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Abstract

This article proposes and estimates a tractable, arbitrage-free valuation model for corporate
coupon bonds that includes amore realistic recovery rate process.Most existing studies use a
recovery rate process that is misspecified because it includes recovery for coupons due after
default. Misspecification errors from assuming recovery on all coupons can be substantial;
they increase with recovery rates, coupons, maturity, and default probabilities. For a large
sample of market transactions, i) our model has lower pricing errors than one assuming
recovery on all coupons and ii) the magnitude of our model’s outperformance is linked to
misspecification errors from assuming recovery on coupons.

I. Introduction

Credit spreads, the difference between yields to maturity on risky debt and
government bonds, are commonly used as measures of risk and to price risky bonds.
In the corporate bond literature (e.g., Collin-Dufresne, Goldstein, and Martin (2001))
identify drivers of variation in credit spreads, while Campbell and Taksler (2003) and
Gilchrist-Zakrajšek (2012) explore determinants of credit spreads. Other work (e.g.,
Elton, Gruber, Agrawal, andMann (2001) andHuang andHuang (2012)), decompose
a coupon bond’s credit spread into its various components: the expected loss, a default
risk premium, an illiquidity risk premium, and an adjustment for the deductibility of
government bond income for state taxes.1 A second stream of the literature prices
bonds or related securities using a reduced-form model (see Duffee (1999), Duffie,
Pedersen, and Singleton (2003), Driessen (2005), and Bakshi, Madan, and
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1Other work explores determinants of risky debt yield spreads in the sovereign context, e.g., Duffie
et al. (2003) or Hilscher and Nosbusch (2010).
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Zhang (2006)). A careful reading of these papers shows that they all explicitly or
implicitly assume that a single credit spread or spread term structure can be used to
value risky debt.

The underlying assumption is that a coupon bond is equivalent to a portfolio of
risky zero-coupon bonds that can be valued using a single spread or spread term
structure. The number of zero-coupon bonds in the portfolio corresponds to the
promised coupons and principal with their maturities equal to the payment dates
(see expression (3) in the text). Importantly, both promised coupons and principal
are discounted using the same spread. For the credit spread estimation literature, this
implicit assumption follows because all promised coupons and principal are included
when computing a bond’s credit spread. In the reduced-form model literature, the
recovery rate process utilized is the “recovery of market value (RMV)” due to Lando
(1998) and Duffie and Singleton (1999), which implies this result. This pricing
approach assumes that, when discounting, coupon and principal cash flows are treated
the same and, therefore, that both promisedpayments entitle the holder to a recovery in
default. For subsequent discussion, we call this the “full-coupon recovery” model.

As shown by Jarrow (2004), a single-term structure of risky zero-coupon
bonds used for valuing coupon bonds is valid if and only if all of the risky zero-
coupon bonds are of equal seniority and all have the same recovery rate in the event
of default. However, this assumption is inconsistent with industry practice. After
default, as evidenced by financial restructurings and default proceedings, only the
bond’s principal becomes due, and no additional coupon payments are made on or
after the default date. This implies that coupon and principal payments cannot be
valued using the same (single) credit spread or spread term structure and that basing
a bond valuation model on this erroneous assumption of equal seniority will
generate model prices with misspecification errors.

Industry practice has been confirmed in the recovery rate estimation literature,
which finds that alternative recovery rate processes,2 either the “recovery of face
value (RFV)” or the “recovery of Treasuries (RTV)” formulations, provide a better
approximation to realized recovery rates than does RMV (Guha and Sbuelz (2020),
Guo, Jarrow, and Lin (2008), Bakshi, Gao, and Zhong (2022)).3 And, it is well
known that both the RFVandRTVrecovery rate processes are consistent with a zero
recovery on coupons promised after default. Therefore, these recovery rate pro-
cesses do not imply the full-coupon recovery model. See Jarrow and Turnbull
(2000), Longstaff, Mithal, and Neis (2005), Bielecki and Rutkowski ((2002),
Chapter 13), Collin-Dufresne and Goldstein (2001), and Huang and Huang
(2012) for models with zero recovery on coupons promised after default.4

2See Bielecki and Rutkowski ((2002), Chapter 8) for a discussion of these different recovery rate
processes.

3See also Guha et al. (2020), who provide evidence in support of RFV when studying high-yield
bond duration.

4Huang and Huang (2012) propose a model with no recovery on coupons and a constant recovery
rate. Bakshi et al. (2006) use the Lehman Bond price data set to compare different recovery assumptions
for a sample of 25 BBB-rated bonds over a 9-year period. They find that pricing errors decline when
choosing the RTV or RFV rather than RMV specification. Our article uses a much larger data set,
explores the drivers of model misspecification errors on pricing both theoretically and empirically, and
estimates the effect of illiquidity on prices. We also provide direct evidence of prices reflecting no
recovery on coupons by looking at prices of bonds immediately after default.
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The purpose of this article is to explore, both theoretically and empirically, the
effect on bond prices of assuming zero recovery on coupons after default. We refer
to such a “no-coupon recovery” model to differentiate it from the “full-coupon
recovery” model. We derive an intuitive and straightforward-to-implement
no-coupon recovery pricingmodel that depends only on the risk-free term structure,
risk neutral default probabilities,5 recovery rate, and an illiquidity parameter. We
also present a clear and easy-to-calculate measure, the misspecification error, that
identifies the effect of using a misspecified full-coupon recovery rate assumption to
price bonds. These misspecification errors are due to the full-coupon recovery
model’s erroneous assumption of positive recovery for coupons after default.

We show theoretically that these misspecification errors are larger if recovery
rates, default probabilities, maturity, or coupon payments are larger. For example,
given a 10-year bond with a face value of $100, a recovery rate of 50%, a coupon of
2.51%, and an annual default probability of 1%, the full-coupon recovery model
will assign a price that is $0.50 too large. If it is a 30-year bond, the price error is
$4.33, a substantial difference relative to the correct price, which is equal to par in
both cases. We calculate exact misspecification errors and also provide an approx-
imate formula that can be used to estimate the misspecification error’s magnitudes.
In this approximation, misspecification errors are proportional to the recovery rate,
the coupon size, the default probability, and the square of the number of coupon
payments – which is closely related to maturity. Finally, we provide a comprehen-
sive analysis of the empirical implications of the different pricingmodels for a large
data set of coupon bond transaction prices.

Before this analysis, we present direct evidence of the different payment senior-
ity between principal and coupons. We provide three examples of issuers that have
filed for bankruptcy: LehmanBrothers, PacificGas and Electric (PG&E), andWeath-
erford International. We use both the full-coupon recovery and no-coupon recovery
models to price the bonds.We find that pricing errors fromusing themisspecified full-
coupon recovery model are between 5 and 10 times larger than the no-coupon
recovery model’s pricing errors. This evidence is consistent with market prices
reflecting zero recovery on coupons promised after default.

Our main empirical investigation performs a comparative analysis of the
no-coupon and the full-coupon recovery models using a sample consisting of daily
market prices for a collection of liquidly traded bonds from Sept. 2017 to Aug.
2022. This sample contains close to 168,000 bond price observations. We sepa-
rately fit both models. If market prices reflect zero recovery for coupons promised
after default, the no-coupon recovery model will outperform the full-coupon recov-
ery model. To test this hypothesis, we compute the average outperformance.
However, this comparison is less informative if done in isolation. The reason is
that our model predicts that the outperformance’s magnitude is directly related to
the size of the misspecification error – the pricing error from assuming recovery for
coupons promised after default. And, a small average outperformance may simply
result from a sample in which these misspecification errors are small.

5The use of risk neutral default probabilities is essential because we are creating valuation formulas,
which require a risk premium. Later, under an additional assumption that default risk is diversifiable, risk
neutral and actual probabilities are empirically equivalent.
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Instead, a more relevant test is whether the misspecification error can explain
the variation in the magnitude of the no-coupon recovery model’s outperformance.
If a bond has short maturity with only a few coupons and a small default probability,
the twomodels will predict nearly the same price (the misspecification error is close
to zero) and the no-coupon recovery model will outperform only slightly. But, if the
maturity is long and the default probability is substantial (and zero recovery of
coupons promised after default is reflected in the data), the no-coupon recovery
model’s outperformance will be large.

Given these insights, our empirical investigation proceeds in two steps. First,
we calculate the misspecification errors from assuming recovery for coupon pay-
ments after default. Second, we study the performance of both the no-coupon and
full-coupon recovery models separately, and analyze whether any outperformance
of the no-coupon recovery model depends on the misspecification errors. In this
empirical investigation, we fit both models to data obtaining prices, and then
compare pricing errors between the two models.

The evidence from the first step shows that the misspecification errors are
often quite large (in our data, the 95th percentiles are between $0.97 and $2.18 per
$100 face value). However, the median misspecification error is small and
between 5 and 13 cents. Thus, although the no-coupon recoverymodel outperforms
the full-coupon recovery model, for some bonds, the difference is highly relevant,
while for other bonds, it is not.

The second step amounts to a horse race between the models, but one that not
only tests average outperformance but also tests whether our model’s predictions
regarding relative outperformance is consistent with the data. We find evidence of
the no-coupon recovery model’s outperformance in the full sample. More impor-
tantly, we show that the no-coupon model’s outperformance is larger when the
default probability, the recovery rate, the maturity, and the coupons are larger. Thus
our approach accurately forecasts when zero recovery of coupons promised after
default is important for pricing.

We find that the no-coupon recovery model’s outperformance is robust to
different model implementation choices. We estimate two versions of the two
models. Model 1 assumes a fixed recovery rate and no illiquidity effect. The single
free parameter is the default probability, which we estimate implicitly. This model
has the benefit of being stable and not requiring any additional data apart from bond
prices, characteristics, and Treasury rates. In model 2, we also implicitly estimate
the recovery rate.

We fit the model at the issuer-day level, and price a collection of bonds using
both models. This allows the full-coupon recovery model to adjust its parameters.
Therefore, what matters when comparing model fit is not the average level of the
misspecification error. Indeed, if it were the same, biased inputs could result in a low
pricing error. Instead, the within issuer-day misspecification error’s standard devia-
tion is what is relevant. When it is large, the misspecified model will have difficulty
adjusting and is more likely to underperform.We find exactly this pattern in the data.
For example, when focusing attention on the top quartile of misspecification error’s
standard deviation observations, the pricing error difference increases from 7.2 to
22.4 cents (model 1).
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One implication of our results is that default probability and recovery rate have
distinct effects on the bond’s price. As a result, it is possible to back out implied
recovery rates from observed bond prices, something that is not possible in the full-
coupon recovery model.6 In terms of spreads, recovery rate and default probability
have different impacts on principal and coupon-specific spreads (coupon spreads
are unaffected by changes in the recovery rate because they have zero recovery).We
exploit this pattern in model 3, where we use an external estimate of the default
probability and fit a parameter for illiquidity.

The outline of the article is as follows: Section II presents themodel for valuing
risky coupon bonds. Section III quantifies how bond-specific characteristics affect
full-couponmodelmisspecification errors. Section IV discusses the data andmodel
estimation procedures, while Section V presents some illustrative pricing results
for three companies that filed for bankruptcy. Section VI presents a comparative
analysis of the two alternative pricing models, discusses variation in model fit and
parameters over time, and presents out-of-sample model performance statistics.
Section VII concludes.

II. The Pricing Model

This section presents the pricing model, which is based on the reduced-form
model of Jarrow and Turnbull (1995). We assume that traded in the economy are
default-free zero-coupon bonds of all maturities, a default-free money market
account, and a risky coupon bond (to be described later). The market is assumed
to be frictionless and competitive. Both the frictionless and competitive market
assumptions are relaxed, subsequently, when we add an illiquidity discount to the
valuation formula (see expression (4) below).

The default-free money market account earns interest continuously at the
default-free spot rate of interest, rt. The money market account’s time t value is
denoted by

Bt ¼ e

Z t

0
rsds

(1)

with B0 ¼ 1. We let the time t value of a default-free zero-coupon bond paying a
dollar at time T be strictly positive and denoted by p t,Tð Þ> 0.

We consider a firm that issues a bond with a coupon of C dollars, a face value
equal to L dollars, and a maturity date T . The bond pays the C dollar coupons at
intermediate dates t1,…, tm ¼ Tf g, but only up to the default time τ. For notational
convenience, let the current time t¼ t0. If default happens in the time interval
tk�1, tkð �, then the bond pays a stochastic recovery rate of δtk ∈ 0,1½ � at time tk on
the notional of L dollars.7 It is important to note that default can happen anytime

6Reflecting this implication of the pricing model, we see instability in fitted recovery rates for the
full-coupon recovery model.

7In practice, a portion of the next coupon payment after default represents some accrued interest
earned, but not yet paid. This accrued interest has a recovery rate associated with it. With a slight loss of
generality, we exclude this accrued interest payment in the stochastic recovery rate δtk defined above.We
appreciate the comments from a law firm, Morrison & Foerster, in this regard.
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within this interval, but the payment only occurs at the end. If default does not
happen, the face value of L dollars is repaid at time T .

A. Risk Neutral Valuation

To value the risky coupon bond, we assume i) that the markets for both the
default-free coupon bonds and the risky coupon bond are arbitrage-free and ii) that
enough credit derivatives trade on the risky firm so that the enlarged market is
complete (see Jacod and Protter (2010) for a set of sufficient conditions on an
incomplete market such that the expandedmarket is complete). Given the trading of
credit default swaps, this is a reasonable approximation.

With only a minor loss of generality, we introduce a novel conditional inde-
pendence assumption to facilitate analytic tractability. The conditional indepen-
dence assumption (see the SupplementaryMaterial for the formal definition) is that
the default-free spot rate rt, the default time τ, and the recovery rate process δt are
independent under the risk neutral probability ℚ given the information at time t.
This is a weak assumption on the evolutions of the default-free spot rate, the default
time, and the recovery rate because it imposes very little structure on their evolu-
tions under the statistical probabilities. Under the statistical probabilities, these
processes need not be independent. Hence, nonzero pairwise correlations under
the statistical probabilities between the observed default-free spot rate, the default
time, and the recovery rate processes are not excluded by this assumption. And, it is
well known that nonzero correlations across the default-free spot rate, default times,
and recovery rates have been observed in historical data.

Denote the time t≤ t1 value of the coupon bond as vt. Under the conditional
independence assumption, we show in the Supplementary Material that the coupon
bond’s price is

vt ¼
Xm

k¼1
C × z t, tkð Þ+ L × z t,Tð Þ+ L × dt

Xm

k¼1
x t, tkð Þ,(2)

where
dt ≔Eℚ δτ F tj½ �,
z t, tkð Þ≔ p t, tkð Þ 1�Q t, tkð Þ½ �,
x t, tkð Þ≔ p t, tkð Þ Q t, tk + 1ð Þ�Q t, tkð Þ½ �,
Q t, tið Þ≔Probℚ τ ≤ ti F tj½ �:

In this expression:

(i) Q t, tið Þ is the time t conditional risk neutral probability of default before ti
given no default at time t.

(ii) dt is the time t futures recovery rate (for a futures contract receiving the
recovery rate at time T∗, see the Supplementary Material for the details). As
a futures price, the recovery rate in our valuation formula is a Q-martingale.
This is an important implication of the conditional independence assumption
underlying expression (2). Because it is a futures price, it is expected to be
slightly larger than the recovery rate if paid on the debt at time t, δt (see the
Supplementary Material for a proof).
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(iii) z t, tkð Þ is a survival digital, which pays $1 at time tk only if default occurs after
tk , 0 otherwise.

(iv) x t, tkð Þ is a default digital, which pays $1 at time tk if default occurs within
tk�1, tkð �, 0 otherwise.

We refer to this expression as the “no-coupon recovery” model to emphasize
that it has no recovery on the promised coupons after default. In this form, it is easy
to see that the value of this coupon bond is not equal to the sum of the coupons and
principal times the value of a collection of risky zero-coupon bonds. Indeed, let
D t, tkð Þ denote the time t value of such a risky zero-coupon bond promising to pay a
dollar at time tk for k¼ 1,…,m with recovery rate δt in default. Then, it can be
shown that

v
full coupon
t

¼
Xm

k¼1
C ×D t, tkð Þ+ L×D t,Tð Þ

¼
Xm

k¼1
C × z t, tkð Þ+ L× z t,Tð Þ+ L× dt

Xm

k¼1
x t, tkð Þ

+
Xm

k¼1
C × m+ 1� kð Þ× x t, tkð Þ:

(3)

This expression is called the “full-coupon recovery model.” The difference
between this model and expression (2) is the term

Pm
k¼1C × m+ 1� kð Þ×

dt × x t, tkð Þ,8 which represents the present value of the recovery on the coupons
promised after default.

B. An Illiquidity Discount

Corporate bond markets are illiquid relative to Treasury bonds or exchange
traded equities. This illiquidity implies that corporate bond prices may reflect an
illiquidity discount (see Jarrow and Turnbull (1997), Duffie and Singleton (1999),
Cherian, Jacquier, and Jarrow (2004)). An illiquidity discount modifies the previ-
ous valuation formula to implicitly incorporate the impact on pricing due to trans-
action costs and trading constraints.

It is important to note that transactions costs (including bid/ask spreads) are a
special case of an illiquidity cost paid when trading, which are implicitly included
via an illiquidity discount (see Cetin, Jarrow, and Protter (2004) for the theoretical
justification of this statement). Similarly, taxes paid on coupons and capital gains
can also be interpreted as a type of transaction cost, and hence they too are implicitly
included in the illiquidity discount as well.9

We apply the illiquidity discount function eαt T�tð Þ symmetrically to all the cash
flows promised to the coupon bond. This symmetry enables similar illiquidity

8This term follows because if default occurs during the time interval tk�1, tkð �, the remaining future
coupons are

Pm
j¼kC¼ m+ 1� kð ÞC. In the full-coupon recovery model, one gets a recovery payment on

all the remaining coupons.
9The complication of explicitly including illiquidity costs (transaction, taxes) into the model is that

different traders face different taxes and transaction costs based on their trading activities. Consequently,
to determine a market price, an equilibrium model is needed. Equilibrium models are notoriously
ladened with unrealistic assumptions. Furthermore, an argument can be made that the marginal trader,
who determines themarket price, is the lowest illiquidity cost trader. Here, we note that many institutions
pay small transaction costs and there do exist nontaxable institutions that purchase corporate debt.
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discount impacts across different coupon bonds issued by the same credit entity.
Given this, we can rewrite the coupon bond’s value as

vliqt ¼
Xm

k¼1
C × z t, tkð Þeαt tk�tð Þ + L× z t,Tð Þeαt T�tð Þ

+ L× dt
Xm

k¼1
x t, tkð Þeαt tk�tð Þ:

(4)

As we discuss below, we fit different versions of this model to the data. When
the recovery rate and illiquidity discount are included in the estimation, both the
recovery rate dt and the illiquidity parameter αt are stochastic; hence, they can vary
randomly across time due to changingmarket conditions. Our estimation procedure
allows for these estimated parameter values to reflect this randomness.10

Expression (4) is the valuation model estimated in the empirical analysis.

III. Misspecification Errors

This section builds intuition for misspecification errors when using the full-
coupon recovery model (expression (3)) instead of the no-coupon recovery model
(expression (2)). Recall that the misspecification error, the difference between
the full-coupon and no-coupon recovery model prices, is equal to

Pm
k¼1C ×

m+ 1� kð Þ× dt × x t, tkð Þ. Note that thesemisspecification errors are always positive.
We next quantify themagnitudes of thesemisspecification errors and provide a

simple approximation that allows us to relate the misspecification errors to the
model’s inputs. Later, we relate the predicted misspecification errors to patterns in
the data.

A. Misspecification Error Determinants

For illustrative purposes, we make the following simplifying assumptions: i)
coupon bonds are priced on coupon dates, ii) the risk-free term structure of interest
rates and the term structure of risk neutral default probabilities are flat,11 iii) the
coupon is set so that the no-coupon recovery model’s bond price is equal to par, and
iv) there is no illiquidity discount (αt ¼ 0), though we relax this last assumption
when we consider the effect of model parameters on spreads.12 Combined, these
imply that the misspecification error is fully determined by the maturity, default
probability, recovery rate, and risk-free rate. We note the use of risk neutral default
probabilities is essential because we are creating valuation formulas, which require
a risk premium. Later, under an additional assumption that default risk is diversifi-
able, the distinction between risk neutral and actual probabilities disappears
because, under this assumption, they are empirically equivalent.

10We use implicit estimation at a fixed time t allowing αt to depend on the information available at
time t.

11In the empirical implementation (model 3), we use a term structure of risk neutral default
probabilities, which is not assumed to be flat.

12In this case, the full-coupon recovery model including a liquidity discount

is v
full coupon
t

¼Pm
k¼1C × z t, tkð Þeαt tk�tð Þ +L × z t,Tð Þeαt T�tð Þ + L× dt

Pm
k¼1x t, tkð Þeαt tk�tð Þ +

Pm
k¼1C ×

m + 1� kð Þ × x t, tkð Þeαt tk�tð Þ. The last term is the misspecification error.
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Our data, which we describe in more detail in Section IV, consist of more
than 168,000 observations from Sept. 2017 to Aug. 2022 for a total of 197 issuers.
More than 90% of the data have investment grade-level ratings equal to BBB� or
above;13 average maturity is equal to 3.1 years, and the average coupon equals
3.1%. We also consider issuer-day-level statistics since we estimate the model at
that level: the average issuer day has five observations; 95% of issuer days have
11 or fewer observations; the average difference between the shortest and longest
maturities within each issuer day (“maturity range”) is 3.9 years, and 90% of
observations have maturity ranges between 0.9 and 8.6 years. Our sample is
therefore appropriate to study how default risky coupon bonds are priced.

Table 1 reports misspecification errors across different inputs, assuming that the
risk-free term structure is flat at 2%. The par value of the bond is set to 100, and the
recovery rate is equal to 50%, a level close to the mean recovery rate we estimate (see
below). As expected, misspecification errors increase with the bond’s maturity and
the issuer’s default probability. For short maturity 2-year bonds, the misspecification
error is equal to 0.07 if the annual default probability is 2%,while themisspecification
error is equal to 1.39 for a 10-year bondwith the same default probability. For 30-year
bonds, themisspecification error can bemuch larger, reaching a level of 9.62 for a 2%
default probability bond, close to 10% of that bond’s price.

We now propose a simple approximation for the misspecification error. In the
event of default, the present value of the payoff for the first coupon is equal to the
discounted value of the product of the coupon rate, the recovery value, and
the probability of default (i.e., C × dt × p t, t1ð ÞQ t, t1ð Þ). The approximate total error
is equal to C × dt × p t, t1ð ÞQ t, t1ð Þm m + 1ð Þ=2 (see the Supplementary Material for
additional details).

We later use the misspecification error to identify portfolios of bonds that are
likely to be mispriced by the full-coupon recovery model. We note that the mis-
specification error is zero if the recovery rate, the default probability, or the coupon
payment is zero. The error grows approximately with the square of the number of
coupon payments and is exactly proportional to the product of the coupon payment

TABLE 1

Misspecification Error Determinants

In Table 1 we calculate prices based on the no-coupon and full-coupon recovery models. We assume a flat risk-free term
structure of 2%, a flat default probability term structure, and different maturities. Coupons are chosen so that bonds (based on
the no-coupon recoverymodel’sprice) trade at par ($100).We report themisspecification error (in dollars) resulting fromusing
the full-coupon recovery model instead of the no-coupon recovery model (column 5, Missspec. Error).

Maturity Recovery Default Probability (Annual) Coupon Misspec. Error (in Dollars)

2 0.5 1% 2.51% 0.03
2 0.5 2% 3.03% 0.07
5 0.5 1% 2.51% 0.16
5 0.5 2% 3.03% 0.39
10 0.5 1% 2.51% 0.60
10 0.5 2% 3.03% 1.39
30 0.5 1% 2.51% 4.33
30 0.5 2% 3.03% 9.62

13The sample consists primarily of investment grade bonds since many high-yield bonds have call
features, all of which are excluded. An analysis of callable bonds goes beyond the scope of this article.
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and the recovery rate. Thus, bonds with significant recovery values, default prob-
abilities, and with intermediate to long maturities will have significant misspecifi-
cation errors.

B. Pricing with Two Credit Spread Curves

If coupons have a zero recovery after default, while the principal payment has a
positive recovery, both cash flows will not have the same discount rate. Using the
same credit spread for both will result in an inability to price bonds with different
maturities and coupons. However, a priori, it is not clear if the effect we are focusing
on is empirically large or small. Spreads appropriate for discounting coupons and
principal may be similar.14 Before proceeding with our full model estimation, we
examine the difference in the two pricing approaches by examining seniority-
specific spreads. If there is a misspecification error using this full-coupon recovery
model to price bonds, then the two curves will be different. The valuation formula
using different credit spreads for coupon and principal payments is

vspreadt ¼
Xm
k¼1

C × p t, tkð Þe�sC t,tkð Þ tk�tð Þ + L× p t,Tð Þe�sL t,Tð Þ T�tð Þ,(5)

where sC t, tkð Þ and sL t,Tð Þ are the credit spreads at time t for the coupon and the
principal cash flows at times tk and T , respectively, above the default-free rates
implicit in the zero-coupon bond prices p t, tkð Þ.15

Table 2 provides some illustrative examples of credit spread curves.We use the
same methodology as in Table 1. The only difference is that here we introduce the
effect of an illiquidity discount. Panel A reports principal spreads, and Panel B
reports coupon spreads. As long as there is a positive recovery, coupon spreads lie
above principal spreads since the latter will be worth more and thus are discounted
less. The difference between coupon and principal spreads is close to the product of
the default probability and the recovery rate, which follows from the misspecifica-
tion error relation given above, where, for the first coupon, the misspecification
error is equal to C × dt × p t, t1ð ÞQ t, t1ð Þ. A larger default probability makes all
spreads higher. If there is no illiquidity discount, coupon spreads are approximately
equal to the default probability, and since differences relative to principal spreads
depend on the default probability, frictionless spreads are approximately propor-
tional to the default probability. The effect of the illiquidity discount is seen to be
symmetric, affecting all cash flows equally. Indeed, both credit spreads increase by
the amount of the illiquidity discount.

The results imply that principal payments are safer because they deliver
potentially large recovery values in the event of default. Coupon payments, in

14We note that we are interested in pricing multiple bonds simultaneously. It is, of course, possible to
calculate a bond-specific yield to maturity and therefore a bond-specific credit spread. This, however,
does not provide a pricing methodology, but it is simply a transformation of the price into another
quantity.

15This is the same as defining p t, tkð Þe�sC t,tkð Þ tk�tð Þ ¼DS t, tkð Þ and p t,Tð Þe�sC t,Tð Þ T�tð Þ ¼DL t,Tð Þ,
which correspond to distinct risky zero-coupon bond price term structures for discounting coupons and
principal cash flows.

10 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109024000401  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109024000401


contrast, do not pay off in default and therefore need a larger discount rate. It is
useful to note that using a single spread is not suitable to discount both cash flows
with zero or positive recovery. For the former (the coupons), the spread will be too
low, and for the latter (the principal), it will be too high. Thus, using a single spread
(or spread curve) to price a new bond with a different maturity or coupon will result
in misspecification errors. In addition, using this “standard” spread calculation to
assess the market’s implied risk pricing is not possible.

IV. Data and Estimation

The details of the estimation procedures are as follows: To fit the valuationmodel
to market prices, we obtain traded coupon bond prices for the 1,248 trading days from
the beginning of Sept. 2017 to the end of Aug. 2022 using the TRACE system.

The pricing model is for senior unsecured fixed-rate coupon bonds with no
embedded options. For each firm, we therefore eliminate from the sample any
subordinated bonds, callable and putable bonds, structured bonds, bonds with
“death puts” or a “survivor option,” and floating-rate bonds. Survivor option bonds
distort bond prices because they are issued in small amounts (typically $20 million
or less per tranche) and because the value of the embedded put option is significant.
The survivor option feature has become more common in recent years.16

TABLE 2

Coupon and Principal Spreads

Table 2 reports spreads (in percentage) appropriate for discounting coupons and principal (C and P) for various maturities
(see equation (5) in the text), annual default probabilities, and illiquidity values. As in Table 1, we assume a flat risk-free term
structure of 2%and a flat default probability term structure. Panel A reports spreads appropriate for discounting principal, and
Panel B reports spreads appropriate for discounting coupons.

Def prob 1% 1% 2% 2%
Recovery 0.5 0.5 0.5 0.5
Illiquidity 0 �0.5% 0 �0.5%
Maturity

Panel A. Principal Spreads.

1 0.50% 1.01% 1.01% 1.51%
3 0.49% 0.99% 0.98% 1.48%
5 0.48% 0.98% 0.94% 1.44%
10 0.44% 0.93% 0.86% 1.34%

Panel B. Coupon Spreads.

1 1.02% 1.52% 2.04% 2.55%
3 1.02% 1.52% 2.04% 2.55%
5 1.02% 1.52% 2.04% 2.55%
10 1.02% 1.52% 2.04% 2.55%

16The largest issuers of survivor option bonds as of 2016 included General Electric, Goldman Sachs,
Bank of America, Wells Fargo, Ford Motor, HSBC Holdings, National Rural Utilities Cooperative
Finance Corporation, Dow Chemical, Prospect Capital, and Barclays PLC. A typical survivor option
bond’s terms are described as follows in a recent prospectus supplement from General Electric Capital
Corporation: “Specific notes may contain a provision permitting the optional repayment of those notes
prior to stated maturity, if requested by the authorized representative of the beneficial owner of those
notes, following the death of the beneficial owner of the notes, so long as the notes were owned by the
beneficial owner or his or her estate at least 6 months prior to the request. This feature is referred to as a
‘Survivor’s Option.’Your notes will not be repaid in this manner unless the pricing supplement for your
notes provides for the Survivor’s Option. The right to exercise the Survivor’s Option is subject to limits
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In addition, to be included in our sample, the bond issue’s daily trade volume had to
exceed $50,000 (in almost every case, volume was much larger) and with at least
two separate bonds traded (to ensure model convergence, for issuer days with only
two observations we also require that thematurities are at least half a year apart).We
further excluded some bonds of European issuers subject to a 2014 EU regulation
allowing regulators to demand an exchange of senior debt securities into equity.
Because data assembly and cleaning costs are substantial,17 we restrict our attention
to the sample starting in 2017. Finally, we restrict attention to bond price observa-
tions with prices above risk-free bond prices with the same set of cash flows.18 The
resulting sample consists of more than 168,000 observations for 197 issuers and
more than 35,000 issuer days.

Table 3 presents summary statistics. The average coupon is equal to 3.1%,
average maturity is equal to 3.1 years,19 and the mean credit spread is 80 bps. There
is quite a bit of variation in the data – the 5th to 95th percentile ranges of coupons,
maturity, and spreads are 4.2, 7.9 years, and 201 bps, respectively. This variation is
important for our ability to identify differences in the no-coupon and full-coupon
recovery models. Misspecification errors are small if the coupon is low and the
maturity is short, while they are high if the maturity is long and the coupon is large.
If there is little variation in misspecification errors, the full-coupon recovery model
may produce biased estimates, but the pricing errors may be similar to the
no-coupon recoverymodel. However, taking a look at the issuer-day level statistics,
we find a lot of variation. Average maturity range is almost 4 years, and the average
issuer day has five bond price observations in it. There is also variation in credit
ratings. The average rating is A�, and 7.6% of observations are for non-investment
grade (BB+ and below) issuers.

Panel B of Table 3 reports additional firm characteristics across rating groups.
In order to fit the bond pricingmodel to data, we require at least two observations for
each issuer day, and ideally more. This restriction naturally focuses attention on
issuers with a lot of outstanding debt, in particular financial institutions that tend to
issue a lot of bonds. We note that across the four rating groups, average book
leverage declines as rating increases (i.e., rating quality declines), no doubt because
choice of leverage is endogenous and financial institutions often have low-risk
ratings and high leverage. The pattern in stock return volatility is as we would
expect; as rating increases, volatility increases from 24% for AA and above to 46%

set by us on i) the permitted dollar amount of total exercises by all holders of notes in any calendar year
and ii) the permitted dollar amount of an individual exercise by a holder of a note in any calendar year.”

17It is necessary to screen out callables and survivor options, data on which are only available in the
pricing supplement. The SEC and FINRA do not maintain public access to prospectus data for more than
about 5 years in easily accessible form. Thus, including, e.g., data from the financial crisis is not feasible.
In addition, the TABB group finds a very high frequency of errors “TABB Group analysis shows
reconciliation differences in more than 20% of new issues.” There are also nontrivial computational
costs.

18Some observations have prices above risk-free bond prices (i.e., negative implied credit spreads),
perhaps due to data errors. A negative credit spread could signal a potential arbitrage opportunity.
However, it may be difficult to capitalize on such mispricing because of illiquidity. We leave further
exploration of these patterns to future research.

19Model 3 (discussed below) implementation is based on default probabilities that extend to a
maturity of 10 years. We therefore restrict attention to observations with that maximum maturity.
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for non-investment grade issuers. While there is little variation in leverage within
rating group, the variation in volatility is much larger and increases with rating.
Credit spreads exhibit a similar pattern, ranging from 46 bps for AA and above to
210 bps for non-investment grade.

To these data, we add U.S. Treasury yields reported daily by the
U.S. Department of the Treasury (https://www.treasury.gov/resource-center/data-
chart-center/interest-rates/Pages/TextView.aspx?data=yield) and derive the maxi-
mum smoothness Treasury forward rate curves from these data (see Adams and van
Deventer (1994)). Using these historical forward rate curves, we compute the term
structure of default-free zero-coupon bond prices on all dates.

Finally, we assemble data on coupon bond prices. The price in the TRACE
system does not represent the full amount paid for the bond. The full amount paid is
the price plus accrued interest.

In our estimation, we compare the full amount paid when acquiring the bond
(the present value of the bond purchase) with the valuation model in expression (4).
Specifically, for each issuer day, we use the risk-free term structure, coupon
payments, and payment dates as inputs. We then use nonlinear least squares
estimation, calculated on a volume-weighted basis, to solve for the best-fitting
parameter values (recovery rate, default probability, and illiquidity). We estimate
the no-coupon and full-coupon recovery models separately and compare pricing
errors and parameter estimates.

TABLE 3

Summary Statistics

Table 3 reports detailed summary statistics for the main sample of bond prices (the sample that we use to perform our
empirical analysis). Panel A reports bond characteristics andoverall ratings.We report both observation- and issuer-day-level
statistics. Panel B contains issuer-day-level statistics by rating group. Spread, reported in basis points (bps), is the bond-
specific credit spread (standard definition); maturity range is the difference for each issuer day between the maximum and
minimummaturities;maturity SD is the issuer-daymaturity standard deviation; number of observations counts howmanybond
prices are in the data set each issuer day (we require aminimumof two), Rating is the S&P issuer credit rating, TLTA is the ratio
of Compustat book value of total liabilities divided by book value of total assets, and SIGMA is the stock return standard
deviation. To be included in the sample, the spread, coupon, andmaturity must be positive, and thematurity range (if there are
only two observations) must be at least 0.5. The restrictions, which result in only a small share of the data being dropped, are
discussed further in the text.

Panel A. Bond Characteristics

Bond-Level Stats Issuer-Day-Level Stats

Coupon Maturity Spread (bps) Maturity Range Maturity SD No. of Obs. Rating

Mean 3.07 3.1 81 3.9 1.8 5 A�
SD 1.26 2.3 185 2.3 1.0 3 2
p5 1.25 0.3 14 0.9 0.5 2 AA�
p50 2.85 2.6 58 3.5 1.6 4 A�
p95 5.45 8.2 215 8.6 3.5 11 BB+
No. of obs. 168,285 168,285 168,285 35,635 35,635 35,635 35,635

Panel B. Firm Characteristics Across Ratings

TLTA SIGMA Spread (bps) TLTA SIGMA Spread (bps)

Averages Std. Dev. No. of Obs.

AA, above 0.89 0.24 46 0.11 0.16 35 5,650
A 0.89 0.30 58 0.12 0.17 56 17,297
BBB 0.86 0.41 101 0.12 0.26 328 9,981
BB, below 0.84 0.46 210 0.13 0.22 292 2,707
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A. Three Empirical Model Implementations

For each issuer day, we fit the data to three different empirical implementations
of the model.

1. Implied Default Probabilities (Models 1 and 2)

Model 1 starts with a restricted version of themodel, which allows us to clearly
trace the effect of estimating both the full-coupon and no-coupon recovery models
on misspecification errors, pricing errors, and parameter estimates. We first fit our
model (expression (4)), assuming a flat term structure of default probabilities
estimated implicitly. We also assume no liquidity discount20 and a fixed recovery
rate futures price (recovery rate for short) equal to 50%, which is close to the
average recovery rate estimated in the less restrictive model implementation given
below. Importantly, this model has only one parameter, the default probability.
Model 1 allows us to see the direct impact of misspecification on estimated default
probabilities as well as model outperformance relative to the full-coupon recovery
model.

In model 2, we relax the restriction on recovery rates and instead allow it to
vary between 0.1 and 0.8. This model has two parameters and it is significantly
more flexible. We restrict default probabilities to be greater than 0.1% – close to the
first percentile of the distribution when using an historically estimated default
probability, discussed below. These bounds on the default probability and recovery
rates reduce excessive model flexibility, in particular for the full-coupon recovery
model, and allow us to trace the effect of misspecification errors on pricing errors
more easily. Both models 1 and 2 have the advantage that they require only bond
prices and the term structure of risk-free Treasury rates as inputs.

2. Historically Estimated Default Probabilities (Model 3)

Model 3, instead of estimating default probabilities implicitly using bond price
data, uses a historically estimated default probability. That is, we employ indepen-
dently estimated default probabilities from a proportional hazard rate model.
Because there is then one less parameter to fit, in this version of the model, we
include an illiquidity discount parameter together with the recovery rate.

To facilitate the estimation of the default intensity process, we assume that the
default time τ corresponds to the first jump time of a Cox process with intensity
λt ¼ λt Γtð Þ≥ 0, where Γt ¼ Γ1 tð Þ,…,Γm tð Þð Þ0 ∈ℝm are a collection of stochastic
processes characterizing the state of the firm and the market at time t. In addition,
we assume that default risk is diversifiable in the sense of Jarrow, Lando, and
Yu ((2005); for additional detail, see the SupplementaryMaterial). This assumption
enables the estimation of default intensities without the need to adjust the intensity

20In the model, a change in the default probability affects the present value of all cash flows, both
coupons and principal. The same is true for a change in the illiquidity parameter. From expression (4) and
the spread curve examples in Table 2, we know that the effect is not exactly the same, and so it is possible
to estimate both separately. Nevertheless, to guard against unstable estimates or overfitting, we set the
illiquidity discount equal to 0 and estimate only a default intensity. In model 2, we also fit the recovery
rate. When using historically estimated default probability (model 3), we add an illiquidity parameter
(see below).
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process for a default jump risk premium. In conjunction, these two assumptions
imply that we can estimate the default probabilities using a proportional hazard rate
model (see Fleming and Harrington ((1991), p. 126)), that is,

λt Γtð Þ¼ θeϕΓt ,

where θ is a constant and where ϕ is a vector of constants. For an application of such
a hazard rate model applied to corporate default probabilities, see Chava and Jarrow
(2004).

As discussed in Jarrow et al. (2005), this assumption does not imply that risky
coupon bonds earn no risk premium. Quite the contrary. If the state variables Γt

driving the default process represent systematic risk, which is the most likely case,
then risky coupon bond prices necessarily earn a risk premium due to the bond
price’s correlation with Γt. The diversifiable risk assumption just states that the
timing of the default event itself, after conditioning on Γt, is diversifiable in a large
portfolio. Alternatively stated, in a poor economy, all firms are more likely to
default. But, the timing of which firms actually default depends on the idiosyncratic
risks of the firm’s management and operations.

The default process parameters θ,ϕð Þ from the proportional hazard rate model
were provided by the Kamakura Risk Information Services (KRIS) division of SAS
Institute, Inc. (see www.kamakuraco.com). KRIS uses a refinement of the approach
employed by Chava and Jarrow (2004) to estimate these parameters that are then
used to construct the full term structure of cumulative default probabilities.21

Specifically, for each issuer day, we obtain cumulative default probabilities from
the 10-year term structure of monthly marginal default probabilities (the monthly
probability of default conditional on no prior default). The state variables used in
KRIS’s hazard rate estimation include both firm-specific and macroeconomic vari-
ables. Importantly, the default probabilities do not use traded bond or CDS prices as
inputs. Default probabilities are therefore separate inputs relative to the observed
bond prices that we fit using model 3.

We restrict the recovery rate to lie between 0.1 and 0.8 and the illiquidity
discount to lie between zero and �5%. Doing so will reduce the influence of
observed bond price errors on the estimates. We report robustness checks below.

V. Illustrations: Coupon and Principal Seniority in Default

Before moving to the full-sample estimation, this section provides evidence
that market prices reflect the difference in seniority between principal and coupons
in default. We consider three companies that filed for bankruptcy: Lehman, PG&E,
and Weatherford International. Lehman is chosen because of the size and impor-
tance of its bankruptcy. The latter two firms are in our sample because each firm has
a sufficient number of bonds traded. In each case, we focus on senior bonds,

21The model underlying the default probability calculations is similar to the one used in Campbell,
Hilscher, and Szilagyi (2008), (2011), who extend Chava and Jarrow (2004) and Shumway (2001).
Campbell et al. show that the default probability measure is a more accurate predictor of failure than
Moody’s EDF numbers, data that have been widely used in academic studies (e.g., Berndt, Douglas,
Duffie, and Ferguson (2018)).
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including callable bonds, because on the day bankruptcy is announced the call
option is worthless and can be ignored. We fit the no-coupon and full-coupon
recovery models to the data.

The key reason for analyzing issuer bonds after they file for bankruptcy is that
the default probability equals 100%.22 The recovery amount for the no-coupon
recoverymodel is the recovery rate times the notional of $100 (par value) for each of
the bonds. In contrast, the recovery amount for the full-coupon recovery model is
$100 plus the dollar coupon times the number of remaining payments on each bond,
a different amount for each issue. For each issuer day and for both of the models,
referring back to expression (4),

vt ¼ dt × L,(6)

because i) default has occurred and there are no more coupon payments after time t,
ii) the principal is immediately due, and iii) the liquidity discount is assumed to be
zero because the bond has defaulted. We run a regression on this formula to derive
the recovery rate and the present values (price plus accrued interest) for each bond.
As noted earlier, expression (4) ignores the interest earned since the last coupon
payment date. This would be included in the market prices.

Figures 1–3 depict the pricing errors. We order the bonds by maturity. Pricing
errors when using the no-coupon recovery model (in black) are substantially lower
than those resulting from the full-coupon recovery model (in white). Mean absolute
errors are more than 5 times as large for Lehman (2.0 vs. 11.0) and almost 10 times
as large for PG&E (2.1 vs. 19.7) and Weatherford International (2.6 vs. 21.0).

We see that the full-coupon recovery model results in prices that are too large,
especially for bonds of longer maturities that have more coupons, which, if they
were of equal seniority, would entitle the bondholder to a recovery value. However,
in default, those coupons are worthless and so any coupon paying bond would have
pricing errors that are positive as long as the model was using unbiased inputs.
However, in an attempt to fit the data, the model tries to reduce the average pricing
error resulting in bonds with short maturities being underpriced and bonds with
longmaturities being overpriced. Themaximum errors lie between 19.6 and 37.4. It
is worth noting that average market prices are equal to 32.4 (Lehman), 78.2
(PG&E), and 65.0 (Weatherford International) so that the maximum errors are
around one half the market price. The (negative) minimum errors are similar in
size lying between �37.2 and �14.2.

In contrast, the no-coupon recovery model’s maximum and minimum pricing
errors are much smaller. They lie between 3.9 and 9.1 and�5 and�2.7, and so are
approximately one quarter of the full-coupon recovery model’s pricing errors.
Importantly, and in direct support of the no-coupon recovery model, its pricing
errors have no clear pattern relative to the bond’s maturity.

To summarize, Lehman, PG&E, and Weatherford International’s bond prices
provide direct evidence in support of the no-coupon recovery model relative to the
full-coupon recovery model. Failing to take into account the different seniority of
coupons and principal results in substantial pricing errors, which have a predictable
pattern consistent with our model.

22Since the bonds are in default, we can include both non-callable and callable bonds in this analysis.

16 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109024000401  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109024000401


FIG
U
R
E
1

Lehm
an

B
rothers

P
ricing

E
rrors

Figure
1
show

s
full-coupon

and
no-coupon

recovery
m
odelpricing

errors
forLehm

an
B
rothers

bonds
on

Sept.15,2008.

4
0

2
0

Pricing Error, Dollars Per $100 Par Value

December 23, 2008

December 23, 2008

March 13, 2009

March 23, 2009

March 23, 2009

April 3, 2009

August 15, 2009

November 1, 2009

November 10, 2009

January 27, 2010

July 26, 2010

August 15, 2010

November 30, 2010

December 23, 2010

January 14, 2011

April 1, 2011

April 25, 2011

July 18, 2011

January 18, 2012

February 6, 2012

July 19, 2012

January 24, 2013

May 17, 2013

March 13, 2014

September 26, 2014

March 1, 2015

August 1, 2015

April 4, 2016

November 15, 2017

May 2, 2018

January 15, 2019

February 5, 2021

September 27, 2027

August 23, 2032

December 22, 2036

February 8, 2038

0

–
2
0

M
a
tu

rity
 D

a
te

F
u
ll-C

o
u
p

o
n
 R

e
c
o

v
e
r y

 V
a
lu

a
tio

n
N

o
-C

o
u
p

o
n
 R

e
c
o

v
e
ry

 V
a
lu

a
tio

n

FIG
U
R
E
2

P
acific

G
as

and
E
lectric

P
ricing

E
rrors

Figure
2
show

s
full-coupon

and
no-coupon

recovery
m
odelpricing

errors
forPG

&
E
bonds

on
Jan.14,2019.

2
00

Pricing Error, Dollars Per $100 Par Value

October 1, 2020

May 15, 2021

September 15, 2021

August 15, 2022

June 15, 2023

November 15, 2023

February 15, 2024

August 15, 2024

June 15, 2025

March 1, 2026

March 15, 2027

December 1, 2027

March 1, 2034

March 1, 2037

February 15, 2038

March 1, 2039

January 15, 2040

December 15, 2041

April 15, 2042

August 15, 2042

June 15, 2043

November 15, 2043

February 15, 2045

March 15, 2045

March 15, 2046

December 1, 2046

December 1, 2047

–
2
0

–
4
0

M
a
tu

rity
 D

a
te

F
u
ll-C

o
u
p

o
n
 R

e
c
o

v
e
ry

 V
a
lu

a
tio

n
N

o
-C

o
u
p

o
n
 R

e
c
o

v
e
ry

 V
a
lu

a
tio

n

H
ilscher,Jarrow

,and
van

D
eventer

17

https://doi.org/10.1017/S0022109024000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0022109024000401


VI. The Pricing Model Comparison

This section provides a comparative analysis of the no-coupon and full-
coupon recovery models.23 The full-coupon recovery model produces different
prices only if misspecification errors (see Section III) are nonzero. We therefore
investigate both if the no-coupon recovery model has better fit on average and if it
has better fit when misspecification errors are larger. Both of these predictions are
implications of our model because if bonds are priced according to the no-coupon
recovery model, then a necessary condition for model outperformance is the
presence of misspecification errors.

A. Misspecification Errors

Before analyzing model fit and outperformance, we first consider the distri-
bution of the misspecification errors. We use the unbiased estimates from the
no-coupon recovery model as inputs to compute the misspecification error as the
difference in prices between the full-coupon and no-coupon recovery models.
Recall that the misspecification error is approximately equal to C × dt × p t, t1ð Þ×
Q t, t1ð Þ×m m + 1ð Þ=2.

The full-coupon recovery model can only exhibit a worse fit if misspecifi-
cation errors are present. If they are zero, the two models are the same.

FIGURE 3

Weatherford International Pricing Errors

Figure 3 shows full-coupon and no-coupon recovery model pricing errors for Weatherford International bonds on May
10, 2019.
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23In a previous version of the article, we also compared the no-coupon recovery model to one based
on ratings. In that model, coupons are assumed to have full recovery and the credit spread is assumed to
depend only on the rating. The ratings-based valuation model is consistent with numerous pronounce-
ments from the Basel Committee on Banking Supervision (2010), (2017). It performs poorly primarily
because of the erroneous assumption that all firms that have the same rating have the same risk; therefore,
analyzing it is less relevant when comparing no-coupon and full-coupon recovery models.
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The misspecification error’s approximation formula is multiplicative in coupon
rate, recovery rate, default probability, and maturity. It is useful to note that the
approximation is quite accurate in capturing the variation in misspecification
errors. When we regress actual on predicted misspecification errors, the R2 lies
between 93% and 95%.

Table 4 reports summary statistics formodel fit, misspecification errors, model
outperformance, and parameter estimates. The 25th percentile issuer-day misspe-
cification error is 4 cents (themedian is 13 cents). Thus, as expected, a large fraction
of the data are not greatly affected by the pricing differences between the two
models. However, the mean misspecification error is more than twice as large and
equal to 30 cents, which means that there are many bonds with large implied price
differences across the two models (when input parameters are held constant). The
95th percentile of the misspecification error distribution is 1.02, which is substan-
tial, and the 75th percentile (unreported) is 0.30, which is also quite large. The

TABLE 4

No-Coupon Recovery Model’s Outperformance Statistics and Parameters

Table 4 reports summary statistics for model fit. Panel A reports statistics for a model where recovery rate is set equal to 0.5
(model 1), and Panel B reports results when allowing for a variable recovery rate between 0.1 and 0.8 (model 2). Both models
restrict default probability to lie above 0.1%. Estimation is done at the issuer-day level minimizing the volume-weighted
squared pricing error. All data are reported at the issuer-day level. Mean absolute error (MAE) is the no-coupon recovery
volume-weighted error (in dollars) for a given issuer day.MAEdifference is the difference between theMAEsof the full-coupon
recovery model and the no-coupon recovery model (in dollars). Avg miss error is the average misspecification error (in
dollars), andDef prob is the annual fitted default probability, which is reported first for the no-coupon recoverymodel and next
when estimated using the full-coupon recovery model. In each panel, we also report model fit statistics for a subsample of
issuer-day observations in the top 25% of within issuer-day misspecification error’s standard deviation, as well as for four
rating groups.

Panel A. Model 1 (Fixed Recovery Rate and Variable Default Probability).

Mean Abs Error
(MAE, in Dollars)

MAE Difference
(Full-Coupon Relative
to No-Coupon Rec)

Avg Miss
Error (in
Dollars)

Def Prob (No-
Coupon Rec)

Def Prob (Full-
Coupon Rec)

Mean 0.35 0.07 0.30 1.8% 2.0%
p5 0.02 0.00 0.01 0.4% 0.4%
p50 0.26 0.02 0.13 1.3% 1.4%
p95 0.98 0.27 1.02 4.4% 5.1%
No. of issuer days: 35,635

Subsamples: High Misspecification Error’s Standard Deviation, Rating Groups

Top quartile miss SD 0.66 0.22 0.85 3.3% 3.9%
AA, above 0.25 0.03 0.10 1.1% 1.2%
A 0.30 0.05 0.19 1.3% 1.4%
BBB 0.45 0.10 0.42 2.2% 2.5%
BB, below 0.53 0.23 0.94 4.5% 5.2%

Panel B. Model 2 (Variable Recovery Rate and Default Probability).

Mean Abs Error
(MAE, in
Dollars)

MAE Difference (Full-
Coupon Relative to
No-Coupon Rec)

Avg Miss
Error (in
Dollars)

Def Prob
(No-Coupon

Rec)
Recovery

Rate

Mean 0.32 0.03 0.52 2.6% 0.51
p5 0.01 0.00 0.00 0.4% 0.10
p50 0.24 0.01 0.11 1.8% 0.79
p95 0.90 0.14 2.18 7.7% 0.80
No. of issuer days: 35,635

Subsamples: High Misspecification Error’s Standard Deviation, Rating Groups

Top quartile miss SD 0.46 0.10 1.71 5.7% 0.78
AA, above 0.23 0.01 0.19 1.6% 0.50
A 0.28 0.02 0.34 1.9% 0.49
BBB 0.40 0.05 0.71 3.3% 0.54
BB, below 0.44 0.08 1.72 6.7% 0.56
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median observed bond price is equal to 101.33. As a result, these numbers are
directly comparable to those in Table 1. Of course, when estimating the twomodels
separately, which is what we do next, the full-coupon recovery model may adjust
parameters, resulting in possible biases. However, as we saw in Section IV, when
discussing the bond prices of defaulted companies, an incorrect model not only
produces biased parameter estimates but also results in a worse fit.

B. Model Performance

Following Bakshi et al. (2006), we report mean absolute pricing error to
compare model fit.24 Another alternative could be to measure performance com-
paring yields or credit spreads. We do not choose this route because our analysis of
model misspecification errors and our measure of outperformance focuses specif-
ically on dollar pricing errors, not yields. In addition, one contribution of our article
is to point out that yields and credit spreads should not be used to price bonds.

As noted previously, if bonds are priced according to the no-coupon recovery
model and not the full-coupon recovery model, this has two implications. First, in a
sample of bonds that have large default risk, we should detect that the no-coupon
recovery model has a better fit. Second, the outperformance will be larger when the
two models disagree by more (i.e., when the misspecification errors are larger and
more variable). We next provide evidence supporting both of these implications.
We note that there is nothing mechanical about the relation between misspecifica-
tion errors and model outperformance. If bonds were priced according to the full-
coupon recovery model, we would find that it outperforms the no-coupon recovery
model, and that it does so by more when differences between model implied prices
are larger.

We note that averagemodel outperformancemust, necessarily, be a function of
sample characteristics. What this implies is that we expect a sample with higher
misspecification errors to have higher no-coupon model outperformance. In addi-
tion, it implies that we may find low average outperformance for other sample
characteristics. This is one reason to focus on explaining variation in model out-
performance: to be consistent with the theory, we should find evidence that the
no-coupon model outperforms where we expect it to outperform.

1. Model 1: A Fixed Recovery Rate

We compare the two models after fitting them independently to the data. For
each issuer day, we estimate both the no-coupon and full-coupon recovery models
and calculate the volume-weighted mean absolute error. These average error sta-
tistics are reported in Panel A of Table 4.

As expected, we find that the no-coupon recovery model fits the data better
than the full-coupon recovery model. The mean model outperformance is equal
to 0.07. However, also as expected, there are many observations for which the
error difference is very small (median outperformance is equal to 0.02). At the
same time, there are issuer days with larger pricing error differences. The 95th

24Eom,Helwege, andHuang (2004) calculate percentage pricing errors, and Bakshi et al. (2006) also
report these. In our sample, 90%of prices lie between 95.70 and 110.11; the results are therefore robust to
using percentage errors instead.
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percentile of the outperformance distribution is 0.27. We also report overall
model fit – the no-coupon recovery model has an average dollar pricing error of
0.35.

What is more relevant for the performance comparison is how the models
perform when model prices differ, resulting in misspecification errors. In fact,
having a large misspecification error’s standard deviation within the data sample
is crucial to validating the no-coupon recovery model. When predicted misspeci-
fication errors are small (e.g., because the default probabilities are low), pricing
differences will also be small. Reflecting the large portion of the data with low
misspecification errors, we see that a large fraction of the data also have a low
standard deviation of those errors. The average standard deviation is 26 cents, the
median is 12 cents, and the 25th percentile is 3 cents.

But, even if predicted misspecification errors are large, the full-coupon recov-
ery model may still generate low pricing errors (e.g., if the bonds in the specific
issuer-day sample have very similar predicted misspecification errors). In this case,
the misspecified model will be able to adjust by changing parameters and the
resulting pricing error differences relative to the no-coupon recovery model can
be small, albeit at the cost of biasedmodel parameter estimates. But, if there is a high
variability in the misspecification errors, the incorrect model will fail to fit prices as
well as the no-coupon recovery model.

As predicted, we find that the no-coupon recovery model’s outperformance is
large when the misspecification error’s standard deviation is large. The second set
of results in Panel A of Table 4, first line, is for the subsample of issuer days in the
top quartile of the misspecification error’s standard deviation distribution. In that
group, the minimum misspecification error’s standard deviation is 30 cents and the
mean is 75 cents. Correspondingly, the outperformance (difference in mean abso-
lute errors across the twomodels) is much larger, exactly as our model predicts. The
average outperformance more than triples to 0.22. Even though we are considering
only 25% of issuer days, this sample reflects prices from 51,133 observations,
which is 30.4% of observations, or 5.7 observations per issuer day, compared to 4.7
for the full sample.

Breaking up the sample across credit rating groups, we find, as expected, that
the misspecification error increases with rating. The misspecification error
increases from 0.10 (AA and above) to 0.94 (BB and below). Correspondingly,
model outperformance increases with rating, from 0.03 (AA and above) to 0.23
(BB and below). Themain driver for largermisspecification errors is a larger annual
default probability, which in model 1 is the parameter estimated. It increases from
1.1% (AA and above) to 4.5% (BB and below). These are the parameters for the
no-coupon recovery model.

When estimating the full-coupon recovery model, estimated default probabil-
ities are larger. If they were not, the full-coupon recovery model would produce
prices that are too large on average. We therefore can see the bias introduced when
using the misspecified model. Of course, all models are incomplete approximations
of reality and we can also compare the no-coupon recovery model estimates to
independently estimated default probabilities based on historical data, summary
statistics for which we report below. Those numbers are lower, mainly because
model 1 assumes no variation in illiquidity.
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2. Model 2: A Variable Recovery Rate

We next estimate model 2, which relaxes the constraint on the recovery rate,
but continues to estimate implied default probabilities from bond prices. Adding a
degree of freedom, we expect the overall fit to increase and the no-coupon recovery
model’s outperformance to decrease, because there are now two parameters also in
the full-coupon recovery model, both of which can be biased. Indeed, average
outperformance is equal to 0.03, but that number approximately triples to 0.10
for the highmisspecification standard deviation sample. As before, outperformance
increases with credit rating. We also note that average estimated recovery rate is
close to 50% (restricted value in model 1) both for the full sample and for rating
subsamples.

C. Determinants of the No-Coupon Recovery Model’s Outperformance

We now explore the determinants of the no-coupon recovery model’s out-
performance (the difference between the volume-weighted absolute pricing errors
of the no-coupon and full-coupon models). As discussed in Section III, outperfor-
mance should be related to the misspecification error—if this error is larger, we
expect the outperformance of the no-coupon recovery model to be larger as well.
Panel A of Table 5 reports outperformance for the full sample and several sub-
samples. In Panel B, we regress outperformance on different sets of explanatory
variables in order to explore determinants of the no-coupon recovery model’s
outperformance. On average, the no-coupon recovery model provides a better fit
(also see Table 4). For model 1, pricing errors are 7.2 cents larger when using the
full-coupon recovery model and the difference is statistically significant. We have
already seen that the (in)ability of the full-coupon recovery model to fit the data
reflects its misspecified assumption. Thus, we expect a strong relationship between
the no-coupon recovery model’s outperformance and the misspecification error’s
standard deviation.

We first focus on the subsample with the top 25% of default probabilities. For
that subsample, the average outperformance is 19.1 cents, almost 3 times as large as
in the full sample. This outperformance is even larger when considering the sub-
sample with the largest 25% average misspecification error issuer days. Here the
outperformance is 21.8 cents on average. As expected, the variable finding the
largest outperformance is the misspecification error’s standard deviation. It may be
large because of a large dispersion in maturities combined with large default
probabilities. Themisspecified full-coupon recoverymodel does not have sufficient
degrees of freedom to match the data well. The no-coupon recovery model has, on
average, a 22.4 cent lower pricing error than the full-coupon recovery model.

The pattern is the same, only stronger, when examining the pricing errors in the
top deciles. For large default probability issuer days, the outperformance is equal to
29.5 cents; for the misspecification error, it is equal to 35.4 cents; and for the
standard deviation, it is equal to 37.3 cents. Pricing error differences are large when
the model predicts them to be large. A similar pattern emerges for model 2, though
pricing error differences are smaller throughout, reflecting the additional degree of
freedom (two instead of one fitted model parameter), and resulting potential bias in
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that model. For the top decile of misspecification error’s standard deviations, out-
performance is on average equal to 16 cents, which is highly statistically significant.

We next explore in more detail what determines the size of the no-coupon
recoverymodel’s outperformance. Specifically, we regress pricing error differences
on maturity, coupon, and default probabilities. Together with the recovery rate,
these four variables are the main determinants of the misspecification error. The
recovery rate is fixed in model 1 and is therefore not included, but we do include it
when explaining variation in the outperformance of model 2. Maturity and the
default probability are highly significant with a positive sign; the coupon rate also
has a positive sign but is insignificant.

All variables enter the misspecification error, but they do so in a specific
way. We next include the actual misspecification error and the misspecification
error’s standard deviation into the regression. We expect the dispersion of the
misspecification errors to determine model outperformance. When we include
the misspecification error’s standard deviation, the coefficient on it is highly

TABLE 5

Determinants of Model Outperformance

Table 5 reports the statistics of model outperformance, the volume-weighted average absolute error difference (in dollars)
when comparing the full-coupon recovery model and the no-coupon recovery model. Panel A reports averages for different
samples; Panel B reports results from regressions of model outperformance (i.e., volume-weighted MAE difference) on
different sets of explanatory variables. We report results for both model 1 (fixed recovery rate and variable default
probability) and model 2 (variable recovery rate and default probability). PD is default probability, Miss error is the average
within issuer-day misspecification error, and Miss error SD is its standard deviation. Recovery rate is from the no-coupon
recovery model; coupon andmaturity are averaged at the issuer-day level; Def prob is the fitted default probability. Standard
errors, reported below coefficients, are robust and clustered by issuer and date; ***, **, and * denote significance at the 1%,
5%, 10% levels, respectively.

Panel A. No-Coupon Recovery Model’s Outperformance – Full and Subsamples.

Sample Full
PD Top
Quartile

Miss Error
Top Quartile

Miss Err SD
Top Quartile

PD Top
Decile

Miss Error
Top Decile

Miss Err SD
Top Decile

Model 1 (fixed recovery rate, variable PD) outperformance (in dollars)

Average 0.072*** 0.191*** 0.218*** 0.224*** 0.295*** 0.354*** 0.373***
(0.014) (0.038) (0.038) (0.037) (0.088) (0.080) (0.077)

Model 2 (variable recovery rate and PD) outperformance (in dollars)

Average 0.032*** 0.091*** 0.100*** 0.100*** 0.126*** 0.162*** 0.160***
(0.005) (0.014) (0.014) (0.014) (0.029) (0.028) (0.029)

Issuer days 35,635 8,909 8,909 8,909 3,563 3,564 3,564

Panel B. Determinants of Variation in Outperformance (No-Coupon Relative to Full-Coupon Recovery).

Model 1 Model 2

Maturity 0.031*** �0.011 0.015*** 0.003
(0.005) (0.009) (0.002) (0.003)

Coupon 0.009 �0.021** 0.013** 0.006***
(0.008) (0.009) (0.006) (0.002)

Def prob 6.378*** 1.658 0.309 �0.634**
(1.867) (1.028) (0.197) (0.282)

Recovery 0.069*** 0.032**
(0.011) (0.015)

Miss error 0.050* �0.007
(0.028) (0.018)

Miss err SD 0.312*** 0.373*** 0.068*** 0.057***
(0.050) (0.047) (0.025) (0.013)

R2 0.371 0.606 0.584 0.187 0.415 0.382
Issuer days 35,635 35,635 35,635 35,635 35,635 35,635
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significant, while the coefficients on all the other variables becomes either
indistinguishable from zero or switches sign. The R2 of the regression increases
from 37.1% to 60.6%. Dropping all the other variables and keeping only the
misspecification error’s standard deviation in the regression results in a similar
fit of 58.4%.

The ability of the misspecification error’s standard deviation to explain the
variation inmodel outperformance is direct evidence supporting our hypothesis that
bondmarket prices are consistent with the no-coupon recoverymodel instead of the
full-coupon recovery model. When fitting model 2, the results are very similar. All
four variables individually enter with the expected sign. When the misspecification
error’s standard deviation is included along with the average misspecification error,
the coefficients drop in size by more than half or become negative. As before, the
regression R2 increases dramatically from 18.7% to 41.4%, and it is only slightly
smaller at 38.2%when only the misspecification error’s standard deviation remains
in the regression.

To summarize, our analysis provides strong evidence that the pricing error
differences between the two models are statistically significant for the full sample.
Importantly, variation in model outperformance occurs exactly when the model
predicts it. This evidence is for a sample consisting of 93.5% investment grade debt
(98.7% with a rating of BB+ or above) and thus one where market participants
perceive default is not imminent.

D. Outperformance over Time

We have documented the no-coupon recovery model’s outperformance in the
full sample and in subsamples. We next consider the time variation in its out-
performance. Each week, we calculate average outperformance and the average
misspecification error’s standard deviation for all issuer days. Figure 4 plots the
time series of the no-coupon recovery model’s outperformance based on model
1. There is some noticeable time variation. Toward the end of 2018 and in the
beginning of 2019, the model’s outperformance increases, reaching a local peak of
about 11 cents. This episode happened contemporaneously with a stock market
downturn and a corresponding increase in volatility and default probabilities. Then,
at the beginning of the pandemic in early 2020, we see a large increase in model
outperformance reaching a weekly average of 37 cents. Toward the end of the
sample, in 2022, the average outperformance reaches 24 cents. Note also that the
average outperformance of the no-coupon recovery model is positive throughout
the sample.

As reported in Table 5, themisspecification error’s standard deviation explains
58%of the variation in no-coupon recoverymodel’s outperformance. Usingweekly
averages—the data from the figure—results in an R2 of 79%. We note that, during
the pandemic, there is a lot of variation in both outperformance and the misspeci-
fication error’s standard deviation; during that time the relationship is weaker (R2 of
64%). Figure 5 plots weekly averages outside of 2020.We find a clear linear relation
between the outperformance and the misspecification error’s standard deviation;
the R2 of this relationship is 93%. In short, model outperformance is large when we
expect it to be large.
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For model 2, the pattern outside of 2020 is very similar even though the
average outperformance is lower (see Tables 4 and 5). However, during the height
of pandemic (Mar. 2020), the relationship between outperformance and the mis-
specification error’s standard deviation is no longer present when using model
2. This may be due to the additional degree of freedom in that model and reflects
the lower overall no-coupon recovery model’s outperformance. Using a more
constrained model with a historically estimated default probability and in which

FIGURE 4

Outperformance and Misspecification Error’s SD over Time (Model 1)

Figure 4 shows theweekly averages formodel 1, where outperformance is the difference in volume-weighted absolute pricing
errors (in dollars) of the no-coupon recovery relative to the full-coupon recovery model, and misspecification_SD is the
average of the issuer-day misspecification error’s standard deviation.
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No-Coupon Recovery Model’s Outperformance Outside of 2020 (Model 1)

Figure 5 shows theweekly averages formodel 1, where outperformance is the difference in volume-weighted absolute pricing
errors (in dollars) of the no-coupon recovery model relative to the full-coupon recovery model, and misspecification_SD is the
average of the issuer-day misspecification error’s standard deviation.
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we estimate the recovery rate (discussed below) results in a strong relationship
between model outperformance and the misspecification error’s standard deviation
in 2020.

E. Model 3: Using a Historically Estimated Default Probability and an
Illiquidity Discount

In models 1 and 2, the default probability is estimated implicitly. We now use
historically estimated default probabilities from a proportional hazard rate model
as an input (as discussed in Section IV.A.2). The data are from the KRIS division
of SAS Institute, Inc. We also allow for an effect of illiquidity (as discussed in
Section II.B).

Table 6 reports estimation results. The no-coupon recovery model’s mean
average pricing error is equal to 0.29, slightly lower than model 2. The average
misspecification error is equal to 0.21, and the average no-coupon recoverymodel’s
outperformance is 0.02. When focusing on the large misspecification error’s stan-
dard deviation subsample, the no-coupon recovery model’s outperformance more
than triples and is equal to 0.07.

The median annual default probability used as an input to the model is 0.7%,
and the mean is equal to 1.3%.25We estimate the mean recovery rate as 49%, in line
with the restriction in model 1 and the mean recovery rate in model 2. The mean
illiquidity parameter is �0.4%. It is useful to note that both the recovery rate and

TABLE 6

Fit and Parameters When Using Historically Estimated Default Probability as an Input

Table 6 reports results when using historically estimated default probability as an input, and there is an illiquidity effect on all
cash flows (see the text for additional details). As before, recovery rate is constrained to lie between 0.1 and 0.8; the effect of
illiquidity lies between 0 and �5%. Estimation is done minimizing the volume-weighted squared pricing error. All data are
reported at the issuer-day level. Mean absolute error (MAE) is the no-coupon recovery model’s volume-weighted error (in
dollars) for a given issuer day. MAE diff is the difference between the MAEs of the full-coupon recovery model and the
no-coupon recovery model. Avg miss error is the average misspecification error, Default probability (annual) is the maturity-
weighted historically estimated default probability (from Kamakura Risk Information Services division of SAS Institute), and
Illiquidity andRecovery rate are both fitted. In Panel B,we reportmodel fit statistics for a subsample of issuer-day observations
for the subsample with the top 25% of within issuer-day misspecification error’s standard deviation and for four rating
groups.

Panel A. Model 3 (Fitted Recovery Rate and Illiquidity, Historically Estimated PD).

Mean Abs Error
(MAE; in Dollars)

MAE Difference
(in Dollars)

Avg Miss
Error

(in Dollars)
Default

Probability Illiquidity
Recovery

Rate

Mean 0.29 0.02 0.21 1.3% �0.42% 0.49
p5 0.00 �0.03 0.00 0.1% �1.50% 0.10
p50 0.15 0.00 0.05 0.7% �0.26% 0.54
p95 1.01 0.15 0.97 4.2% 0.00% 0.80
No. of issuer days: 35,635

Panel B. Subsamples – High Misspecification Error’s Standard Deviation, Rating Groups

Top quartile miss
SD

0.60 0.07 0.70 3.1% �0.65% 0.70

AA, above 0.17 0.01 0.06 0.6% �0.27% 0.48
A 0.24 0.02 0.18 1.0% �0.29% 0.49
BBB 0.42 0.02 0.29 2.0% �0.48% 0.51
BB, below 0.43 0.02 0.43 2.1% �1.37% 0.49

25These probabilities lie below estimated default probabilities inmodels 1 and 2. Thosemeasures are
higher because we do not include an illiquidity discount in those models.
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illiquidity estimates are reasonable. This is, of course, not guaranteed, given that our
estimates are implicitly estimated using the traded bond prices and the no-coupon
recoverymodel. Jankowitsch, Nagler, and Subrahmanyam (2014) report an average
recovery rate value of 0.38. Since our recovery rate is in fact the recovery rate
futures price, as shown in the Supplementary Material, it is expected that our
estimate should be slightly larger than these estimates. In Panel A of Table 6, we
report full-sample illiquidity estimates of 0.26% (median) and 0.42% (mean).
Though somewhat lower, these are broadly consistent with, for example, the spread
between Aaa-rated corporate bonds and Treasury debt. We next discuss variation in
the estimated illiquidity parameter over time and note that it also spikes in Mar.
2020, similar to the Aaa–Treasury spread.

F. Time Variation in Parameter Estimates

We next study the illiquidity and recovery rate parameter estimates over time.
Before proceeding, it is useful to get a sense of what kind of variation is present in
the default probabilities (which are an input to the model). Figure 6 reports monthly
average default probabilities over the sample period. Two important drivers of
default probabilities are volatility and leverage (see, e.g., Merton (1974), Jarrow
(2009), and Guha et al. (2020)), which we also plot. Variation in default probabil-
ities over time is dominated by the effect of the pandemic in 2020. It is also notable
that variation in default probabilities is tracked by variation in stock return volatility,
while book leverage remains close to constant throughout the sample period.

Figure 7 plots weekly average illiquidity, based on the full estimation sample
(Table 6). We notice a slight increase in late 2018 and early 2019. Themore striking
and larger increase in the estimated illiquidity parameter occurs at the beginning of
the pandemic. Average illiquidity increases to just under 3%. This increase is

FIGURE 6

Probability of Default (Historically Estimated), Leverage, and Volatility over Time

Figure 6 shows themonthly averages of historically estimated annual default probabilities (averaged acrossmaturities), book
leverage (total liabilities divided by total assets), and stock return volatility (SIGMA). Data provided by Kamakura Risk
Information Services (KRIS).
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matched by an increase in the Aaa–Treasury spread, which we also plot in the
figure. We interpret the Aaa–Treasury spread as a related measure of illiquidity.
Indeed, as is evident from the figure, the two series move together; the correlation is
equal to 65% (in levels, 79% in changes). The close relationship between the Aaa–
Treasury spread provides independent validation of our model and its implied
corporate bond illiquidity measure.

There is also considerable variation in the illiquidity parameter across ratings.
Figure 8 shows the weekly average illiquidity discounts at a monthly frequency
across rating groups, again based on the full estimation sample. The three

FIGURE 7

Model Illiquidity and Aaa–Treasury Spread

Figure 7 shows the weekly averages of illiquidity estimated from model 3 and the Aaa–Treasury spread from FRED.
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FIGURE 8

Illiquidity Across Credit Rating Groups

Figure 8 shows themonthly averages of illiquidity estimated frommodel 3, calculated across rating groups: AA and above, A,
BBB, and BB and below.

(mean) liq_AA

(mean) liq_BBB

(mean) liq_A

(mean) liq_BB

2017m7

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

2018m7 2019m7

Date_Monthly

2020m7 2021m7 2022m7

28 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109024000401  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109024000401


investment grade groups have somewhat similar illiquidity levels, while the non-
investment grade’s group has noticeably larger illiquidity and is also less correlated
with the other three groups.26

The average recovery rates over time are plotted in Figure 9. The fact that there
is no recovery of coupons in the event of default means that recovery rates can be
inferred directly from bond prices. This is an important empirical novelty compared
to an inability to disentangle recovery rates and default probabilities if equal
seniority is assumed for coupons and principal, and there is a single spread used
to discount all cash flows. There is not much variation over time, supporting the
assumption of a fixed recovery rate inmodel 1. Indeed, there is also little variation in
average recovery rate across rating groups (Panel B of Table 6).

We can use these estimates to interpret what happened during the height of the
COVID-19 pandemic. Figure 10 plots the weekly averages of recovery rates and
illiquidity parameters in 2020. From Figure 6, we already know that the historically
estimated default probabilities increased dramatically in early 2020. We can now
see that therewas also a dramatic increase in illiquidity, from an average of 0.18% in
January to a maximum of 2.8% in the second half of March. There is a modest
increase in recovery rates from close to 55% in January to 68% in March, perhaps
due to an increased market focus on short-term liquidity-induced defaults, which
may have been perceived to result in slightly lower levels of loss in the event of
default. Bond prices can decline either because of higher default probabilities,
lower recovery rates, or higher illiquidity. Our estimates suggest that, at least during
Mar. 2020, the two main effects were a loss of liquidity and an increase in default
probabilities.

FIGURE 9

Average Recovery Rate over Time

Figure 9 shows the weekly average recovery rate estimated from model 3.
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26Investment grade illiquidity averages lie below the Aaa–Treasury spread (see Table 6) suggesting
that, although the two measures are highly correlated in levels and changes, they do not capture exactly
the same market friction.
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G. Out-of-Sample Model Performance

Our analysis so far is based on fitting the pricingmodel in-sample. A concern
is that in-sample model fit statistics can be biased by overfitting noise in the data.
To address this issue, our focus was on relative performance. We measured if the
no-coupon model had a lower overall error as compared to the full-coupon
recovery model. Both models have the same number of parameters and a similar
structure. Unless we believe that there is a differential bias in the model fit
statistics, our measure of outperformance should not be affected by the in-sample
methodology.

Nevertheless, it is useful to check relative model performance using an out-of-
sample pricing approach as well. For each issuer day, we split the sample of bonds
into two groups of equal or close to equal size (if there are an odd number of
observations, one group will be slightly larger than the other). One group is the
estimation sample that is used to calculate the models’ parameters – default prob-
ability, recovery rate, and illiquidity. We take these estimated parameters and
compute fitted prices for the other group’s observations, the out-of-sample group.
We fit both the full-coupon and no-coupon recovery models in this way. In order to
ensure that we can estimate the parameters in this manner, we restrict attention to
issuer days with at least four observations; that way each group always contains at
least two observations. We repeat the process but switching the observation groups
so that the second group of bonds on that issuer day (that we previously used for out-
of-sample fitting) is now used for estimation purposes. In this way, when calculat-
ing each bond price, we are using parameters that are estimated using a different
sample (on the same day, but including different bonds), while at the same time
ensuring that we can work with a large data set of out-of-sample model prices. To
ensure that the samples are comparable, groups are assigned based onmaturity rank.

We estimate all three model implementations, models 1–3. We report full-
sample no-coupon recovery model’s outperformance as well as outperformance for

FIGURE 10

Recovery Rate and Illiquidity in 2020

Figure 10 shows the weekly averages of illiquidity and recovery rate estimated from model 3.
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the sample with large misspecification error’s standard deviations. Panel A of
Table 7 reports summary statistics. All three models show the no-coupon recovery
model’s outperformance, and in each case, the magnitude of the outperformance
increases substantially for the sample with large misspecification error’s standard
deviation observations. These are the main two patterns previously identified, and
both are present when using this out-of-sample estimation approach. We find that
average outperformance is highly statistically different from zero (Panel B) for all
three models and for the full sample as well as the large misspecification error’s
standard deviation subsamples. Panel C reports average outperformance across
rating groups. As the credit rating increases, the no-coupon recovery model’s
outperformance also increases, consistent with the in-sample estimation results.

We have performed several additional robustness tests, including a quasi-
simulation regarding biased parameter estimates in the full-coupon recoverymodel,
larger daily observation cutoffs, grouping observations by month, and using alter-
native recovery rate estimation bounds. We discuss these robustness checks in the
Supplementary Material.

VII. Conclusion

This article presents evidence that the common corporate bond pricing assump-
tion of equal seniority of principal and coupon payments is not supported by market
transaction prices. We propose a tractable coupon bond valuation model, which

TABLE 7

Model Outperformance Based on Out-of-Sample Fitting

Table 7 reports results when the three models are fit out-of-sample. For each issuer day, we choose one half of the
observations (based on maturity rank) for estimation and calculate out-of-sample prices for the other half. The exercise is
then repeated using the other half of the observations so that each issuer day has a full set of out-of-sample prices, that is,
model prices that are calculated from a sample of observations not including the one for which we compare model to actual
price. We require a minimum of four observations for each issuer day, ensuring that parameters are calculated based on a
minimum of two prices. Panel A reports summary statistics for the full sample and for the top quartile of misspecification error’s
standard deviation. Panel B reports means and standard errors when regressing no-coupon recovery model’s
outperformance (i.e., differences in volume-weighted mean absolute errors) on a constant, using standard errors that are
robust and double clustered by issuer and date (same as in Table 5). Panel C reports average outperformance across four
rating groups.

Panel A. Out-of-Sample Outperformance (in Dollars) of No-Coupon Recovery Model.

Model 1 Model 2 Model 3

Sample Full
High Miss Error

SD Full
High Miss Error

SD Full
High Miss Error

SD

Mean 0.09 0.24 0.02 0.05 0.04 0.14
Median 0.04 0.18 0.01 0.03 0.01 0.10
SD 0.23 0.43 0.14 0.27 0.17 0.31
No. of issuer days 18,708 4,677 18,708 4,677 18,708 4,677

Panel B. Statistical Significance of Average Outperformance (in Dollars, Full and Subsample).

0.087*** 0.236*** 0.023*** 0.045** 0.043*** 0.143***
(0.016) (0.038) (0.006) (0.019) (0.015) (0.036)

Panel C. Average Out-of-Sample Outperformance (in Dollars) Across Rating Subsamples.

Model 1 Model 2 Model 3

AA, above 0.04 0.01 0.02
A 0.08 0.01 0.05
BBB 0.10 0.03 0.04
BB, below 0.30 0.10 0.06
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includes a more realistic recovery rate process that distinguishes between coupon
payments received before and after default. This setup has important advantages that
support our empirical investigation. i) The model implies that a single spread or
spread term structure cannot be used to discount all cash flows. Instead, seniority-
specific discount rates reflect different recovery rates for principal and coupons. ii)
The model has a clear prediction about the importance of modeling the market
practice of zero recovery paid on coupons after default.We calculatemisspecification
errors – those resulting from using the full-coupon recovery model rather than the
no-coupon recoverymodel.When these errors are large, differences in the no-coupon
and the full-coupon recovery model’s predictions are larger. Misspecification errors
are shown to depend directly on the coupon, recovery rate, default probability, and
time to maturity, and they can be substantial in size.

We find that our no-coupon recovery model’s predictions are reflected in a
large data set of bond transaction prices, evidence thatmarket prices of risky coupon
bonds reflect zero coupon recovery after default. The model has a clear prediction
when no recovery on coupons after default is relevant for pricing and when it is less
important. Indeed, if default probabilities, coupons, recovery rate, or maturity are
small, then the effect of the differing coupon recovery assumptions has only a very
small impact.We find evidence supporting this predictionwhile also identifying our
model’s outperformance in the full sample.

We document that model outperformance is closely related to the misspecifi-
cation error’s standard deviation within the estimation sample (generally an issuer
day).When that standard deviation is large, our model predicts that bond prices will
be the most affected by the erroneous assumption of full-coupon recovery after
default. The fact that the misspecification error’s standard deviation explains model
outperformance well is thus direct evidence supporting the no-coupon recovery
model. Separately, we find that the no-coupon recovery outperformance is evident
when considering bond prices of companies in bankruptcy. Model outperformance
is also higher for non-investment grade issuers.

Finally, ourmodel allows for direct estimation of implied recovery rates and an
illiquidity parameter’s effects on bond prices. Average recovery rates, though a little
higher, are generally in line and consistent with the previous literature. When the
COVID-19 pandemic hit markets in Mar. 2020, both the Aaa–Treasury and our
illiquidity parameter spiked (see also Kargar et al. (2021)). In the crisis, default
probabilities increased, bond prices dropped, and illiquidity increased markedly.
Indeed, we find that variation in our illiquidity parameter has a strikingly close
relationship to the Aaa–Treasury spread, a standard measure of corporate bond
illiquidity. The close relationship between the two measures, neither of which uses
the same data normethodology to compute, provides independent validation for our
pricing model.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109024000401.
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