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THE INTERPOLATION PROOF OF GROTHENDIECK'S
INEQUALITY

by G. J. O. JAMESON

(Received 22nd June 1984)

Introduction

This note is an exposition of the simple and elegant approach to Grothendieck's
inequality given in [2] and [4], with one further simplification. The process of
factorizing through L2 ([2], p. 21) introduces a factor of yfnJ2 into the final constant.
We show that this step can be avoided.

The ingredients are Khinchin's inequality, an interpolation result for p-summing
norms and a reformulation of Grothendieck's inequality. No measure theory is used at
any stage. We obtain Grothendieck's inequality with constant 2^/3. We present the details
for the real case, but the method applies with minor changes to the complex case too
(giving the same constant). Some short proofs of known results are included for
completeness.

Preliminaries

If X, Y are normed linear spaces, we denote by Ux the unit ball in X and by L(X, Y)
the space of continuous linear operators from X to Y.

We denote by Fp the space W with /p-norm. The ith unit vector is denoted by eh and
the usual inner product on W by <, >.

Given a finite sequence (xu...,xk) of elements of a normed linear space, define
HP(x1,...,xk)(for p^l) by

[MjLxu..., xk)Y = sup JX \f(xd\': f e l/,.J.

It is elementary that if K is a norming subset of Ux,, then this is equal to

In particular, if X is /£, or C(S), then (taking K to be the set of point-evaluations) we
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where pth powers are defined in the obvious pointwise sense.
The p-summing norm of an operator T is defined by

where finite sequences of any length k are considered.
One of the equivalent forms of Grothendieck's inequality is; there is a constant KG

such that for any m, n and any T in L(/™,/2), we have ^ ( T ^ ^ U r H . The best possible
value of KG (which is still unknown) is called "Grothendieck's constant".

Let Dk denote the set of all mappings B from {1,...,&} to { — 1,1}. Khinchin's inequality
states that for a = (au...,ak)eUk,

This has long been known, and is easily proved, with l/N/3 instead of 1/^/2. For a
proof that the best constant is 1/^/2, see [1].

The quantity n2( T)

Let Y be W with any norm under which it is a Banach lattice (in particular, any l"p).
For yu...,yk in Y, the element (yj + ... + y|)1/2 is well-defined. For T in L(/^,, Y), define

One can verify that n2 is a norm, though this is not important for our purposes. Its
relevance here is that it provides an equivalent statement of Grothendieck's inequality,
as follows.

Proposition 1. JCG = sup{7i2(T): TeL(/^,/?), | |T | |^1, m,peN}.

Proof. Any mapping S in L(/?, l2) can be written as

where fl,-e/£. Then ||Sx||2=^,<a,-,x>2, so ||S||=At2(a1,...,all). We consider S with ||S|| = 1.
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Any mapping T in L(/£, /?) can be written as

Ty=t <bj,y>ej

where 6,6/?. Then ||7^||^/x1(i>1,...,fcp). We consider T with ||T|| = 1.
With S, T as above, we have {Tai)(j) = (ai,bj}, so if

then

so ||C|| = X!J||^JII (w n e r e the norms are those of the appropriate spaces). Hence the
statement that n2(T)^K for all such T is equivalent to the statement that nl(S)^K for
all such S.

Let au...,akeW, and define c by: c^O and c 2 =^af . In T2 we have clearly ||c||2 =
£||a,H2, and hence for T in W^Jl) we have ft2(T) = K2(T). The space /" has the following
well-known property ("2-concavity").

Lemma 1. In /", we have ||c||2^XIIai||2-
i

Proof. Write ||flj|| = A,-. By Schwarz's inequality,

in the natural ordering of /". Since the norm of /" is additive for positive elements, it
follows that

which gives the result.

Hence for T in U^,F[), we have n2(T)^n2(T).
The following lemma (cf. [4], Lemma 1.1) is well-known as part of the proof of the

weaker version of Khinchin's inequality.

Lemma 2. Given alt..., ake W and e eDk, write bc = £,-E^. Then

2~k I bf
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Proof, fc4 is the sum of terms of the form £,£,£^£,0,0/^0,. When we sum over eeDk,
the only terms that do not cancel are

occurring for each e. The statement follows.
Recall that for non-negative numbers cu...,cN,

1 /4

Proposition 2. Let Y be W with any norm under which it is a Banach lattice. For T in
L{IZ, Y), we have

Proof. Take elements alt...,ak of Z™ and define be as in Lemma 2. By Khinchin's
inequality,

1/2

D

Since the norm in Y is such that O^u^v implies ||M||^||U||, we have

|

^r i i /4

^ \ /2 2 " * X11 Tbt\ |
4 by the remark above

l / 4

by the definition of 7t4

1/2

by Lemma 2.

Since t m s completes the proof.

Interpolation

The required interpolation result can be related to the Riesz-Thorin theorem, but it is
simpler to prove it directly from Pietsch's theorem, as follows. For T in L(/£,, Y) (any
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Y), Pietsch's theorem ([3], p. 64-5) asserts the equivalence of the following statements:

(i) np{T)^A,
(ii) there is a positive linear functional 4> on l"m such that ||<£|| = ,4P and

||Tx||p^^(|x|p) for all x in /^.
Statement (ii) can clearly be reformulated as follows:

(ii') there exist non-negative numbers kl,...,Xn such that Yj ^; = ^

for all x = (x!,...,xn) in IR", where Tej = aj.

Proposition 3. Let l<p<r. Then for any T in L(/^, Y),

In particular,

n2p(T)2Znp(T)\\T\\.

Proof. Write 6=p/r. There exist A,- as in (ii'), with A = np(T). Take x in l"x and / in
UY,. Write \x}\ = y} and |/(a;)| = u,. Clearly, ^ . M ^ H T H . We have

Now

and hence

= ( E y)l<>uj) ( Z "J ) by Holder's inequality.

)^IILejJ'iNI. w h e r e 6je{-l, 1}. So by (ii'),

It follows, by the easy implication in Pietsch's theorem that

https://doi.org/10.1017/S0013091500022653 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022653


222 G. J. O. JAMESON

Note. More generally, one can show that

where l/r = 9/p + (l — 6)/q. Simple examples show that these results do not hold for
operators whose domain is not an /^-space.

Deduction of Grothendieck's inequality

Take T in L(/£,/?)- We have

7t2( T)2 g 2 y 3 7r4( T)2 by Proposition 2

by Proposition 3

by Lemma 1.

Hence 7r2(7
1)^2v/3||T'||. By Proposition 1, this is equivalent to Grothendieck's inequ-

ality (with KG ̂  2^/3).

Remarks

(1) Clearly, there is a constant K^KG such that 7i2(T)^K||T|| for all T in L(C'i)-
(The main part of [4] is concerned with generalizations of this result, rather than
Grothendieck's inequality itself.) The exact value of K remains unknown, and is of
interest as much as KG. It is well known that Kg^Ky/n/2 in the real case, and
KG ̂  2K/y/n in the complex case. It is attractive to conjecture that K = ̂ fl in the real
case, as it is elementary that this is the value for \\. It is also the value for l\, since
n2(T)2 = ni(rn\\T\\ and 7:1(/i) = 2 (however, the estimate given by this reasoning grows
with p).

(2) It is easy to show (as in Proposition 2, but without Khinchin's inequality) that
7t2(T)g31/47t4(T). However, Proposition 3 becomes false if 7?p, nr are substituted for

(3) Using the exact value of the corresponding Khinchin constant [1], one obtains a
slightly better estimate using n5 instead of n4: KG^4/n1/6 ( = 3.305..). This is the best
estimate afforded by this method using np for integral p.
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