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On three-Engel groups

L.-C. Kappe and W.P. Kappe

The following conditions for & group G are investigated:
(i) maximal class n subgroups are normal,

(ii) normal closures of elements have nilpotency class #»n at

most,
(iii) normal closures are n-Engel groups,
(iv) G 1is an (n+l1)-Engel group.

Each of these conditions is a consequence of the preceding one.
The second author has shown previously that all conditions are
equivalent for 7 =1 . Here the question is settled for n = 2
as follows: conditions (ii), (iii) and (iv) are equivalent.
The class of groups defined by (i) is not closed under
homomorphisms, and hence (i) does not follow from the other

conditions.

1. Introduction

Engel groups are certain generalized nilpotent groups which have

received considerable attention in recent years. Introducing commutator
. _.=1-1 _
notation, [y, z] = [y, la:] =y x yx , @, n+1x] = [[y, n:c], x] and

[z;5 +ovs x5 = +l] = [[%s s :z:n], xn+l] , nilpotency of class n at

n n

most is defined by

[:z: s eees :cnﬂ:] =1 for all Tys e xn+l €G .

A group G 1is called an n-Engel/group if it satisfies the seemingly
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weaker condition

[y, ;2] =1 forall =z, y €G.

Research on Engel groups has centered mainly on the question whether
n-Engel groups are nilpotent or locally nilpotent and on finding
restrictions on the class of nilpotent n-Engel groups. See, for example,

£13, C23, £33, (51, L8], [91.

Engel conditions also occur quite naturally if a group is covered by a
system of normal subgroups of given class or, more generally, by suitable
normal Engel subgroups. This observation motivates the investigation of

groups defined by one of the following conditions:
(i) maximel class n subgroups of G are normal;

(ii) (xG> has class 7 &t most for x €6,

(iii) (xG) is an n-Engel group for all X € G ;
(iv) G is en (n+l)-Engel group.

It is easily seen that for arbitrary #n each of the conditions listed is a
1, Satz II of [7]

1 all conditions are

consequence of the preceding one. Moreover, for n

shows that (iv) in turn implies (i), so that for =
equivalent. For other values of n the interrelations of these conditions

seem to be unknown at present.

In this paper the question will be settled for n = 2 . We will show
that conditions (ii), (iii), (iv) are equivalent, and that the class of
groups defined by (i) is not closed under homomorphisms. Thus (i) is not a
consequence of the other conditions. Moreover, examples show that (i)
does not imply obvious restrictions on the commutator or power structure of

such groups.

It should be noted that for n = 2 our result also shows that the

variety given by (ii), while obviously defined by the 3-variable law
[xy, %2, z] , may be alternatively described by a 2-variable law

E‘/’ 3"”] .

As a corollary we observe that an n-generator 3-Engel group has

class 2n at most. In view of the results of Heineken [3], this only has
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nontrivial implications if the group contains elements of 2-power or
S5-power order. The result had been previously established in [6] for

3-Engel groups of exponent 4 .

Notations
(X) = subgroup generated by the set X ;
(%) = normal closure of z in G = (g—l:cg | g €6
(X, Y] =(lx, y) |z €X, y €Y);
A X B = direct product of groups A and B ;
Z2(G) = center of G ;
e(G) = nilpotency class of @ ;
G, =[Gn_l, ¢l ., G =6, ¢ =1I[G6,6] ama ¢"=1[6",6");

k
Up k(G) = <gp | g ¢ G> for a prime power pk
k]
The following commutator identities are used without further reference:

(ab, ¢] = [a, c)PIb, ¢)

[a, ella, e, bllb, ] ,

la, be) = la, ella, b)° = [a, clla, blla, b, c] ,

[, p]%a, b =1, la, Bllb, al =1 .

2. Normal closures in 3-Engel groups

The following preliminary results are useful in evaluating certain

commutator relationms.

LEMMA 1. Suppose a € H 1is such that c(¢ aH)) =3 ad [h, 3a] =1

for all h € H. Then
(1) [z, a, al =1 for all =z ecdy .

2 G(aH) . Then

Proof. Let 215 2,

[3122’ a, a] = [z, a, a][z,, a, 4] .
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Hence the elements =z € (aH) such that [z, a, al =1 form a subgroup V
of (aH) . Clearly a €V and [h, a] € V by assumption. Thus ah (24
for ell h € H ; consequently (aH) =V.

LEMMA 2. Let a, d € H be such that

(a) H is a 3-Engel grow;

(b) (gH) c Z{(H) for g=a, d, ad .

3

Then for =z € <aH) we have

(2) (2, a, d, al = [z, a, d, a9] ,
(3) (2. d, a% a] =1,
(1) (2, a, d, a)>=1.

Proof. These results follow from expanding [z, ad, ad, ad] =1 .

For later use we record some of the intermediate steps.
(5) (5, ad, al = [z, d, al[lz, al%, ] ,
[z a]d d
(6) (z, ad, d] = [z, d, d1"**%" [[3, al, 4%,
[2,a]? d d d ~d
(1) =, ad, ad] = [z, d, d1'*** [z, a, d]%[z, d, a]?[[z, a]%, a]® .
Denote the factors on the right side of (7) by 215 3y, 34 and 2 . B

(b) and the observation that (a’ ' c (a? ) = 1 we have

(2, ad, ad, t] = [z, t][2,, t][25> t][z,, t] for t=a,d.

For the individual terms we find the following simplifications:

[3)" a]d= [zhs d] =1, [329 a}d = [33 a, d’ a][z3 a, d’ d: a] and

2., a d_ {2z, d, d, allz, d, d,a ,d ] by (b). Further
1

(2,> d] = [z, d, &, d]

(a). Finally [zj, d] = [2, d, a, d] by (1), end

1 by (b) end (a), and [z,, d] = [z, a, d, d] by
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[23, a]d = [z, d, a, allz, 4, a, d, a]) = {2, d, a, d, a] by (b) and (1).
Combining these results we have

(8) 1=[z, ad, ad, ad] = f(z, a, d)g{z, a, d) for all z € «d s
where

flz, a, d) = [z, a, d, dllz, 4, a, dlis, 4, d, allz, a, d, a] ,

(2, d, d, a, dllz, d, a, d, allz, a, d, d, a] .

g(z, a, d)

Ir y €{d®) ema z=1[y, al , then fly, al, a, d) = [y, a, d, d, al
1 by (b). Thus (8) yields

and g(ly, al, a, d)
(9) ly, a, d, d, a] =1 for all y ey .

d
Taerefore by (9) and (@), [z, «, d, d, a¥] = [2, @, d, d, al¥ =1 for.
2 €¢dh . Together with (b) this proves (2):

[Z, a, d, a] = [[z; a]d9 da adJ
= [z, a, d, ad] (z, a, d, d, ad] = [z, a, 4, ad] .

Similarly for 2 = [y, d] and y € (dhH we have g([y, d], a, d) =1 by
(b). Thus (8) yields

(10) 1 =1y, d, d, a, dlly, d, a, d, a] for all y €(d) .

Combining (8), (9) and (10) we have f(z, a, d) =1 by Lemma 1 and (a);

hence
(11) 1 = [z, a, d, dllz, d, a, dllz, d, d, allz, a, d, a] for 2z €{d) .
Commuting (11) by a gives

(12) 1=1{[z2,d, a, d, al] for all 3z € dh

by (9) and (1). To show (3) let td= 2 . Then by (1) end (12)

(=, 4, ad, al = [l¢, 4, a]d, a = [¢t, d, a, allt, d, a, d, al =1 .

Because (b) holds also for g = ad we may replace d by ad in (11).
For the individual terms of f(z, a, ad) we obtain the following
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simplifications. Replacing 2z by [z, al in (7) we have by (b),
[z, a, ad, ad) = [2, a, d, d}lz, a, d, a] .
From (5) by (b, and (1),
{z, ad, a, ad] = [z, d, a, ad] = (2, d, a, d] .

From (7) we obtain by (b), (9), (12) and (1),

[lz, d, 41, a][(2, a, a4, alz, d, al®, al
[Z, d; ds a][z, a, d, a] .

{z, ad, ad, a]

Finally replacing z by [z, a]l] in (5) we find by (b),
[z, a, ad, al = [z, a, d, a] .
Together this gives
1= f(z, a, ad) = f(z, a, d)z, a, d, a]2 = [z, a, d, a]2 s

proving (4).
THEOREM. The following conditions for a group G are equivalent:

(i%) c((:cG)) =2 forall x €G;

(iii) (%) is a 2-Engel growp for all x € G ;

(iv) G is a 3-Engel growp.

Proof. As pointed out in the introduction it suffices to show that
(iv) implies (ii). Assume (iv) and that cf( :cG)) > 2 for some x € G .

Then [5 , II1.1.9] there are r, 8, t € G such that [xr, xs, :ct] #1.
Since 3-Engel groups are locally nilpotent [7, Hauptsatz 2], the subgroup
U={(x, r, 8, t) is nilpotent, and satisfies the maximum condition [9,
Vi.6.al. Let M be maximal among the normsl subgroups of U such that
H = U/M does not satisfy condition (ZZ). Since H 1is nilpotent,

Z(H) # 1, end H/Z(H) satisfies condition (7ZZ). This proves

(W), < z(#) for all h €H .

3
We may therefore apply Lemma 2.

Next we will evaluate the Jacobi identity
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w
(13) 1= [u, v, W], u, ][, v, «*]
for various values of u, v, w € ¥ . First for u=a, v=4d,

w= [z, al] and 3z € (aH) we have by (b) and (1),

1= [a, d, [z, a]][d, [z, al, a9 ;
hence by (b) and (\U
(14) - [la, =21, la, d1] = [z, a, d, a] .
Next let u=a,v=d,w=z€(aH) and commute (13) by a . We
have by (b) and (3),

(15) 1= {a, d, 2, allz, a, d, a] .

Finally let u=[a, d], v=a and w=3 € (aH) . 'This gives by (b),

(16) 1=1{a, d, a, zlla, d, z, al  [la, 2], la, dI) .

Combining (14), (15), (16) and (2) we obtain

1={a,d, a, 2] for all a, d € H and =z e(aH>.
But
1= [a, d, a, 3] = [a-lad, a, z] = [ad, a, 3] for all z € (d
and a € H proves e & )) <2 for all a € H , contrary to the choice of

H .

COROLLARY. If a 3-Engel growp G 1is generated by n elements then
e(G) =an .

Proof. If G =(=x . xn) , then G 1is the product of the =n

I
normal subgroups <xf> , which have class at most 2 by the theorem.

Hence e(G) < 2n [5, III.k.1].

3. Examples

In this section a torsion free group G{(») of class precisely L is
constructed satisfying condition (i). Example 3 is a homomorphic image of

G(») which fails to satisfy (i). Since conditions (ii), (iii) and (iv)
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obviously define varieties, this shows that (i) does not follow from the
other conditions. Example 2, another quotient group of G(») , shows that
finite p-groups satisfying (i) may have class greater than 3 , and that
unlike the situation in a class of groups recently investigated by Heineken

[4], there are also no obvious restrictions on the structure of Gy,

The following lemmas. will be needed in establishing that Examples 1
and 2 satisfy condition (i).

LEMMA 3. Maximal class 2 subgrowps are normal in G <f and only
if
(17) for all =, a, b, ¢ € G :

[x, a, b, e] =1 whenever cl{{a, b, ¢)) =2 .
Proof. Let c({a, b, ¢)) <2 and U a maximal class 2 subgroup

of G containing {(a, b, ¢> . Then U* = U implies ([z, a], b, é)'_c_U .
hence [z, a, b, el =1.
Conversely let V be a maximal class 2 subgroup and u, v, w €V .

Applying (17) with =z = yu s, a= u-l , b= v* and e =w we obtain:

[[y, u—l]u, v, w} =

[E;, TEaE] w][u’v][u, v, v)

L&, v, v

%, WL, U'u’ m][u,v

This implies
(18) [, #,v] =1,
and since y is arbitrary,

-1 2
(19) [uz, v, wz] = [u, 2, w] =1 .

Similarly follows [v, u°, w°] =1 .

To prove c((uy, V)] = 2 it remains to be shown that

[v, W, uy] =1 . The Jacobi identity gives

1= [v, w, ][t v, wt] w, t, ]

https://doi.org/10.1017/5000497270004524X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270004524X

On three-Enge! groups 399

with t =1 we have [w, t, v°] =1 from (18), and from (19),
t - t -lqwt
&, vow] =[t, v, t lwt] = [t, v, tllt, v, w) [t, v, t ]  =1.
[v, W, u‘yv] for a11 u, v, w € V , in particular

1= [v, v, F% = [v, v, H]Y.

3
g
"

LEMMA 4. Let R be the ring of integers 2 or the ring Z/an of
integers modulo a prime power pn . Let {B)\i |1 sx=s,1s2=<t} bde

a set of not necessarily distinct elements B)\i € R such that

(20) (exiawrsusui)sxk =0

for all A w, i, J, kK . Then

(21) .B_.8

BiBriBok = Bro)iPr(r) Pu(o)k

for all i, §, kK, amy triple o, 1, p€ {1, 2, ..., 8} of 3 distinct
indices and any permutation T of the set {0, T, p} .

Proof. For convenience let {0, T, p} = {1, 2, 3} . The

permutations T € 53 such that (21) holds form a subgroup A . Note that

(21) holds trivially if Blr =0 for all r .
For R=2 and B, #0 for suiteble r condition (20) implies

B B

8 B . for all <, j, u .

12°05 = PrgPud

Hence the permutations (12) and (13) are in A and A =S, . For

3

R = Z/an we may assume without loss of generality that pm divides all
m+l - cs

Bli’ ng, B3k , but p does not divide Blr for some r . Condition

(20) implies

B..B .ZB B .modp "

1:PLg 158 for all 7z, g, M .

Hence

- n
B1i8, Bk = BBy Bux ™A P
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for all %, j, ¥k and v, u € {2, 3} . Thus the permutations (12) and
(13) are in A &and A = S:_3 , proving (21).

LEMMA 5. If G 1is nilpotent of class ¢(G) < p then the set

% k(G) of pk-th powers of elements of G is a (normal) subgroup of G .

This is proved as in the case of regular p-groups [5, III.10.5.6]

(3

k
using the Hall-Petrescu formula and the fact that p divides [i ] for

all 0 << <p . The induction here however is on the class rather than

the order of the group.

EXAMPLE 1. The construction of G(») follows usual practice (see,
for example, [8]), starting from a group A, isomorphic to G'(«) . With

Ai given, the group Ai+ is the semidirect oroduct of Ai with an

1

infinite cyclic group (a.,,) , where a. induces an automorphism o,

7+l i+l 1

on A; , and 4 = G(w) . The action of 0;,; on the generators of A,

is not given explicitly, but in the form

Baa) o5 api] €4y

T+l _
where g runs through the generators of Ai , and g = g[g, ai+l] .

The defining relations of Ai+l are then those of Ai together with

The lengthy but straightforward verification that ai+1 is an

automorphism of Ai is omitted here. It involves checking that the images
of the generating set of ‘471 under ai+l generate Ai , and that ai+l

preserves the defining relations of Ai .

The group A is the direct product of free abelian groups

0
X=(:x:l, ...,xl2) , .Y=(yl, ""yB) of rank 12 and 8 respectively

and a group A=<ur, zi) of class 2 . Then

Ao=(ur,xj,yk,zi|l§r56,15j512,15k58,15i53)
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with defining relations

-2 -2 -108-6 -2
{[“1’“!4]'123 [0 5] = 2 23’[“3’“6]‘333 ’

) [ui, uJ.] =1 for (%, dJ)# (1, k), (2, 5), (3, 6) ,

R._)4

O s 2] = [ 2] = [, 2] = [z, u] =[5, 2] =1,
[.‘EJ-, yk:l = Ll{k’ urJ = E’i’ yk] = [yk’ 31:] =1;

[y » a1] =z, [uz, a1] = 2, [u3, al] =z,

-1 -1 -1
s @) = v5ygs [uss o] =w3mys [0 ) = w1y,

= g0k, = 510,
[y7’“1]‘ ) Bo%3 » ["8"‘1]‘31 283

L[xj’ al] = [i’ J=1 for all 2, J; [yk, al] =1 for k#7, 8;
r[als 02] = uls [ul’ a2] =:l:2, [uz, 02] =y2, [u3, a2] =yh .

y;lyGQ [u5’ az] = xgs [u6! a2] = x7 ]

_653 -la3
[y59 az] = 12 33 [ys, aZ] 12 3a

L[acj,ae]= zi,a2]=1 for all Z, 4; [yk’a2]=l for kK# 5,6 ;

3
=
3]
P
[}

r[al, a3] = u,, [az, a3] = ug, [ul, a3] =y, [uz’ a3] =z, ,

(x5 a3) = ys’ [uu= ag) = x,, [ug, a) =ygs (g, aj) =24,
by ag) = 3%350 Bus ag) = 230 Do @l =1 gor K #3,0
[xj’ aa] = i’ a3]=l for all t’J 5

(r,)]

(lo> @) = u5 [355 ] = u5, [23, 9] =3,

[u ’ ah] = y3’ [uz’ ah] = ys’ [u3, ah] = 36 N

(Ru)1 [uh’ ah] = .1:12, [usg ah] = :clo, [us, ah] = y7 s
- 25,33 -4 23573

[yl’ a)_J = 81 2233 , E{e, ah] 1 2 3 .

ﬁ’k’ a!a:l:l for k #1, 2; [xj’ h]=[zi’ a,4]=1 for all %, d .

For convenience let G = G(®) . We have G' = AO ’

- . = H=l
G -[AO,G]-(X,Y,Gh), G, =2, 2, 2.0, G=1, C"=41¢1
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and Z2(¢) = X x Gh From the defining relations of ¢ it follows that
G/G', G'/GB, G3/Gh SXxY and G, are free abelian of rank L, 6, 20
and 3 respectively. In particular G is torsion free.
To show that G satisfies (i) we apply Lemma 3. Each d‘i €G
(£ =1, 2, 3) has a unique presentation
_ B Bop By By

= ]
di_al a, a3 a), mod G

with integers Bki . Then

[

d., d., d,| = xp(s)mod(Y,
( k 8
i g a

where p(s) is of the form

p(s) = B 1<s=12,

with the following combinations (s; A, M, P) :

(1; 1, 2, 1), (2§ 1, 2, 2), (331, 3, 1), (&1, 3, 3),
(55 1, )49 l)’ (6: 1, h, h): (7’ 2, 3, 2), (83 2, 3, 3),
(95 2, 4, 2), (10; 2, b, h): (11; 3, h’ 3), (12 3, b, 4) .

Assume now that cf{(d., d2, d3)] <2 . Then [di" dj’ dk) =1 for
all 1 =<1, g, k=3 . Since X = G3/(.Y, Gh) is freely generated by the
x, , ve have p(s) = 0 ; hence (20) holds for A # U and trivially for
A= u. Because c(G) = b4 it suffices to prove [x, dl’ d2, d3] =1

for x = al, a'2, a3, ah . We have

[x i_L d., d TT [x’ . a ap] 01T2 P3

0,T,P
In particular
(22) [al’ dl’ d2: d3] =
B, B8 B,,B,,8 B, B, B
21732743 22731743 21 42733
E'/l’ ah] [-yg’ ah] l.-y3’ a3]

B 8..B) B B, .8_.B,-
hl 22 33 31742723 4173272
l.-yh’ 3] @5 2] @6’ ag-.l
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All exponents in (22) are equal by Lemma 4 and
1> allvp 91 lyss ol by agllvss allvgs a)] =

[zlszg 33] (31“33333] [21333251]33[35‘22522” f 2h g] =1
Hence [al, d s dys d3] =1 . Similarly for [ae, d , d,, d3]

[a3s dls d, s d3] and [ah’ dl, d s d3] we obtain

By
[E’l’ ah]_zfy? ] [—”3’ a3]—2[1/b’ “3:I [-‘/7’ a;] [yg> al]] s =1,
B, 18,8,
[[”1’ o]l “h]_zﬂ”S’ “2]_2["6’ @l ly;» "1]-2[—”8’ “1]} et =1,
2 - - B11820P33
[P 1R PR A PN | P -1

Thus, by Lemma 3, G satisfies (i).
EXAMPLE 2. This is the group G(p") = G(‘”)/Up n(G(“’)) for p > 3

and n =1 . Then G(pn] is regular, hence of exponent pn . To show

that G(p") also satisfies condition (i) we proceed as with G(®) . We

have to show here that the x, mod Up n[G(“’)J are independent and of order
]

precisely pn . Assume

t=zzzh3)T—rxii €5 (G(=))

with integers u, v, w, My enes Myp Then ¢t = gp for some g € G(»)
by Lemma 5. Note that G(°°)/(X><Gh(°°)) is torsion free, and hence
t €Xx Gh(m) implies g € X x Gh(m) . Since 2z, 35, 335 Ty -ees Ty
are free generators of the abelian group X X Gh(‘”) this proves pn

divides u, v, W, Mys wnes ml2 and thus the assertion. We have also
established that Gh (pn] has exponent pn and order p3n

EXAMPLE 3. We finally construct a homomorphic image G(«)/N which
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fails to satisfy (i). The subgroup

V= <X, Y1> Yps 2> zzz;l>
is free sbelian, and normal since 2{G(=)) = X x G (=) , y,, Y, € Z(A3)

and [:yl, ah] > [y2, ahJ € <zl, zzz;1> . It is easily verified that

[“i’ a ak] €N for i, J, k €{1, 2, 3} . But

-1 -1 -1
v o 2 29 = [ 22 = i o - 10
and thus G(=)/N fails (i) by Lemma 3.

We mention without proof that the corresponding homomorphic image
G(°°)/IV-UP n(G(w)) of Exemple 2 also does not satisfy condition (1i).
H
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