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1. Choosing Among Theories

People have worried for many years — centuries — about how you perform large
changes in your body of beliefs. How does the new evidence lead you to replace a
geocentric system of planetary motion by a heliocentric system? How do we decide
to abandon the principle of the conservation of mass?

The general approach that we will try to defend here is that an assumption, pre-
supposition, framework principle, will be rejected or altered when a large enough
number of improbabilities must be accepted on be basis of our experience. If I think
that all swans are white, and a student claims to have a counterexample, I will assume
that he has made some observational error. I will reject his result, and continue to ac-
cept the generalization. When a lot of people claim to have seen counterexamples, I
will come around: to continue to accept the generalization would require me to accept
too many improbabilities. This is a discontinuous process as we will construe it: it is
not a matter of a general statement becoming less probable, while certain reports be-
come more probable. We cannot accept the generalization and even one of the obser-
vation reports: that would be a simple inconsistency.

One suggestion, due to Karl Popper, is that we invent Bold Conjectures, and Put
Them to the Test. (Popper, 1959) Bold conjecture: the Earth is the Center of the
Solar System. Test... what? Bold conjecture: Mass is conserved. Test: weigh a mass
of plutonium and its by products before and after. Obviously things are a little more
complicated than the slogans suggest.

Alternatively, gather evidence, and accept the hypothesis that is most probable,
relative to that evidence. So far, so good (maybe). But then what? How do you
change from that hypothesis to one inconsistent with it when the evidence so indi-
cates? For as soon as a hypothesis is accepted, it has probability 1; and as soon as a
hypothesis has probability 1, its contraries have probability 0; and as soon as a con-
trary hypothesis has probability zero, its probability can never leave zero — at least
not by Bayes' theorem.
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A natural response to this observation is to say, as Carnap (1950) did, that "accep-
tance" is just an approximation to the real truth, and that no hypothesis ever achieves
literal acceptance, which would entail its having a probability of 1. What we really
have (as opposed to the approximate way we talk) is a probability blanket over a field
of empirical propositions, none of which is ever assigned a probability of 0 or 1 un-
less it is a mathematical or logical truth, or the denial of one.

This latter approach presents us with serious problems. We will consider the
problem of assigning prior probabilities to the sentences of a reasonably rich language
later, but already we are faced with a difficult computational problem. Gil Harman
(1989) has pointed out that in a language win n basic sentences there are 2n assign-
ments to make. But of course we can get by with wholesale assignments; if we de-
cide that each conjunction of basic sentences or their negations is to have the same
measure assigned to it, there is in fact only one assignment to make: one simple algo-
rithm that provides the measure for any sentence.

In general, however, a useful and realistic language will have an infinite number
of sentences, and this procedure breaks down. It is still possible to assign measures
systematically, without assigning zero to any sentence representing a possibility. The
number of sentences in any ordinary language is denumerable, and we can find a de-
numerable number of finite numbers that add up to 1. But the rationale of the system
is hard to find.

It is, at any rate, worth exploring alternatives to either of these approaches to to ra-
tional acceptance. One of the first to offer a systematic procedure for this was Isaac
Levi. In Gambling with Truth and The Enterprise of Knowledge, Levi proposes a
rule for adding to your body of knowledge. Given such a rule, one can obtain a rule
for replacing one conjecture, law, theory, hypothesis by another by proposing that
when faced with a choice, one simply deletes both candidates from one's body of
knowledge, and then adds the one indicated by the application of the rule for addition.

The rule is just this: (1967, p.86) Let U be a set of most specific possible hy-
potheses — i.e., a set of which exactly one member is true. Let M be an "information
determining probability" (1980, p. 48): M(g) represents the informational value of re-
jecting g, and let/? be an expectation forming probability (a degree of belief, a credi-
bility). Let q in [0,1] be an index of caution. The rule (Rule A, of 1967) is to reject
all and only those elements goiU such thatp(g) < qM(g), and to accept, with deduc-
tive closure, the disjunction of the remainder.

Given a rule for acceptance, we can construe contraction as suspending belief in a
proposition and then failing to add it back under subsequent expansion; and we can
construe replacement as suspending belief in one proposition, and arriving at another
on subsequent expansion.

We can accomplish a change of framework of "accepted facts" this way, and we
can be sure of maintaining consistency in the process. There are some knotty prob-
lems, however. When and how do we decide to suspend belief in a framework propo-
sition? There are clear cases: when observations render our corpus inconsistent, for
example. "For the sake of argument," in a friendly social context. In the context of a
debate. Levi can afford to be casual about this, since a proposition erroneously delet-
ed will be easily recaptured, and he is not concerned with real time changes. But
there are other questions. How should q, the index of caution, be chosen? Where
does the information measure M come from? How do we arrive at the credal proba-
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bility pi More fundamental: How is the "abductive" step — the step in which the ul-
timate partition U is formed — to be controlled and rationalized?

One can always raise questions, of course. But these questions are disturbing be-
cause the rule presupposes a framework (a language, an information measure, a credi-
bility measure, a set of most specific answers), and thus to be not even potentially ca-
pable of providing guidance in the choice of a framework. But let us look further.

An approach similar to Levi's has been developed in various ways by Makinson,
Alchurron, and Gardenfors (1982,1985), Gardenfors and Makinson (1988) and
Gardenfors (1986,1988). While Levi approaches the question from a constructive,
analytic angle, and seeks to provide formal analysis of what goes on in changes in a
corpus of knowledge, Gardenfors and the others approach the question from a logical
point of view: they seek to explore axioms that may be taken to characterize the
change of a body of knowledge, construed as a set of propositions. Thus, for exam-
ple, it is clear that if we add the proposition A to our body of knowledge K, then A
should belong to that expanded body of knowledge. As is the case with Levi, it is as-
sumed by these writers that a body of knowledge K should be construed as a deduc-
tively closed set of propositions.

An excellent examination of these logics of theory change is provided by
Gardenfors' book (1988). It is from that source that I take the following axioms. A
belief set here is construed as a deductively closed set of propositions.

If we denote by K% the expansion of a body of knowledge K by the addition of the
consistent proposition A, then we may express the the properties of the expansion of
a belief set by the following relatively uncontroversial axioms.

(K+l) At is a belief set.

(K+3) If ~A K, A3.
(K+4) If A 6 K, then At = K
(¥L+5)lfH=>K, HXs. K%
(K+ 6) For all belief sets K and all sentences A, K% is the smallest belief set
that satisfies (K+ 1) - (K+ 5).

What is not so uncontroversial is the question of the principles according to which
a body of knowledge should be contracted. This is not a terribly serious question for
Levi: any proposition in our body of knowledge can be doubted with relative impuni-
ty. It can be doubted with relative impunity, since, if it belongs in our corpus of
knowledge, it will be reinstated on reflection. One can thus suspend belief in a propo-
sition A on quite casual grounds.

A serious reason to suspend belief in something arises from the circumstance that
our corpus of knowledge is inconsistent. For example, if there are observational rou-
tines that warrant our acceptance of the statement that a is a crow and a is not black,
then when we practise those routines, we should accept the corresponding statement.
(Or proposition.) But if we already accept the generalization that all crows are black,
this renders our corpus inconsistent.

With an inconsistent corpus, we are clearly obligated to suspend belief in some-
thing. Levi says that we should shrink our corpus of knowledge in such a way as to
retain the most "information." But it is clear that no simple-minded construal of "in-
formation" will lead to the right results. In some sense it is clear that the information
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content of "all crows are black" is greater than that of "a is a crow and a is not black,"
but of course on any standard construal of hypothesis testing it is the former that will
be suspended and the latter that will be retained.

While Levi offers us no logic of contraction, that is the main concern of
Gardenfors et al. Gardenfors offers a number of axioms characterizing the contraction
operation, denoted by K^, Most of these axioms are relatively uncontroversial, as in
the case of expansion. We have:

(K~ 1) For any sentence A and any belief set K, KA is a belief set.

(K~ 3) IfA £K,\h.enK-A=K.
(K~ 4) If not I- A , thenA € fQ,
(K~ 5) If A e K
(K~ 6) If i - /
(K~ 7) K"A&B ^A A nAg.
(K-8) IfA € A ^ . t h e n / ^ 2

These axioms may be more controversial than those for the expansion of a body of
knowledge, but there is still nothing obviously wrong with them. It is possible to pro-
vide intuitively plausible axioms for theory replacement, and to show that in general
replacement can be construed as a contraction followed by an expansion.

What becomes controversial is the procedure for conducting contractions. The
contraction 3 is not uniquely determined by these axioms, in contrast to K*A (under
the assumption of deductive closure). We must thus consider how to perform the
contraction. One possibility is the following. Consider a subset of K that is deduc-
tively closed, that does not contain A, and that is such that if any other sentence of K
is added to it, A will be a consequence of it. The set of all such sets of sentences is de-
noted by K _L A. Clearly the result of contraction should be a member of this set (if it
isn't empty; if A is a theorem, then we can take the contraction of K by A to be K it-
self. All we need to do is to devise a "selection function" S that will pick one set out
of K± A. But, as Gardenfors shows, this yields contractions that are "too big." If A
e K then this procedure will yield a K~A that for any proposition B contains either A v
B or A v~5 .

The next idea one might have is to consider the intersection of all the sets of sen-
tences in K L A. (This is called the "full meet contraction.") This is too small: A^will
consist only of the logical consequences of ~ A.

Finally, we may consider a selection function S that picks some of the members of
KA.A, intuitively the most epistemically entrenched members, and take KA to be

the intersection of these.

But what does epistemic entrenchment come to? That seems to be where the real
controversy lies. Levi seeks to preserve information; he can be thought of as constru-
ing epistemic entrenchment in terms of information. But the epistemic entrenchment
ranking of sets of propositions can plausibly be taken to reflect a system of beliefs,
and thus to be sensitive to scientific or conceptual revolutions, whether these be un-
derstood in the dramatic Kuhnian sense or not. Gardinfors says that "...the funda-
mental criterion for determining the epistemic entrenchment of a sentence is how use-
ful it is in inquiry and deliberation." (p.87) (Note that the selection function S is orig-
inally defined over sets of sentences, rather than sentences. This reflects a difference
that could be exploited.) .
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One idea for representing such factors is provided by Wolfgang Spohn (1987).
Spohn defines an "ordinal conditional function" that maps possible worlds into ordi-
nals. The value of the function represents a degree of implausibility, or a degree of
unwillingness to accept, or a degree of potential surprise (Levi, Shackle).

This function is can be extended to propositions in general by taking the value of
the function for a proposition, to be the minimum value of the functioh over the set of
worlds in which that proposition is true. Thus, since it is assumed that there is some
world with value 0, either k(A) = 0 or k(~A) = 0, and k(A uB) = min[k(A),k(B)},
where k is Spohn's ordinal conditional function.

Spohn's approach is more general than Gardenfors' since it takes as epistemic
input a pair (A,a) consisting of a proposition A and an ordinal a. This yields a new or-
dinal function on possible worlds, and thus a new ordinal function. In the extreme
cases, however, the treatment yields results parallel to those of Gardenfors (p. 73).

2. The Probabilistic Alternative

To be contrasted with this approach in terms of deductively closed sets of proposi-
tions, we may consider a purely probabilistic construal of knowledge: We take a state-
ment as acceptable in our knowledge base when it becomes overwhelmingly proba-
ble. This is in accord with the nearly universal agreement that when it comes to em-
pirical matters of fact, there is nothing (or almost nothing) that is certain. Almost any
of the things we take for granted "could" turn out to be wrong. Nothing is incorrigi-
ble. Not even "observation" statements: without knowing how to handle errors of ob-
servation, modern science could hardly get off the ground. Of course, very crude ob-
servation statements, e.g., "the sun is shining now," are very unlikely to require cor-
rection. (They could be wrong: my "observation" may result from post-hypnotic sug-
gestion, rather than the state of the weather.)

One way of dealing with an approach to knowledge that takes nothing empirical to
be incorrigible is to become a thoroughgoing Bayesian: Represent knowledge as a
probability function defined over the whole algebra of propositions in the language
we are using for knowledge representation. Of course, as Carnap observed (1950),
we must suppose that all refinements have been made in the language: we cannot in-
troduce new terms without risking having to change our probability function. Then
when experience causes us to shift the probability of some proposition, that change in
probability propagates through the algebra in accord with some rule of propagation.
(One possibility is "Jeffrey conditionalizan'on," Jeffrey, 1965)

This approach to corrigibility has a number of drawbacks. The main one is com-
putational. In language capable of representing some piece of common sense knowl-
edge, or of reasoning about even quite a limited domain, the computational resources
needed mount dramatically. The number of possible worlds, describable in even a
constrained language, is LARGE. There is also the problem of the source of the orig-
inal probability measure. Experts? There is the problem of soliciting consistent opin-
ions. Generalize to sets of probability measures? This might be some help, but per-
haps not much. There is the problem of updating: No set of probability assessments
is likely to be consistent; adjustments will have to be made to achieve conformity
with the probability calculus; and one of the items most natural to adjust is the ratio of
probabilities P(A &B)/P(B); but this is just the important probability of A given B.
And supposing a collection of agents with a common goal, sharing knowledge: how
are disagreements concerning probabilities among these agents to be resolved?
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These are difficult questions, and while one cannot be certain that plausible an-
swers can't be found, it seems at least worth while to explore an alternative strategy.
An alternative that has been explored for some years is that of adopting a purely prob-
abilistic rule of acceptance: In general, "Accept P when its probability is high
enough." (Kyburg, 1961)

One question rises immediately: how probable is "high enough?" A tentative an-
swer to this question ("It depends on how much is at stake in using the corpus of
knowledge in question") has been outlined in (Kyburg, 1988).

A less immediate question arises when we reflect that probability itself—espe-
cially evidential probability — depends on evidence. What is probable depends on
what we know; and we are proposing that what we know depends on what is proba-
ble. Can we have it both ways? In particular, can evidential probability be serve both
functions?

We answer yes. It has been proposed (Kyburg, 1984, Kyburg, 1988, Kyburg,
1974) that having fixed on practical certainty, we can introduce evidential certainty as
the square root of practical certainty. (This stems from the fact that, using a proba-
bilistic rule of acceptance, the conjunction of a pair of statements that do not appear
conjoined in a higher level corpus will appear in a lower level corpus.)

A purely probabilistic rule of acceptance does not yield what Gardenfors has
called "belief sets." The set of accepted statements is not closed under deduction, nor
— what comes to the same thing in a logic with compactness — is it closed under
conjunction. In general, it is not the case that if A and B are in our corpus of knowl-
edge, their conjunction will also be in it. Of course it does not follow that the
.conjunction of a pair of statements in our corpus of knowledge will not be in it!
There may be large conjunctions of statements whose probability is high enough to
qualify for acceptance, and every conjunct of such a set of statements will also be in
the corpus. In fact, every logical consequence of each statement in our body of
knowledge will also be in it.

An immediate consequence is that there is an axiomatic representation of our body
of knowledge. That is, there is a (presumably finite) set of statements from which the
entire contents of our body of practical knowledge follows. This fact has useful con-
sequences when it comes to talking about revisions of our body of knowledge.

The failure to embody deductive closure is not entirely unintuitive. Our confi-
dence in the conclusion of an argument that involves many premises tends to de-
crease, even though we cannot put our finger on a specific doubtful premise, as the
number of premises decreases. There are good intuitive grounds, even, for thinking
that the set of statements that I am well justified in accepting is inconsistent; if it is in-
consistent, to apply deductive closure to it would be a disaster. One particularly natu-
ral example concerns measurement. Suppose the method M yields errors that are
distributed approximately normally with a mean of 0 and a variance of .04. Consider
a set of applications of that method, from which we infer, in each case, that the length
measured lies in the interval r ± .8 (i.e., within four standard deviations of the ob-
served value.) Surely, by any ordinary standard, these results are acceptable. But if
we accept a large number n of these results, it will also be overwhelmingly probable
that at least one of them is wrong — according to the same distribution. The resulting
body of knowledge is inconsistent.
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The picture we work with so far is this: There are two sets of sentences we use to
represent our bodies of knowledge. One, the practical corpus, contains the other, the
evidential corpus, as a part. Everything in our evidential corpus is also in the practi-
cal corpus, since an item is a member of the practical corpus if and only if the lower
bound on its probability (since we are using evidential probability), relative to the evi-
dential corpus, exceeds some fixed probability p.

Statements may come and go, in the practical corpus, according as their probabili-
ties vary with the contents of the evidential corpus. Thus there is no direct problem of
revision, expansion, or contraction: all are taken care of by the probabilistic rule of
acceptance. This applies to statistical statements, as well as other statements. So we
will have such statistical statements in our practical corpus as "about 95% of birds
fly," "less than 2% of penguins fly," etc.

Now how about the corpus of evidential certainties? How do statements get in
this corpus? By being probable enough, if we are to have a uniform treatment of ac-
ceptance and corrigibility. But we can't (for reasons pointed out in Kyburg 1963) just
consider simultaneously a sequence of bodies of knowledge. So we must construe a
question about the contents of the evidential corpus as shifting context: now we are
thinking of a different and higher level as the "evidential" corpus, and what was the
evidential corpus as a practical corpus.

3. Probabilistic Inference

Statistical inference is no problem for evidential probability, but there is no ordi-
nary way that empirical generalizations ("All Crows are Black," "Length is additive ,
under collinear juxtaposition," etc) can be given probabilities. And it is just such
items of knowledge mat we would like to be able to correct. A related fact is that
epistemological probability is defined only relative to a fixed language: the definition
is syntactical, and depends on the recursive specification of potential reference classes
and potential target classes. How do we handle generalization? And how do we deal
with the relativization of probability to a language?

The key notion is that of error. We do not suppose that we have a clear cut distinc-
tion between "observational" predicates and "non-observational" predicates. We sup-
pose instead that there is a metalinguistic corpus, parallel to our evidential corpus, that
contains a representation of our knowledge concerning observational error. For exam-
ple, it is there that we store the knowledge that method M for measuring length yields
errors approximately normally distributed with a mean of 0 and a variance of .04.

The details of this construction are to be found in (Kyburg, 1984). The general
idea is that empirical generalizations and theories are construed as features of the lan-
guage we choose to use. But each of those possible languages will have going along
with it, based on a given stock of actual experience, a corpus of knowledge concern-
ing observational error. Good "observational" predicates are those that can be used
with little chance of error, "non-observational" predicates will be those that have sig-
nificant errors associated with them.

Observational error is generated by the interaction of our experience and a lan-
guage in the following way: We know that error has occurred when we make a set of
judgments that cannot all be true. Thus if we were content to live in the flowing sen-
suous moment, we need never suppose we made an observational error. But our bod-
ies of knowledge would be empty of predictive content, communication would be
useless, and language would be impossible. Alternatively, if we were willing to disre-
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gard experience, we could hold any theories we pleased; observations that conflicted
with what our theories led us to could be dismissed as erroneous, and, like the seers of
old, we would have achieved TRUTH.

What we need, then, is a way of choosing between candidate languages on the
basis of the consequent errors associated the languages. In earlier work (1984,1990)
we approached this question in a very abstract framework, with a view to obtaining
treatments of error in both direct and indirect measurement. Here we will adopt the
same general standpoint, but examine a variety of replacements of framework as-
sumptions (and expansions and contractions) that are rather more specific.

4. New Observations

There are a number of ways in which new data can impinge on our old body of
knowledge. The most common is simply to have new observations added to our body
of knowledge. This has an impact on what we believe even when it does not contra-
dict anything we already belief. This impact has two forms. To accept the observa-
tion that A is a crow and that A is black entails, in our body of knowledge that A is a
bird, since we know that all crows are birds. What is entailed by our background
knowledge, and the new observation, becomes part of our background knowledge.
(Subject to some caveats we'll get to later: the consequences of long conjunctions of
premises may not be in our body of knowledge.)

The other form, more interesting in this context, is the impact that the observation
has on our general statistical background knowledge. If we have statistical beliefs
concerning the frequency with which A's are B's —e.g., that it is between p and q —
and we observe an A that is not a B, that should change our body of knowledge, but not

• very much. If we had earlier accepted our statistical knowledge on the basis of an ob-
servation of n A's, of which m were observed to be B's, we now have, as a basis for our
statistical knowledge about A's and B's a sample of n + 1 , of which m are B's. It is
clear that our body of knowledge will change relatively gradually as new observations
come in: we will not, in this context, find the discontinuities that we observed earlier.

There is also the possibility that our background knowledge, even though statisti-
cal, is based on more than observation. For example, my belief that the chances of a
birth being the birth of a male is about in [.50..52] is based on lore obtained from
sources that I regard as reliable. To learn that my daughter just gave birth to a boy
will not only have little impact on that statistical generalization: it will have no im-
pact. But if my source of knowledge were impugned, that would have a large effect.
And it is conceivable that I could myself acquire such a large database of sex observa-
tions that my own data would impugn the authority on which I had accepted the con-
ventional interval.

This also applies to the sort of statistical knowledge based on physical principles
and assumptions. If a die is well balanced, then the velocities and momenta that char-
acterize its trajectory will lead to its landing on each side with very nearly equal fre-
quency in the long run, in view of the fact that very small changes in these momenta
will lead to discohtinuously different outcomes. If I roll a die and get a ' 1', my be-
liefs concerning its statistical characteristics will be unchanged. (Contrary to the
Bayesian view, which would demand a tiny change.) If I roll the die a lot, and get a
disproportionate frequency of ' IV , then at some point I will question my assump-
tions — in particular, the assumption that the die is well balanced — and replace (not
modify) my belief that the long run relative frequency of 1 's is 1/6, by a statistical be-
lief determined by my experience. (This will not be a very exact statistical belief,
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since I may well make this replacement on the basis of a fairly small sample. Thus I
might come to believe that the frequency of l's is in [.5,1.0].)

Thus even in the case of statistical knowledge, augmented by some more in-
stances, there may be discontinuities. We have continuity (and, strictly, even this is
not usually continuity in the mathematical sense) only when our evidential knowledge
base contains representations of all the data on which the statistical law in our practi-
cal corpus is based, and when, in addition, we obtain additional statistical evidence by
a procedure which is evidentially reliable. These conditions are almost invariably met
when we are philosophers in our study making up examples out of moonbeams. They
are rarely met otherwise. •

5. Conflicting Observations

It is useful here to make a distinction between 'observation reports' — what is
said to have been observed, and 'observation statements' — what is alleged in the re-
port to have been observed. Observation reports cannot really conflict. If I report the
weight of body W on one weighing as 23.654 grams, and on another weighing as
23.655, there need be nothing wrong with my observations, although the observation
statements, "W weighs 23.654 grams," and "W weighs 23.655 grams" are inconsis-
tent. This is why the natural and appropriate observation statement is rather, "W
weighs 23.65 ± .02 grams." Note mat this statement is not certain: It is acceptable,
because the chance of error is negligible, not because the assertion cannot be wrong.
On the usual treatment of errors, under which they are treated as normally distributed,
an error of any magnitude is possible.

We treat the interval statement as evidence, however. We take it to be a statement
that we can use in designing machinery, in engineering, in prediction, etc. It is not a
statement to which we merely assign a high probability.

Even so, it is corrigible. We may weigh W twice again, and conclude (with the
same degree of justification as we had before) that it weighs 23.60± .02 grams. The
two interval statements are strictly incompatible. They are contraries. One replaces
the other.

There are various possibilities. First, we may suppose that we simply have made
somewhat unusual errors of measurement. If it is evidentially certain that W weighs
between 23.63 grams and 23.67 grams, then IV cannot weigh as little as 23.62 grams.
But if W can't change weight, the discrepancy must be due to errors of measurement.
If this is the case, then there are two impacts of our conflicting observations: The ob-
servations should be combined; and the discrepancy between the two sets of measure-
ments should be taken as evidence concerning the distribution of errors of measure-
ment for the measuring device(s) involved.

Merely combining the measurements would yield 23.62 ± .015, if we assume that
all four measurements are simply taken from the same normal population of measure-
ments. But the discrepancy might suggest that we should regard the measurements as
coming from two distinct populations (corresponding to two instruments, say), or as
coming from a population with a larger variance than we had thought.

In general, the conflict among observation reports must be taken as evidence con-
cerning the reliability of the observer, or of the apparatus, of both. We will find that
this is true also in the case of more basic conflicts.
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6. Conflict between Observations and an Accepted Framework

This is the most interesting sort of conflict. In the example of weighing just de-
scribed, it can arise. The conflict of measurements may be taken as evidence throw-
ing suspicion on our framework assumptions: "Who says the object can't change
weight? This is the sort of conflict that is most likely to be noticed, since we often
make relatively local assumptions that we take for granted, act on the basis of, until
and unless they lead us into difficulty. Good judgment consists in knowing when to
abandon an assumption. But can good judgment be codified, reduced to mechanical
rules? In some respects, we will argue, it can.

The simple-minded view of belief change is this: You have a generalization (gen-
eral assumption) that you have taken for granted that leads you to infer that observa-
tional circumstances C will be followed by or accompanied by observational outcome
O. You observe C. You observe some contrary of O. You reject your assumption.

But things are almost never this simple. Even when (rarely the case) a qualitative
generalization is understood to be strict, to admit of no exceptions, there are alterna-
tives to rejecting the generalization in the face of apparently conflicting observation.
We may take the alleged observations to have been in error. Illusion, hallucination,
are always available to explain away apparent refutations. And this is not irrational.
In fact it has been argued (Kyburg, 1984) that this is the source of our knowledge of
the qualitative errors of observation. The identification of an object or observation as
belonging to a given kind is subject to error. The frequency of such errors is given by
two principles: One is the conservation principle:

We should not attribute more error to our observations than we are obliged
to by the model of the world we accept.

The other principle guiding our assessments of error is the distribution principle:

Given the satisfaction of the conservation principle, we should distribute the
errors we are obliged to attribute to our observations as evenly as possible
among the kinds of errors we might have made.

Thus if our model of the world assumes (presupposes) that all crows are black,
and we have some observations of blue crows, we would assume that those observa-
tions contain errors. And further that the errors (other things being equal) are dis-
tributed equally between judgments of blueness and judgments of crowness. The
metalinguistic fact that we must assume that we have made these errors of observa-
tion provides evidence about the reliability with which blueness and crowness can be
identified.

7. Quantitative Observations Conflicting with Laws

Suppose in general that we assume the quantitative law, y =f(x,z) in our body of
knowledge. Then we observe a series of measurements of the quantities X, Y, and Z.
No set of measurements can contradict the law in question, since any measurement is
subject to error, and indeed, on the usual theories of measurement error, subject to
error that can possibly be arbitrarily great. But of course large discrepancies, relative
to a body of knowledge that contains the law in question, are extremely improbable.

The same general approach makes sense: The very improbable happens all the
time (the particular set of measurements we make would be improbable even if they
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agreed with our assumed law, and the law were true), but if there is an alternative that
renders the improbable not so improbable, the observations support that alternative.
To put a quantitative measure on this is not trivial. One way, in terms of the frame-
work we have already talked about, is the following: Anomalous observations can
have two effects: they can provide new data concerning the errors of observation of a
certain sort, or they can be taken at face value, and thus provide grounds for the rejec-
tion of general formulas. What we need are principles that will explain why one ap-
proach (admit to more errors of observation) or the other (reject a quantititive law) is
to be preferred. Note that treating the law as an "approximation" or "idealization" is
simply a way of taking it to be false, a way of rejecting it. A full discussion of this
would amount to a general discussion of scientific inference. A more detailed treat-
ment will be found in Kyburg (1990).

8. Fundamental Assumptions

Before going on to consider the grounds on which one would choose to give up an
assumption in favor of attributing errors to one's observations, it is worth looking at
one more extreme cases. This is that of measurement, and has been discussed more
fully in (Kyburg, 1984). We suppose that length is additive: that the length of the
collinear juxtaposition of two bodies is the sum of their lengths. Our measurements,
of course, do not support this supposition; less dramatically: we can maintain the ad-
ditivity of length only by attributing error to almost all our.measurements.

Is this the alternative? To suppose that we can measure accurately, but that length
is not additive, on the one hand, or, on the other, to suppose that length is additive, but
that all our measurements are infected with error? Put this way it seems odd that one,
would ever opt for the second alternative. But we do.

Here is a possible explanation. The errors of measurement we need to introduce
are very rarely large. They therefore do not deprive us of much useful knowledge.
But the additivity of length is an enormously powerful predictive device. Knowing
the length of two rigid bodies, we know, without even measuring, the approximate
length of their collinear juxtaposition.

The choice between attributing error to observations and maintaining a generaliza-
tion, as opposed to taking observations to be accurate and to refute the generalization,
lies in the predictive observational content of the whole body of knowledge involved.

9. Choosing Between Assumptions and Errors

Suppose we consider two bodies of knowledge, one that embodies among its evi-
dential certainties (among other things) the assumption A, the other of which does not
We make a set of observations (add to our evidential certainties a set of observation re-
ports). We have in our background knowledge statistical information about errors in
observations of this sort Given the assumption A, the observation reports must be
taken to embody unusually (improbably) large errors. These errors are not without ob-
servational consequences. They render observational predictions less dependable, since
the correspondence between what is predicted and what probably going to be observed
is only approximate, and reflects our knowledge of errors of observation.

How do we weight the advantages of one choice or the other? hi order to have an
actual measure that will yield an answer in these cases, we must focus on a class of
predictive statements — that is, a class of statements that is of interest to us in the cir-
cumstances at hand. It is in this class that the predictions of the two cases are to be
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found. Let this class be C. We also need a measure of the precision of the predic-
tions: thus if a prediction has the form "Bird B is Blue," the amount of content of
that prediction should reflect the chance of an error in the observation that would test
that prediction. If we can't accurately tell blue things, there is less content to the pre-
diction that something is blue. If the prediction has the form, "Object O will be ob-
served at an angle between a - d and a + d," then its content will reflect the distribu-
tion of errors of observation of angle in the circumstances under consideration.

The class C of predictive statements about which we are concerned should be fi-
nite. It can be large, but we want to ensure that ratios are well defined in it. Next we
need a measure m of accuracy, or predictive usefulness. What we need are only:

(i) a (finite) set of sentences C that include all those that may be of predictive
interest in a given context, and

(ii) a measure m of how important errors of various kinds are.

We get the frequencies of error from our background knowledge of the observa-
tion reports we have had, together with assumptions of our body of knowledge.
When we change the assumptions (or eliminate one) we change the statistical repre-
sentation of these errors that we have reason to accept. If, for example, we eliminate
an assumption, we can replace a number of predictions (those that stemmed from that
assumption) by no predictions. If we increase the error of a certain kind of observa-
tion, we decrease the value of what we can predict.

Let B be a set of atomic sentences from C reflecting their historical proportion in
our experience. Add B to our body of knowledge. Let P be the set of sentences that
then become newly practically certain. The predictive content of a body of knowl-
edge, relative to C and m, might be measured by the sheer number of predictions in
P, each weighted by its reliability. This is a crude measure for determining the re-
placement of one general scientific theory by another, but for many purposes, it might
be illuminating. In limited circumstances, we can find a class C that includes the
statements that concern us; what is at issue is itself relatively straight-forward (Shall
we assume that instrument / is working correctly, or shall we assume that it is bro-
ken?); and in these cases predictive content provides an appropriate criterion.

When we have quantitative statements in P , the natural measure of predictive
content is 1/lu -/I— the measure of the precision which which we can confidently
(with evidential certainty) predict. Of course the interval reflects the scale on which
the quantity is measured. To alleviate the problem of artificial changes of scale, we
can take the maxium and minimum values of a quantity in B, normalized to [0,1], to
determine the scale. The measure m will then consist of the sum over P of the lengths
of all the predictive intervals, reduced to that common scale.

10. Relation to Other Procedures

Can we relate this approach to replacement to other replacement formalisms that
have been used? There is no direct reduction, obiously, since we are looking here at
only a small segment of the statements of the language. Furthermore, these state-
ments are not even statements that we have (now) reason to believe: what we have is
a set C of statements that we are using a a test instrument for determining the relative
desirability of two alternative frameworks. The procedure offered here is far less
global than the procedures offered by Levi, Gardenfors, Spohn, and the others. It
only takes into account the usefulness of one alternative, compared to another, when
they make a difference to the test consequences C under the information measure m.
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This seems quite natural (and perhaps even useful) when it comes to weighing rela-
tively local assumptions. But it is not clear how far it can be extended, and how gen-
erally plausible the procedure can be made.

On the other hand, the procedure outlined is more general than the global replace-
ment schemes previously suggested, since it allows us to compare two quite different
languages, so long as they have the same test consequences C. We do not need an in-
formation measure on the languages themselves, nor do we need a global probability
measure. Straight forward evidential probabilities will suffice.

Furthermore, our approach opens up the feasibility of treating framework assump-
tions as if they were infallible — that is, as genuine assumptions. The problem that
has always surrounded talk of "presuppositions," "local assumptions," "framework
assumptions," and the like has been their imunity from critical control. How do you
weigh one against another? How do you tell when an assumption is dumb, compared
to another that might have been made? It is hoped that we have offered an approach
which allows these comparisons to be made in a rational way.

11. Summary

Global approaches to replacing one theory by another require relatively universal
conventions: an ordering of all the sets of sentences in a formal language, for exam-
ple, as well as, a Bayesian probability measure over all the sentences in the language.
Approaches to eschewing acceptance, and therefore replacement, such as proposed by
"Bayesian probabilists" tend to be impractical for simpler reasons: too much compu-
tation is devoted to issues that are at best peripheral to the often relatively simple
question at hand, e.g. "Should we assume that instrument / is operating correctly?"

We have proposed instead an approach characterized by a set of sentences C (sen-
tences that could, in principle, be construed as predictive observational sentences in
the sense characterized above), and also by a measure of informational value m deter-
mined by a distribution of errors for these sentences. Suppose we are given a pair
(C,m) consisting of a set of sentences and a measure of the importance of errors.
Suppose we are given a body of knowledge. Then the relative value, in the face of a
given body of observation reports, of two assumptions, or of one assumption as op-
posed to none, is determined. It is determined by machinery of evidential probability
that we already have in hand.

There is, of course, the problem of determining the pair (C,m) to fit a given con-
text. We have not yet dealt with this problem. We observe only that it is a far less
overwhelming problem than that of determining informational content of all the sen-
tences of a language (Levi) or of associating with each sentence of the language an
ordinal number (Spohn). It can be done for a specific class of circumstances when
certain kinds of predictions or anticipations are the kinds at issue. When the "as-
sumptions" about which we are talking are relatively limited in scope ("Instrument 47
is working correctly"), it is not at all unreasonable to suppose that in fact we can iso-
late such a useful set of sentences. The question of deriving such a set of sentences
from our concerns in a given context, and the question of deriving the importance of
various kinds of error from the utilities of the outcomes possible in a given context,
are questions that must be reserved for another time.
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