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On three-Engel groups

L.-C. Kappe and W.P. Kappe

The following conditions for a group G are investigated:

(i) maximal class n subgroups are normal,

( i i) normal closures of elements have nilpotency class n at
most,

( i i i ) normal closures are n-Engel groups,

(iv) G is an (n+l)-Engel group.
Each of these conditions is a consequence of the preceding one.
The second author has shown previously that all conditions are
equivalent for n = 1 . Here the question is settled for n = 2
as follows: conditions ( i i ) , ( i i i ) and (iv) are equivalent.
The class of groups defined by (i) is not closed under
homomorphisms, and hence (i) does not follow from the other
conditions.

1. Introduction

Engel groups are certain generalized nilpotent groups which have
received considerable attention in recent years. Introducing commutator

notation, [y, x] = Q/, ^ J = y'^x'^yx , \y, n+1«] = [Q/, n«J , x] and

[x1, . . . , xn, xn+1] = [[xx x j , xn+1] , nilpotency of class n at

most is defined by

A group G is called an n-Engel^group if i t satisfies the seemingly
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weaker condition

Q/> M*] = 1 for all x, y (. G .

Research on Engel groups has centered mainly on the question whether

w-Engel groups are nilpotent or locally nilpotent and on finding

restrictions on the class of nilpotent w-Engel groups. See, for example,

VI, [2], C3], [5], [«] , [9].

Engel conditions also occur quite naturally if a group is covered by a

system of normal subgroups of given class or, more generally, by suitable

normal Engel subgroups. This observation motivates the investigation of

groups defined by one of the following conditions:

(i) maximal class n subgroups of G are normal;

(ii) <x > has class n at most for x € G ;

( i i i ) < x > i s an w-Engel group for a l l x € G ;

(iv) G i s an («+l)-Engel group.

I t i s easily seen that for arbitrary n each of the conditions l i s t ed i s a

consequence of the preceding one. Moreover, for n = 1, Satz I I of [7]

shows that (iv) in turn implies ( i ) , so that for n = 1 a l l conditions are

equivalent. For other values of n the interrela t ions of these conditions

seem to be unknown at present.

In th i s paper the question will be se t t led for n = 2 . We wi l l show

tha t conditions ( i i ) , ( i i i ) , (iv) are equivalent, and that the class of

groups defined by ( i ) i s not closed under homomorphisms. Thus ( i ) i s not a

consequence o f the other conditions. Moreover, examples show that ( i )

does not imply obvious res t r ic t ions on the commutator or power structure of

such groups.

I t should be noted that for n = 2 our result also shows that the

var ie ty given by ( i i ) , while obviously defined by the 3-variable law

[ar , x , x\ , may be al ternatively described by a 2-variable law

As a corollary we observe that an n-generator 3-Engel group has

class 2rc at most. In view of the results of Heineken [3], this only has
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nontrivial implications if the group contains elements of 2-power or

5-power order. The result had been previously established in [6] for

3-Engel groups of exponent h .

Notations

< X > = subgroup generated by the set X ;

< x > = normal closure of a; in G = < g xg \ g (. G > ;

[X, Y] = <[x, y] I x € X, y € Y> ;

A x B = direct product of groups A and B ;

Z(G) = center of G ;

c(G) = nilpotency class of G ;

Gn = [ G n _ 1 , G] , G1 = G , G' = [G, G] and G" = [ G \ G1 ] ;

I k \ ku v(G) ~ \9^ I 9 € G ) f o r a Prime power p .p,< \ 1

The following commutator identities are used without further reference:

[ab, 0] = [a, a] [b, a] = [a, o][a, a, b][b, 0] ,

[a, be] = [a, c][a, b]° = [a, a][a, b][a, b, a] ,

la'1, bfia, b] = 1 , [a, b][b, a] = 1 .

2. Normal closures i n 3-Engel groups

The following preliminary results are useful in evaluating certain

commutator relations.

LEMMA 1. Suppose a I H is such that a[(aH)) S 3 and pi, ̂ a] = 1

for all h i H . Then

(1) [ s , a, a] = 1 for all z t <a1) .

If

Proof. Let z , z^ 6 < a > . Then

s ^ , a, a] = [3^ a, a] [>2, a, a] .
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Hence the elements z £ < a > such that [z, a, a] = 1 form a subgroup V

H h
of (a > . Clearly a € V and [ft, a] € V by assumption. Thus a € V

13

for a l l h i H ; consequently < a > = V .

LEMMA 2. Let a, d d H be such that

(a) H is a 3-Engel group;

(b) (gH>3cZ(H) for g = a, d, ad .

Then for z € < a > we have

(2) [z, a, d, a] = [a, a, d, a**] ,

(3) [2, d, ad, a] = 1 ,

(*0 [a, a, d, a ] 2 = 1 .

Proof. These r e s u l t s follow from expanding [z, ad, ad, ad] = 1 .

For l a t e r use we record some of the in t e rmed ia t e s t e p s .

(5) [z, ad, a] = [a, d, a][[z, a]d, a] ,

(6) [ a , ad, d] = [ 2 , d , d][z'a] \[z, a], d\d ,

( 7 ) [z, ad, ad] = [z, d, d ] [ z > a ] [z, a, d]d[z, d, a]d[[z, a]d, a]d .

Denote the factors on the right side of (7) by z. , z^, 3 , and s, . 3y

(b) and the observation that < a V c (a V = 1 we have

[3, ad, ad, t] = [ s ^ t] [s2> i] [z^, t][zh, t] for t = a, d .

lifications:

, a, d, d, a] and

For the individual terms we find the following simplifications:

D V a3 = D 3 d ] = 1 [s a] = [z a «̂

[z1, a} = [ s , d, d, a][z, d, d, a ,d ] by CW. Fur the r

[z1, d] = [ 3 , d, d, d] = 1 by (b) and f a ; , and [ s 2 > d] = [z, a, d, d] by

(a). F i n a l l y [zy d] = [z, d, a, d] by ( l ) , and
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[3 , a ] = [z, d, a, a][z, a, a, d, a ] = [z, d, a, d, a] b y (b) a n d ( l ) .

Combining these results we have

(8) 1 = [z, ad, ad, ad] = f(z, a, d)g(z, a, d) for a l l z € (a > ,

where

f(z, a, d) = [z, a, d, d][z, d, a, d][z, d, d, a][z, a, d, a] ,

g(z, a, d) = [z, d, d, a, d][z, d, a, d, a][s, a, d, d, a] .

I f y € <aH) a n d 3 = [y, a] , t h e n f([y, a], a, d) = [y, a, d, d, a]

a n d g([y, a], a, d) = 1 b y (b). T h u s ( 8 ) y i e l d s

( 9 ) [y, a, d, d, a] = 1 for a l l y € < aR > .

Therefore by (9) and (a), [z, a, d, d, a* = [z, a, d, d, a] = 1 for .

3 € < a ) . Together with (b) this proves (2):

[z, a, d, a] = [[z, a]d, d, ad]

= [2, a, d, a ^ [2, a, d, d, a J = [3, a, d\ a?] .

TJ

Similarly for s = [y, d] and y € < a > we have g{[y, d], a, d) = 1 by

(b). Thus (8) yields

(10) 1 = [y, d, d, a, d][y, d, a, d, a] for a l l y f <aH> .

Combining ( 8 ) , (9) and (10) we have / ( s , a, d) = 1 by Lemma 1 and (a);

hence

(11) 1 = [3, a, d, d][z, d, a, d][z, d, d, a][z, a, d, a] for z € <a > .

Commuting (11) by a gives

(12) 1 = [z, d, a, d, a] for a l l 3 € <aB>

by (9) and ( l ) . To show (3) l e t t = 3 . Then by ( l ) and (12)

[3, d, ad, a] = [[t, d, a]d, a] = [t, d, a, a][t, d, a, d, a] = X .

Because (b) holds also for g = ad we may replace d by ad In (11).

For the individual terms of f(s, a, ad) we obtain the following
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simplifications. Replacing z by [z, a] in (7) we have by (b),

[•a, a, ad, ad] = [z, a, d, d][z, a, d, a] .

From (5) by (bj and (l),

[z, ad, a, ad] - [a, d, a, ad] = [z, d, a, d] .

From (7) we obtain by (b), (9), (12) and (l),

[a, ad, ad, a] = [[a, d, d], a] [[a, a, d]d, a] [[a, d, a] d , a]

= [a, d, d, a][z, a, d, a] .

Finally replacing z by [3, a] in (5) we find by (b) ,

[z, a, ad, a] = [z, a, d, a] .

Together this gives

2 2

1 = f(z, a, ad) = f(z, a, d)[z, a, d, a] = [z, a, d, a] ,

proving (U).

THEOREM. The following oond.iti.one for a group G are equivalent:
(ii) c[(xG>) 2 2 for all x € G ;

(iii) < x > is a 2-Engel group for all x € G j

(iv) G is a 3-Engel group.

Proof. As pointed out in the introduction i t suffices to show that

(iv) implies (ii). Assume (iv) and that o[< x >) > 2 for some x d G .

Then [5 , I I I . 1 . 9 ] there are r , s, t € G such that [_xV, xS, x] * 1 .

Since 3-Engel groups are locally nilpotent [ J , Hauptsatz 2 ] , the subgroup

V = (x, r, s , t) i s n i lpotent , and sa t i s f ies the maximum condition [9 ,

VI.6. a ] . Let M be maximal among the normal subgroups of U such that

H = U/M does not sat isfy condition (ii). Since H i s n i lpotent ,

Z(H) i* 1 , and H/Z(H) sa t i s f ies condition (ii). This proves

(hH> c z(ff) for a l l h € H .

We may therefore apply Lemma 2.

Next we will evaluate the Jacobi identity

https://doi.org/10.1017/S000497270004524X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004524X


On three-Engel groups 397

(13) l=[u,v,wu]{w,u,vW]lv,w,uV]

for var ious values of u, v, w £ H . F i r s t fo r u = a , v = d ,

w = [z, a] and z £ <a > we have by (b) and ( l ) ,

1 = [a , d, [z, a ] ] [ d , [ 3 , a], a*] ;

hence by (b) and (\)

(11+) [ [ a , 2 ] , [ a , d]] = [ s , a , d, a ] .

Next l e t u = a , u = d , w = s € < a > and commute (13) by a . We

have by (b) and ( 3 ) ,

(15) 1 = [a, d, z, a][z, a, d, a] .

Finally l e t u = [a, d] , v = a and u = z € <a > . This gives by (b),

(16) 1 = [a, d, a, z][a, d, z, a f ^ t a , a ] , [a, d]] .

Combining (ik), (15), (l6) and (2) we obtain

TJ

1 = [a, d, a, z] for all a, d £ H and z £ (a > .

But

1 = [a, d, a, z] = [a'V*, a, z] = [ad, a, 3] for all z € < aH >

and a £ H proves c(<a >) 5 2 for a l l a £ H , contrary to the choice of

H .

COROLLARY. If a 3-Engel group G is generated by n elements then

o(G) £ 2n .

Proof. If G = < x. , , x ) , then G i s the product of the n

normal subgroups (*• ) » which have class at most 2 by the theorem.

Hence c(G) £ 2M [5 , I I I . l i . l ] .

3. Examples

In this section a torsion free group G(°°) of class precisely h is

constructed satisfying condition (i). Example 3 is a homomorphic image of

G(°°) which fails to satisfy (i). Since conditions (ii), (iii) and (iv)
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obviously define varieties, this shows that (i) does not follow from the

other conditions. Example 2, another quotient group of G(°°) , shows that

finite p-groups satisfying (i) may have class greater than 3 , and that

unlike the situation in a class of groups recently investigated by Heineken

[4] , there are also no obvious restrictions on the structure of G, .

The following lemmas- will be needed in establishing that Examples 1

and 2 satisfy condition ( i ) .

LEMMA 3. Maximal aloes 2 Biibgroixps are normal in G if arid only

if

(17) for all x, a, b, a € G :

[x, a, b, a] = 1 whenever a(<a, b, a)) £ 2 .

Proof. Let c(<a, b, e>) 5 2 and V a maximal class 2 subgroup

of G containing <a, b, a) . Then if0 = V implies < [x, a ] , b, d) c U ,

hence [x, a, b, a] = 1 .

Conversely l e t V be a maximal class 2 subgroup and u, v, w € V .

Applying (17) with x = y , a = u~ , b = vu and o = W we obtain

[iP, v, u] = JO/, u'^u, v, wj =

= [&. u~\ v]u, w]M[u, v, w) = QA «- \ A U2[u'v ] - 1 •

This implies

(18) [«, i?, w] = 1 ,

and since y is arbitrary,

[ -1 -is
u, vs , uj = l .

Similarly follows [y, u , w J = 1 .

To prove e(<ẑ ', V)) 5 2 it remains to be shown that

[y, w, ŵ J = 1 . The Jacobi identity gives

1 = [u, w, t"][t, v, w*]\u, t, vw] .
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With t = U1 we have [w, t, V°] = 1 from (18), and from (19),

[ t , v, w*] = [ t , v, t T - W ] = [t, v, t ] [ t , v, w ] * [ t , v, t " 1 ] " * = 1 .

Thus 1 = [y, W, I /^ 'J for a l l u, V, W € V , in par t icular

LEMMA 4. Let i? be the ring of integers Z or the ring Z/Z.p of

integers modulo a prime power pn . Let {g, . | 1 ; I s s , i < i < t ) be

a set of not necessarily distinct elements 3^ . € R such that

(20) l»«vWtt>0

for all X, u, i, j , k . Then

for all i, o, k , any triple o, T, p ( ( l , 2 si of 3 distinct
indices and any permutation v of the set {a, T, p) .

Proof. For convenience let {o, T, p} = {l, 2, 3} . The
permutations ir € S such that (21) holds form a subgroup A . Note that

(21) holds trivially if 6 = 0 for al l r .

For R = Z and (L # 0 for suitable r condition (20) implies

h ^ = V u * fora11 i)<7''VJ-
Hence the permutations (12) and (13) are in A and A = S, . For

if = Z/Zp we may assume without loss of generality that p divides all

\i* 62-, 3 ^ , but p"*"1 does not divide g for some r . Condition

(20) implies

3 i ; 6 w E 6 i / p i n o d P " " " f o r ^ *• •?' " •

Hence
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for all i, 0, k and V, u £ {2, 3) . Thus the permutations (12) and
(13) are in A and A = S , proving (21).

LEMMA 5. If G is nilpotent of class a{G) < p then the set

n , (G) of p -th powers of elements of G is a (normal) subgroup of G .

This is proved as in the case of regular p-groups [5, III.10.5.6]

using the Hall-Petrescu formula and the fact that p divides P. for

al l 0 < i < p . The induction here however is on the class rather than
the order of the group.

EXAMPLE 1. The construction of G(°°) follows usual practice (see,
for example, [S]), starting from a group A. isomorphic to G' (°°) . With

A. given, the group A. is the semidirect product of A. with an

infinite cyclic group < a.+1> , where a.+. induces an automorphism ot.+-

on A- , and Ah = G("°) . The action of a. . on the generators of A.

is not given explicitly, tut in the form

i) [ ] € At ,

where g runs through the generators of A. , and g = g[g, #-

The defining relations of A. are then those of A. together with
1 * ' L I

The lengthy but straightforward verification that a - + 1 is a"

automorphism of i4. is omitted here. It involves checking that the images

of the generating set of A^ under a - + 1 generate A. , and that a ^ + 1

preserves the defining relations of A. .
tr

The group AQ i s the direct product of free abelian groups

Z = <x1, ...,x > , X = (y , . . . , z /g> of rank 12 and 8 respectively

and a group A = < u , z. > of class 2 . Then
10 If

AQ = <ur, Xj, yk, zt | 1 5 r < 6, 1 5 j 5 12, 1 5 fe S 8, 1 < i 5 3>
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with defining relations

-2 -2 r n -10 8 -6 r i -6 U -2
= 2 i s

3 » L«2> "5J = s i Z2Z3 ' L"3>
 M6J = a l V 3 '

[ « • , " • ] = 1 f o r (i, 3) * ( 1 , 1*), ( 2 , 5 ) , ( 3 , 6) ,

. «*] = 1 ,

-5 l» -2 r i -7 5 -U
= 3 i 32S3 ' ^ 8 ' ai-I = z l 32Z3 '
" C 3 i ' ̂ ] = 1 for a l l i , 3; fyk, ^ 3 - 1 for % * 7 , 8 ;

X 9 ' ^ 6 * a^

5. «2] * V 2 5 s ! ' 0/6' a2l = AZ~ZZ\ '[2/5. «2] * V 2 5 s ! ' 0/6'
[x. , a ^ = [2^, flg] = 1 for a l l i , 3; \}tk, a^\ = 1 for fc # 5, 6 ;

= X8

Q/3, a^] = a ^ ! * " 1 , Q/^, a ^ = Zg, Q/fc, a ^ = l for fc 5s 3 , k ;

[XJ, a j = \_zi% a^ = 1 for a l l £ , J ;

toj

= " 3 ' Ca2»

> [ u 6 , a^] = » 7

, 2; [x̂ ., a j = [s^, â ] = 1 for all i, 3

For convenience l e t G - c(») . We have G' = A ,

[ v C3 =<Ar- y> V • Gu= < 3 i - V V • c
5 = x G"
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and Z{G) = X x G. . From the defining relations of G i t follows that

G/G' , G'/G^, GJG^ = X x y and G^ are free abelian of rank k, 6, 20

and 3 respectively. In particular G is torsion free.

To show that G satisfies ( i) we apply Lemma 3. Each d. € G

(•£ = 1, 2, 3) has a unique presentation

, _ 6 l i 62i 63i 6W . . ,d̂  = a a a a^ mod G

with integers ft. . . Then

where p(e) is of the form( B x ^ B ^ B ^ B ^ , 1 = s < 12 .

wi th t h e fol lowing combinations ( s ; A, U, p) :

( 1 ; 1 , 2 , 1 ) , (2 ; 1 , 2, 2 ) , ( 3 ; 1 , 3 , l ) , (U; 1 , 3 , 3 ) ,

( 5 ; 1 , U, 1 ) , ( 6 ; 1 , 1*, 4 ) , (7 ; 2 , 3 , 2 ) , (8 ; 2, 3, 3 ) ,

( 9 ; 2 , It, 2 ) , (10; 2 , U, I t ) , (11 ; 3 , h, 3 ) , (12; 3 , U, U) .

Assume now t h a t c(<d , dg, d >) S 2 . Then [cL, d . , d^] = 1 for

a l l 1 S i , j , k £ 3 . Since X = G ^ - i ' , G^ > i s f ree ly generated by t h e

a; , we have p ( s ) = 0 ; hence (20) holds for X t u and t r i v i a l l y for
s

\ = y . Because c(G) = U i t suffices to prove [x, d^, d^, d_] = 1

for x = a, , a'p, a .̂, a^ . We have

[x, d,, d2, d ] = TT [«.
ft R

O l T 2 P 3

In particular

(22) [ V dl5

' a2-l
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All exponents in (22) are equal by Lemma h and

Hence [a^, c^, d2, d^ = 1 . Similarly for [a2 , d^, d"2,

[a^, c^, d2> d j and [a^, d^, d2> d j we obtain

_2 -20/2» a

= 1 ,

,-2r.. _nr. _ - . - A ' 2 2 * * . , .

Thus, by Lemma 3, G sa t i s f ies (x).

EXAMPLE 2. This i s the group G[pn) = C(«")/u (G(<»)) for p > 3

and n > 1 . Then ff(p ] i s regular, hence of exponent p . To show

that G(p ) also sa t i s f ies condition ( i ) we proceed as with G(°°) . We

have to show here that the x. mod U (G(°°)J are independent and of order

precisely p . Assume

n
with integers u, v, t>, m , ..., m . Then t = £f for some g € G(°°)

by Lemma 5. Note that G(ro)/ (̂ XC, (»)) i s torsion free, and hence

t f J: 1 ft (») implies g i X * Gj^00) • Since 2 , s 2 , 3 , x , . . . , x1 2

are free generators of the abelian group X * G^{°°) th i s proves p

divides w, u, U, m.. , . . . , w and thus the assertion. We have also

established that G. (p"j has exponent pn and order p

EXAMPLE 3. We f inal ly construct a homomorphic image G(a>)/N which
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fa i l s to sa t is fy ( i ) . The subgroup

# = {*» yx> y2'
 3 l ' a 2 a 3 /

i s free abelian, and normal since Z(G(»)) = x x GV(°°) , j / , > y~ € Z(J4_)

and Q^, a j , Q/2, a j € ^ s 1 > z2s~ ^ . I t i s easily verified that

[a., a., aS\ (. N for i , j , k I {l, 2, 3} . But

and thus G(m)/N fa i l s ( i ) by Lemma 3.

We mention without proof that the corresponding homomorphic image
G(co)/#.y (G(°°)) of Example 2 also does not satisfy condition ( i ) .
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