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Abstract

We consider a robust optimal investment–reinsurance problem to minimize the goal-
reaching probability that the value of the wealth process reaches a low barrier before
a high goal for an ambiguity-averse insurer. The insurer invests its surplus in a con-
strained financial market, where the proportion of borrowed amount to the current wealth
level is no more than a given constant, and short-selling is prohibited. We assume that
the insurer purchases per-claim reinsurance to transfer its risk exposure to a reinsurer
whose premium is computed according to the mean–variance premium principle. Using
the stochastic control approach based on the Hamilton–Jacobi–Bellman equation, we
derive robust optimal investment–reinsurance strategies and the corresponding value
functions. We conclude that the behavior of borrowing typically occurs with a lower
wealth level. Finally, numerical examples are given to illustrate our results.
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1. Introduction

As crucial components of the insurance business chain, investment and reinsurance play
indispensable roles in fostering the high-quality development of the insurance sector and ensur-
ing the security and stability of the national economy. In recent years, optimization problems
with various objectives subject to investment and/or reinsurance control have garnered sig-
nificant attention and emerged as a prominent topic in actuarial literature. Common objective
functions include ruin probability minimization, goal-reaching optimization, and expected util-
ity maximization, as well as the mean–variance criterion (see, e.g., [4, 5, 7, 8, 10, 15, 21, 22,
27] and references therein). In this paper, we study the optimal investment–reinsurance strategy
on a goal-reaching problem of an insurer in a dynamic setting.

Most of the existing literature on investment has not taken into account or incorporated
natural constraints. In the financial market, short-selling and borrowing constraints are two of
the main factors which make models more realistic. On one hand, countries such as China
impose restrictions on short-selling. If short-selling is allowed, investors may adopt high-risk
investment strategies to gain substantial profits, such as maliciously shorting stocks or other

Received 1 December 2023; accepted 1 September 2024.
∗ Postal address: School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, P.R.
China.
∗∗ Email address: pengjun2015@csu.edu.cn

© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust.

1

https://doi.org/10.1017/jpr.2024.89 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.89
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2024.89&domain=pdf
https://doi.org/10.1017/jpr.2024.89


2 Y. HUANG AND J. PENG

assets, which could undermine market fairness and harm the interests of investors. On the other
hand, investors are not allowed to freely borrow without any limitations. If investors borrow
freely, they may take on excessive debt for investment, leading to an unsustainable debt burden.
Therefore, it is important to study the associated optimal control problems without short-selling
opportunities and different borrowing constraints. The problem of optimal investment and
reinsurance to minimize the probability of ruin under a limited leverage rate constraint was
discussed in [18]. Under a short-selling constraint, [3] studied the optimal excess-of-loss rein-
surance and investment problem with multiple risky assets. Three investment problems related
to survival, growth, and goal-reaching maximization were considered in [23] under borrowing
prohibition. More research on investment constraints can be found in [2, 24, 26] and references
therein.

Ambiguity was introduced as a form of uncertainty in [16]. It has been adopted and devel-
oped as a way of addressing model uncertainty in stochastic models of financial and insurance
markets for the investment–reinsurance problem. In reality, a decision-maker would construct
a reference model for probability measures based on data obtained from financial and insur-
ance markets. However, this reference model only approximates the true model and leads
to some inevitable biases. Therefore, in recent years some scholars have considered optimal
investment–reinsurance strategies under the framework of model uncertainty. For example, [1]
studied asset pricing problems in a stochastic continuous-time model setup by incorporating
the investor’s concerns about model misspecification; [20] investigated an optimal asset allo-
cation problem with ambiguity, and derived closed-form expressions of the optimal strategies
under so-called homothetic robustness; and [29] considered a reinsurance–investment opti-
mization problem with model uncertainty under the expected utility criterion and the survival
probability criterion. For further relevant studies, see [6, 9, 11, 19, 25] and so on.

In view of this situation, we consider ambiguity aversion in a two-sided exit objective of
minimizing the goal-reaching probability of the insurer’s wealth reaching a low level before
a high goal, which covers minimizing the ruin probability as a special case. In our model
set-up, the insurer can purchase per-loss reinsurance whose premium is computed according
to the mean–variance premium principle. We incorporate two investment constraints into the
insurance model: (i) short-selling is prohibited; (ii) the proportion of the borrowed amount to
the current wealth level cannot exceed a non-negative constant k ≥ 0. By using the stochastic
dynamic programming approach and solving the associated Hamilton–Jacobi–Bellman (HJB)
equation, we obtain a robust optimal investment–reinsurance strategy and the value functions
in explicit forms. Finally, we provide numerical examples to illustrate our results.

The rest of this paper is organized as follows. In Section 2, we describe the model and
problem formulation. In Section 3, we derive closed-form expressions for the robust optimal
strategies and the corresponding value functions. In Section 4, we present the optimal con-
trol strategies and value functions under two extreme cases. In Section 5, we show numerical
illustrations to analyze our results. In Section 6, we conclude this paper.

2. Model and problem formulation

In this section, we introduce the models and some basic assumptions. We assume that trad-
ing in the reinsurance and financial markets is continuous, without taxes or transaction costs,
and that all assets are infinitely divisible. Let (�,F , F= {Ft}t≥0, P) be a filtered complete
probability space satisfying the usual conditions of completeness and right continuity, where
P is the real-world probability measure and Ft represents the information available until time
t. All stochastic processes given in the following are assumed to be adapted on this space.
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On penalized goal-reaching probability minimization 3

According to the classical Cramér–Lundberg model, the surplus process of the insurer U =
{Ut}t≥0 adapted to the filtration F can be described as dUt = cdt − d

∑Nt
i=1 Yi, where c > 0 is

the premium rate. {Nt}t≥0 is a homogeneous Poisson process with intensity λ > 0 and, for each
t ≥ 0, Nt represents the total claims number at interval [0, t]. The claim sizes {Yi, i = 1, 2, . . .}
are independent and identically distributed positive random variables following a common
distribution FY (y) with finite first- and second-order moments.

Consider now an insurer using reinsurance to manage its risk exposure. Without reinsur-
ance, the insurer is fully responsible for all losses arising, Yi, i = 1, 2, . . . In the presence of
reinsurance, a portion of each arising loss Yi will be ceded to the reinsurer. The precise cover-
age is dictated by the reinsurance policy lt(y) at time t ≥ 0 as a function of the (possible) claim
Y = y at that time. Thus, the reinsurer pays the insurer the amount y − lt(y) if there is a claim
of size y at time t ≥ 0. The reinsurance premium is computed according to the mean–variance
premium principle, i.e.

(1 + θ )λE(Y − lt(Y)) + η

2
λE((Y − lt(Y))2), (2.1)

in which θ and η are the non-negative risk-loading parameters. If θ = 0 then (2.1) reduces to
the variance premium principle; similarly, if η = 0 then (2.1) reduces to the expected-value pre-
mium principle. Thus, the insurer’s surplus process Ul

t in the presence of reinsurance becomes

dUl
t =
[

c − (1 + θ )λE(Y − lt(Y)) − η

2
λE((Y − lt(Y))2)

]
dt − d

Nt∑
i=1

lt(Yi).

By [13], Ul
t can be approximated by the following diffusion processes Ûl

t :

dÛl
t =
[
θλE(lt(Y)) + ηλE(Ylt(Y)) − η

2
λE
(
l2t (Y)

)− δ

]
dt +

√
λE
(
l2t (Y)

)
dWt,

in which δ = (1 + θ )λE(Y) + 1
2ηλE

(
Y2
)− c and {Wt}t≥0 is a standard Brownian motion.

Assumption 2.1. The insurer’s premium income rate is greater than the expected value of the
claims but less than the premium for full reinsurance, i.e.

λE(Y) < c < (1 + θ )λE(Y) + η

2
λE
(
Y2).

Apart from reinsurance, we impose investment and assume that the price process of the risky
asset satisfies a standard geometric Brownian motion, dP1

t = P1
t [μ dt + σ dBt], where μ(>0)

is the appreciation rate, σ (>0) is the volatility rate, and {Bt}t≥0 is a standard Brownian motion,
independent of {Wt}t≥0.

In this paper, we suppose that the insurer can invest a non-negative amount in a risk-free
asset that earns interest at the constant rate r. If the insurer borrows the money then it pays
interest at a higher rate β > r. Then, a risk-free asset has the dynamics dP0

t = f (P0
t ) dt, in which

the Lipschitz continuous function f is expressed as

f (P0
t ) =

{
rP0

t if P0
t ≥ 0,

βP0
t if P0

t < 0.

Here, we assume that μ > β > r > 0. The case of β > μ > r > 0 can be reduced to the special
case with no-borrowing.
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Denote by πt the fraction of the wealth invested in the risky asset by the insurer. We can see
that 0 ≤ πt ≤ 1 means investment without short-selling and borrowing; if πt > 1 then it means
that the insurer has to borrow money from the market and invests all the wealth in the risky
asset. We define the control strategy of the insurer as ut = (πt, lt). Thus, the wealth process Xu

t
of the insurer is described as

⎧⎪⎪⎨
⎪⎪⎩

dXu
t = {f ((1 − πt)X

u
t

)− δ + πtX
u
t μ + θλE(lt(Y)) + ηλE(Ylt(Y)) − 1

2
ηλE

(
l2t (Y)

)}
dt

+σXu
t πtdBt +

√
λE
(
l2t (Y)

)
dWt,

Xu
0 = x,

(2.2)

in which

f
(
(1 − πt)X

u
t

)=
{

r(1 − πt)Xu
t if πt ≥ 1,

β(1 − πt)Xu
t if πt < 1,

and x (>0) is the initial wealth of the insurer.

Definition 2.1. (Admissible strategy.) A control policy ut = (πt, lt) is said to be admissible if:

(i) for all t ≥ 0, πt and lt are F-progressively measurable;

(ii) for all t ≥ 0, πt ∈ (0, 1 + m] and lt(y) ∈ [0, y] is a non-decreasing function with respect
to y;

(iii) for all (t, x) ∈ [0, +∞) ×R, (2.2) has a pathwise unique solution Xu
t .

Let U denote the set of all admissible strategies.

Let τ u
M := inf{t | t ≥ 0, Xu

t ≤ M} and τ u
N := inf{t | t ≥ 0, Xu

t ≥ N} be the first times the
insurer’s wealth respectively hits a specified ruin level M and a high goal N under the con-
trol policy u. The insurer aims at minimizing the probability that ruin happens before the high
goal N, i.e. τ u

M < τ u
N , in a robust sense. More precisely, they suspect that the drifts of the risky

asset and the surplus may be misspecified. Define τ u = τ u
M ∧ τ u

N as the first exit time of the
interval (M, N), and note that τ u = ∞ if τ u

M = τ u
N = ∞. So instead of optimizing under the

reference measure P, they consider a set Q of candidate measures that are locally equivalent to
P, i.e. Q := {Q |Q∼P}, and penalizes their deviation from P. To give the precise definition
of the set Q of candidate measures, we first define φt = (φ1t, φ2t), t ≥ 0, as a so-called proba-
bility distortion process and let � denote the collection of φ satisfying the Novikov condition
EP
[

exp
{ ∫ t

0
1
2

(
φ2

1s + φ2
2s

)
ds
}]

< ∞. So, for each φt ∈ �, a probability measure Q ∈ Q if

dQ

dP

∣∣∣∣Ft

= exp

{ ∫ t

0
φ1s dBs +

∫ t

0
φ2s dWs − 1

2

∫ t

0

(
φ2

1s + φ2
2s

)
ds

}
.

By Girsanov’s theorem, the Brownian motions under Q ∈ Q are presented as

{
dBQ

t = dBt − φ1t dt,

dWQ
t = dWt − φ2t dt,
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where {BQ
t }t≥0 and {WQ

t }t≥0 are two Q-Brownian motions and are mutually independent.
Therefore, we rewrite the wealth process Xu

t under the probability measure Q as follows:⎧⎪⎪⎨
⎪⎪⎩

dXu
t = {f ((1 − πt)Xu

t

)− δ + πtXu
t μ + θλE(lt(Y)) + ηλE(Ylt(Y)) − 1

2ηλE
(
l2t (Y)

)
+σXu

t πtφ1t +
√

λE
(
l2t (Y)

)
φ2t
}

dt + σXu
t πtdBQ

t +
√

λE
(
l2t (Y)

)
dWQ

t ,

Xu
0 = x.

(2.3)

The relative entropy between Q and P up to time t is given by

EQ

(
ln

dQt

dPt

)
=EQ

(
1

2

∫ t

0

(
φ2

1s + φ2
2s

)
ds

)
, t < ∞,

where Qt is the probability measure Q restricted to Ft and Pt is the probability measure P

restricted to Ft. We define a performance function for any u ∈ U and φ ∈ � as

Ju,φ(x) := Qx(τ u
M < τ u

N, τ u < ∞)− 1

ε
EQ

(
1

2

∫ τ u

0

(
φ2

1s + φ2
2s

)
ds

)
,

where Qx( · ) =Q(· | Xu
0 = x) and ε is the ambiguity-aversion coefficient for the insurer. The

robust value function is then defined as

V(x) := inf
u∈U

sup
φ∈�

Ju,φ(x). (2.4)

Note that if the value of the wealth is greater than or equal to x∗ = δ/β, then the insurer can
buy full reinsurance via income from the risk-free asset, and therefore the wealth will never
drop below its current value. For this reason, we call x∗ the safe level. We generalize from this
case in the following remark.

Remark 2.1. As the wealth increases towards δ/β, the optimal investment–reinsurance strat-
egy approaches u0 = (0, 0). It makes sense because when the value of the wealth increases, the
insurer invests only in the risk-free asset and transfers all the risk to the reinsurer; from (2.3),
the wealth process becomes an ordinary differential equation dXu0

t = (rXu0
t − δ

)
dt, and thus

the wealth will never decrease, so ruin cannot happen. Indeed, on one hand, we have

V(x) = inf
u∈U

sup
φ∈�

Ju,φ(x) ≤ sup
φ∈�

Ju0,φ(x) = sup
φ∈�

{
0 − 1

ε
EQ

(
1

2

∫ τ u0

0

(
φ2

1s + φ2
2s

)
ds

)}
≤ 0.

On the other hand, note that P ∈ Q with φ0 ≡ (0, 0), so

V(x) = inf
u∈U

sup
φ∈�

Ju,φ(x) ≥ inf
u∈U

Ju,φ0 (x) = inf
u∈U

Px(τ u
M < τ u

N, τ u < ∞)≥ 0.

Thus, we have V(x) ≡ 0 for any x ≥ δ/β. As a consequence, we make the following
assumption.

Assumption 2.2. 0 < M < N ≤ δ/β.

Remark 2.2. There are two extreme cases. One case with ε → 0 corresponds to the classical
non-robust model, also known as the reference model. As a result, the insurer is extremely
convinced that the reference model under the measure P is exactly the true model, i.e. the
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insurer is ambiguity neutral, and any deviation from the reference model will be penalized
infinitely heavily. The larger ε is, the more confidence the insurer has on the alternative
measure Q. While in the case of ε → ∞, the insurer has no information about the true model
and all the alternative models are on an equal footing. The value functions and associated
optimal investment and retention strategies for the two extreme cases ε → 0 and ε → ∞ are
derived explicitly in Section 4.

Let C2[M, N] be the space of any function F(x) such that F and its derivatives Fx, Fxx are
continuous on [M, N]. To solve the above robust problem, we use the dynamic programming
approach described in [12]. From standard arguments, we see that if V ∈ C2 then V satisfies
the following HJB equation for x ∈ [M, N]:

inf
u∈U

sup
φ∈�

{Au,φV(x)} = 0, (2.5)

in which

Au,φV(x) = Vx(x)

[
f ((1 − π )x) − δ + πxμ + θλE(l(Y)) + ηλE(Yl(Y)) − η

2
λE
(
l2(Y)

)

+ σxπφ1 +
√

λE
(
l2(Y)

)
φ2

]
+ 1

2
Vxx(x)

[
σ 2x2π2 + λE

(
l2(Y)

)]− 1

2ε

(
φ2

1 + φ2
2

)
,

with the boundary conditions

V(M) = 1, V(N) = 0. (2.6)

Obviously, the optimal control strategy u obtained through the dynamic programming
approach is time-independent.

Lemma 2.1. For an admissible control ut = (πt, lt) with a given constant ε > 0 satisfying
σ 2x2π2

t + λE
(
l2t (Y)

)
> ε for all t > 0, we have Qx(τ u < ∞) = 1 for Q ∈ Q and x ∈ (M, N),

where τ u = τ u
M ∧ τ u

N.

Proof. Similar to the proof of [19, Lemma 3.1], so we omit it here. �

Theorem 2.1. (Verification theorem.) Suppose that the function F : [M, N] → [0, 1] is
bounded and continuous such that:

(i) F ∈ C2 is a non-increasing function and Fx(x) is bounded on (M, N);

(ii) F(x) solves the HJB equation (2.5) under the boundary conditions (2.6) and, with u∗ =
(π∗, l∗) and φ∗ = (φ∗

1 , φ∗
2

)
, satisfies

Au∗,φ∗
F(x) = inf

u∈U
sup
φ∈�

Au,φF(x) = inf
u∈U

Au,φ∗
F(x) = sup

φ∈�

Au∗,φF(x);

(iii) there exists ε > 0 such that σ 2x2π∗2(x) + λE(l∗2(x, y)) > ε for x ∈ [M, N], in which
parameter x is incorporated into the investment and reinsurance strategies to highlight
its dependency on this parameter;

(iv) φ1(x) and φ2(x) are bounded for x ∈ [M, N].
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Then F(x) = V(x) for x ∈ [M, N], which means that F(x) is the robust value function
of the problem (2.4), u∗(x) = (π∗(x), l∗(x, y)) is the robust optimal strategy, and φ∗(x) =
(φ∗

1 (x), φ∗
2 (x)) is the optimal drift distortion.

Proof. Similar to the proof of [19, Theorem 3.1], so we omit it here. �

3. Explicit solution for the problem

In this section, we aim to derive the robust optimal reinsurance–investment strategy for the
problem in (2.4). The HJB equation in (2.5) becomes

inf
u∈U

sup
φ∈�

{[
f ((1 − π )x) − δ + πxμ + θλE(l(Y)) + ηλE(Yl(Y)) − η

2
λE
(
l2(Y)

)+ σxπφ1

+
√

λE
(
l2(Y)

)
φ2

]
Vx(x) + 1

2

[
σ 2x2π2 + λE

(
l2(Y)

)]
Vxx(x) − 1

2ε

(
φ2

1 + φ2
2

)}= 0.

(3.1)

The first-order conditions of φ1 and φ2 yield⎧⎨
⎩

φ̂1(x, π ) = εσxπVx(x),

φ̂2(x, l) = ε

√
λE
(
l2(Y)

)
Vx(x).

(3.2)

Plugging φ̂1 and φ̂2 into (3.1), we have

inf
u∈U

{
[f ((1 − π )x) − δ + πxμ + θλE(l(Y)) + ηλE(Yl(Y))]Vx(x)

+ 1

2
σ 2x2π2[Vxx(x) + εV2

x (x)
]+ 1

2
λE
(
l2(Y)

)[
Vxx(x) + εV2

x (x) − ηVx(x)
]}= 0. (3.3)

By using the cumulative distribution function of Y , we define g(x, l, π ) as

g(x, l, π ) = [f ((1 − π )x) − δ + πxμ]Vx(x) + 1

2
σ 2x2π2[Vxx(x) + εV2

x (x)
]

+
∫ ∞

0

{
(θλl(y) + ηλyl(y))Vx(x) + 1

2
λl2(y)

[
Vxx(x) + εV2

x (x) − ηVx(x)
]}

dFY (y).

(3.4)

According to the first-order optimality conditions, the minimizers of the function g(x, l, π )
are obtained at ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

l̂(x, y) = θ + ηy

ξ (x)
∧ y,

π̂ r(x) = −μ − r

σ 2x

1

η − ξ (x)
,

π̂β (x) = −μ − β

σ 2x

1

η − ξ (x)
,

(3.5)

where ξ (x) = η − εVx(x) − (Vxx(x)/Vx(x)). Equation (3.5) holds if ξ (x) 
= η, and ξ (x) is well-
defined if Vx(x) 
= 0. These will be proved in the following lemma.
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Lemma 3.1. The robust value function V( · ) ∈ C2[M, N] satisfies Vx(x) < 0 and εV2
x (x) +

Vxx(x) > 0 for x ∈ [M, N].

Proof. Similar to the proof in [6], so we omit it here. �

From Lemma 3.1, it immediately follows that π̂ r(x) > π̂β (x) > 0. Due to the constraint on
the investment strategy, we define the following regions:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
�1 := {x ∈ [M, N] | π̂ r(x) < 1},
�2 := {x ∈ [M, N] | π̂β (x) ≥ 1 + m},
�3 := {x ∈ [M, N] | 1 < π̂β (x) < 1 + m},
�4 := {x ∈ [M, N] | π̂β (x) ≤ 1 ≤ π̂ r(x)}.

Based on the above analysis, we have the following cases to deal with. To simplify our analysis,
we define the functions

f1(ξ ) =E(l̂(Y)) =
∫ θ/(ξ−η)

0
F̄Y (y) dy + η

ξ

∫ ∞

θ/(ξ−η)
F̄Y (y) dy, (3.6)

f2(ξ ) =E(Yl̂(Y)) = 2
∫ θ/(ξ−η)

0
yF̄Y (y) dy + 1

ξ

∫ ∞

θ/(ξ−η)
(θ + 2ηy)F̄Y (y) dy, (3.7)

f3(ξ ) =E(l̂2(Y)) = 2
∫ θ/(ξ−η)

0
yF̄Y (y) dy + 2η

ξ2

∫ ∞

θ/(ξ−η)
(θ + ηy)F̄Y (y) dy, (3.8)

where F̄Y (y) = 1 − FY (y).
In order to derive robust optimal reinsurance and investment strategies, we first prove the

following four lemmas, which are in one-to-one correspondence with the above four regions.

Lemma 3.2. For region �1, let ξ∗
1 > η be the unique solution of∫ θ/(ξ−η)

0
[1 + (ξ − η)y]F̄Y (y) dy +

∫ +∞

θ/(ξ−η)

[
1 + ξ − η

ξ
(θ + ηy)

]
F̄Y (y) dy

= 1

λ

{
rx + c − (μ − r)2

2σ 2(η − ξ )

}
. (3.9)

Then the optimal investment strategy and retention level are

(π∗(x), l∗(x, y)) =
(

−μ − r

σ 2x

1

η − ξ∗
1 (x)

,
θ + ηy

ξ∗
1 (x)

∧ y

)
,

and the optimal drift distortion is

(
φ∗

1 (x), φ∗
2 (x)

)=
(

−μ − r

σ

εVx(x)

η − ξ∗
1 (x)

, ε

√
λE

((
θ + ηY

ξ∗
1 (x)

∧ Y

)2)
Vx(x)

)
.

The robust value function is equivalent to

V(x) = 1

ε
ln

[
eε + (1 − eε)

∫ x
M exp

{− ∫ y
M (ξ∗

1 (z) − η) dz
}

dy∫ N
M exp

{− ∫ y
M (ξ∗

1 (z) − η) dz
}

dy

]
. (3.10)
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Moreover, we deduce that �1 = (xr
1, +∞)∩ [M, N], where xr

1 satisfies

ξ∗
1 (x) = η + μ − r

xσ 2
. (3.11)

Proof. Note that in this case

ξ (x) = η − εVx(x) − Vxx(x)

Vx(x)
> η.

For x ∈ �1, the minimum point of the left-hand side of (3.3) is attained at (π∗(x), l∗(x, y)) =
(π̂ r(x), l̂(x, y)), in which π̂ r(x) and l̂(x, y) are defined in (3.5). Plugging these into (3.2) and
(3.4), we have

(
φ∗

1 (x), φ∗
2 (x)

)=
(

−μ − r

σ

εVx(x)

η − ξ (x)
, ε

√
λE

((
θ + ηY

ξ (x)
∧ Y

)2)
Vx(x)

)
,

and g(x, ξ ) = Vx(x)h1(x, ξ ), where

h1(x, ξ ) = rx − δ + θλf1(ξ ) + ηλf2(ξ ) − ξ

2
λf3(ξ ) − (μ − r)2

2σ 2

1

η − ξ
,

and we slightly abuse the notation of g by replacing its arguments (π, l) with ξ . Obviously,
g(x, ξ ) = 0 is equal to h1(x, ξ ) = 0. Next, we wish to show that h1(x, ξ ) = 0 has a unique
solution at ξ > η. To this end, we can obtain the following result from (3.6)–(3.8):

lim
ξ→η+ rx − δ + θλf1(ξ ) + ηλf2(ξ ) − ξ

2
λf3(ξ ) = rx + c − λE(Y).

Note that

lim
ξ→η+ − (μ − r)2

2σ 2

1

η − ξ
= +∞.

Thus, based on the above two conditions, we obtain limξ→η+ h1(x, ξ ) = +∞. Also, we have
limξ→∞ h1(x, ξ ) = rx − δ < 0. By differentiating h1(x, ξ ) with respect to ξ , we obtain

∂h1(x, ξ )

∂ξ
= −1

2
λf3(ξ ) − (μ − r)2

2σ 2

1

(ξ − η)2
< 0,

and then h1(x, ξ ) is a strictly decreasing function in ξ . Thus, according to the analysis above,
it follows that h1(x, ξ ) has a unique zero at ξ∗

1 > η, i.e. h1(x, ξ∗
1 ) = 0. Since ξ∗

1 is a function
of x, we take derivatives with respect to x and, simplifying the expression, we obtain

r

(ξ∗
1 (x))′

= 1

2
λf3(ξ∗

1 (x)) + (μ − r)2

2σ 2

1

(ξ∗
1 (x) − η)2

> 0;

therefore, (ξ∗
1 (x))′ > 0. There is no doubt that ξ∗

1 (x) is strictly increasing with respect to x.
π̂ r(x) < 1 implies x > xr

1, where xr
1 satisfies ξ∗

1 (x) = η + ((μ − r)/xσ 2). Therefore, we have
�1 = [xr

1, +∞) ∩ [M, N].
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Under the optimal strategy (π∗(x), l∗(x, y), φ∗
1 (x), φ∗

2 (x)), the corresponding HJB equation
becomes

(ξ∗
1 (x) − η)Vx(x) + εV2

x (x) + Vxx(x) = 0. (3.12)

To find the solution of the above equation, we make the transformation G(x) = eεV(x). Thus, we
have

V(x) = ln G(x)

ε
, Vx(x) = Gx(x)

εG(x)
, Vxx(x) = Gxx(x)G(x) − (Gx(x))2

εG2(x)
.

Substituting the above equations into (3.12) and applying the boundary conditions in (2.6),
we have

Gxx(x)

Gx(x)
= −(ξ∗

1 (x) − η), (3.13)

G(M) = eε, G(N) = 1. (3.14)

Notice that Gx(x) = εVx(x)G(x) < 0, and (3.13) implies Gxx(x) > 0. Solving (3.13) under the
boundary conditions (3.14), we obtain

G(x) = eε + (1 − eε)

∫ x
M exp

{− ∫ y
M (ξ∗

1 (z) − η) dz
}

dy∫ N
M exp

{− ∫ y
M (ξ∗

1 (z) − η) dz
}

dy
.

Consequently, we can obtain the expression for V(x) in (3.10). �

Lemma 3.3. For x ∈ �2, which is characterized in Remark 3.1, ξ∗
2 (x) uniquely solves

∫ θ/(ξ−η)

0
[1 + (ξ − η)y]F̄Y (y) dy +

∫ +∞

θ/(ξ−η)

[
1 + ξ − η

ξ
(θ + ηy)

]
F̄Y (y) dy

= 1

λ

{
c + βx + (μ − β)x(1 + m) + σ 2x2(1 + m)2(η − ξ )

2

}
. (3.15)

The corresponding optimal investment strategy and retention level are given by

(π∗(x), l∗(x, y)) =
(

1 + m,
θ + ηy

ξ∗
2 (x)

∧ y

)
,

and the optimal drift distortion is

(
φ∗

1 (x), φ∗
2 (x)

)=
(

εσx(1 + m)Vx(x), ε

√
λE

((
θ + ηY

ξ∗
2 (x)

∧ Y

)2)
Vx(x)

)
.

Moreover, the robust value function V(x) is given in (3.10) with ξ∗
1 (x) replaced by ξ∗

2 (x).

Proof. For x ∈ �2, we have (π∗(x), l∗(x, y)) = (1 + m, l̂(x, y)) and

(
φ∗

1 (x), φ∗
2 (x)

)=
(

εσx(1 + m)Vx(x), ε

√
λE

((
θ + ηY

ξ (x)
∧ Y

)2)
Vx(x)

)
.

Following the same steps as in the proof of Lemma 3.2, we can obtain the results. �
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Lemma 3.4. For region �3, ξ∗
3 > η is the unique solution of∫ θ/(ξ−η)

0
[1 + (ξ − η)y]F̄Y (y) dy +

∫ +∞

θ/(ξ−η)

[
1 + ξ − η

ξ
(θ + ηy)

]
F̄Y (y) dy

= 1

λ

{
βx + c − (μ − β)2

2σ 2(η − ξ )

}
. (3.16)

Then, the optimal investment strategy and retention level are

(π∗(x), l∗(x, y)) =
(

−μ − β

σ 2x

1

η − ξ∗
3 (x)

,
θ + ηy

ξ∗
3 (x)

∧ y

)
,

the optimal drift distortion is

(
φ∗

1 (x), φ∗
2 (x)

)=
(

−μ − β

σ

εVx(x)

η − ξ∗
3 (x)

, ε

√
λE

((
θ + ηY

ξ∗
3 (x)

∧ Y

)2)
Vx(x)

)
,

and the robust value function V(x) is given in (3.10) with ξ∗
3 (x) replaced by ξ∗

1 (x). Moreover,

we deduce that �3 = (xβ

2 , xβ

3

)∩ [M, N], where xβ

2 and xβ

3 satisfy the following equations
respectively: ⎧⎪⎪⎨

⎪⎪⎩
ξ∗

3 (x) = η + μ − β

xσ 2(1 + m)
,

ξ∗
3 (x) = η + μ − β

xσ 2
.

(3.17)

Proof. For x ∈ �3, we have (π∗(x), l∗(x, y)) = (π̂β (x), l̂(x, y)) and

(
φ∗

1 (x), φ∗
2 (x)

)=
(

−μ − β

σ

εVx(x)

η − ξ (x)
, ε

√
λE

((
θ + ηY

ξ (x)
∧ Y

)2)
Vx(x)

)
.

Again, the results can be derived in the same way as in the proof of Lemma 3.2. �

Lemma 3.5. For x ∈ �4, which is characterized in Remark 3.1, ξ∗
4 (x) > η uniquely solves∫ θ/(ξ−η)

0
[1 + (ξ − η)y]F̄Y (y) dy +

∫ +∞

θ/(ξ−η)

[
1 + ξ − η

ξ
(θ + ηy)

]
F̄Y (y) dy

= 1

λ

{
μx + c + σ 2x2(η − ξ )

2

}
. (3.18)

The corresponding optimal investment strategy and retention level are given by

(π∗(x), l∗(x, y)) =
(

1,
θ + ηy

ξ∗
4 (x)

∧ y

)
,

and the optimal drift distortion is

(
φ∗

1 (x), φ∗
2 (x)

)=
(

εσxVx(x), ε

√
λE

((
θ + ηY

ξ∗
4 (x)

∧ Y

)2)
Vx(x)

)
.

Moreover, the robust value function V(x) is given in (3.10) with ξ∗
1 (x) replaced by ξ∗

4 (x).
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Proof. For x ∈ �4, we have l∗(x, y) = l̂(x, y) and φ∗(x) = φ̂(x) = (φ̂1(x), φ̂2(x)). Substituting

these into the HJB equation (2.5), we have infπ∈(0,1+m] Aπ,l̂,φ̂V(x) = 0. Referring to the idea
in [18, Lemma 3.5], we can prove that π∗(x) = 1 by contradiction. Suppose that the minimum
on the left-hand side of the HJB equation is attained at the minimizer π∗(x) > 1. Thus, by
differentiation we have

∂Aπ,l̂,φ̂V(x)

∂π

∣∣∣∣
π=π∗

= 0,

and π∗(x) = π̂β (x), so π̂β (x) > 1, which contradicts the definition of �4. We can prove that
π∗(x) < 1 is impossible by using the same method. Hence, the optimal investment strategy
is obtained at the point of 1. Then, the results can be derived by the same analysis as in
Lemma 3.2. �

Remark 3.1. Because ξ∗
4 (x) is strictly increasing with respect to x, and the equalities ξ∗

3

(
xβ

3

)=
ξ∗

4

(
xβ

3

)
and ξ∗

4 (xr
1) = ξ∗

1 (xr
1) hold, we have xβ

3 < xr
1. As a consequence, we find that �2 =(

0, xβ

2

]∩ [M, N] and �4 = [xβ

3 , xr
1

]∩ [M, N]. Note that if the wealth level is above xr
1, the

insurer chooses to invest in the risk-free asset. The insurer chooses to borrow money when the
wealth level is no more than xβ

3 and the leverage ratio has the maximum value 1 + m. Once

the wealth level falls below xβ

2 , the leverage ratio maintains the high level 1 + m. Thus, we call

xr
1, xβ

2 and xβ

3 the saving level, the high leverage level, and the borrowing level, respectively.

Based on the results in Lemmas 3.2–3.5, we summarize the optimal strategies in
Theorem 3.1.

Theorem 3.1. Let ξ∗
1 (x), xr

1, ξ∗
2 (x), ξ∗

3 (x), xβ

2 , xβ

3 , and ξ∗
4 (x) be as defined in (3.9), (3.11), (3.15),

(3.16), (3.17), and (3.18). The robust value function solution V(x) is

V(x) = 1

ε
ln

[
eε + (1 − eε)

∫ x
M exp

{− ∫ y
M (ξ∗(z) − η) dz

}
dy∫ N

M exp
{− ∫ y

M (ξ∗(z) − η) dz
}
dy

]
,

where ξ∗(x) is defined in following form:

ξ∗(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ∗
2 (x), x ∈ (0, xβ

2

]∩ [M, N],

ξ∗
3 (x), x ∈ (xβ

2 , xβ

3

)∩ [M, N],

ξ∗
4 (x), x ∈ [xβ

3 , xr
1

]∩ [M, N],

ξ∗
1 (x), x ∈ (xr

1, +∞)∩ [M, N].

(3.19)

The corresponding optimal investment strategy and retention levels are given by

(π∗(x), l∗(x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + m,

θ + ηy

ξ∗
2 (x)

∧ y

)
, x ∈ (0, xβ

2

]∩ [M, N](
−μ − β

σ 2x

1

η − ξ∗
3 (x)

,
θ + ηy

ξ∗
3 (x)

∧ y

)
, x ∈ (xβ

2 , xβ

3

)∩ [M, N],(
1,

θ + ηy

ξ∗
4 (x)

∧ y

)
, x ∈ [xβ

3 , xr
1

]∩ [M, N],(
−μ − r

σ 2x

1

η − ξ∗
1 (x)

,
θ + ηy

ξ∗
1 (x)

∧ y

)
, x ∈ (xr

1, +∞)∩ [M, N].

(3.20)
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The optimal drift distortions are as follows:

(
φ∗

1 (x), φ∗
2 (x)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝εσx(1 + m)Vx(x), ε

√√√√λE

((
θ + ηY

ξ∗
2 (x)

∧ Y

)2)
Vx(x)

⎞
⎠, x ∈

(
0, xβ

2

]
∩ [M, N],

⎛
⎝−μ − β

σ

εVx(x)

η − ξ∗
3 (x)

, ε

√√√√λE

((
θ + ηY

ξ∗
3 (x)

∧ Y

)2)
Vx(x)

⎞
⎠, x ∈

(
xβ

2 , xβ
3

)
∩ [M, N],

⎛
⎝εσxVx(x), ε

√√√√λE

((
θ + ηY

ξ∗
4 (x)

∧ Y

)2)
Vx(x)

⎞
⎠, x ∈

[
xβ

3 , xr
1

]
∩ [M, N],

⎛
⎝−μ − r

σ

εVx(x)

η − ξ∗
1 (x)

, ε

√√√√λE

((
θ + ηY

ξ∗
1 (x)

∧ Y

)2)
Vx(x)

⎞
⎠, x ∈

(
xr

1, +∞
)

∩ [M, N].

Remark 3.2. From (3.20), we observe that the optimal investment strategy depends only on
the value of the wealth x. Furthermore, it is shown that the borrowing constraint is violated
when the wealth process decreases to the lower level. In fact, only when the wealth condition
keeps deteriorating does the investor choose to gamble on the risky asset in order to avoid
the appearance of ruin. When the value of the wealth is close to the upper level, the investor
becomes cautious and invests less in the risky asset.

Remark 3.3. All the results in Theorem 3.1 are based on the assumption of μ > β > r > 0. If
β > μ > r > 0, we can see that π̂β will never be the optimal investment strategy since π̂β < 0.
Under this assumption, the optimal investment strategy π̂ r is either less than or equal to 1,
which means that there is no need to borrow money, and thus the optimal results are identical
to that in the case without borrowing costs.

Corollary 3.1. Because ξ∗
i > η, i = 1, 2, 3, 4, l∗(x, y) in (3.20) and y − l∗(x, y) are non-

decreasing functions of y.

Remark 3.4. Corollary 3.1 implies that l∗(x, Y) and Y − l∗(x, Y) are comonotonic random
variables. The fact that both l∗(x, y) and y − l∗(x, y) are non-decreasing with respect to y helps
prevent moral hazard. Indeed, if l∗(x, y) were decreasing with respect to y, then the insurer
would have an incentive to create additional loss to thereby reduce its retention. Similarly, if
y − l∗(x, y) were decreasing with respect to y, then the insurer would have an incentive to hide
a portion of its loss to thereby increase its reimbursement or indemnity. A similar conclusion
was also reached in [14, 17].

Remark 3.5. Note that φ∗
1 (x) and φ∗

2 (x) are finite. Taking xr
1 ≤ M in Theorem 3.1 as an exam-

ple, indeed, the integrand in the expression for
∫ x

M exp
{− ∫ y

M (ξ∗
1 (z) − η) dz

}
dy is bounded

above by 1 since ξ∗
1 (x) > η; thus,∫ N

M
exp

{
−
∫ y

M
(ξ∗

1 (z) − η) dz

}
dy ≤ N − M < ∞.

Since ξ∗
1 (x) is an increasing function with respect to x, it is not difficult to obtain that ξ∗

1 (M) ≤
ξ∗

1 (x) ≤ ξ∗
1 (N) for x ∈ [M, N]. According to the analysis above, it follows that

φ∗
1 (x) ≤ μ − r

σ (ξ∗
1 (M) − η)

1 − eε

(1 + eε)(N − M)
, φ∗

2 (x) ≤
√

λE
(
Y2
) 1 − eε

(1 + eε)(N − M)
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for 0 < ε < ∞. So, we set

C = 1 − eε

(1 + eε)(N − M)
max

{
μ − r

σ (ξ∗
1 (M) − η)

,

√
λE
(
Y2
)}

,

and then φ∗
1 (x) ≤ C and φ∗

2 (x) ≤ C. The other cases are obtained similarly

Corollary 3.2. If θ = 0, the robust optimal reinsurance strategy of (3.20) reduces to pro-
portional reinsurance and falls into the interval [0, 1], and then the robust optimal control
strategies take the following forms:

(π∗(x), l∗(x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + m,

η

ξ̂∗
2 (x)

y

)
, x ∈ (0, x̂β

2

]∩ [M, N],(
−μ − β

σ 2x

1

η − ξ̂∗
3 (x)

,
η

ξ̂∗
3 (x)

y

)
, x ∈ (x̂β

2 , x̂β

3

)∩ [M, N],(
1,

η

ξ̂∗
4 (x)

y

)
, x ∈ [x̂β

3 , x̂r
1

]∩ [M, N],(
−μ − r

σ 2x

1

η − ξ̂∗
1 (x)

,
η

ξ̂∗
1 (x)

y

)
, x ∈ (x̂r

1, +∞)∩ [M, N],

where ξ̂∗
1 , ξ̂∗

2 , ξ̂∗
3 , and ξ̂∗

4 are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̂∗
1 (x) = (δ̂ − rx)η + 1

2λη2E
(
Y2
)+ ((μ − r)2/2σ 2) + √�1

2(δ̂ − rx)
,

ξ̂∗
2 (x) = βx − δ̂ + (μ − β)x(1 + m) + 1

2ησ 2x2(1 + m)2 + √�2

σ 2x2(1 + m)2
,

ξ̂∗
3 (x) = (δ̂ − βx)η + 1

2λη2E
(
Y2
)+ ((μ − β)2/2σ 2) + √�3

2(δ̂ − βx)
,

ξ̂∗
4 (x) = −δ̂ + xμ + 1

2σ 2x2η + √�4

σ 2x2
,

and x̂r
1, x̂β

2 , and x̂β

3 are the same forms as in (3.11) and (3.17), in which

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1 =
[
λη2E(Y2)

2
+ (μ − r)2

2σ 2
− (δ̂ − rx)η

]2

+ 2(δ̂ − rx)η
(μ − r)2

σ 2
,

�2 = [βx − δ̂ + (μ − β)x(1 + m) + 1
2ησ 2x2(1 + m)2

]2 + σ 2x2(1 + m)2λη2E
(
Y2
)
,

�3 =
[
λη2E

(
Y2
)

2
+ (μ − β)2

2σ 2
− (δ̂ − βx)η

]2

+ 2(δ̂ − βx)η
(μ − β)2

σ 2
,

�4 = (−δ̂ + xμ + 1
2σ 2x2η

)2 + σ 2x2λη2E
(
Y2
)
,

and δ̂ = λE(Y) + 1
2ηλE

(
Y2
)− c.
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Corollary 3.3. If η = 0, the optimal reinsurance strategy of (3.20) reduces to excess-of-loss
reinsurance. Hence, the robust optimal investment–reinsurance strategy is

(π∗(x), l∗(x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + m,

θ

ξ̃∗
2 (x)

∧ y

)
, x ∈ (0, x̃β

2

]∩ [M, N],

(
μ − β

σ 2x

1

ξ̃∗
3 (x)

,
θ

ξ̃∗
3 (x)

∧ y

)
, x ∈ (x̃β

2 , x̃β

3

)∩ [M, N],

(
1,

θ

ξ̃∗
4 (x)

∧ y

)
, x ∈ [x̃β

3 , x̃r
1

]∩ [M, N]

(
μ − r

σ 2x

1

ξ̃∗
1 (x)

,
θ

ξ̃∗
1 (x)

∧ y

)
, x ∈ (x̃r

1, +∞)∩ [M, N],

where ξ̃∗
1 (x), ξ̃∗

2 (x), ξ̃∗
3 (x), and ξ̃∗

4 (x) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ

∫ θ/ξ

0

(
1 − y

θ/ξ

)
F̄Y (y) dy = 1

λ

{
δ̃ − rx − (μ − r)2

2σ 2ξ

}
,

θ

∫ θ/ξ

0

(
1 − y

θ/ξ

)
F̄Y (y) dy = 1

λ

{
δ̃ − βx − (μ − β)x(1 + m) + σ 2x2(1 + m)2ξ

2

}
,

θ

∫ θ/ξ

0

(
1 − y

θ/ξ

)
F̄Y (y) dy = 1

λ

{
δ̃ − βx − (μ − β)2

2σ 2ξ

}
,

θ

∫ θ/ξ

0

(
1 − y

θ/ξ

)
F̄Y (y) dy = 1

λ

{
δ̃ − μx + σ 2x2ξ

2

}
,

and x̃r
1, x̃β

2 , and x̃β

3 take the same forms as in (3.11) and (3.17), in which δ̃ = λ(1 + θ )E(Y) − c.

4. Two extreme cases

In this section, we compute V(x) in the two extreme cases ε → 0 and ε → ∞. In the first
case, we know that the corresponding results reduce to those in the benchmark case without
model ambiguity. In the second case, the insurer has less faith in the reference model and a
sequence of alternative measures can be selected.

Let V0(x) denote the non-robust (ε → 0) value function. In the benchmark case, the wealth
process evolves by (2.2) and the value function is described by

V0(x) := inf
u∈U

Px(τ u
M < τ u

N, τ u < ∞). (4.1)

Letting ε → 0 in Theorem 3.1, we have the following theorem.

Theorem 4.1. Let ξ∗(x) be as given in (3.19). For x ∈ [M, N], the ambiguity-neutral value
function is expressed as follows:

V0(x) = 1 −
∫ x

M exp
{− ∫ y

M (ξ∗(z) − η) dz
}

dy∫ N
M exp

{− ∫ y
M (ξ∗(z) − η) dz

}
dy

.
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The corresponding optimal investment strategy and retention level are given by

(π∗(x), l∗(x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + m,

θ + ηy

ξ∗
2 (x)

∧ y

)
, x ∈ (0, xβ

2

]∩ [M, N],(
−μ − β

σ 2x

1

η − ξ∗
3 (x)

,
θ + ηy

ξ∗
3 (x)

∧ y

)
, x ∈ (xβ

2 , xβ

3

)∩ [M, N],(
1,

θ + ηy

ξ∗
4 (x)

∧ y

)
, x ∈ [xβ

3 , xr
1

]∩ [M, N],(
−μ − r

σ 2x

1

η − ξ∗
1 (x)

,
θ + ηy

ξ∗
1 (x)

∧ y

)
, x ∈ (xr

1, +∞)∩ [M, N].

Remark 4.1. From Theorems 3.1 and 4.1, we obtain that the robust optimal control strategies
are independent of the parameter ε, and coincide with that in the benchmark case without
model ambiguity. Such independence is totally different from the results in the utility and
mean–variance frameworks. A similar conclusion was also reached in [6, 19]. One explanation
of this is that the parameter ε gets cancelled by the exponential transformation method, which
is an unexpected coincidence. However, the value functions and the selection of the optimal
equivalent probability measure Q indeed have a bearing under model ambiguity.

Remark 4.2. If M = 0 and N → +∞, the goal-reaching probability minimization problem
degenerates to minimize the ruin probability for the fix level 0, and the corresponding opti-
mal results can be derived directly. In addition, we conclude that the optimal control strategy is
identical to that when minimizing the probability of ruin. For example, the optimal reinsurance
policy is the same as the one obtained in [17] when the insurer does not invest in the financial
market. Besides controlling for reinsurance, [28] also controlled investment in a risky financial
market, and the same conclusion can be reached. It follows from the results of [10, Remark
3.4] that the insurer can minimize the probability in (4.1) with ε → 0 by choosing the control
policy that pointwise minimizes the ratio of the drift of the value process in (2.2) to its volatil-
ity squared. The same control strategy will minimize the expectation of any function that is
non-increasing with respect to the minimum portfolio value. Indeed, the differential equation
would remain the same; the only change would come in the various boundary conditions.

Let V∞(x) denote the value function in the case ε → ∞. Under this case, the insurer
becomes most ambiguity averse towards the model uncertainty. Then, the value function can
be given as follows:

V∞(x) := inf
u∈U

sup
φ∈�

Qx(τ u
M < τ u

N, τ u < ∞).
It follows that the penalty term completely disappears. Letting ε → ∞ in (2.4), we have the
following proposition.

Proposition 4.1. For any x ∈ [M, N], the value function in the most robust case is given by
V∞(x) = limε→∞ V(x) = 1.

Proof. The disappearance of the penalty term will result in the drift coefficients φ1 and φ2 in
(2.3) derived from Girsanov’s theorem being positive or negative, and the previous constraints
on φ1 and φ2 become meaningless. It makes sense that if φ1 is negative, the investment term
coefficient is negative in (2.3), i.e. the investment does not reach the income target but makes
the wealth value less. Similarly, when φ2 is negative, improper reinsurance strategies can also
cause wealth losses. Therefore, the optimal investment strategy is not to invest at all, while
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the optimal reinsurance retention level is 0, which means transferring all risks, i.e. u0 = (0, 0).
Furthermore, the wealth process becomes dXu0 (t) = (rXu0 (t) − δ) dt. It is not difficult to derive
through simple calculation that

τ
u0
M = 1

r
ln

rM − δ

rx − δ
, τ

u0
N = 1

r
ln

rN − δ

rx − δ

for x ∈ [M, N]. Then, for all Q ∈ Q, we have Qx(τ u0
M < τ

u0
N , τ u0 < ∞) = 1. Thus, for all x ∈

[M, N], V∞(x) = 1. �

Remark 4.3. Note that P ∈ Q with φ0 = (0, 0). From (2.4), we have

V0(x) = inf
u∈U

Ju,φ0 (x) ≤ inf
u∈U

sup
φ∈�

Ju,φ(x) = V(x) ≤ 1 = V∞(x).

This relation is naturally expected since V is non-decreasing with respect to ε. And the robust
goal-reaching probability V(x) is always a conservative estimate for the non-robust value
function V0(x).

Remark 4.4. Let φ∗
1 (x, ε) = φ∗

1 (x) and φ∗
1 (x, ε) = φ∗

2 (x). Taking xr
1 ≤ M in Theorem 3.1 as an

example, when ε → ∞ we can obtain the following results:

lim
ε→∞ φ∗

1 (x, ε) = − μ − r

σ (ξ∗
1 (x) − η)

· exp
{− ∫ x

M (ξ∗
1 (z) − η) dz

}
∫ N

x exp
{− ∫ y

M (ξ∗
1 (z) − η) dz

}
dy

,

lim
ε→∞ φ∗

2 (x, ε) = −
√

λE

[(
θ + ηY

ξ∗
1 (x)

∧ Y

)2]
· exp

{− ∫ x
M (ξ∗

1 (z) − η) dz
}

∫ N
x exp

{− ∫ y
M (ξ∗

1 (z) − η)dz
}

dy
.

It is easy to derive that the optimal drift distortions φ∗
1 (x) and φ∗

2 (x) are all negative and decrease
to finite limits for any x ∈ [M, N] as ε → ∞.

5. Numerical analysis

In this section, we investigate the effect of higher borrowing rate and risk loading parame-
ters on the optimal control strategies. In the following context, we assume that the claim size
random variable Y is uniformly distributed in the interval [0, 2], and so we have E(Y) = 1 and
E
(
Y2
)= 4

3 . And unless otherwise stated, we set the basic parameters as λ = 3 and μ = 0.5. The
notations π0 and l0 respectively represent the optimal investment and reinsurance strategies
without a higher borrowing rate.

Example 5.1. In this example, we set (θ, η) = (0.6, 0) for the expected value principle. Also,
we set r = 0.02, β = 0.08, c = 3.6, σ = 1, and m = 1. The results are shown in Figure 1.

Figure 1 shows how the higher borrowing rate affects the optimal investment strategy. It
is evident from the figure that the optimal investment strategy with a higher borrowing rate is
lower than the unconstrained strategy in both the borrowing and full-investment regions. This
is to be expected: because of the higher borrowing rate, the insurer becomes more conservative
and hesitates to borrow money. Moreover, the optimal investment strategy is a decreasing and
continuous function with respect to x. Only if the wealth level falls below the borrowing level
will borrowing occur. These results are natural consequences of Remark 3.2.

Example 5.2. In this example, we set θ = 0, η = 0.3, r = 0.02, β = 0.08, c = 3.6, σ = 1, and
m = 1. The results are shown in Figure 2.

https://doi.org/10.1017/jpr.2024.89 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.89


18 Y. HUANG AND J. PENG

FIGURE 1. The influence of higher borrowing rate on the optimal investment strategies.

FIGURE 2. The influence of higher borrowing rate on the optimal reinsurance strategies.
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FIGURE 3. The influence of θ on the optimal control strategies.

Figure 2 investigates the impact of the higher borrowing rate on the optimal reinsurance
strategy according to the variance premium principle. It can be seen that the increase in the
wealth of the insurer leads directly to a decrease of the optimal reinsurance strategy. We can
also observe that l∗ > l0 in the full-investment and borrowing regions, which means that with
the higher borrowing rate the insurer is willing to keep more insurance business. Furthermore,
it follows from the figure that the optimal reinsurance strategy is the proportional reinsurance
and falls into the interval [0, 1], which is also a natural consequence of Corollary 3.2.

Example 5.3. In this example, we set η = 0, r = 0.05, c = 2.4, σ = 0.7, and m = 1. The results
are shown in Figure 3.

Figure 3 illustrates that a higher value of θ yields greater values of the optimal investment
and reinsurance strategies. An explanation for this phenomenon is that as θ increases, the
reinsurance premium becomes more expensive, and hence the insurer would rather retain a
larger share of each claim. However, if the reinsurance premium keeps increasing, to avoid
ruin the insurer might optimally increase the investment in the risky asset to increase its profit.

Example 5.4. In this example, we set η = 0, r = 0.03, c = 3.2, σ = 1, and m = 1. The results
are shown in Figure 4.

Figure 4 presents the effects of the parameter η on the optimal control strategies. We can see
that with the increase of the risk loading parameter η, the corresponding investment propor-
tion and retention level increase. The explanation for this result is similar to that in Figure 3.
Since the reinsurance premium and the ruin probability of the insurer would increase with the
increase of η, so its investment proportion and retention level will improve naturally to increase
its profit.
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FIGURE 4. The influence of η on the optimal control strategies.

6. Conclusion

We have studied the robust optimal investment–reinsurance problem of an ambiguity-averse
insurer with borrowing and short-selling constraints on the investment control variable, which
make the model more realistic. The insurer seeks to minimize the probability of the value of
the wealth process reaching a low barrier before a high goal. We assume that the insurer trans-
fers risks by purchasing per-loss reinsurance, and that the reinsurance premium is computed
according to the mean–variance premium principle. By using stochastic control, we character-
ize the value function as the unique classical solution to the HJB equation, and obtain feedback
forms for the robust optimal strategy and the optimal drift distortion. We conclude that when
the wealth is lower than the borrowing level, it is optimal to borrow money to invest in the risky
asset; when the wealth is higher than the saving level, it is optimal to save more money; while
between them, the insurer is willing to invest all the wealth in the risky asset. Finally, through
some numerical analysis, the influence of some parameters on the investment–reinsurance
strategy was explained. For further research, it would be worthwhile to add transaction cost
constraints for investment in the model. Meanwhile, we can focus on other objective functions,
such as utility maximization or mean–variance criteria. Moreover, we may consider the opti-
mal reinsurance problem under a more generalized premium principle, such as the exponential
premium principle, the mean range value at risk premium principle, or the mean conditional
value at risk premium principle. We think these are very challenging problems and the research
directions of our future work.
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