examples of normal submonoids. The first two show
that our normal submonoids can be thought of as analogs for the generic monoids of
the normal subgroups of a group. Additional arguments in favor of this viewpoint are
discussed below. The third one highlights the difference between the submonoids

〈n〉 := {kn : k ≥ 0}, n ≥ 0 (2-2)

of N+ and all other submonoids of N+.

PROPOSITION 2.7. The normal submonoids of a group G are the normal subgroups
of G.

PROOF. Let S be a normal submonoid of G, and let us suppose that for some x ∈ G
and s ∈ S, we have xsx−1 � S. Using the equivalence between conditions (ii) and (iii)
with y = sx−1, we conclude that

(xS(sx−1)) ∩ S = ∅.

However, e = xx−1 = xs−1(sx−1) ∈ (xS(sx−1)) ∩ S, contradicting our conclusion. There-
fore, xSx−1 ⊆ S for every x ∈ G. Conversely, let S be a normal subgroup of G. We have
to see that S satisfies Equation (2-1). Indeed, let us suppose that (xSy) ∩ S � ∅ for
some x, y ∈ G. This means that there exist s1, s2 ∈ S such that xs1y = s2. Then for each
s ∈ S, we have xsy = s̃s2 with s̃ = xss−1x−1. Now, s̃ ∈ S because S is a normal subgroup
of G. Hence, xsy ∈ S and xSy ⊆ S. �

PROPOSITION 2.8. Let f : M → N be a monoid homomorphism. Then f −1(1) is a
normal submonoid of M.

PROOF. Clearly, f −1(1) is always a groupal submonoid of M. Suppose that for some
x, y ∈ M, there exists z1, z2 ∈ f −1(1) such that xz1y = z2. Then 1N = f (z2) = f (xz1y) =
f (x) f (y) and hence, for every z ∈ f −1(1), we have f (xzy) = f (x) f (y) = 1N , that is,
x f −1(1) y ⊆ f −1(1). Thus, f −1(1) is also invariant. �

PROPOSITION 2.9. The normal submonoids of N+ are the submonoids in Equation
(2-2).

PROOF. The submonoid 〈n〉 is clearly groupal. Moreover, if (k, l) ∈ X〈n〉, there exist
q, q′ ≥ 0 such that k + nq + l = nq′. Hence, q′ ≥ q, and k + l ∈ 〈n〉 so that k + 〈n〉 +
l ⊆ 〈n〉, that is, 〈n〉 is invariant. Let us now prove that these are the only normal
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submonoids of N+. Since all submonoids of N+ are groupal, we need to show that
these are the only invariant submonoids. To prove this, let S be any submonoid of N+
and n := min(S \ {0}), so that 〈n〉 ⊆ S. If S � 〈n〉, let n′ := min(S \ 〈n〉). Then we have
n′ = nq′ + r for some 0 < r < n and q′ ≥ 1 (q′ � 0 because n is the least nonzero
element of S). It follows that n′ ∈ (0 + S + r) ∩ S, that is, (0, r) ∈ XS. However,
0 + S + r � S because r ∈ 0 + S + r while r � S. �

REMARK 2.10. It follows from Proposition 2.9 that in a commutative monoid,
not every groupal submonoid is necessarily invariant. For instance, the subset
Sn := {k : k ≥ n} ∪ {0} ⊆ N is a groupal submonoid of N+ for each n ≥ 2 but not a
normal submonoid. Hence, the set (in fact, lattice) of normal submonoids of a generic
commutative monoid does not coincide with the set of all submonoids, as occurs when
the monoid is a group.

Let us finish this paragraph with two more examples of normal submonoids.
The second example provides another case of a commutative monoid with groupal
submonoids that are not invariant.

EXAMPLE 2.11. Let Nmax be the set N of natural numbers equipped with the product
given by

mn := max(m, n).

Here, Nmax is a commutative monoid with 0 as identity element. We claim that
{0, 1, . . . , n} is a normal submonoid of Nmax for each n ≥ 0. It is clearly closed under
products, but also under inverses because 0 is the only invertible element. Moreover,
the reader may easily check that

X{0,1,...,n} = {0, 1, . . . , n}2.

Since the product of elements ≤ n is ≤ n, it follows that {0, 1, . . . , n} is also invariant.

EXAMPLE 2.12. Let N�× N be the set N × N equipped with the product given by

(m, n)(p, q) = (m +max(n, p) − n, q +max(n, p) − p).

Here, N�× N is a commutative monoid, called the bicyclic monoid, with (0, 0) as
identity element (it is isomorphic to the monoid with presentation 〈a, b | ab = 1〉; see
[8, pages 31–32]). Then the diagonal Δ = {(n, n) : n ≥ 0} is a normal submonoid.
Indeed, it is clearly closed under products. Moreover, the reader may easily check
that (m, n)(p, q) = (0, 0) if and only if m = q = 0 and n = p, while (n, 0)(0, n) = (n, n).
Hence, (0, 0) is the only invertible element, from which it follows that Δ is also closed
under inverses and hence, a groupal submonoid. To prove it is invariant, notice that

(k, l)(n, n)(r, s) = (k +max(l, n, r) − l, s +max(l, n, r) − r)

so that (k, l)(n, n)(r, s) ∈ Δ if and only if k − l = s − r, independently of n. Hence,

XΔ = {((k, l), (r, r + k − l)) : k, l, r ≥ 0},
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and indeed, Δ contains all its generalized conjugates. Notice that, as a monoid, Δ is
isomorphic to the monoid in Example 2.11 and hence, Sn := {(0, 0), (1, 1), . . . , (n, n)} is
a normal submonoid of Δ for each n ≥ 0. However, Sn for n ≥ 2 is not invariant as a
groupal submonoid of N�× N. Thus, ((n − 1, 1), (2, n)) ∈ XSn because (n − 1, 1)(2, n) =
(n, n) but for n > 2, we have (n − 1, 1)(n, n)(2, n) = (2n − 2, 2n − 2) � Sn.

2.2. Normal closure. As for groups, given any subset A of a generic monoid M,
by the normal closure of A (in M), we mean the smallest normal submonoid of M
containing A. It is denoted by nclM(A), or just ncl(A) if no confusion arises, and by
nclM(x1, . . . , xn) in the finite subset case A = {x1, . . . , xn}.

The following result implies that nclM(A) is given as usual, that is, by the
intersection of all normal submonoids of M containing A.

PROPOSITION 2.13. The intersection of normal submonoids of M is a normal sub-
monoid of M.

PROOF. Let {Sλ}λ∈Λ be a family of normal submonoids of M, and let

S :=
⋂
λ∈Λ

Sλ.

Clearly, S is a groupal submonoid. Moreover, since S ⊆ Sλ, we have XS ⊆ XSλ for each
λ ∈ Λ. Thus, for each (x, y) ∈ XS,

xSy ⊆ xSλy ⊆ Sλ

because each Sλ is invariant. Hence, xSy ⊆ S, that is, S is also invariant. �

COROLLARY 2.14. For every subset A ⊆ M,

nclM(A) =
⋂

S∈NorSubA(M)

S

with NorSubA(M) the set of all normal submonoids of M containing A.

Furthermore, like any closure operator, the normal closure operator is idempotent,
preserves inclusions, and it is such that for any subsets A, B of M,

nclM(A ∪ B) = nclM(nclM(A) ∪ nclM(B)).

When M is a group G, the normal closure of A is the subgroup of G generated by the
set of all conjugacy classes of elements in A. For a generic monoid, things are a little
bit more sophisticated, and nclM(A) is built from A as follows. Let An for n ≥ 0 be the
groupal submonoids of M recursively defined by

A0 := 〈A〉′, (2-3)

An :=
〈 ⋃

(x,y)∈XAn−1

xAn−1y
〉′

, n ≥ 1 (2-4)
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with 〈〉′ the groupal submonoid generated by A, and XA the stability set of A for any
subset A ⊆ M. Notice that

A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · ·

because (1, 1) ∈ XA for each A. Consequently, we also have

XA0 ⊆ XA1 ⊆ · · · ⊆ XAn ⊆ · · ·

PROPOSITION 2.15. For every subset A ⊆ M, the normal closure of A in M is

nclM(A) =
⋃
n≥0

An.

PROOF. Every normal submonoid of M containing A must contain nclM(A). Hence, it
is enough to see that nclM(A) is a normal submonoid. Let z, z′ ∈ nclM(A). Then z ∈ An

and z′ ∈ An′ for some n, n′ ≥ 0. Since An, An′ ⊆ Amax{n,n′}, it follows that z, z′ ∈ Amax{n,n′}
and hence, zz′ ∈ Amax{n,n′} ⊆ nclM(A) because Amax{n,n′} is a submonoid. Moreover, if
z ∈ U(M), we also have z−1 ∈ Amax{n,n′} because it is a groupal submonoid. This proves
that nclM(A) is a groupal submonoid of M. To prove that it is invariant, let us first
observe that

XnclM(A) =
⋃
n≥0

XAn . (2-5)

Indeed, since An ⊆ nclM(A), we have XAn ⊆ XnclM(A) for each n ≥ 0 and hence,⋃
n≥0 XAn ⊆ XnclM(A). Conversely, let (x, y) ∈ XnclM(A). This means that there exist t∗1, t∗2 ∈

nclM(A) such that xt∗1y = t∗2 and hence, some n1, n2 ≥ 0 such that t∗1 ∈ An1 , t∗2 ∈ An2 ,
and xt∗1y = t∗2. Since An1 , An2 ⊆ Amax{n1,n2}, it follows that (x, y) ∈ Amax{n1,n2} ⊆

⋃
n≥0 XAn .

Let now (x, y) ∈ XnclM(A), and let us prove that xnclM(A)y ⊆ nclM(A). Indeed, it follows
from Equation (2-5) that (x, y) ∈ XAn0

for some n0 ≥ 0 and hence, (x, y) ∈ XAn for each
n ≥ n0. Then for any element t∗ ∈ nclM(A), we have t∗ ∈ Am0 for some m0 ≥ 0 and
hence, t∗ ∈ Am for each m ≥ m0. If m0 ≤ n0, we have t∗ ∈ An0 and (x, y) ∈ XAn0

, from
which it follows that xt∗y ∈ An0+1 ⊆ nclM(A). Similarly, if m0 > n0, we have t∗ ∈ Am0

and (x, y) ∈ XAm0
, from which it follows that xt∗y ∈ Am0+1 ⊆ nclM(A). �

Notice that for a commutative monoid M = (M,+, 0), the generating set of An for
n ≥ 1 can also be described by⋃

(x,y)∈XAn−1

(x + An−1 + y) =
⋃

z∈LXAn−1

(z + An−1),

where LXA for any subset A ⊆ M stands for the (left) one-sided stability set of A, that
is,

LXA := {z ∈ M : (z + A) ∩ A � ∅}.

Thus, if z ∈ LXA, then (z, 0) ∈ XA and conversely, if (x, y) ∈ XA, then x + y ∈ LXA.
Hence, the set on either side is indeed a subset of the set on the other side.
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EXAMPLE 2.16. For every n1, . . . , nk ≥ 0 with k ≥ 1, the normal closure of
{n1, . . . , nk} is

nclN+(n1, . . . , nk) =

⎧⎪⎪⎨⎪⎪⎩〈n1〉 if k = 1,
〈gcd(n1, . . . , nk)〉 if k ≥ 2.

Let us first prove the case k = 1. We have to see that

nclN+(n) = 〈n〉 (2-6)

for each n ≥ 0. Since U(M) = {0}, we have {n}0 = 〈n〉′ = 〈n〉. Now LX〈n〉 consists of the
positive integers p ∈ N such that p + 〈n〉 contains some multiple of n and consequently,
of those p ≥ 0 such that p ∈ 〈n〉. Hence, for each p ∈ LX〈n〉, we have p + 〈n〉 ⊆ 〈n〉
and {n}1 = {n}0, from which the claim readily follows. Let us now prove the cases
k ≥ 2 by induction on k. Let k = 2. If n1 = n2, the result follows from Equation (2-6).
If n1 � n2,

{n1, n2}0 = 〈n1, n2〉 = {kn1 + ln2 : k, l ≥ 0}.

Now, assuming that n1 < n2, we have n2 = qn1 + r1 for some q ≥ 1 and 0 < r1 < m.
Hence, r1 ∈ LX〈n1,n2〉. Thus,

{n1, n2}1 = 〈(r1 + 〈n1, n2〉) ∪ · · · 〉 ⊇ 〈r1, n1〉.

By the same argument applied to the subset {r1, n1}, it follows that

{n1, n2}2 = 〈(r2 + 〈r1, n1〉) ∪ · · · 〉 ⊇ 〈r2, r1〉,

where r2 is the remainder of the euclidean division of n1 by r1. In particular, r2 ∈
{n1, n2}2. After a finite number p ≥ 1 of iterations, we find that

gcd(n1, n2) ∈ {n1, n2}p ⊆ nclN+(n1, n2)

and hence, 〈gcd(n1, n2)〉 ⊆ nclN+(n1, n2). The equality follows because 〈gcd(n1, n2)〉 is
already a normal submonoid containing n1, n2. Let now k > 2, and let us assume that
nclN+(n1, . . . , nk−1) = 〈gcd(n1, . . . , nk−1)〉 for every n1, . . . , nk−1 ≥ 0. Then,

nclN+(n1, . . . , nk) = nclN+({n1, . . . , nk−1} ∪ {nk})
= nclN+(nclN+(n1, . . . , nk−1) ∪ nclN+(nk))

= nclN+(〈gcd(n1, . . . , nk−1)〉 ∪ 〈nk〉)
= nclN+(nclN+(gcd(n1, . . . , nk−1)) ∪ nclN+(nk))

= nclN+(gcd(n1, . . . , nk−1), nk)

= 〈gcd(gcd(n1, . . . , nk−1), nk)〉
= 〈gcd(n1, . . . , nk)〉.
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EXAMPLE 2.17. For each n ≥ 0, the normal closure of {n} in Nmax (see Example 2.11)
is given by

nclNmax (n) = {0, 1, . . . , n}. (2-7)

Indeed, since U(Nmax) = {0},

{n}0 = 〈n〉′ = 〈n〉 = {0, n}.

Now it is easy to check that LX{0,n} = {0, 1, . . . , n} and hence,

{n}1 = {0, 1, . . . , n}.

Then Equation (2-7) follows because this is already a normal submonoid. More
generally, an easy induction on k ≥ 1 shows that

nclNmax (n1, . . . , nk) = {0, 1, . . . , max(n1, . . . , nk)}.

The details are left to the reader.

2.3. Normal and normally simple monoids. As a (groupal) submonoid of M, the
group of units U(M) is invariant if (and only if) for every pair (x, y) ∈ M ×M for which
there exists some u ∈ U(M) such that xuy ∈ U(M), we have xu′y ∈ U(M) for each u′ ∈
U(M). There seems to be no reason why this should be true for a generic monoid M.
This suggests introducing the following definition.

DEFINITION 2.18. A monoid M is called normal when its group of units U(M) is a
normal submonoid.

Clearly, every group, finite or not, is a normal monoid, as is every monoid whose group
of units is trivial, such as any free monoid, and the bicyclic monoid N�× N of Example
2.12. Many more examples are provided by the next result.

PROPOSITION 2.19. Let M be a monoid. Then M is normal in any of the following two
cases:

(i) M is finite;
(ii) M is commutative.

PROOF. (i) Let M be a finite monoid that is not a group, that is, such that M \ U(M) �
∅. Then the stability set of U(M) is

XU(M) = U(M) × U(M),

from which the statement follows readily. The inclusion U(M) × U(M) ⊆ XU(M) is
obvious. Regarding the reverse inclusion, it is ultimately a consequence of the so-called
stability property of finite monoids, according to which for a finite monoid M, and for
every x, y ∈ M, the two following equivalences hold:

(1) MxM = MxyM ⇐⇒ xM = xyM;
(2) MxM = MyxM ⇐⇒ Mx = Myx.
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Using either of these equivalences, it is not difficult to see that

U(M) = {x ∈ M : MxM = M},

and that its complement M \ U(M), nonempty by hypothesis, is a (two-sided) ideal of
M; see, for example, [12, Section 1.3] for the details. Now, if M \ U(M) is an ideal and
for some x, y ∈ M, there exists some u ∈ U(M) such that xuy ∈ U(M), we necessarily
have x, y ∈ U(M). Hence, XU(M) = U(M) × U(M).

(ii) If M is commutative and xuy ∈ U(M) for some u ∈ U(M), it follows that xy ∈
U(M) and hence, xu′y = xyu′ ∈ U(M) for each u′ ∈ U(M). �

PROPOSITION 2.20. Let M be a normal monoid. Then every normal subgroup of U(M)
is a normal submonoid of M.

PROOF. Every subgroup H of U(M) is trivially a groupal submonoid of M. Let us
assume that H is a normal subgroup of U(M) and that for some x, y ∈ M, we have
(xHy) ∩ H � ∅. Since H ⊆ U(M), we also have (xU(M)y) ∩ U(M) � ∅ and hence,
xU(M)y ⊆ U(M) because U(M) is a normal submonoid of M. Then for every h ∈ H,
we have xhy ∈ U(M). �

In general, a normal monoid M may have normal submonoids other than itself, and
the normal subgroups of U(M). For instance, this is so for the monoid N+ (compare
with Proposition 2.9), and for the monoids in Examples 2.11 and 2.12.

DEFINITION 2.21. A normal monoid M is called normally simple if its only normal
submonoids are M and the normal subgroups of U(M).

Clearly, every group is a normally simple monoid. An important family of
normally simple noncommutative monoids that are not groups is the family of full
transformation monoids Tn := End(n) for each n ≥ 1, where n := {1, . . . , n}.

PROPOSITION 2.22. Tn is normally simple for each n ≥ 1.

PROOF. Here, Tn is a normal monoid because it is finite. To prove that it is normally
simple it is enough to see that for each f ∈ Tn, the normal closure of { f } in Tn is
given by

nclTn ( f ) =

⎧⎪⎪⎨⎪⎪⎩nclSn ( f ) if f ∈ Sn,
Tn if f � Sn,

(2-8)

where nclSn ( f ) stands for the normal closure of { f } in the symmetric group Sn. Indeed,
let this be true and let S be a normal submonoid of Tn. If S \ Sn � ∅ and f ∈ S ∩ Sn, it
follows from Equation (2-8) that Tn = nclTn ( f ) ⊆ S and hence, S = Tn. Otherwise, we
have S ⊆ Sn and, being a normal submonoid of Tn, S is also a normal submonoid of Sn

and hence, a normal subgroup of Sn.
Let us prove Equation (2-8). We need to compute the sequence of groupal

submonoids { f }0, { f }1, . . . . Let us first consider the case where f is a permutation.

https://doi.org/10.1017/S1446788723000204 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000204


[13] Normal submonoids and congruences on a monoid 343

By definition,

{ f }0 = 〈 f 〉′ = { f p : p ∈ Z}.

Then the stability set of { f }0 consists of all pairs (g, h) ∈ Tn × Tn such that g f ph = f q

for some p, q ∈ Z. Since f is a bijection, h must be injective and g surjective. Being
endomorphisms of n, it follows that g, h ∈ Sn. Hence, we can take as g any permutation
in Sn, and h = f qg−1 f −p, that is,

X{ f }0 = {(τ, f qτ−1 f −p) : τ ∈ Sn, p, q ∈ Z}.

In particular, (τ, τ−1) ∈ X{ f }0 for each τ ∈ Sn. Thus,

nclTn ( f ) ⊇ { f }1 =
〈 ⋃

(g,h)∈X{ f }0

g{ f }0h
〉′
⊇

〈 ⋃
τ∈Sn

τ{ f }0τ−1
〉′
⊇ nclSn ( f ).

However, nclSn ( f ) is already a normal submonoid of Tn containing f because of
Proposition 2.20. Therefore, nclTn ( f ) = nclSn ( f ) when f is invertible.

Let now f be a noninvertible endomorphism. To prove that ncl( f ) = Tn, we proceed
by induction on the rank k < n of f. If k = 1, there exists i ∈ n such that f = ci, the
constant function mapping all of n to i. Now,

{ci}0 = {idn, ci},

and for every h ∈ Tn, we have cih = ci, that is, (idn, h) ∈ X{ci}0 . It follows that for every
h ∈ Tn,

h ∈ idn{ci}0h ⊆ {ci}1 ⊆ nclTn ( f ),

that is, nclTn ( f ) = Tn. Let us now assume that nclTn (φ) = Tn for every endomorphism
φ ∈ Tn of rank l ∈ {1, . . . , k − 1}, with 1 < k < n. Since f is not invertible,

{ f }0 = { f p : p ≥ 0}.

Let Im f = {i1 < i2 < · · · < ik} ⊂ n and {A1, . . . , Ak} the partition of n such that f −1(ij) =
Aj. Thus, f = εη, with η : n→ {i1, . . . , ik} given by Aj �→ ij, and ε : {i1, . . . , ik} → n
the canonical inclusion. Then the powers of f can be described in terms of the map
α : {i1, . . . , ik} → {i1, . . . , ik} defined by

α(ij) = ij′ ,

where j′ is the unique element in {1, . . . , k} such that ij ∈ Aj′ . Thus, f 2 is given by

Aj
f
�→ ij

f
�→ ij′ , that is, we have f 2 = εαη. More generally, for each p ≥ 1,

f p = εαp−1η.

The map α can be bijective or not. If it is not bijective, it follows that the powers of f all
have rank less than k. However, if { f }0 contains a map φ of rank l < k, it follows by the
induction hypothesis that Tn = nclTn (φ), and hence nclTn ( f ) = Tn because nclTn (φ) ⊆
nclTn ( f ). It remains to prove that the same is true when α is not bijective. In this case,
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all powers of f are of rank k. However, we claim that when α is not bijective, { f }1
contains maps of rank less than k, so that the same argument can be applied. Indeed,
since f is not a bijection, there is some j ∈ {1, . . . , k} such that Aj contains more than
one element. Without loss of generality, let us assume that |A1| > 2. Moreover, since α
is a bijection, each ij belongs to a different Aj′ and hence, there is some a1 ∈ A1 such
that a1 � {i1, . . . , ik}. Then let us consider the pair (g, h) ∈ Tn × Tn given as follows:

(i) h maps all of A1 to a1, and each Aj for j ∈ {2, . . . , k} to any aj ∈ Aj;
(ii) g acts as the identity on {i1, . . . , ik}, and collapses n \ {i1, . . . , ik} to i2 (in

particular, we have g(a1) = i2).

Then we have g f h = f , that is, (g, h) ∈ X{ f }0 and hence, gh ∈ { f }1. However, gh is of
rank at most k − 1 because even if {a2, . . . , ak} = {i2, . . . , ik}, we have that a1 is also
mapped to i2. �

2.4. Lattice of normal submonoids and modularity. As the set of normal sub-
groups of a group, the set NorSub(M) of normal submonoids of a monoid M is a
complete lattice when ordered by inclusion, with meets and joins respectively given by∧

i∈I
Si =

⋂
i∈I

Si,

∨
i∈I

Si = nclM
(⋃

i∈I
Si

)
for every family of normal submonoids {Si}i∈I . In general, computing this lattice for a
given monoid M may be quite difficult, if possible at all, or the resulting lattice may
be a complex one. In some cases, however, it is just a (finite or infinite) chain.

EXAMPLE 2.23. Let us write [n] := {0, 1, . . . , n} for each n ≥ 0. Then the lattice of
normal submonoids of Nmax is the infinite chain

[0] ⊂ [1] ⊂ · · · ⊂ [n] ⊂ · · ·N.

Indeed, let S be a normal submonoid of Nmax. If S is a bounded set and n is its
maximum, we have S = [n] because nclNmax (n) = [n] (compare with Example 2.17).
Otherwise, for each k ≥ 0, there is some element n ∈ S with n > k because S is not
bounded. Therefore, k ∈ nclNmax (n) ⊆ S and S = N.

EXAMPLE 2.24. It readily follows from Proposition 2.22 together with the simplicity
of the alternating groups An for each n ≥ 5 that the lattice of normal submonoids of Tn

is given by the finite chain

{1} ⊂ S2 ⊂ T2 if n = 2,
{1} ⊂ K4 ⊂ A4 ⊂ S4 ⊂ T4 if n = 4,

{1} ⊂ An ⊂ Sn ⊂ Tn if n � 2, 4,

with K4 = {id, (12)(34), (13)(24), (14)(32)} the Klein permutation four-group.
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DEFINITION 2.25. A monoid M is called modular if the lattice of normal submonoids
NorSub(M) is modular (that is, if S1 ∨ (S2 ∧ S3) = (S1 ∨ S2) ∧ S3 for all normal
submonoids S1S2, S3 of M such that S1 ⊆ S3).

As is well known, every group is a modular monoid. Thus, the question arises
whether every monoid is also modular, and in case it is not, determining what
monoids, or families of monoids, are modular. The standard proof of the modularity of
NorSub(G) for a group G makes use of the fact that the join of two normal subgroups
is nothing but their product (see, for instance, [9, Theorem 8.3]). However, as a matter
of fact, the equality S ∨ S′ = SS′ for all normal submonoids S, S′ of a monoid M is
not necessary for NorSub(M) to be modular. Actually, there are modular monoids for
which this equality does not hold for each S, S′. Even more, SS′ need not be a normal
submonoid at all when M is not a group.

EXAMPLE 2.26. Let M = N+. If S = 〈2〉 and S′ = 〈3〉, the product SS′, more properly
denoted by S + S′ in this case, is 〈2〉 + 〈3〉 = N \ {1}, which is not a normal submonoid
ofN+. Hence, 〈2〉 ∨ 〈3〉 � 〈2〉 + 〈3〉. In spite of that,N+ is modular. Indeed, let S1, S2, S
be normal submonoids of N+, with S1 ⊆ S2. We have to see that (S1 ∨ S) ∧ S2 = S1 ∨
(S ∧ S2). Now, it follows from Proposition 2.9 that S1 = 〈nq〉, S2 = 〈n〉, and S = 〈m〉 for
some m, n, q ≥ 0. Moreover, from Example 2.16, we know that

(〈nq〉 ∨ 〈m〉) ∧ 〈n〉 = 〈gcd(nq, m)〉 ∩ 〈n〉 = 〈lcm(gcd(nq, m), n)〉
〈nq〉 ∨ (〈m〉 ∧ 〈n〉) = 〈nq〉 ∨ 〈lcm(m, n)〉 = 〈gcd(nq, lcm(m, n)〉.

Hence, we just need to see that lcm(gcd(nq, m), n) = gcd(nq, lcm(m, n)), and this is
a consequence of the general fact that gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c)) for
each a, b, c.

As shown by this example, the modularity of a monoid M is a more subtle question
than just knowing if the equality S ∨ S′ = SS′ holds for all normal submonoids S, S′ of
M. The following result gives an infinite family of monoids M such that NorSub(M) is
modular, a family that generalizes the monoid in Example 2.26.

THEOREM 2.27. Let M = (M,+, 0) be a cancellative commutative monoid such that

(∗) for all x, y ∈ M, there exists z ∈ M such that x = y + z or y = x + z.

Then NorSub(M) is isomorphic to the lattice Sub(M̂) of (normal) subgroups of the
Grothendieck group M̂ of M. In particular, every cancellative commutative monoid
satisfying (∗) is modular.

PROOF. Since M is assumed to be cancellative, M̂ is given (up to isomorphism) by the
quotient of the product monoid M ×M modulo the congruence relation

(m, n) ∼ (m′, n′) ⇔ m + n′ = m′ + n.
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We denote by [m, n] the equivalence class of (m, n) in M̂. Then for every normal
submonoid S �M, let Ŝ be the subgroup of M̂ given by

Ŝ := {u ∈ M̂ : u = [s, s′] for some (s, s′) ∈ S × S}.

The notation is justified by the fact that this subgroup is indeed isomorphic to the
Grothendieck group of S. This is again a consequence of the cancellative character of
M, which ensures that (s, s′), (t, t′) ∈ S × S are equivalent in the Grothendieck group of
S if and only if they are equivalent in M̂. Then let f : NorSub(M)→ Sub(M̂) be the
map defined by S �→ Ŝ.

We claim that f is a lattice isomorphism. It is clearly order-preserving. Moreover, it
is injective. Indeed, let S1, S2 �M be such that Ŝ1 = Ŝ2, and let x ∈ S1. Then [x, 0] ∈ Ŝ1
and hence, we also have [x, 0] ∈ Ŝ2. However, this means that there exists a pair
(s2, s′2) ∈ S2 × S2 such that [x, 0] = [s2, s′2], that is, such that x + s′2 = s2. It follows that
x belongs to the left stability set of S2 and consequently, x = x + 0 ∈ S2 because S2 is
invariant. This proves that S1 ⊆ S2. A similar argument proves that S2 ⊆ S1 and hence,
S1 = S2. To prove it is surjective, let

n(H) := {x ∈ M : [x, 0] ∈ H}

for every (normal) subgroup H of M̂. We claim that n(H) is a normal submonoid of M
such that

n̂(H) = H. (2-9)

Indeed, it is a groupal submonoid of M because H is a subgroup of M̂. Moreover, let
z ∈ LXn(H) so that z + x ∈ n(H) for some x ∈ n(H). This means that [z + x, 0], [x, 0] ∈ H
and hence,

[z, 0] = [z + x, x] = [z + x, 0] + [0, x] = [z + x, 0] − [x, 0]

is also in H. Therefore, z ∈ n(H) and consequently, z + n(H) ⊆ n(H), that is, n(H) is
invariant. Let us now prove Equation (2-9). The inclusion n̂(H) ⊆ H holds even if M
does not satisfy (*). Thus, if u ∈ n̂(H), then u = [x, x′] for some x, x′ ∈ n(H) and hence,
such that [x, 0], [x′, 0] ∈ H. Then,

u = [x, 0] + [0, x′] = [x, 0] − [x′, 0] ∈ H

because H is a subgroup. It is to prove the reverse inclusion that condition (*) is needed.
Thus, let h ∈ H, that is, h = [y, y′] for some y, y′ ∈ M. By condition (*), we have either
y = y′ + z or y′ = y + z for some z ∈ M. In the first case,

h = [y′ + z, y′] = [z, 0] ∈ H

and hence, z ∈ n(H) and h = [z, 0] ∈ n̂(H). Similarly, in the second case,

h = [y, y + z] = [0, z] = −[z, 0] ∈ H
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and hence, also [z, 0] ∈ H because H is a subgroup. Consequently, z ∈ n(H) and again
h ∈ n̂(H). This proves that f is a bijective order-preserving map. Since the inverse map
H �→ n(H) is also order-preserving, it follows that f is a lattice isomorphism. The last
assertion then follows from the modularity of the lattice of normal subgroups of a
group. �

EXAMPLE 2.28. Every free commutative monoid is modular. Indeed, every free
commutative monoid is cancellative and satisfies condition (*). More generally, let
us recall that by a saturated submonoid S of a commutative monoid M, is meant a
submonoid such that for every s1, s2 ∈ S and x ∈ M such that s1 = s2 + x, we have
x ∈ S. Then every saturated submonoid of a free commutative monoid is also a
cancellative commutative monoid satisfying condition (*) and hence, modular. Even
more generally, every Krull monoid is modular, where by a Krull monoid, is meant a
monoid isomorphic to A × S for some abelian group A, and some saturated submonoid
S of a free commutative monoid.

Let us emphasize that condition (*) is needed to prove that f is onto with inverse
map given by H �→ n(H). For a generic cancellative commutative monoid, we have the
following weaker version of Theorem 2.27.

THEOREM 2.29. For every concellative commutative monoid M, NorSub(M) is
isomorphic, as a join semilattice, to a join subsemilattice of Sub(M̂).

PROOF. We have to see that the above injective map f : NorSub(M)→ Sub(M̂) is
join-preserving. Let S1, S2 �M. The inclusion Ŝ1 ∨ Ŝ2 ⊆ Ŝ1 ∨ S2 follows because f is
order-preserving, and Ŝ1 ∨ Ŝ2 is the smallest subgroup containing both Ŝ1 and Ŝ2. To
prove the reverse inclusion, let x ∈ Ŝ1 ∨ S2. This means that x = [t, t′] for some t, t′ ∈
S1 ∨ S2. Since Ŝ1 ∨ Ŝ2 = Ŝ1 + Ŝ2, we have to see that

(t, t′) ∼ (s1 + s2, s′1 + s′2) (2-10)

for some pairs (s1, s′1) ∈ S1 × S1 and (s2, s′2) ∈ S2 × S2. To prove this, recall that

S1 ∨ S2 = nclM(S1 ∪ S2) =
⋃
n≥0

(S1 ∪ S2)n,

with (S1 ∪ S2)n the sequence of groupal submonoids recursively defined by

(S1 ∪ S2)0 = 〈S1 ∪ S2〉′,

(S1 ∪ S2)n =

〈 ⋃
z∈LX(S1∪S2)n−1

(z + (S1 ∪ S2)n−1)
〉′

, n ≥ 1

(see Section 2.2). Since the sequence (S1 ∪ S2)n is a nondecreasing chain, t, t′ ∈ S1 ∨ S2
implies that t, t′ ∈ (S1 ∪ S2)n for some n ≥ 0. Then we prove Equation (2-10) by
induction on n ≥ 0. If n = 0, we have t, t′ ∈ 〈S1 ∪ S2〉 because both S1, S2 are groupal
submonoids. Hence, both are finite sums of elements in S1 and/or S2. By the
commutativity of M, it follows that (t, t′) is in fact equal to a pair as in the right-hand
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side of Equation (2-10). Let us now assume that for some n ≥ 1, every pair (u, u′)
with u, u′ ∈ (S1 ∪ S2)n−1 is equivalent to a pair as in the right-hand side of Equation
(2-10), and let t, t′ ∈ (S1 ∪ S2)n. This means that there exist z1, . . . , zk+l, z′1, . . . , z′k′+l′ ∈
LX(S1∪S2)n−1 and u1, . . . , uk+l, u′1, . . . , u′k′+l′ ∈ (S1 ∪ S2)n−1 such that zi + ui, z′i′ + u′i′ are
invertible for each i ∈ {k + 1, . . . , k + l} and i′ ∈ {k′ + 1, . . . , k′ + l′}, and (t, t′) =
(A + B, A′ + B′) with

A = (z1 + u1) + · · · + (zk + uk),
A′ = (z′1 + u′1) + · · · + (z′k′ + u′k′),
B = [−(zk+1 + uk+1)] + · · · + [−(zk+l + uk+l)],

B′ = [−(z′k′+1 + u′k′+1)] + · · · + [−(z′k′+l′ + u′k′+l′)]

(here we are using the commutativity of M to write first all ‘positive terms’ in the
expressions of both t, t′). However,

(t, t′) = (A + B, A′ + B′)
∼ (A + B, A′ + B′) + ((−B) + (−B′), (−B) + (−B′))
= (A + (−B′), A′ + (−B)).

Moreover, since M is commutative, and both LX(S1∪S2)n−1 and (S1 ∪ S2)n−1 are sub-
monoids, reordering terms,

A + (−B′) = y + v,
A′ + (−B) = y′ + v′,

with y ∈ LX(S1∪S2)n−1 , v ∈ (S1 ∪ S2)n−1 given by

y = z1 + · · · + zk + z′k′+1 + · · · + z′k′+l′ ,
v = u1 + · · · + uk + u′k′+1 + · · · + u′k′+l′ ,

and similarly y′, v′. Now, since y, y′ ∈ LX(S1∪S2)n−1 , there exists w, w′ ∈ (S1 ∪ S2)n−1 such
that y + w, y′ + w′ ∈ (S1 ∪ S2)n−1. Therefore,

(t, t′) ∼ (y + v, y′ + v′) ∼ (y + w + v + w′, y′ + w′ + v′ + w) ∈ (S1 ∪ S2)n−1.

By the induction hypothesis, it follows that (t, t′) is also equivalent to a pair as in the
right-hand side of Equation (2-10). Hence,

x = [t, t′] = [s1, s′1] + [s2, s′2] ∈ Ŝ1 + Ŝ2,

and Ŝ1 ∨ Ŝ2 ⊇ Ŝ1 ∨ S2. �

REMARK 2.30. It seems that for a generic cancellative commutative monoid M, the
lattice NorSub(M) is not isomorphic through the injection f to a sublattice of Sub(M̂),
a fact that implies the modularity of M also in this more general case. The problem is
that condition (*) seems to be also necessary to prove that f is meet-preserving, and
not just onto. Indeed, the inclusion Ŝ1 ∩ S2 ⊆ Ŝ1 ∩ Ŝ2 is always true because S1 ∩ S2 ⊆
S1, S2 and hence, Ŝ1 ∩ S2 is a subgroup contained in both Ŝ1 and Ŝ1. However, to prove
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the reverse inclusion, we have to see that every time we have u = [s1, s′1] = [s2, s′2]
for some pairs (s1, s′1) ∈ S1 × S1 and (s2, s′2) ∈ S2 × S2, there is a pair (x, y) with x, y ∈
S1 ∩ S2 whose equivalence class is u. Using hypothesis (*), this is easily shown. For
instance, if s1 = x + s′1 or s′1 = x + s1 for some x ∈ M, then x ∈ LXS1 and hence, x ∈ S1
because S1 is invariant. In other words, we have either u = [x, 0] or u = [0, x] for some
x ∈ S1. Similarly, the invariance of S2 shows that either u = [y, 0] or u = [0, y] for some
y ∈ S2. It is now easy to see that in either case, we have x, y ∈ S1 ∩ S2 and hence, that
u ∈ ̂S1 ∩ S2. For instance, if u = [x, 0] = [y, 0], we have x = y, while u = [x, 0] = [0, y]
implies that x + y = 0, that is, y is the opposite of x and hence, we also have y ∈ S1
because S1 is groupal. However, it is not clear that without assuming condition (*), the
reverse inclusion is still true.

3. On the lattice of congruences on a monoid

As recalled in the introduction, the lattice of congruences on a group G is
isomorphic to the lattice of normal subgroups of G. The purpose of this section is
to prove a weaker version of this result valid for a generic monoid M. More precisely,
we see that NorSub(M) embeds canonically into the set of congruences on M, and that
this embedding is an isomorphism of join semilattices between NorSub(M) and the
join subsemilattice of the so called ‘normal congruences’ on M. We also describe a
general procedure to compute the ‘blow up’ of NorSub(M) giving the whole lattice
of congruences on M. As we see, it basically reduces the problem of finding all
congruences to being able to compute the unital ones.

In what follows, Cong(M) denotes the set of congruences on a monoid M. When
ordered by inclusion, it is a complete lattice with meets and joins respectively given by∧

i∈I
Ri =

⋂
i∈I

Ri,

∨
i∈I

Ri =

(⋃
i∈I

Ri

)�

for any family of congruences {Ri}i∈I on M. Here, Y� for every subset Y ⊆ M ×M
denotes the smallest congruence on M containing Y. Explicitly, it is the equivalence
relation on M generated by the subset {(xay, xby), (a, b) ∈ Y : x, y ∈ M} (see [8,
Proposition 1.5.8] or [1, Propositions 1.27 and 1.29]).

3.1. Congruence induced by a subset. For every subset A ⊆ M, let us denote by
Cong(M, A) the subset of Cong(M) consisting of the congruences R such that A ⊆
[1]R. Notice that both the meet and join in Cong(M) of a family of congruences in
Cong(M, A) still are in Cong(M, A). Hence, Cong(M, A) is a complete sublattice of
Cong(M). Let RA be the least element in Cong(M, A), that is,

RA := ({1} × A)�.
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It is called the congruence on M induced by A. Explicitly, RA is given as follows. If
v, w ∈ M, we say that w is an elementary A-deformation of v, and we write

v�
A

w (or just v� w when no confusion arises)

if there exists v1, v2 ∈ M, and a ∈ A such that v = v1v2, and w = v1av2. Then (x, y) ∈ RA

if and only if there exists a finite sequence z0, . . . , zk of elements in M, with k ≥ 0, such
that:

(a) z0 = x and zk = y;
(b) for each i ∈ {0, 1, . . . , k − 1}, either zi � zi+1 or zi+1 � zi.

Since every element in M is an elementary A-deformation of itself, this is equivalent to
the existence of a finite sequence z0, . . . , z2k, with k ≥ 0, satisfying condition (a) above,
and such that

z0 � z1 � z2 � · · ·� z2k−2 � z2k−1 � z2k.

EXAMPLE 3.1. Let M = N+. Then R〈n〉, n ≥ 1, is nothing but the usual congruence
modulo n. Indeed, a positive integer l ≥ 0 is an elementary 〈n〉-deformation of k ≥ 0
if and only if l ≥ k, and l − k ∈ 〈n〉. Moreover, if l is an elementary 〈n〉-deformation
of both k and k′, and k′ ≥ k, then k′ is an elementary 〈n〉-deformation of k. Therefore,
(x, y) ∈ R〈n〉 if and only if x, y differ by a multiple of n.

In fact, in the commutative case, and when A is a subsemigroup of M, as is the case
in the previous example, the congruence RA is more easily described as follows.

PROPOSITION 3.2. Let M be a commutative monoid, A a subsemigroup of M, and
x, y ∈ M. Then (x, y) ∈ RA if and only if there exists a, a′ ∈ A such that x + a = y + a′.

PROOF. If M is commutative, we clearly have that v ∈ M is an elementary
A-deformation of u ∈ M if and only if v = u + a for some a ∈ A. Hence, if x + a =
y + a′ for some a, a′ ∈ A, then we have x� x + a = y + a′� y and (x, y) ∈ RA.
Conversely, let (x, y) ∈ RA. Then there exists a sequence z0, . . . , z2k as before. If k = 1,
we have x + a = y + a′ for some a, a′ ∈ R. The cases k ≥ 2 follow then by induction
on k together with the fact that A is closed under sums. Thus, let us assume that
z0 + a0 = z2k−2 + a1 for some a0, a1. Then from the case k = 1, it follows that we also
have z2k−2 + a′1 = z2k + a2 for some a′1, a2 ∈ A. Hence,

z0 + a0 + a′1 = z2k−2 + a1 + a′1 = z2k + a1 + a2

with a0 + a′1, a1 + a2 ∈ A. �

Clearly, if M � {1}, the assignments A �→ RA are not one-to-one. Thus, for each
A � M with 1 � A, we have RA = RA∪{1}. In fact, RA depends on A only through its
normal closure so that subsets of M having the same normal closure induce the same
congruence. Actually, the converse is also true. To prove these claims, we need the
following invariance properties of Cong(M, A) with respect to the subset A.
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PROPOSITION 3.3. Let A be any subset of M. Then:

(a) Cong(M, A) = Cong(M, 〈A〉′), with 〈A〉′ the groupal submonoid of M generated
by A;

(b) Cong(M, A) = Cong(M, xAy) for every (x, y) ∈ XA.

PROOF. Clearly, Cong(M, A) ⊇ Cong(M, 〈A〉′) because A ⊆ 〈A〉′. To prove the reverse
inclusion, let R ∈ Cong(M) be such that A ⊆ [1]R. Then for every a1, a2 ∈ A, we have
(1, a1), (1, a2) ∈ R and hence,

(1, a1a2) = (1, a1)(1, a2) ∈ R.

Moreover, if a ∈ A is invertible, we have (a−1, a−1), (1, a) ∈ R and hence,

(a−1, 1) = (a−1, a−1)(1, a) ∈ R.

Since every element in 〈A〉′ is a finite product of elements of A and/or their inverses
(when they exist), it follows that [1]R also contains 〈A〉′. This proves item (a). As for
item (b), the inclusion Cong(M, A) ⊇ Cong(M, xAy) is again obvious. To prove the
reverse inclusion, let R ∈ Cong(M) be such that [1]R contains A, and let (x, y) ∈ XA.
Then there exists a1, a2 ∈ A such that xa1y = a2, and (a1, 1), (1, a2) ∈ R by hypoth-
esis. Then for every a ∈ A, we have (1, a) ∈ R and hence, (a1, a) = (a1, 1)(1, a) ∈ R.
Therefore,

(a2, xay) = (x, x)(a1, a)(y, y) ∈ R.

By transitivity, we conclude that (1, xay) ∈ R. Since this is true for each a ∈ A and
for each (x, y) ∈ XA, it follows that [1]R also contains every generalized conjugate
of A. �

PROPOSITION 3.4. For every monoid M and every subset A of M,

Cong(M, A) = Cong(M, ncl(A))

and consequently, RA = Rncl(A).

PROOF. The inclusion Cong(M, ncl(A)) ⊆ Cong(M, A) is obvious. To prove the
reverse inclusion, let us assume that R ∈ Cong(M, A). Then an easy induction on
n ≥ 0 using Lemma 3.3 shows that R ∈ Cong(M, An) for each n ≥ 0, where An is
the sequence of groupal submonoids of M defined by Equations (2-3)–(2-4). Since
ncl(A) is the union of all An’s (compare with Proposition 2.15 above), it follows that
R ∈ Cong(M, ncl(A)). The last assertion follows from the fact that RA is the minimum
of the sublattice Cong(M, A), and Rncl(A) is the minimum of Cong(M, ncl(A)). �

3.2. Embedding the set of normal submonoids into the set of congruences.
Proposition 3.4 implies that subsets of M having the same normal closure induce
the same congruence. Actually, the converse is also true. In fact, we claim that the
map ΦM : NorSub(M)→ Cong(M) sending each normal submonoid S �M to the
congruence RS induced by S is one-to-one, from which the above converse readily
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follows. To prove this, we first need the following analog to a well-known fact about
the congruences on a group.

PROPOSITION 3.5. For every congruence R on a monoid M, the identity element
equivalence class [1]R is a normal submonoid of M.

PROOF. Clearly, [1]R is a groupal submonoid of M because of the compatibility of R.
To see that it is invariant, let (x, y) ∈ X[1]R . This means that there exist z, z′ ∈ [1]R such
that xzy = z′. Then by the compatibility of R,

[1]R = [z′]R = [xzy]R = [xy]R,

that is, xy ∈ [1]R. Therefore, for each z1 ∈ [1]R, we have [xz1y]R = [xy]R = [1]R, that is,
x[1]Ry ⊆ [1]R. �

Then let ΨM : Cong(M)→ NorSub(M) be the map given by R �→ [1]R. If M is a
group G, we know that ΦG is a lattice isomorphism with inverse ΨG. Although this is
no longer true for arbitrary monoids, the following weaker facts still remain true in the
general setting.

THEOREM 3.6. Let M be a monoid. Then:

(a) ΦM (respectively ΨM) is a join-homomorphism (respectively a meet-homo-
morphism);

(b) ΦM is a (set-theoretic) section of ΨM. In particular, it is one-to-one.

PROOF. The map ΦM is order-preserving. Thus, if S ⊆ S′, then RS′ is a congruence
containing {1} × S′ and consequently, also {1} × S so that RS ⊆ RS′ by definition of
RS. Since S, S′ ⊆ S ∨ S′, it follows that RS, RS′ ⊆ RS∨S′ and hence, RS ∨ RS′ ⊆ RS∨S′

by definition of the join RS ∨ RS′ . To prove the reverse inclusion, it is enough to
observe that for all normal submonoids S, S′, the equivalence class of the identity
element modulo RS ∨ RS′ is a normal submonoid that contains both S and S′ and hence,
also S ∨ S′. Therefore, RS∨S′ ⊆ RS ∨ RS′ by definition of RS∨S′ . This proves that ΦM is
join-preserving. As forΨM , it is clearly order-preserving, and for all congruences R, R′,
and every x ∈ M, we have [x]R∩R′ = [x]R ∩ [x]R′ . In particular, this is true when x = 1,
that is, ΨM is meet-preserving. This proves item (a).

To prove item (b), we have to see that [1]RS = S for every normal submonoid S of
M. The inclusion S ⊆ [1]RS follows from the definition of RS. To prove the reverse
inclusion, let us consider an element z ∈ [1]RS . By the previous description of RS, this
means that there exists a finite sequence x0, . . . , xk of elements in M such that x0 = 1,
xk = z, and either xi �

S
xi+1 or xi+1 �

S
xi for each i ∈ {0, 1, . . . , k − 1}. Then to see that

z ∈ S, we prove the following facts:

(i) every elementary S-deformation of an element in S is again an element in S; and
(ii) an element in S can be an elementary S-deformation of an element v ∈ M only if

v ∈ S.
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Clearly, if both of these facts are true, every element in the above sequence x0, . . . , xk

is in S because x0 = 1 ∈ S. In particular, we have z = xk ∈ S and hence, [1]RS ⊆ S. Let
us prove items (i) and (ii).

Proof of item (i). Let w ∈ M be an S-deformation of some element s ∈ S. This means
that there exist x, y ∈ M, and s′ ∈ S such that s = xy, and w = xs′y. However, s = xy ∈ S
implies that w = xs′y ∈ xSy ⊆ S because of the invariance of S.

Proof of item (ii). Let s ∈ S be an elementary S-deformation of v ∈ M. This means that
there exist v1, v2 ∈ M and s′ ∈ S such that v = v1v2 and s = v1s′v2. In particular, we
have s ∈ (v1Sv2) ∩ S and hence, v = v1v2 ∈ S because of the invariance of S. �

COROLLARY 3.7. Let A, B be subsets of M. Then:

(a) RA = RB if and only if nclM(A) = nclM(B);
(b) [1]RA = nclM(A).

PROOF. Both items are immediate consequences of Proposition 3.4 and Theorem 3.6.
�

The next corollary mimics the fact that every normal subgroup of a group G is the
kernel of some group homomorphism with domain G, thus providing more arguments
in favor of the idea that normal submonoids are the right analog for arbitrary monoids
of the normal subgroups of a group.

COROLLARY 3.8. Let M be a monoid. Then every normal submonoid S of M is the
preimage f −1(1) of a monoid homomorphism f : M → N for some monoid N.

PROOF. It follows from Theorem 3.6 that S is the preimage of the identity element by
the projection of M onto its quotient M/RS. �

With additional assumptions on M, it is possible to go further. For instance, if M is
a cancellative commutative monoid satisfying condition (*) of Theorem 2.27, then we
have the following stronger result.

PROPOSITION 3.9. Let M be a cancellative commutative monoid satisfying condition
(*) of Theorem 2.27. Then NorSub(M) embeds isomorphically onto a sublattice of
Cong(M).

PROOF. It is enough to see that ΦM is also meet-preserving when M is as in the
statement. For all normal submonoids S, S′ of any monoid M, we always have
RS∩S′ ⊆ RS ∩ RS′ because RS ∩ RS′ is a congruence containing {1} × (S ∩ S′).
Conversely, let us assume that (x, y) ∈ RS ∩ RS′ . Since M is commutative, this means
that there exist s1, s2 ∈ S and s′1, s′2 ∈ S′ such that x + s1 = y + s2 and x + s′1 = y + s′2.
Hence,

x + s1 + s′2 = y + s2 + s′2 = x + s′1 + s2

and consequently, s1 + s′2 = s′1 + s2 because M is cancellative. Let us now observe that
if M satisfies condition (*), then every normal submonoid of M also satisfies condition
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(*). Indeed, if s1, s2 ∈ S, with S �M, are such that s2 = s1 + z for some z ∈ M, then z ∈
LXS and hence, z = z + 0 ∈ S. Then we may assume that s′2 = s′1 + s′ for some s′ ∈ S′.
Then,

s′1 + s2 = s1 + s′2 = s1 + s′1 + s′

and hence, s2 = s1 + s′, that is, s′ ∈ LXS. Since S is invariant, it follows that s′ ∈ S and
consequently, s′ ∈ S ∩ S′. Coming back to the initial hypothesis that x + s1 = y + s2,
we conclude that

x + s1 = y + s1 + s′

and hence x = y + s′, that is, (x, y) ∈ RS∩S′ . �

REMARK 3.10. In general, ΦM seems to be not meet-preserving. Although we always
have RS∩S′ ⊆ RS ∩ RS′ , it seems that the reverse inclusion can be false. In fact, (x, y) ∈
RS ∩ RS′ if and only if x, y can be connected by both a finite sequence of elementary
S-deformations and a finite sequence of elementary S′-deformations. However, it is
not clear that this is enough for the existence of a finite sequence of elementary
(S ∩ S′)-deformations connecting them. Similarly, in general, ΨM seems to be not
join-preserving. We always have [1]R ∨ [1]R′ ⊆ [1]R∨R′ because [1]R∨R′ is a normal
submonoid containing both [1]R and [1]R′ . However, in general, the converse [1]R∨R′ ⊆
[1]R ∨ [1]R′ seems to be false.

3.3. Normal and exceptional congruences. Although ΦM is always injective, it
is not surjective for a generic monoid. As shown by the examples mentioned in the
introduction, for a given normal submonoid S �M, the congruence RS may be just one
of several congruences on M having S as the equivalence class of the identity element.
This suggests distinguishing the following two types of congruences on, and quotients
of, a generic monoid.

DEFINITION 3.11. A congruence R on a monoid M is called normal if R = RS for
some normal submonoid S of M (equivalently, if R is in the image of ΦM). Otherwise,
it is called exceptional. Similarly, a quotient of M is called normal (respectively
exceptional) when it is the quotient of M modulo a normal (respectively exceptional)
congruence.

EXAMPLE 3.12. It follows from Proposition 2.9 that the nontrivial normal congru-
ences in the additive monoid N+ are R0,n = {(i, j) ∈ N × N : i ≡ j (mod n)} for each
n ≥ 1, with [0] = 〈n〉. Up to isomorphism, the corresponding normal quotients are the
cyclic groups (Zn,+, 0).

Let us denote by NorCong(M) the subset of Cong(M) consisting of the normal
congruences on M ordered by inclusion. Then Theorem 3.6 can be restated as follows.

COROLLARY 3.13. For every monoid M, NorCon(M) is a complete lattice isomorphic
to NorSub(M).
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PROOF. It follows from Theorem 3.6 that the corestriction of ΦM to NorCon(M) is
an order-preserving bijection from NorSub(M) to NorCon(M) whose inverse map is
given by R �→ [1]R and hence, also an order-preserving map. �

Let us emphasize that NorCon(M) seems to be just a join subsemilattice of
Cong(M) because the meet of two generic normal congruences RS, RS′ in NorCong(M)
is RS∩S′ but not necessarily in Cong(M) (compare with Remark 3.10 above).

3.4. The set of congruences as a ‘blow up’ of the set of normal submonoids. For
each normal submonoid S of M, let

CongS(M) := {R ∈ Cong(M) : [1]R = S}.

Notice that CongS(M) ⊆ Cong(M, S), and that it contains the minimal element RS
and unique normal congruence in Cong(M, S). When S = {1}, we write Cong1(M)
(or Cong0(M) in the additive case) instead of Cong{1}(M). Its elements are the unital
congruences on M mentioned in the introduction.

When ordered by inclusion, CongS(M) is a meet subsemilattice of Cong(M, S)
and hence, of Cong(M). However, it is not a join subsemilattice in general. Thus, if
R, R′ ∈ Cong1(M), then their join R ∨ R′ in Cong(M, S) (and in Cong(M)) need not be
a congruence in CongS(M) because we only have the inclusion [1]R ∨ [1]R′ ⊆ [1]R∨R′ .

It readily follows from Theorem 3.6 that, as a set, Cong(M) is in bijection with the
‘blow up’ of NorSub(M) (equivalently, of NorCong(M); compare with Corollary 3.13)
obtained when each normal submonoid S (normal congruence RS) is replaced by the
set CongS(M). It turns out that, up to isomorphism, CongS(M) is given by the set of
unital congruences on the quotient monoid M/RS, or M/S for short. More precisely,
the following holds true.

PROPOSITION 3.14. Let M be a monoid and S �M. Then CongS(M) is isomorphic,
as a meet semilattice, to Cong1(M/S). In particular, RS is mapped through the
isomorphism to the trivial unital congruence on M/S.

PROOF. Let us first observe that every congruence R ∈ CongS(M) induces a unital
congruence on the quotient M/S given by

R̃ := {([x]RS , [y]RS ) ∈ M/S ×M/S : (x, y) ∈ R}.

Indeed, if (x, y) ∈ R, and x′, y′ ∈ M are such that (x′, x) ∈ RS, (y, y′) ∈ RS, then we
also have (x, x′) ∈ R and (y, y′) ∈ R because RS is the minimum of CongS(M). By
transitivity, it follows that (x′, y′) ∈ R and hence, R̃ is a well-defined binary relation
on M/S. Moreover, it is immediate to check that R̃ is a congruence because this
is true for R. Finally, [x]RS R̃ [1]RS means that x R 1 and hence, x ∈ [1]R = S = [1]RS ,
that is, R̃ is unital. In particular, when R is RS, then R̃ is the trivial congruence on
M/S. Conversely, every unital congruence T on M/S induces a congruence T∗ on M
given by

T∗ := {(x, y) ∈ M ×M : ([x]RS , [y]RS ) ∈ T},
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and T∗ is such that [1]T∗ = S. Indeed, [[1]RS ]T = {[1]RS } because T is unital. Hence, for
each x ∈ M,

(1, x) ∈ T∗ ⇔ ([1]RS , [x]RS ) ∈ T ⇔ [x]RS = [1]RS ⇔ (1, x) ∈ RS ⇔ x ∈ S.

Then it is easy to check that the maps tS : CongS(M)→ Cong1(M/S) and t∗S :
Cong1(M/S)→ CongS(M) respectively given by R �→ R̃, and T �→ T∗ are inverses
of each other. Moreover, both are order-preserving and hence, they define a meet
semilattice isomorphism. �

This result, together with Theorem 3.6, leads to the following description of the set
of congruences on an arbitrary monoid.

THEOREM 3.15. For every monoid M, there is a (set-theoretic) bijection

Cong(M) −→
⋃

S∈NorSub(M)

Cong1(M/S) (3-1)

given by R �→ t[1]R (R), and whose inverse is given by T �→ t∗S(T) for each T ∈
Cong1(M/S). Moreover, the exceptional congruences on M are mapped through this
bijection to the nontrivial unital congruences on the normal quotients of M.

This theorem reduces the computation of the whole set of congruences on an arbitrary
monoid M to the computation of:

(1) its set NorSub(M) of normal submonoids (equivalently, normal congruences);
(2) the normal quotient M/S for each normal submonoid S of M; and
(3) the set Cong1(M/S) of unital congruences on each normal quotient M/S.

As it becomes clear from the bijection in Equation (3-1), the higher complexity of the
theory of congruences on generic monoids with respect to the corresponding theory
for groups ultimately comes from the existence of nontrivial unital congruences on a
monoid. For every group G, there is only one unital congruence on G, so that every
term in the right-hand side of Equation (3-1) is a singleton. In fact, the following
characterizations of the unital congruences on a generic monoid are straightforward.

PROPOSITION 3.16. Let R be a congruence on a monoid M. Then the following are
equivalent:

(i) R is unital;
(ii) for each x, y ∈ M, if (x, y) ∈ R and x ∈ U(M), then x = y;
(iii) the restriction of R to the group of units U(M) is the identity relation ΔU(M).

PROOF. Let R be unital, so that [1]R = {1}, and let x, y ∈ M such x ∈ U(M), and
(x, y) ∈ R. Then (1, x−1y), (1, yx−1) ∈ R and hence, x−1y = yx−1 = 1, that is x = y. This
proves that (i) implies (ii). The remaining implications (ii)⇒ (iii), and (iii)⇒ (i) are
immediate. �
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3.5. Congruentially simple monoids. As pointed out before, the exceptional con-
gruences on a monoid M are in bijection with the nontrivial unital congruences on its
normal quotients. This suggests introducing the following definition.

DEFINITION 3.17. A monoid M is called congruentially simple if its only normal
quotient having nontrivial unital congruences is the monoid M as normal quotient
of itself.

For such monoids, the equivalence class of the identity element is trivial in all
exceptional congruences, and for every normal submonoid S � {1}, there is a unique
congruence R such that [1]R = S. In other words, a monoid is congruentially simple
if all its congruences are uniquely determined by the equivalence class of the identity
element except when this class is trivial. Once more, the question arises whether every
monoid is congruentially simple, and if it is not, to identify families of monoids that
are congruentially simple.

EXAMPLE 3.18. N+ is congruentially simple. Indeed, it follows from Proposition
2.9 and Example 3.1 that, up to isomorphism, the only nontrivial, proper normal
quotients of N+ are the additive groups Zn for each n ≥ 2. As they are all groups,
there are no nontrivial unital congruences on them. Hence, Cong(N+) consists of the
normal congruences ΔN and R0,n for each n ≥ 1, together with the nontrivial unital
congruences on N+.

As discussed in the next subsection, the finite full transformation monoids Tn are
also congruentially simple.

3.6. Malcev’s theorem revisited. In a now classical paper from 1952, Malcev
computed the lattice of congruences of the finite full transformation monoids Tn, n ≥ 1
[10]. The computation starts with the fact that the lattice of ideals of Tn is given by the
chain

I1 ⊆ I2 ⊆ · · · ⊆ In = Tn,

where Ik stands for the set of endomorphisms of n := {1, . . . , n} of rank ≤ k (by the
rank of such an endomorphism, it is meant the cardinal of its image). Malcev realized
that for every congruence R on Tn different from the uniform congruence ∇Tn := Tn ×
Tn, there is some k ∈ {1, . . . , n} and some normal subgrup N � Sk such that R is the
identity on In \ Ik, it identifies all endomorphisms in Ik−1, and its restriction to Ik \
Ik−1 is completely given by N. To be precise, two endomorphisms u, v ∈ Ik \ Ik−1 are
equivalent if and only if u = v or the following three conditions hold:

(1) both have the same image {i1, . . . , ik} ⊆ n;
(2) u−1(ij) = v−1(ij) for each j = 1, . . . , k; and
(3) there exists a permutation τ ∈ N such that v = τu.

Let Rk,N be the congruence so defined by the pair (k, N). For instance, R1,S1 is the
identity congruence ΔTn and Rk,{1} for any k ≥ 2 is the Rees congruence RIk−1 mentioned
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in the introduction. Clearly, if k ≤ k′, then Rk,N ⊆ Rk′,N′ for every normal subgroups
N � Sk, and N′ � Sk′ with N ⊆ N′ when k = k′. It follows that the whole lattice of
congruences on Tn is given by the chain

if n = 2: ΔT2 ⊆ RI1 ⊆ R2,S2 ⊆ ∇T2 ,
if n = 3: ΔT3 ⊆ RI1 ⊆ R2,S2 ⊆ RI2 ⊆ R3,A3 ⊆ R3,S3 ⊆ ∇T3 ,
if n = 4: ΔT4 ⊆ RI1 ⊆ R2,S2 ⊆ RI2 ⊆ R3,A3 ⊆ R3,S3 ⊆ RI3 ⊆ R4,K4 ⊆ R4,A4 ⊆ R4,S4 ⊆ ∇T4 ,

and by the chain

ΔTn ⊆ RI1 ⊆ R2,S2 ⊆ RI2 ⊆ R3,A3 ⊆ R3,S3 ⊆ RI3

⊆ R4,K4 ⊆ R4,A4 ⊆ R4,S4 ⊆ · · · ⊆ RIn−1 ⊆ Rn,An ⊆ Rn,Sn ⊆ ∇Tn

for each n ≥ 5, where K4 denotes the Klein four-group; see [7] for a modern
presentation of the subject, including the computation of the lattice of congruences
of the related monoids PTn of partial transformations and ISn of partial injective
transformations. Notice that the equivalence class of the identity element in Rk,N is

[1]Rk,N =

⎧⎪⎪⎨⎪⎪⎩{1} if k < n,
N if k = n.

Hence, the normal congruences on Tn are the congruences ΔTn , Rn,An , Rn,Sn , and ∇Tn

(and R4,K4 when n = 4), and all exceptional congruences are in this case unital, that is,
Tn is congruentially simple.

Subsequent works devoted to the computation of the lattice of congruences on other
specific families of monoids often follow the Malcev strategy, starting with the lattice
of ideals of the monoid or, more precisely, with some ascending chain of ideals whose
union is the whole monoid; see, in particular, the works by East and Ruskuc [2–5].
However, it is also possible to address the problem using Theorem 3.15. Although,
at some point, we may be forced to converge to a strategy similar to Malcev’s, in
particular, in the computation of the lattice of unital congruences of the normal
quotients, this theorem offers a new strategy whose starting point is the lattice of
normal submonoids, and this new strategy may allow us to achieve some results in
a different way. This is the case of the congruential simplicity of Tn, which can be
proved directly without using the Malcev result.

Indeed, let us consider the generic case n ≥ 5. We know from Theorem 3.15
that the exceptional congruences on Tn are in bijection with the nontrivial unital
congruences on the normal quotients of Tn. Hence, a path to identify them consists
of first computing all normal quotients and then looking for the unital congruences on
each of these quotients.

PROPOSITION 3.19. Up to isomorphism, the nontrivial, proper normal quotients of Tn

for n ≥ 5 are the multiplicative monoids {0, 1} and {−1, 0, 1}.
PROOF. It follows from Example 2.24 that the only nontrivial, proper normal quotients
of Tn for n ≥ 5 are Tn/Sn and Tn/An. Hence, it is enough to prove that:
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(a) Tn/Sn � ({0, 1}, ·, 1);
(b) Tn/An � ({−1, 0, 1}, ·, 1).

Proof of item (a). Recall that Tn/Sn means the quotient of Tn modulo the smallest
congruence R = RSn on Tn such that [1]R = Sn. In particular, for each u ∈ Sn, we have
[u]R = Sn. It turns out that [u]R = Tn \ Sn if u � Sn. To be precise, if c1 : n→ n denotes
the constant map defined by c1(k) = 1 for each k ∈ n, let us prove that

(u, c1) ∈ R ⇔ u � Sn. (3-2)

The implication to the right is an immediate consequence of the fact that [1]R = Sn.
Thus, if (u, c1) ∈ R for some u ∈ Sn, then we also have (1, c1) ∈ R and hence, c1 ∈
[1]R = Sn which is clearly false. To prove the converse, we proceed by induction on
the rank r ∈ {1, . . . , n − 1} of u (that is, on the cardinality of its image). If r = 1,
then u is the constant map ci sending every k ∈ n to i for some i ∈ n, and c1 is
clearly an elementary Sn-deformation of ci. Indeed, c1 is the composite of ci with
the transposition (1i) ∈ Sn. Hence, (u, c1) ∈ R. Let us now assume that for some r ∈
{1, . . . , n − 2}, every map of rank r is R-related to c1, and let u be of rank r + 1. Since
r < n − 1, we still have r + 1 < n and hence, there exists some i ∈ n not in the image
of u. Let j be any element in the image of u and l such that u(l) � j. Such an l exists
because u is of rank r + 1 ≥ 2. Then let us consider the map u′ : n→ n defined by

u′(k) =

⎧⎪⎪⎨⎪⎪⎩k if k � i,
j if k = i.

Clearly, we have u′u = u. Hence, the composite û = u′τu, with τ the transposition
(iu(l)) ∈ Sn is an elementary Sn-deformation of u and consequently, (u, û) ∈ R. How-
ever, û is of rank r because all elements in u−1(u(l)) are now mapped not to u(l) � j but
to j, while û(k) = u(k) for each k � u−1(u(l)). By the induction hypothesis, (û, c1) ∈ R
and hence, (u, c1) ∈ R by transitivity. This proves Equation (3-2).

It follows that the map Tn → {0, 1} sending each u � Sn to 0 and each u ∈ Sn to 1 is
a monoid epimorphism that factors through the quotient Tn/Sn, and the induced map
Tn/Sn → {0, 1} is a monoid isomorphism.

Proof of item (b). Here, Tn/An means the quotient of Tn modulo the smallest
congruence R = RAn on Tn such that [1]R = An. In particular, for each u ∈ An, we
have [u]R = An. It turns out now that [u]R = Sn \ An if u ∈ Sn \ An and [u]R = Tn \ Sn if
u � Sn. To be precise, let us prove that

(u, c1) ∈ R ⇔ u � Sn, (3-3)
(u, (12)) ∈ R ⇔ u ∈ Sn \ An. (3-4)

The implication to the right in Equation (3-3) follows from the fact that [u]R ⊆ Sn for
each u ∈ Sn. To see this, recall that (u, v) ∈ R if and only if there exists a finite sequence
w0, . . . , wk of elements in Tn such that u = w0, v = wk, and for each i ∈ {0, 1, . . . , k − 1},
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either wi or wi+1 is an elementary An-deformation of the other. Actually, since An is a
group, both conditions are equivalent. For instance, if wi+1 = z1τz2 for some z1, z2 ∈
Tn such that wi = z1z2 and some τ ∈ An, then wi = (z1τ)τ−1z2. Therefore, it is enough
to see that every elementary An-deformation of an element in Sn is still in Sn, and
this is clearly true because every factorization of an element in Sn is necessarily as a
composite of elements in Sn. To prove the converse, we proceed again by induction
on the rank r of u. If r = 1, then u is the constant map ci for some i ∈ n, and when
i � 1, the map c1 is the composite of ci and the permutation (1ji) ∈ An for some j � 1, i
(here we use that n ≥ 3). Hence, (u, c1) ∈ R. Let us now assume that for some r ∈
{1, . . . , n − 2}, every map of rank r is R-related to c1, and let u be of rank r + 1. Let i
be not in the image of u, j any element in the image of u, and l such that u(l) � j (we
are using again that n ≥ 3), and let u′ : n→ n be the same map as in the proof of the
previous proposition. In particular, we have u′u = u. Then the composite ũ = u′σu with
σ the permutation (iu(l)j) ∈ An is an elementary An-deformation of u and consequently,
(u, ũ) ∈ R. However, ũ is of rank r because all elements in u−1(u(l)) are now mapped to
j, while ũ(k) = u(k) for each k � u−1(u(l)). Indeed, σu maps all of u−1(j) to i, but this
is next mapped again to j by u′. By the induction hypothesis, (ũ, c1) ∈ R and hence,
(u, c1) ∈ R. This proves Equation (3-3).

Let us now prove Equation (3-4). The implication to the right follows now from the
fact that for every odd permutation (for instance, (12)), [σ]R ⊆ Sn \ An. Indeed, every
factorization of an odd permutation is necessarily as a composite of an odd and an
even permutation, and hence, every elementary An-deformation of it is also an odd
permutation. The converse follows from the obvious fact that every odd permutation
u can be connected to (12) by a finite number of elementary An-deformations. It is
enough to write u as the composite of an odd number of transpositions including (12)
(two consecutive times if necessary), and then proceed to eliminate consecutive pairs
of transpositions by performing elementary An-deformations until we are left only with
the transposition (12). This proves Equation (3-4).

By an easy case-by-case check, it follows that the map Tn → {−1, 0, 1} sending each
u � Sn to 0, each u ∈ An to 1, and each u ∈ Sn \ An to −1 preserves products and hence,
is a monoid epimorphism that factors through the quotient Tn/An, and whose induced
map Tn/An → {−1, 0, 1} is a monoid isomorphism. �

COROLLARY 3.20. Tn is congruentially simple for each n ≥ 5.

PROOF. Neither of the monoids in Proposition 3.19 has unital congruences other than
the equality. �

4. Final comments

There remain many open questions in this work which are left for future work. Let
us mention a few of them.

(1) There is first the question of the modularity of the lattice of normal submonoids
of a monoid. Although it is unlikely that every monoid is modular, we have no example
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of a monoid whose lattice is not modular. Assuming that example exists, it will be
interesting to identify where the modularity of a monoid is hidden, namely, a necessary
and sufficient condition for a monoid to be modular.

(2) There is also the question of the normality of a monoid, and the associated
question of the normal simplicity when the monoid is normal. Although it seems
possible that the group of units of a monoid is always a normal submonoid of it, we
have not been able to prove it. In any case, it is clear that not every normal monoid
is normally simple, as the example of the additive monoid of natural numbers shows.
Therefore, it will also be interesting to identify necessary and/or sufficient conditions
for a normal monoid to be normally simple.

(3) Of course, there is the problem of describing the normal submonoids of
some important examples of monoids, in particular, the special transformation,
combinatorial, endomorphisms, or diagram monoids.

(4) We have seen that congruences on a monoid can be naturally classified into
normal congruences and exceptional ones. Congruences of the last type are those for
which there exists a strictly smaller congruence having the same normal submonoid as
the equivalence class of the identity element. The question arises whether exceptional
congruences only exist for the trivial submonoid, as is the case of both N+ and the
finite full transformations monoids, or they also exist for other normal submonoids.
This is the question of determining whether every monoid is congruentially simple
or not. If not, the problem arises of determining which normal submonoids of a
noncongruentially simple monoid might be called ‘congruentially complete’, that is,
such that there is only one congruence with this normal submonoid as the equivalence
class of the identity element (equivalently, such that the normal quotient has no unital
congruence other than the equality).

(5) We have shown that, in general, the lattice of normal submonoids of a monoid
can be identified with just a join subsemilattice of the whole lattice of congruences
on it. Are the groups the only monoids for which NorSub(M) and Cong(M) are
isomorphic?

(6) We have seen a way of reducing the computation of the congruences on a
monoid to being able to compute the unital ones. What input or inputs in the monoid
determine a unital congruence? In other words, what additional input or inputs,
together with the equivalence class of the identity element, determine completely
a congruence on a monoid? Here, the lattice of ideals and the set of nonidentity
idempotents of the monoid perhaps play a crucial role. In fact, in the case of groups,
both things collapse.

Finally, it remains the problem of extending, if possible, the whole theory to
arbitrary semigroups or, at least, to some important types of semigroups (nilpotent,
perfect, and so forth). In fact, there already exist various notions of a normal
subsemigroup, each of them related to a particular notion of conjugacy for semigroups.
The question naturally arises whether some of these notions provides the appropriate
generalization to semigroups of the notion of normal submonoid as defined in this
work.
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