A DUAL FORM OF KURATOWSKI'S THEOREM
Frank Harary and William T. Tutte
(received May 11, 1964)
The celebrated criterion of Kuratowski [2] for the planarity

of a graph G involves the determination of whether G contains

a subgraph homeomorphic to K5 or K3 3 shown in Figure 1.

Figure 1
The well-known '"Petersen graph', shown in Figure 2,
looks suspiciously like Kg but nevertheless contains no subgraph
homeomorphic to Kg. Its nonplanar character may be confirmed

by verifying the occurrence of a homeomorph of K; 3 in it.

Y,

Figure 2

Our object in this note is to present a variation of
Kuratowski' s Theorem whereby it is possible to test a graph
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for planarity by contracting connected subgraphs into single
vertices. The statement of this result includes Kuratowski's
criterion since homeomorphic reduction is a special case of
contraction. Note that the contraction of each connected sub-
graph (edge) u, v in Figure 2 into a single vertex results in KS.

Let E(G) be the set of edges of a graph G and let V(G)
be its vertex set. For any set S of edges of G, we write
S=E(G) - S. We write G:S for the subgraph H of G defined
by V(H) =V(G) and E(H) =S. The reduction G-S of G to S
is obtained from G:S by deleting its isolated vertices.

Let C(S) be the set of components of G:S. The contraction
G XS of G to S is a graph such that V(G X S) = C(S) and
E(G X S)=S. The ends of an edge A of G XS are the members
of C(S) containing an end of A in G. The notation [u], [v],.
will be used later for the vertices of a contraction.

In the case of planar graphs it can be verified that reduction
and contraction are dual operations. Even for general graphs
theyv are dual in the sense of matroid theory [3].

A subcontraction of G is a reduction of a contraction of G.
Such a graph can also be realized as a contraction of a reduction
of G. In[4], formulas are given which are general rules for

inverting the orders of contractions and reductions.

THEOREM. A graph is nonplanar if and only if it has
K_or K as a subcontraction.
5 3,3
The usual version of Kuratowski's theorem asserts that
a graph G is nonplanar if and only if it contains a graph H
hemeomorphic tc Kg or K3, 3- If this condition is fulfilled
it is clear that G has a K5 or a K3’ 3 as a subcontraction.

Conversely suppose G has a subcontraction H=(G-S) X T
which is @ K3 3. Consider a vertex [v] of H incident with
three edges Ay, A, and Az. Then [v] is a connected subgraph
of G-S. Let its vertices incident in G with A1, A2 and A3
be VY, and Vs, respectively.

U vy, v, and vy are distinct we can find a vertex v of

[v] joined to vy Vs and v, by arcs Li' Lz and L3 respect-
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ively, in [v], so that no two of the L; intersect except for the
common vertex v. We can make the same assertion if two of
the vy coincide, say vy =V, Then v =Vy =Yy, and I_,1 and
L, are trivial graphs, i.e., consist of one vertex only.

if VyEV, TV, then L3 is also a trivial graph.

Applying this construction to all the vertices of H we can
replace H by a subgraph of G -S, with vertices such as v,
which is a homeomorph of K3 3

A similar argument applies when G has a subcontraction
H=(G:-S) XT whichisa KS' Then we may consider a vertex
[v] of H incident with four edges Ay, Ay, Az and Ay, with
ends v,, vy, v3 and v, (in G) belonging to [v]. It may be
possible to find a vertex v of [v] which can be joined to
Vg Vi V3 and v4 by arcs which meet only at v. If this can
be done for all 5 vertices of H, then G contains a homeomorph
of K_.

5

In the remaining case we may suppose that in one vertex
[v] of H the vertices v; can be joined up as in Figure 3.

In this figure, Wy W, W3 and Wy represent the other vertices
of H, to be considered here as connected subgraphs of G -S.

Let A be one of the edges of the arc uy u,.  Let S, be
the set obtained from S by deleting the edges Wy ws
Call T, the set obtained from T by deleting the edges Wy w
and w, w, and then adjoining A. Clearly (G - S xXT, isa
completing the proof of the theorem.

and Wy W,
3

K, 5
3,3

v, v
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We have illustrateda this theorem carlier by applying it to
the Petersen graph shown in Figure 2. Note that the following
stronger statement may be made: A graph is non planar if and
only if it has K5 or K3 3 as a contraction.

The above considerations may perhaps be relevant to the
problem of extending Kuratowski's Theorem to surfaces other
than the sphere. I.N. Kagno [1] has given incomplete lists of
minimal graphs not realizable in the projective plane and the
torus. Here the term ""minimal' is used in the sense that G
is not realizable in S but all its subgraphs are. Perhaps we
should replace the word '"subgraph'' by '""subcontraction' in this
definition. This would presumably make the list of minimal
graphs, if finite, shorter.
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