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Abstract In this paper, we study weak solutions, possibly unbounded and sign-changing, to the double
phase problem

−div(|∇u|p−2∇u+ w(x)|∇u|q−2∇u) =

(
1

|x|N−µ
∗ f |u|r

)
f(x)|u|r−2u in RN ,

where q ≥ p ≥ 2, r > q, 0 < µ < N and w, f ∈ L1
loc(R

N ) are two non-negative functions such that
w(x) ≤ C1|x|a and f(x) ≥ C2|x|b for all |x| > R0, where R0, C1, C2 > 0 and a, b ∈ R. Under some
appropriate assumptions on p, q, r, µ, a, b and N, we prove various Liouville-type theorems for weak
solutions which are stable or stable outside a compact set of RN . First, we establish the standard integral
estimates via stability property to derive the non-existence results for stable weak solutions. Then, by
means of the Pohožaev identity, we deduce the Liouville-type theorem for weak solutions which are stable
outside a compact set.
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1. Introduction

In the last decades, the stable and finite Morse index sign-changing solutions of weighted
p-Laplace equations on unbounded domains of RN have received a lot of attention (see
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e.g., [1–3, 6, 7, 9, 11, 12, 15, 16] and the references therein). The definition of stability
is motivated by a phenomenon in physical sciences, which states that a system is in a
stable state if it can recover from small perturbations. We refer to the monograph [5]
for more discussions on the physical motivation and mathematical background of stable
solutions.
Liouville theorems for stable solutions, which concern about nonexistence of this par-

ticular type of solutions, have drawn much attention in the last decade. In his celebrated
article [6], Farina established a sharp Liouville theorem for stable classical solutions to
the problem

−div (ω1(x)∇u) = ω2(x)|u|q−1u in RN (1)

with ω1(z) = ω2(z) ≡ 1 and q > 1. He showed that the problem does not admit any
non-trivial stable C 2 solution if and only if 1 < q < qc(N), where

qc(N) :=

+∞ if N ≤ 10,
(N−2)2−4N+8

√
N−1

(N−2)(N−10) if N ≥ 11.

After that, the above results have been extended to the weighted case ω1(x) 6≡ 1 or
ω2(x) 6≡ 1 in [1, 3, 16, 19]. In [3], under the restriction that the solutions are locally
bounded, the authors presented the non-existence of non-trivial stable weak solutions of
problem (1). Later, this restriction was removed in [19]. In [1], under various assumptions
on ω1(x) and ω2(x), Cowan and Fazly established several Liouville-type theorems for
stable positive classical solutions of problem (1). In particular, they examined a specific

class of weights ω1(x) = (|x|2 + 1)
γ1
2 g(x) and ω2(x) = (|x|2 + 1)

γ2
2 g(z), where g is a

positive function with a finite limit at ∞. For this class of weights, non-existence results
are optimal.
Recently, Zhao [20] studied the non-existence of finite Morse index solution for the

equation

−∆u =
(
|z|−γ ∗ |u|q+1

)
|u|q−1

u in RN , N > 2. (2)

In [20], the author showed that problem (2) has no non-trivial solution with finite Morse
index if 0 < γ < min{4, N} and 1 < q < N+2−γ

N−2 . Notice that the right-hand side
of Equation (2) is a non-local term which is usually referred to as the Hartree-type
non-linearity in the literature. This kind of equation is usually called the Choquard-type
equation since, in 1976, a similar equation as Equation (2) was used by P. Choquard
to describe an electron trapped in its hole, in a certain approximation to Hartree–Fock
theory of one component plasma [13]. In some contexts, equation of type (2) is also
called the non-linear Schrödinger–Newton equation or the stationary Hartree equation.
The second author [10] proved that this equation does not possess a positive solution
for 1 < q < N+2−γ

N−2 by using the moving plane method. In [9], with the help of Farina’s
approach, the second author showed that Equation (2) has no non-trivial stable weak
solution if 0 < γ < min{4, N}, N > 2 and q > 1. This phenomenon is quite different from
that of the Lane–Emden equation studied by Farina [6], where such a result only holds
for low exponents in high dimensions.
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Liouville theorems for C1,α solutions of the p-Laplace Hartree equation

−∆pu =

(
1

|x|N−α
∗ |u|q

)
|u|q−2u in RN ,

was also examined by the second author [12]. He proved that if 2 ≤ p < N , max{0, N −
2p} < α < N , p < q < qc and u is stable, then u ≡ 0. Here qc is a new critical exponent,

which equals infinity when N+α
N−p ≥ p+1

2 . He also showed that if p < q < p(N+α)
2(N−p) and u is

stable outside a compact set or has a finite Morse index, then u ≡ 0. The results in [12]
cover the ones in [9, 20] when p=2.
Besides the standard quasilinear operators, the so-called double phase problem

−div(|∇u|p−2∇u+ γ1(x)|∇u|q−2∇u) = γ2(x)|u|r−1u in RN (3)

gets a lot of attention in recent years. The operator on the left-hand side of Equation (3) is
called the double phase operator since its behaviour switches between two different elliptic
situations depending on the values of the weight function w. This kind of problem and
the associated energy functionals arise in many applications. In the non-linear elasticity
theory, the modulating coefficient w deforms the geometry of composites made of two
different materials with distinct power hardening exponents q and p. Zhikov et al. [8, 21]
used double phase functionals to describe models of strongly anisotropic materials in the
context of homogenization. Double phase functionals also play an important role in the
study of duality theory and the context of the Lavrentiev phenomenon [22].
Recently, the second author [11] obtained classification for stable sign-changing

solutions to problem (3) as follows.

Theorem A. (see [11, Theorem 1]). Let u be a stable solution of Equation (3),
where q ≥ p ≥ 2, r > q − 1 and γ1, γ2 ∈ L1

loc(RN ) are two non-negative functions such
that γ1(x) ≤ C1|x|a and γ2(x) ≥ C2|x|b for all |x| > R0, with R0, C1, C2 > 0 and
a, b ∈ R. Assume that

N < N ] := min

{
p(β0 + r) + b(β0 + p− 1)

r − p+ 1
,
(q − a)(β0 + r) + b(β0 + q − 1)

r − q + 1

}
,

where

β0 :=
2r − q + 1 + 2

√
r(r − q + 1)

q − 1
.

Then u ≡ 0.

Theorem B. (see [11, Theorem 2]). Let u be a solution of Equation (3) with
γ1(x) = |x|a and γ2(x) = |x|b such that u is stable outside a compact set, where q > p ≥ 2
and r > q − 1. Assume furthermore that |∇u|p−2∇u+ |x|a|∇u|q−2∇u ∈W 1,2

loc (RN ,RN ).

(i) If N+b
r+1 > max

{
N−p
p , N−q+a

q

}
, then u ≡ 0.
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(ii) If N+b
r+1 = max

{
N−p
p , N−q+a

q

}
, then we have the identity

N − p

p

∫
RN

|∇u|p dx+N − q + a

q

∫
RN

|x|a|∇u|q dx =
N + b

r + 1

∫
RN

|x|b|u|r+1 dx <∞.

In this paper, we prove analogous results for the double phase problem involving a
non-local term

−div(|∇u|p−2∇u+ w(x)|∇u|q−2∇u) =
(

1

|x|N−µ
∗ f |u|r

)
f(x)|u|r−2u in RN , (4)

where q ≥ p ≥ 2, r > q, 0 < µ < N and w, f ∈ L1
loc(RN ) are two non-negative functions

such that w(x) ≤ C1|x|a and f(x) ≥ C2|x|b for all |x| > R0, where R0, C1, C2 > 0,
a, b ∈ R and max{0, N + 2(a − q − b)} < µ < N . The main feature of problem (4) is
that it combines the double phase phenomenon on the left-hand side and the non-local
phenomenon on the right-hand side. This causes some difficulty, which makes the study of
such a problem interesting. The existence of solutions to problem (4) in bounded domains
was obtained recently in [17]. More precisely, Sun and Chang [17] studied the problem−div(|∇u|p−2∇u+ w(x)|∇u|q−2∇u) =

(
1

|x|N−µ ∗ |u|r
)
|u|r−2u in Ω,

u = 0 on ∂Ω,
(5)

where Ω is a bounded domain of RN and 1 < p < q < N . Using the constrained variational
method and Brouwer degree theory, they proved the existence of least energy nodal
solutions to Equation (5) under a subcritical assumption on r. Unlike problem (5), it is
usually unfavourable for elliptic problems in the whole space such as Equation (4) to have
positive solutions under some subcritical assumption. In fact, our main Liouville-type
theorem holds for problem (4), with r being less than some critical exponent rc (see
Theorem 1 below).
We recall functional settings for double phase problems. Let H : Ω × [0,∞) → [0,∞)

be the function H(x, t) = tp + w(x)tq, where Ω ⊂ RN is a domain of RN . We define

ρH(u) =

∫
Ω

H(x, |u|)dx =

∫
Ω

(|u|p + w(x)|u|q)dx

and

LH(Ω) = {u : Ω → R | u is measurable and ρH(u) <∞},

which is called the Musielak–Orlicz space. This space is equipped with the Luxemburg
norm

‖u‖H = inf
{
τ > 0 | ρH

(u
τ

)
≤ 1
}
.
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Then we define the Musielak–Orlicz Sobolev space

W 1,H(Ω) =
{
u ∈ LH(Ω) | |∇u| ∈ LH(Ω)

}
,

which admits the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H .

As usual, we defineW 1,H
0 (Ω) as the closure of C1

c (Ω) with respect to the norm inW 1,H(Ω).
Moreover, we set

W 1,H
loc (Ω) =

{
u : Ω → R | uϕ ∈W 1,H

0 (Ω) for all ϕ ∈ C1
c (Ω)

}
.

Although the C1,α
loc regularity of the solutions for p-Laplace equations is well known

(see, for instance, [4, 18]), the C1,α
loc regularity cannot be guaranteed for double phase

problems due to the behaviour of the weight w. Therefore, it is more natural to work
with the notion of weak local solutions as follows.

Definition 1. A function u ∈ W 1,H
loc (RN ) is said to be a weak solution of

Equation (4) if (
1

|x|N−µ
∗ f |u|r

)
f(x)|u|r−1 ∈ L1

loc(RN )

and ∫
RN

(
|∇u|p−2∇u+ w(x)|∇u|q−2∇u

)
· ∇ϕ dx

=

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)ϕ(x)f(y)|u(y)|r

|x− y|N−µ
dx dy (6)

for all ϕ ∈ C1
c (RN ). Furthermore, u is called a finite energy solution if∫

RN
(|∇u|p + w(x)|∇u|q) dx+

∫
RN

∫
RN

f(x)|u(x)|rf(y)|u(y)|r

|x− y|N−µ
dx dy <∞. (7)

Notice that condition (7) is also used in the literature to characterize Coulomb–Sobolev
spaces, see [14].
Motivated by [2, 3, 11, 12, 15], in this paper, we are interested in Liouville theorems

for stable and finite Morse index solutions of Equation (4), which are defined as follows.

Definition 2. A weak solution u of (4) is

• stable if the quadratic form of energy functional associated to Equation (4) at u
is non-negative, i.e.,
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Qu(ϕ) :=

∫
RN

[
|∇u|p−2|∇ϕ|2 + (p− 2)|∇u|p−4(∇u · ∇ϕ)2

]
dx

+

∫
RN

w(x)
[
|∇u|q−2|∇ϕ|2 + (q − 2)|∇u|q−4(∇u · ∇ϕ)2

]
dx

− (r − 1)

∫
RN

∫
RN

f(x)|u(x)|r−2ϕ(x)2f(y)|u(y)|r

|x− y|N−µ
dx dy

− r

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)ϕ(x)f(y)|u(y)|r−2u(y)ϕ(y)

|x− y|N−µ
dx dy

≥ 0

for all ϕ ∈ C1
c (RN ),

• stable outside a compact set K ⊂ RN if Qu(ϕ) ≥ 0 for all ϕ ∈ C1
c (RN \K),

• has a Morse index equal to k ≥ 0 if k is the maximal dimension of a subspace Xk

of C1
c (RN ) such that Qu(ϕ) < 0 for all ϕ ∈ Xk \ {0}.

Remark 1. By Schwartz’s inequality, if u is a stable solution to Equation (4), then

(p− 1)

∫
RN

|∇u|p−2|∇ϕ|2 dx+ (q − 1)

∫
RN

w(x)|∇u|q−2|∇ϕ|2 dx

− (r − 1)

∫
RN

∫
RN

f(x)|u(x)|r−2ϕ(x)2f(y)|u(y)|r

|x− y|N−µ
dx dy

− r

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)ϕ(x)f(y)|u(y)|r−2u(y)ϕ(y)

|x− y|N−µ
dx dy ≥ 0

(8)

for all ϕ ∈ C1
c (RN ). Moreover, Equations (6) and (8) hold for all ϕ ∈W 1,H

0 (Ω) by density
arguments.

As far as we know, there are no non-existence results on stable and finite Morse index
solutions for Equation (4) with q ≥ p ≥ 2 and w 6≡ 0. In this paper, we will establish
some Liouville-type theorems for such solutions. Our first result reads as follows.

Theorem 1. Assume that

(i) 2 ≤ p < N ,
(ii) p ≤ q ≤ p+ pa

N ,
(iii) max{0, N + 2(a− q − b)} < µ < N ,

(iv) q < r < rc :=

+∞ if N+µ+2b
N+a−q ≥ q+1

2 ,
(q−1)(α0+1)2

4α0
+ 1 otherwise,

where

α0 :=
q(q + µ− a+ 2b)− (N + µ+ 2b)

(q + 1)(N + a− q)− 2(N + µ+ 2b)

+

√
q(q − 2)(N + µ+ 2b)[µ−N + 2(q − a+ b)] + (q + µ− a+ 2b)2

(q + 1)(N + a− q)− 2(N + µ+ 2b)
.
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Let u be a stable solution of Equation (4). Then u ≡ 0.

Remark 2. Clearly, assumptions (i) and (ii) imply a ≥ 0 and q ≤ p+ a < N + a.
When N+µ+2b

N+a−q < q+1
2 , one can verify that α0 > 1 and α0 is the largest solution of the

equation

1

2

[
(q + α− 1)(N + µ+ 2b)

N + a− q
− (α− 1)

]
=

(q − 1)(α+ 1)2

4α
+ 1,

see the proof of Lemma 3 in the next section for more detail. We also remark that when
w = f ≡ 1 and q = p, Theorem 1 basically reduces to Theorem 1 in [12]. We stress,
however, that only C 1 solutions are considered in [12]. Hence, the statement of Liouville
theorems in our paper is more general even in this specific case.

Remark 3. By assumption (iii), we have N+µ+2b
N+a−q ≥ 2. Hence, if q ≤ 3, then N+µ+2b

N+a−q ≥
q+1
2 and the critical exponent rc is infinity. This phenomenon has been observed by the

second author [9] in the case p = q = 2.

To prove Theorem 1, we follow the approach in [2, 11, 12]. As in these references, we
test Equations (6) and (8) with suitable truncated functions of powers of u and exploit the
Young inequality several times to obtain a Caccioppoli-type estimate (see Equation (16)
below). Then we can control a term LR(u), which depends on the radius R> 0 and
contains double integrals on |∇u| and |u|, by its powers (see Equation (25)). Here a new
idea is presented to show that this term goes to 0 as R → +∞, which implies u ≡ 0. In
order for the last step to work, we need that θ in the inequality (27) is negative. A sufficient
condition to ensure that is that (ii), (iii) and (iv) hold. More precisely, assumptions (ii)
and (iii) are rather technical, so that Equation (29) and Lemma 3 can be proved and
used in the last step. However, we expect that rc in (iv) is sharp, which is the case when
q ≤ 3 as we mentioned in Remark 3.
In this paper, we also study solutions stable outside a compact set of the problem

−div(|∇u|p−2∇u+ |x|a|∇u|q−2∇u) =
(

1

|x|N−µ
∗ | · |b|u|r

)
|x|b|u|r−2u in RN , (9)

which is a special case of problem (4) with w(x) = |x|a and f(x) = |x|b. We will prove
the following result by exploiting a Pohožaev-type identity.

Theorem 2. Assume 2 ≤ p < N , p ≤ q < N + a, max{0, N + 2(a− q − b)} < µ < N
and r> q. Let u be a solution of Equation (9), which is stable outside a compact set such
that |∇u|p−2∇u+ |x|a|∇u|q−2∇u ∈W 1,2

loc (RN ,RN ).

(i) If N+µ+2b
2r > max

{
N−p
p , N+a−q

q

}
, then u ≡ 0.

(ii) If N+µ+2b
2r = max

{
N−p
p , N+a−q

q

}
, then we have the identity
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N − p

p

∫
RN

|∇u|p dx+
N + a− q

q

∫
RN

|x|a|∇u|q dx

=
N + µ+ 2b

2r

∫
RN

∫
RN

|x|b|u(x)|r|y|b|u(y)|r

|x− y|N−µ
dx dy <∞.

Remark 4. Let u be a solution with Morse index k ≥ 1. Then there exists a sub-
space Xk := span{ϕ1, . . . , ϕk} ⊂ C1

c (RN ) such that Qu(ϕ) < 0 for all ϕ ∈ Xk \ {0}.
Consequently, Qu(ϕ) ≥ 0 for all ϕ ∈ C1

c (RN \K), where K = ∪k
j=1supp(ϕj). This means

that u is stable outside the compact set K. Theorem 2 is, therefore, also valid for finite
Morse index solutions.

The rest of this paper is devoted to the proof of our main results. In § 2, we prove
Theorem 1 by exploiting the method of integral estimates with some ideas from the works
[11, 12] of the second author. In § 3, we prove a Pohožaev-type identity and obtain some
energy estimates. Then we use them to prove Theorem 2.
As usual, we use C to denote different positive constants whose values may change

from line to line or even in the same line. Furthermore, we may append subscripts to C
to specify its dependence on the subscript parameters. We also denote by BR the ball
centred at the origin with radius R> 0. We will drop notion dx in the integrals in RN

for brevity.

2. Liouville theorem for stable solutions

We will adopt some ideas from [2, 11, 12] in the proof of Theorem 1. Some non-trivial

modifications are needed to deal withW 1,H
loc (RN ) solutions and to overcome the combined

effects of double phase and non-locality of Equation (4). We start with the following
technical lemma, which will be used later in our integral estimates.

Lemma 3. Assume that 2 ≤ q < N + a, max{0, N + 2(a − q − b)} < µ < N and
q < r < rc, where rc is given in Theorem 1. Then there exists α ≥ 1 such that

max

{
(q − 1)(α+ 1)2

4α
+ 1, q +

α− 1

2

}
< r <

1

2

[
(q + α− 1)(N + µ+ 2b)

N + a− q
− (α− 1)

]
.

Proof. For α ≥ 1, we define

f(α) =
(q − 1)(α+ 1)2

4α
+ 1, g(α) = q +

α− 1

2
,

h(α) =
1

2

[
(q + α− 1)(N + µ+ 2b)

N + a− q
− (α− 1)

]
.

Since N + 2(a− q − b) < µ, we have h(α) > g(α) for all α ≥ 1 and

h(1)− f(1) =
q(µ+ 2b+ 2q − 2a−N)

2(N + a− q)
> 0.
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There are two cases.
Case 1: N+µ+2b

N+a−q ≥ q+1
2 . In this case,

(h− f)′(α) =
1

2

(
N + µ+ 2b

N + a− q
− q + 1

2

)
+
q − 1

4α2
> 0.

Hence, h(α)−f(α) ≥ h(1)−f(1) > 0 for all α ≥ 1. Therefore, max{f(α), g(α)} < h(α)
for α ≥ 1. On the other hand,

f(1) = g(1) = q and lim
α→+∞

max{f(α), g(α)} = +∞.

Thus, the claim follows from the continuity of f, g, h.
Case 2: N+µ+2b

N+a−q < q+1
2 . In this case,

lim
α→+∞

(h(α)− f(α)) = −∞.

Combining this with h(1) − f(1) > 0, we deduce that h(α0) = f(α0) for some
α0 > 1. Moreover, α0 is given explicitly in Theorem 1. It is easy to see that α0 is
the largest solution of the equation h(α) = f(α). Furthermore, we have h(α) > f(α) for
all 1 ≤ α < α0.
Hence, max{f(α), g(α)} < h(α) for 1 ≤ α < α0. On the other hand,

f(1) = g(1) = q and g(α0) < h(α0) = f(α0) = rc.

Then the conclusion follows from the continuity of f, g, h as before. �

We are in a position to prove the main result of this section, namely, Theorem 1.

Proof of Theorem 1. By Lemma 3, we can choose some α ≥ 1 such that

max

{
(q − 1)(α+ 1)2

4α
+ 1, q +

α− 1

2

}
< r <

1

2

[
(q + α− 1)(N + µ+ 2b)

N + a− q
− (α− 1)

]
.

(10)
We consider the following truncated functions for each k ∈ N

ak(t) =

|t|
α−1
2 t, |t| < k,

k
α−1
2 t, |t| ≥ k,

and bk(t) =

|t|α−1t, |t| < k,

kα−1t, |t| ≥ k.

We observe that

ak(t)
2 ≥ tbk(t), a′k(t)

2 ≤ (α+ 1)2

4α
b′k(t),

|ak(t)|sa′k(t)2−s + |bk(t)|sb′k(t)1−s ≤ Cα,s|t|α+s−1

(11)

for all t ∈ R and s ≥ 2. Moreover, using the fact u ∈W 1,H
loc (RN ), we see that ak(u), bk(u) ∈

W 1,H
loc (RN ) for any k ∈ N.

https://doi.org/10.1017/S0013091523000597 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000597


1128 B. Rahal and P. Le

Let β ≥ q, ε ∈ (0, 1) and ψ ∈ C1
c (RN ) be such that 0 ≤ ψ ≤ 1 in RN . Testing

Equation (6) with ϕ = bk(u)ψ
β , we have∫

RN
|∇u|pb′k(u)ψβ + β

∫
RN

|∇u|p−2bk(u)ψ
β−1∇u · ∇ψ

+

∫
RN

w(x)|∇u|qb′k(u)ψβ + β

∫
RN

w(x)|∇u|q−2bk(u)ψ
β−1∇u · ∇ψ

=

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)bk(u(x))ψ(x)
βf(y)|u(y)|r

|x− y|N−µ
dxdy.

(12)

We estimate the second term by using Young’s inequality as follows:

− β

∫
RN

w(x)|∇u|q−2bk(u)ψ
β−1∇u · ∇ψ

≤ β

∫
RN

w(x)|∇u|q−1|bk(u)|ψβ−1|∇ψ|

≤
∫
RN

{
ε

(
w(x)

q−1
q |∇u|q−1b′k(u)

q−1
q ψ

(q−1)β
q

) q
q−1

+ Cε

(
w(x)

1
q |bk(u)|b′k(u)

1−q
q ψ

β−q
q |∇ψ|

)q}
≤ ε

∫
RN

w(x)|∇u|qb′k(u)ψβ + Cε

∫
RN

w(x)|bk(u)|qb′k(u)1−qψβ−q|∇ψ|q.

In the same way, we obtain

−β
∫
RN

|∇u|p−2bk(u)ψ
β−1∇u · ∇ψ ≤ ε

∫
RN

|∇u|pb′k(u)ψβ

+ Cε

∫
RN

|bk(u)|pb′k(u)1−pψβ−p|∇ψ|p.

Therefore, Equation (12) leads to

(1− ε)

∫
RN

(|∇u|p + w(x)|∇u|q) b′k(u)ψβ

≤
∫
RN

∫
RN

f(x)|u(x)|r−2u(x)bk(u(x))ψ(x)
βf(y)|u(y)|r

|x− y|N−µ
dx dy

+ Cε

∫
RN

|bk(u)|pb′k(u)1−pψβ−p|∇ψ|p + Cε

∫
RN

w(x)|bk(u)|qb′k(u)1−qψβ−q|∇ψ|q

≤
∫
RN

∫
RN

f(x)|u(x)|r−2u(x)bk(u(x))ψ(x)
βf(y)|u(y)|r

|x− y|N−µ
dx dy

+ Cε

∫
RN

|u|α+p−1ψβ−p|∇ψ|p + Cε

∫
RN

w(x)|u|α+q−1ψβ−q|∇ψ|q,

(13)

where Equation (11) has been used in the last estimate.
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Now we use ϕ = ak(u)ψ
β
2 as a test function in Equation (8) and take into account the

inequality

|x+ y|2 ≤ (1 + δ)|x|2 + Cδ|y|2 for x, y ∈ RN , δ > 0.

We obtain

(r − 1)

∫
RN

∫
RN

f(x)|u(x)|r−2ak(u(x))
2ψ(x)βf(y)|u(y)|r

|x− y|N−µ
dx dy

+ r

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)ak(u(x))ψ
β
2 (x)f(y)|u(y)|r−2u(y)ak(u(y))ψ

β
2 (y)

|x− y|N−µ
dx dy

≤
(
p− 1 +

ε

2

)∫
RN

|∇u|pa′k(u)2ψβ +Aε

∫
RN

|∇u|p−2ak(u)
2ψβ−2|∇ψ|2

+
(
q − 1 +

ε

2

)∫
RN

w(x)|∇u|qa′k(u)2ψβ +Bε

∫
RN

w(x)|∇u|q−2ak(u)
2ψβ−2|∇ψ|2.

(14)

If q > 2, we can apply Young’s inequality to deduce

Bε

∫
RN

w(x)|∇u|q−2ak(u)
2ψβ−2|∇ψ|2

≤
∫
RN

{
ε

2

(
w(x)

q−2
q |∇u|q−2a′k(u)

2(q−2)
q ψ

(q−2)β
q

) q
q−2

+ Cε

(
w(x)

2
q ak(u)

2a′k(u)
2(2−q)

q ψ
2(β−q)

q |∇ψ|2
) q

2
}

=
ε

2

∫
RN

w(x)|∇u|qa′k(u)2ψβ + Cε

∫
RN

w(x)|ak(u)|qa′k(u)2−qψβ−q|∇ψ|q.

Similarly, if p> 2, we have

Aε

∫
RN

|∇u|p−2ak(u)
2ψβ−2|∇ψ|2

≤ ε

2

∫
RN

|∇u|pa′k(u)2ψβ + Cε

∫
RN

|ak(u)|pa′k(u)2−pψβ−p|∇ψ|p.

Substituting these two estimates into Equation (14), we obtain

(r − 1)

∫
RN

∫
RN

f(x)|u(x)|r−2ak(u(x))
2ψ(x)βf(y)|u(y)|r

|x− y|N−µ
dx dy

+ r

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)ak(u(x))ψ
β
2 (x)f(y)|u(y)|r−2u(y)ak(u(y))ψ

β
2 (y)

|x− y|N−µ
dx dy
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≤ (p− 1 + ε)

∫
RN

|∇u|pa′k(u)2ψβ + (q − 1 + ε)

∫
RN

w(x)|∇u|qa′k(u)2ψβ

+ Cε

∫
RN

|ak(u)|pa′k(u)2−pψβ−p|∇ψ|p + Cε

∫
RN

w(x)|ak(u)|qa′k(u)2−qψβ−q|∇ψ|q.

Notice that the above inequality also holds in the case p=2 or q =2.
Taking into account q ≥ p and Equation (11), we derive

(r − 1)

∫
RN

∫
RN

f(x)|u(x)|r−2ak(u(x))
2ψ(x)βf(y)|u(y)|r

|x− y|N−µ
dx dy

+ r

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)ak(u(x))ψ
β
2 (x)f(y)|u(y)|r−2u(y)ak(u(y))ψ

β
2 (y)

|x− y|N−µ
dxdy

≤ (q − 1 + ε)

∫
RN

(|∇u|p + w(x)|∇u|q) a′k(u)2ψβ

+ Cε

∫
RN

|u|α+p−1ψβ−p|∇ψ|p + Cε

∫
RN

w(x)|u|α+q−1ψβ−q|∇ψ|q.

(15)

Using Equation (11), from Equations (13) and (15), we deduce

(r − 1)

∫
RN

∫
RN

f(x)|u(x)|r−2ak(u(x))
2ψ(x)βf(y)|u(y)|r

|x− y|N−µ
dx dy

+ r

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)ak(u(x))ψ
β
2 (x)f(y)|u(y)|r−2u(y)ak(u(y))ψ

β
2 (y)

|x− y|N−µ
dxdy

≤ (q − 1 + ε)(α+ 1)2

4α

∫
RN

(|∇u|p + w(x)|∇u|q) b′k(u)ψβ

+ Cε

∫
RN

|u|α+p−1ψβ−p|∇ψ|p + Cε

∫
RN

w(x)|u|α+q−1ψβ−q|∇ψ|q

≤ (q − 1 + ε)(α+ 1)2

4α(1− ε)

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)bk(u(x))ψ(x)
βf(y)|u(y)|r

|x− y|N−µ
dx dy

+ Cε

∫
RN

|u|α+p−1ψβ−p|∇ψ|p + Cε

∫
RN

w(x)|u|α+q−1ψβ−q|∇ψ|q

≤ (q − 1 + ε)(α+ 1)2

4α(1− ε)

∫
RN

∫
RN

f(x)|u(x)|r−2ak(u(x))
2ψ(x)βf(y)|u(y)|r

|x− y|N−µ
dx dy

+ Cε

∫
RN

|u|α+p−1ψβ−p|∇ψ|p + Cε

∫
RN

w(x)|u|α+q−1ψβ−q|∇ψ|q.

Therefore,

Dε

∫
RN

∫
RN

f(x)|u(x)|r−2ak(u(x))
2ψ(x)βf(y)|u(y)|r

|x− y|N−µ
dx dy
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+ r

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)ak(u(x))ψ
β
2 (x)f(y)|u(y)|r−2u(y)ak(u(y))ψ

β
2 (y)

|x− y|N−µ
dx dy

≤ Cε

∫
RN

|u|α+p−1ψβ−p|∇ψ|p + Cε

∫
RN

w(x)|u|α+q−1ψβ−q|∇ψ|q,

where

Dε := r − 1− (q − 1 + ε)(α+ 1)2

4α(1− ε)
.

From Equation (10), we have lim
ε→0+

Dε = r − 1 − (q−1)(α+1)2

4α > 0. Hence, we can and

do fix some ε> 0 such that Dε > 0. We also choose β = q. Then

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)ak(u(x))ψ
q
2 (x)f(y)|u(y)|r−2u(y)ak(u(y))ψ

q
2 (y)

|x− y|N−µ
dx dy

≤ C

∫
RN

|u|α+p−1ψq−p|∇ψ|p + C

∫
RN

w(x)|u|α+q−1|∇ψ|q.

Combining this with Equation (13) and using Equation (11) again, we can add one
more term to the left-hand side of the above inequality as follows∫

RN
(|∇u|p + w(x)|∇u|q) b′k(u)ψq

+

∫
RN

∫
RN

f(x)|u(x)|r−2u(x)ak(u(x))ψ
q
2 (x)f(y)|u(y)|r−2u(y)ak(u(y))ψ

q
2 (y)

|x− y|N−µ
dx dy

≤ C

∫
RN

|u|α+p−1ψq−p|∇ψ|p + C

∫
RN

w(x)|u|α+q−1|∇ψ|q.

Letting k → ∞, by Fatou’s lemma, we deduce∫
RN

(|∇u|p + w(x)|∇u|q) |u|α−1ψq

+

∫
RN

∫
RN

f(x)|u(x)|r+
α−1
2 ψ

q
2 (x)f(y)|u(y)|r+

α−1
2 ψ

q
2 (y)

|x− y|N−µ
dx dy

≤ C

∫
RN

|u|α+p−1ψq−p|∇ψ|p + C

∫
RN

w(x)|u|α+q−1|∇ψ|q.

(16)

Now we choose ψ = ηmR , where R > R0 and ηR ∈ C1
c (RN ) satisfies 0 ≤ ηR ≤ 1 and

ηR = 1 in BR, ηR = 0in RN \B2R, |∇ηR| ≤
C

R
in B2R \BR, (17)
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and the positive integer m is taken sufficiently large such that

min

{
(qm− p)(2r + α− 1)

α+ p− 1
,
q(m− 1)(2r + α− 1)

α+ q − 1

}
≥ mq. (18)

Then Equation (16) becomes∫
RN

(|∇u|p + w(x)|∇u|q) |u|α−1ηqmR

+

∫
RN

∫
RN

f(x)|u(x)|r+
α−1
2 η

qm
2

R (x)f(y)|u(y)|r+
α−1
2 η

qm
2

R (y)

|x− y|N−µ
dx dy

≤ C

∫
B2R\BR

|u|α+p−1ηqm−p
R |∇ηR|p + C

∫
B2R\BR

w(x)|u|α+q−1η
q(m−1)
R |∇ηR|q.

(19)

We have∫
B2R\BR

|u|α+p−1ηqm−p
R |∇ηR|p

≤

(∫
B2R\BR

f(x)|u|r+
α−1
2 η

qm
2

R

)2(α+p−1)
2r+α−1

×

(∫
B2R\BR

f(x)
− 2(α+p−1)

2r−2p−α+1 |∇ηR|
p(2r+α−1)
2r−2p−α+1

)2r−2p−α+1
2r+α−1

≤ CR
N(2r−2p−α+1)

2r+α−1 − 2b(α+p−1)
2r+α−1 −p

(∫
B2R\BR

f(x)|u|r+
α−1
2 η

qm
2

R

)2(α+p−1)
2r+α−1

(20)

and∫
B2R\BR

w(x)|u|α+q−1η
q(m−1)
R |∇ηR|q

≤

(∫
B2R\BR

f(x)|u|r+
α−1
2 η

qm
2

R

)2(α+q−1)
2r+α−1

×

(∫
B2R\BR

w(x)
(2r+α−1)

2r−2q−α+1 f(x)
− 2(α+q−1)

2r−2q−α+1 |∇ηR|
q(2r+α−1)
2r−2q−α+1

)2r−2q−α+1
2r+α−1

≤ CR
N(2r−2q−α+1)

2r+α−1 −2b(α+q−1)
2r+α−1 −q+a

(∫
B2R\BR

f(x)|u|r+
α−1
2 η

qm
2

R

)2(α+q−1)
2r+α−1

,

(21)

where we have applied Hölder’s inequality in Equations (20) and (21). Notice that we
could do that because 2r − 2p− α+ 1 ≥ 2r − 2q − α+ 1 > 0 due to Equation (10).
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Combining Equations (20) and (21), we obtain∫
B2R\BR

|u|α+p−1ηqm−p
R |∇ηR|p +

∫
B2R\BR

w(x)|u|α+q−1η
q(m−1)
R |∇ηR|q

≤ CR
N(2r−2p−α+1)

2r+α−1 −2b(α+p−1)
2r+α−1 −p

(∫
RN

f(x)|u|r+
α−1
2 η

qm
2

R

) 2(α+p−1)
2r+α−1

+ CR
N(2r−2q−α+1)

2r+α−1 − 2b(α+q−1)
2r+α−1 −q+a

(∫
RN

f(x)|u|r+
α−1
2 η

qm
2

R

) 2(α+q−1)
2r+α−1

.

(22)

On the other hand,(∫
RN

f(x)|u|r+
α−1
2 η

qm
2

R

)2

=

∫
RN

∫
RN

f(x)|u(x)|r+
α−1
2 ηR(x)

qm
2 f(y)|u(y)|r+

α−1
2 ηR(y)

qm
2 dxdy

≤ CRN−µ

∫
RN

∫
RN

f(x)|u(x)|r+
α−1
2 ηR(x)

qm
2 f(y)|u(y)|r+

α−1
2 ηR(y)

qm
2

|x− y|N−µ
dx dy.

(23)

Setting

LR(u) :=

∫
RN

(|∇u|p + w(x)|∇u|q) |u|α−1ηqmR

+

∫
RN

∫
RN

f(x)|u(x)|r+
α−1
2 η

qm
2

R (x)f(y)|u(y)|r+
α−1
2 η

qm
2

R (y)

|x− y|N−µ
dx dy.

From Equations (22) and (23), we deduce∫
B2R\BR

|u|α+p−1ηqm−p
R |∇ηR|p +

∫
B2R\BR

w(x)|u|α+q−1η
q(m−1)
R |∇ηR|q

≤ CR
N(2r−2p−α+1)

2r+α−1 − 2b(α+p−1)
2r+α−1 −p

R
(N−µ)(α+p−1)

2r+α−1 [LR(u)]
α+p−1
2r+α−1

+ CR
N(2r−2q−α+1)

2r+α−1 − 2b(α+q−1)
2r+α−1 −q+a

R
(N−µ)(α+q−1)

2r+α−1 [LR(u)]
α+q−1
2r+α−1

= CR
N−p− (p+α−1)(N+µ+2b)

2r+α−1 [LR(u)]
α+p−1
2r+α−1

+ CR
N+a−q− (q+α−1)(N+µ+2b)

2r+α−1 [LR(u)]
α+q−1
2r+α−1 .

(24)

Substituting Equation (24) into Equation (19), we obtain

LR(u) ≤ CR
N−p− (p+α−1)(N+µ+2b)

2r+α−1 [LR(u)]
α+p−1
2r+α−1

+ CR
N+a−q− (q+α−1)(N+µ+2b)

2r+α−1 [LR(u)]
α+q−1
2r+α−1 . (25)
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We claim that

lim
R→+∞

LR(u) = 0. (26)

By contradiction, assume that there exists a sequence Rn → +∞ such that LRn(u) ≥ c
for some c> 0. Then Equation (25) implies

LRn(u) ≤ CRθ
n[LRn(u)]

α+q−1
2r+α−1 ,

i.e.,

[LRn(u)]
2r−q

2r+α−1 ≤ CRθ
n, (27)

where

θ := max

{
N − p− (p+ α− 1)(N + µ+ 2b)

2r + α− 1
, N + a− q − (q + α− 1)(N + µ+ 2b)

2r + α− 1

}
.

Notice that

1

2

[
(q + α− 1)(N + µ+ 2b)

N + a− q
− (α− 1)

]
≤ 1

2

[
(p+ α− 1)(N + µ+ 2b)

N − p
− (α− 1)

]
.

(28)
Indeed, Equation (28) is equivalent to

qN − p(N + a) ≤ (a+ p− q)(α− 1). (29)

By assumption (ii), we have a+ p− q ≥ p+ pa
N − q ≥ 0. Hence, Equation (29) holds since

the left-hand side of Equation (29) is non-positive and the right-hand side is non-negative.
Combining Equation (28) with Equation (10), we deduce

θ < 0.

Hence, Equation (27) implies LRn(u) → 0, a contradiction. Therefore, Equation (26)
holds, which means

∫
RN

(|∇u|p + w(x)|∇u|q) |u|α−1 +

∫
RN

∫
RN

f(x)|u(x)|r+
α−1
2 f(y)|u(y)|r+

α−1
2

|x− y|N−µ
dx dy = 0.

This only happens if u =0 in RN . �

3. Liouville theorem for solutions which are stable outside a compact set

As we mentioned in the introduction section, a Pohožaev-type identity will be exploited
in the proof of Theorem 2. To this end, we will point out that the solutions which are
stable outside a compact set are finite energy solutions.
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Lemma 4. Assume that 2 ≤ p < N , p ≤ q < N+a, max{0, N+2(a−q−b)} < µ < N
and r> q. Let u be a solution of Equation (4), which is stable outside a compact set. If

N + µ+ 2b

2r
≥ max

{
N − p

p
,
N + a− q

q

}
, (30)

then u has finite energy, that is∫
RN

(|∇u|p + w(x)|∇u|q) +
∫
RN

∫
RN

f(x)|u(x)|rf(y)|u(y)|r

|x− y|N−µ
dx dy <∞.

Proof. We assume that u is stable outside the compact set K ⊂ RN . Let R0 > 0 be
such that K ⊂ BR0

and φR ∈ C1
c (RN ) satisfies 0 ≤ φR ≤ 1 and

φR = 0 in BR0
∪
(
RN \B2R

)
, φR = 1 in BR \BR0+1, |∇φR| ≤

C

R
in B2R \BR.

Notice that to obtain Equation (25) in the proof of Theorem 1, we do not need the full
inequalities (10) but only require that α ≥ 1 satisfies the first inequality of Equation (10),
that is,

r > max

{
(q − 1)(α+ 1)2

4α
+ 1, q +

α− 1

2

}
.

Clearly, this inequality holds when α=1. Moreover, if α=1, then Equation (18) holds
with m =2. Hence, we can proceed as in the proof of Theorem 1 with α=1, m =2 and
φR (instead of ηR) until we reach an estimate of type Equation (25). More precisely, by
setting

LR(u) :=

∫
RN

(|∇u|p + w(x)|∇u|q)φ2qR

+

∫
RN

∫
RN

f(x)|u(x)|rφqR(x)f(y)|u(y)|rφ
q
R(y)

|x− y|N−µ
dx dy,

instead of Equation (19), we have

LR(u) ≤ C0 + C

∫
B2R\BR

|u|pφ2q−p
R |∇φR|p + C

∫
B2R\BR

w(x)|u|qφqR|∇φR|
q,

where

C0 := C

∫
BR0+1\BR0

|u|pφ2q−p
R |∇φR|p + C

∫
BR0+1\BR0

w(x)|u|qφqR|∇φR|
q.

Then proceeding as in the proof of Equation (25), we obtain

LR(u) ≤ C0 + CRN−p−p(N+µ+2b)
2r [LR(u)]

p
2r + CRN+a−q− q(N+µ+2b)

2r [LR(u)]
q
2r . (31)
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Suppose on the contrary that∫
RN

(|∇u|p + w(x)|∇u|q) +
∫
RN

∫
RN

f(x)|u(x)|rf(y)|u(y)|r

|x− y|N−µ
dx dy = ∞, (32)

then there exists R1 > R0 + 1 such that

LR1
(u) > 2C0.

Hence, for all R > R1, estimate Equation (31) yields

LR(u) ≤ 2CRN−p−p(N+µ+2b)
2r [LR(u)]

p
2r + 2CRN+a−q− q(N+µ+2b)

2r [LR(u)]
q
2r .

Since p ≤ q, then by Equation (32), we obtain

LR(u) ≤
(
2CRN−p−p(N+µ+2b)

2r + 2CRN+a−q− q(N+µ+2b)
2r

)
[LR(u)]

q
2r .

Hence,

[LR(u)]
2r−q
2r ≤ 2CRN−p−p(N+µ+2b)

2r + 2CRN+a−q− q(N+µ+2b)
2r . (33)

From Equation (30), we have 2r(N−p) ≤ p(N+µ+2b) and 2r(N+a−q) ≤ q(N+µ+2b).
Note that r > q, by letting R → +∞ in Equation (33), we get a contradiction with
Equation (32). This proves the lemma. �

Lemma 5. (A Pohožaev-type identity). Assume 2 ≤ p < N , p ≤ q < N + a,
max{0, N + 2(a − q − b)} < µ < N and r> q. Let u be a finite energy solution of
Equation (9) such that |∇u|p−2∇u+ |x|a|∇u|q−2∇u ∈W 1,2

loc (RN ,RN ). Then,

N − p

p

∫
RN

|∇u|p + N + a− q

q

∫
RN

|x|a|∇u|q

=
N + µ+ 2b

2r

∫
RN

∫
RN

|x|b|u(x)|r|y|b|u(y)|r

|x− y|N−µ
dx dy.

Proof. By density arguments, we can use vR(x) = ηR(x)x · ∇u(x) as a test function
in Equation (6), where ηR is defined as in Equation (17). Hence, we obtain∫

RN

(
|∇u|p−2∇u · ∇vR + |x|a|∇u|q−2∇u · ∇vR

)
=

∫
RN

∫
RN

|x|b|u(x)|r−2u(x)vR(x)|y|b|u(y)|r

|x− y|N−µ
dx dy.

(34)
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We compute the limits of integrals in Equation (34) when R → +∞. First of all,
we have∫

RN
|∇u|p−2∇u · ∇vR =

∫
RN

|∇u|p−2∇u · ∇ (ηR(x)x · ∇u)

=

∫
RN

ηR(x)|∇u|p +
∫
RN

ηR(x)x · ∇
(
|∇u|p

p

)
+

∫
RN

|∇u|p−2(∇u · ∇ηR)(x · ∇u)

= −
∫
RN

[(N − p)ηR + x · ∇ηR]
|∇u|p

p
+

∫
RN

|∇u|p−2(∇u · ∇ηR)(x · ∇u).

Since
∫
RN |∇u|p <∞, by the dominated convergence theorem, we derive

lim
R→+∞

∫
RN

|∇u|p−2∇u · ∇vR = −N − p

p

∫
RN

|∇u|p. (35)

In the same way,∫
RN

|x|a|∇u|q−2∇u · ∇vR =

∫
RN

|x|a|∇u|q−2∇u · ∇ (ηR(x)x · ∇u)

=

∫
RN

|x|aηR(x)|∇u|q +
∫
RN

|x|aηR(x)x · ∇
(
|∇u|q

q

)
+

∫
RN

|x|a|∇u|q−2(∇u · ∇ηR)(x · ∇u)

= −
∫
RN

[(N − q + a)|x|aηR + |x|ax · ∇ηR]
|∇u|q

q

+

∫
RN

|x|a|∇u|q−2(∇u · ∇ηR)(x · ∇u).

Since
∫
RN |x|a|∇u|q <∞, the dominated convergence theorem gives us

lim
R→+∞

∫
RN

|x|a|∇u|q−2∇u · ∇vR = −N + a− q

q

∫
RN

|x|a|∇u|q. (36)

Now we compute the right-hand side of Equation (34) as follows:∫
RN

∫
RN

|x|b|u(x)|r−2u(x)vR(x)|y|b|u(y)|r

|x− y|N−µ
dx dy

=

∫
RN

∫
RN

|y|b|u(y)|r

|x− y|N−µ
|x|bηR(x)x · ∇

(
|u(x)|r

r

)
dx dy

= −
∫
RN

∫
RN

|y|b|u(y)|r

|x− y|N−µ
[(N + b)ηR(x) + x · ∇ηR(x)]

|x|b|u(x)|r

r
dxdy

+
N − µ

2

∫
RN

∫
RN

|y|b|u(y)|r

|x− y|N−µ

(x− y) · (xηR(x)− yηR(y))

|x− y|2
|x|b|u(x)|r

r
dx dy.
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Since
∫
RN
∫
RN

|x|b|u(x)|r |y|b|u(y)|r

|x−y|N−µ dx dy < ∞, we use the dominated convergence

theorem again to deduce that

lim
R→+∞

∫
RN

∫
RN

|x|b|u(x)|r−2u(x)vR(x)|y|b|u(y)|r

|x− y|N−µ
dxdy

= −N + µ+ 2b

2r

∫
RN

∫
RN

|x|b|u(x)|r|y|b|u(y)|r

|x− y|N−µ
dx dy.

(37)

By collecting Equation (34)–(37), we obtain the desired identity. �

Proof of Theorem 2. Using ϕ = uη2R as a test function in Equation (6) with w(x) =
|x|a and f(x) = |x|b, where ηR is chosen as in the proof of Theorem 1, we obtain

∫
RN

|∇u|pη2R +

∫
RN

|∇u|p−2u∇u · ∇η2R

+

∫
RN

w(x)|∇u|qη2R +

∫
RN

w(x)|∇u|q−2u∇u · ∇η2R

=

∫
RN

∫
RN

f(x)|u(x)|rη2R(x)f(y)|u(y)|r

|x− y|N−µ
dx dy.

(38)

Note that

(∫
RN

f(x)ηrR|u|r
)2

=

∫
RN

∫
RN

f(x)|u(x)|rηR(x)rf(y)|u(y)|rηR(y)rdx dy

≤ RN−µ

∫
RN

∫
RN

f(x)|u(x)|rηR(x)rf(y)|u(y)|rηR(y)r

|x− y|N−µ
dxdy

and∣∣∣∣∫
RN

|∇u|p−2u∇u · ∇η2R
∣∣∣∣ ≤ 2

∫
RN

|∇u|p−1|u|ηR|∇ηR|

≤ 2

(∫
RN

|∇u|p
)p−1

p
(∫

RN
f(x)ηrR|u|r

) 1
r
(∫

RN
f(x)

− p
r−p |∇ηR|

pr
r−p

) r−p
pr

≤ 2R
N−µ
2r

(∫
RN

f(x)
− p

r−p |∇ηR|
pr
r−p

) r−p
pr

×
(∫

RN
|∇u|p

)p−1
p
(∫

RN

∫
RN

f(x)|u(x)|rηR(x)rf(y)|u(y)|rηR(y)r

|x− y|N−µ
dx dy

) 1
2r

≤ CR
N−µ
2r +

N(r−p)
pr − r+b

r

(∫
RN

|∇u|p
)p−1

p
(∫

RN

∫
RN

f(x)|u(x)|rf(y)|u(y)|r

|x− y|N−µ
dx dy

) 1
2r

.
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If N+µ+2b
2r > N−p

p , then N−µ
2r + N(r−p)

pr − r+b
r < 0. Therefore, by letting R → ∞, we

gather that

lim
R→+∞

∫
RN

|∇u|p−2u∇u · ∇η2R = 0. (39)

Similarly,∣∣∣∣∫
RN

w(x)|∇u|q−2u∇u · ∇η2R
∣∣∣∣ ≤ 2

∫
RN

w(x)|∇u|q−1|u|ηR|∇ηR|

≤ 2

(∫
RN

w(x)|∇u|q
) q−1

q
(∫

RN
f(x)ηrR|u|r

)1
r
(∫

RN
w(x)

r
r−q f(x)

− q
r−q |∇ηR|

qr
r−q

) r−q
qr

≤ CR
N−µ
2r +

N(r−q)
qr +a

q− r+b
r

(∫
RN

w(x)|∇u|q
) q−1

q

(∫
RN

∫
RN

f(x)|u(x)|rf(y)|u(y)|r

|x− y|N−µ
dxdy

) 1
2r

.

If N+µ+2b
2r > N+a−q

q , we have N−µ
2r + N(r−q)

qr + a
q − r+b

r < 0. Therefore, by letting
R→ ∞, we gather that

lim
R→+∞

∫
RN

w(x)|∇u|q−2u∇u · ∇η2R = 0. (40)

As a consequence, it follows from Equations (38)–(40) that if N+µ+2b
2r >

max
{

N−p
p , N+a−q

q

}
, then∫

RN
(|∇u|p + w(x)|∇u|q) =

∫
RN

∫
RN

f(x)|u(x)|rf(y)|u(y)|r

|x− y|N−µ
dx dy. (41)

If N+µ+2b
2r = max

{
N−p
p , N+a−q

q

}
, then the conclusion follows from Lemmas 4 and 5.

If N+µ+2b
2r > max

{
N−p
p , N+a−q

q

}
, then we may exploit Lemmas 4 and 5 and

Equation (41) to obtain(
N + µ+ 2b

2r
− N − p

p

)∫
RN

|∇u|p +
(
N + µ+ 2b

2r
− N + a− q

q

)∫
RN

|x|a|∇u|q = 0.

This implies that u is constant and hence must be zero. �
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26(4) (2009), 1099–1119. doi:10.1016/j.anihpc.2008.06.001

(3) E. N. Dancer, Y. Du and Z. Guo, Finite Morse index solutions of an elliptic equa-
tion with supercritical exponent, J. Differential Equations 250(8) (2011), 3281–3310.
doi:10.1016/j.jde.2011.02.005

(4) E. DiBenedetto, C1+α local regularity of weak solutions of degenerate elliptic equations,
Nonlinear Anal. 7(8) (1983), 827–850. doi:10.1016/0362-546X(83)90061-5

(5) L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations. Monographs and
Surveys in Pure and Applied Mathematics, Volume 143 (Chapman & Hall/CRC, Boca
Raton, FL, 2011).

(6) A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded
domains of RN , J. Math. Pures Appl. (9) 87(5) (2007), 537–561. doi:10.1016/j.matpur.
2007.03.001

(7) A. Farina, C. Mercuri and M. Willem, A Liouville theorem for the p-Laplacian and
related questions, Calc. Var. Partial Differential Equations 58(4) (2019), Paper No. 153,
13. doi:10.1007/s00526-019-1596-y

(8) V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators
and Integral functionals (Springer-Verlag, Berlin, 1994). Translated from the Russian by
G. A. Yosifian. doi:10.1007/978-3-642-84659-5

(9) P. Le, Stable solutions to the static Choquard equation, Bull. Aust. Math. Soc. 102(3)
(2020), 471–478. doi:10.1017/s0004972720000519

(10) P. Le, On classical solutions to the Hartree equation, J. Math. Anal. Appl. 485(2) (2020),
123859, 10. doi:10.1016/j.jmaa.2020.123859

(11) P. Le, Liouville Results for Double Phase Problems in RN , Qual. Theory Dyn. Syst.
21(3) (2022), Paper No. 59. doi:10.1007/s12346-022-00596-9

(12) P. Le, Liouville theorems for a p-Laplace equation with Hartree type nonlinearity,
Vietnam J. Math. 51(2) (2023), 263–276. doi:10.1007/s10013-021-00508-5

(13) E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear
equation, Stud. Appl. Math. 57(2) (1976/77), 93–105. doi:10.1002/sapm197757293

(14) C. Mercuri, V. Moroz and J. Van Schaftingen, Groundstates and radial solutions to non-
linear Schrödinger-Poisson-Slater equations at the critical frequency, Calc. Var. Partial
Differential Equations 55(6) (2016), Art. 146, 58. doi:10.1007/s00526-016-1079-3

(15) B. Rahal and A. Harrabi, Liouville results for m-Laplace equations in half-space
and strips with mixed boundary value conditions and finite Morse index, J. Dynam.
Differential Equations 30(3) (2018), 1161–1185. doi:10.1007/s10884-017-9593-3
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