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Cross helicity in stellar magnetoconvection
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Abstract. Magnetic diffusion is a key ingredient in mean-field dynamo models but neither
observations nor theory are able to produce reliable values. Numerical simulations provide an
alternative way to determine the turbulent electromotive force. Cross helicity allows us to de-
termine the turbulent magnetic diffusion coefficient in simulations of stellar magnetoconvection.
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1. Introduction
Mean-field MHD has successfully modelled the solar differential rotation and many

aspects of its activity cycle. In this formulation of MHD, the mean magnetic field is
governed by the induction equation

∂〈B〉
∂t

= ∇× (〈u〉 × 〈B〉 − η∇× 〈B〉 + 〈u′ × B′〉) (1.1)

where η is the magnetic diffusion coefficient, brackets indicate mean (i.e. averaged) quan-
tities and primes the fluctuations. Eq.1.1 is formally identical with the standard induction
equation except for the last term on the right hand side, the turbulent electromotive force.
The latter can be expressed in terms of the mean field:

〈u′ × B′〉 ≈ α〈B〉 − ηT 〈∇ × B〉. (1.2)

The first term on the RHS is the field-generating α effect caused by kinetic helicity and
the second term is turbulent diffusion. While the α effect is caused by the Coriolis force,
the turbulent magnetic diffusivity exists in non-rotating turbulence, too. Both the α and
ηT coefficients depend on statistical properties of the fluctuations only.

The kinetic helicity on the solar surface has been measured by Komm et al. (2008).
The magnetic diffusivity can be derived from the decay of sunspots. However, these are
areas with strong magnetic fields and the diffusivity is quenched by the back-reaction
of the magnetic field on the fluid. The magnetic diffusivity for the quiet Sun can be
determined by measuring the cross helicity, 〈u′ ·B′〉. The component involving the radial
components of the gas velocity and the magnetic field can be expressed in terms of the
radial component of the mean magnetic field (Rüdiger et al. 2011):

〈u′
rB

′
r 〉

〈Br 〉
� − ηT

Hρ
, (1.3)

where Hρ is the density scale height. Eq. 1.3 allows the determination of the turbulent
magnetic diffusivity coefficient from measurements of the radial velocity and magnetic
field components provided the density stratification is known.
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2. Numerical simulations
Rüdiger et al. (2011) studied the cross helicity in forced turbulence and found it to

be anti-correlated with the radial magnetic field, as required by Eq. 1.3 for a positive
magnetic diffusivity. Here we check if this result holds for convection. We therefore run
numerical simulations using the Nirvana code (Ziegler 2002), which uses a conservative
finite difference scheme in cartesian coordinates. The code solves the equation of motion,
the induction equation, and the equations of energy and mass conservation. We assume
an ideal, fully ionized gas that is heated from below and kept at a fixed temperature
at the top of the simulation box. Periodic boundary conditions apply at the horizon-
tal boundaries. A homogeneous vertical magnetic field is applied. The upper and lower
boundaries are impenetrable and stress-free.

In the dimensionless units described there the size of our simulation box is 6 × 6 × 2
in the x,y, and z directions, respectively. As we treat the non-rotating case, the z axis
is aligned with the stratification vector, i.e. represents the radial direction in spherical
geometry. The x and y coordinates denote the horizontal directions. The stratification of
density, pressure, and temperature is piecewise polytropic as described in Ziegler (2002).
Similar setups have been used by Cattaneo et al. (1991), Brandenburg et al. (1996), Chan
(2001), and Ossendrijver et al. (2001). The initial state is in hydrostatic equilibrium but
convectively unstable in the upper half of the box. The z coordinate is negative in our
setup, with z = 0 at the upper boundary. The stable layer thus extends from z = −2 to
z = −1, the unstable layer from z = −1 to z = 0. The density varies by a factor 50 over
the depth of the box, i.e. the density scale height is 0.5.

The initial magnetic field is vertical and homogeneous. We run the simulations until
a quasi-stationary state evolves. Our control parameters are the heat conduction coeffi-
cient, κ, the Prandtl number, Pr= ν/κ, where ν is the viscosity, the magnetic diffusivity
coefficient, η, and the strength of the initial magnetic field, B0 . Convection sets in if the
Rayleigh number,

Ra =
ρgcpd

4

Tκν

(
dT

dz
− g

cp

)
, (2.1)

with the density ρ, the specific heat capacity cp , the gravity force g, and the length scale
d, exceeds a critical value. The length scale is defined by the depth of the convectively
unstable layer, i.e. d = 1.

3. Results
The velocity field shows the asymmetry between upwards and downwards motion char-

acteristic of convection in stratified media. The downward motion is concentrated at the
boundaries of the convection cells and particularly at the corners. The upwards motion
fills the interior of the convection cells. As it covers a much larger area the gas motion
is much slower than in the concentrated downdrafts. The magnetic field shows a similar
pattern. The vertical field is concentrated in the areas with downwards motion and weak
in the areas with upward motion. As the total vertical magnetic flux is conserved, this is
the result of field advection.

Figure 1 shows results from a run with rather weak magnetic field, B0 = 10−5 , and
Ra= 6 × 107. The value of the magnetic Prandtl number, Pm= ν/η, is 0.1. The left
diagram shows the horizontal average of the cross helicity as a function of the depth,
the right diagram shows the vertical (z) component, 〈u′

zB
′
z 〉. The difference between the

two quantities is very small, with the vertical component actually being slightly larger
than the sum of the vertical and horizontal correlations. It is thus a good proxy for
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Figure 1. Horizontally-averaged cross helicity as a function of depth. Left: full cross helicity.
Center: correlation of the vertical components of the magnetic field and gas velocity.

the full cross correlation. The correlations do not vanish abruptly at the bottom of the
unstable layer because of overshoot, which affects the upper half of the stable layer. The
correlations are positive and much smaller than in the unstable layer.

As the density scale height and the magnetic diffusivity are both positive quantities,
Eq. 1.3 can only be fulfilled if the (vertical) cross correlation and the mean magnetic field
have opposite signs. This is indeed the case. For positive values of the mean magnetic
field 〈Bz 〉 the cross-helicity is negative in the unstably stratified layer. If the field polarity
is reversed and everything else left unchanged the cross correlation becomes positive with
the same amplitude as in the case shown.
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