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ISOTROPIC IMMERSIONS INTO A REAL SPACE FORM 

SADAHIRO MAEDA AND KAZUMITSUKADA 

ABSTRACT. The main purpose of this paper is to investigate isotropic immersions 
with low codimensions into a real space form. 

1. Introduction. As an interesting class of isometric immersions, the notion of 
isotropic immersions was introduced by O'Neill [9]. Its définition is given as follows: 
Let M and M be Riemannian manifolds and/: M —» M be an isometric immersion. We 
denote by a the second fundamental form of/ and call a(xy x) the normal curvature vec­
tor for a unit tangent vector*. An isometric immersion/ is said to be isotropic provided 
that every normal curvature has the same length at each point, that is, the length of the 
normal curvature vector depends only on the point. In particular, if the length of the nor­
mal curvature vector is equal to À (a function on M), then the immersion/ is said to be 
X-isotropic. 

A totally umbilic immersion is clearly isotropic but some examples of isotropic im­
mersions which are not totally umbilic are known. Now we give examples of isotropic 
immersions into a unit sphere Sf : 

(1) M is a compact symmetric space of rank one and/: M —> S1^ is a standard minimal 
immersion in the sense of Do Carmo and Wallach [3]. 

(2) Mn is an «-dimensional isotropic totally real submanifold with parallel second 
fundamental form of an «-dimensional complex projective space P£(4) of constant holo-
morphic sectional curvature 4. We denote by i:Mn —• P£(4) its immersion and by 
TT: Sjn+l -* Pn

c(4) the Hopf fibration. Then we obtain the lift/: Mn -> Sf+1 of i with 
respect to 7r, that is, the following diagram holds: 

Sf+1 

We see that/ is also isotropic. Such submanifolds Mn of P£(4) are completely classified 
by Naitoh [8]. They are locally congruent to S1 x S""1 (n > 2), SU(3)/ SO(3), SU(3), 
SU(6)/Sp(3),£6/F4. 
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(3) M is a Riemann surface and / : M —» £{ is a superminimal immersion in the sense 

o fBryan t [ l ] . 

Here we remark that in the case of (1) the property of isotropic immersions does not 

characterize the standard minimal immersions among minimal immersions of spheres 

into spheres (for details, see Tsukada [12]). Also we note that A is constant in exam­

ples (1) and (2) but in general À is not constant in (3). 

A complete and simply connected Riemannian manifold of constant curvature c is 

called a real space form, which is denoted by MN(c). In this paper we study isotropic 

immersions into a real space form with flat normal connection (Theorem 3.1) and with 

low codimension (Theorem 4.3). In Section 2, we are concerned with the second funda­

mental form of an isotropic immersion at one point and obtain the estimate of dimensions 

of the normal space (Theorem 2.7). 

2. Isotropy at one point. In this section we investigate the second fundamental 

form at one point. Let V and W be the Euclidean vector spaces with inner products 

(, ), whose dimensions are n and k, respectively. We abstract the second fundamen­

tal form at one point to a symmetric bilinear form a:V x V —> W. We adopt for a 

the usual notation and terminology of isometric immersions. Let S2(V) be the space of 

all symmetric endomorphisms of V. Then we define the linear map A: W —> S2(V) by 

(Açx,y) = (a(x,y), £) for JC, y G V and £ G W. The mean curvature vector f is defined 

by f = (1 jri) E"=1 cr(ei, et), where {e\,..., en} is an orthonormal basis of V. a is said to 

be umbilic if it satisfies <r(jc,y) = (JC, v)f for any JC, y G V. a is minimal if f vanishes. We 

say that a is X-isotropic if there exists a real constant A such that ||CT(JC, JC)|| = A for every 

unit vector JC G V. 

The following lemma is due to O'Neill [9]. 

LEMMA 2.1. A X-isotropic symmetric bilinear form satisfies 

(a(jc,y), <T(Z, W)) + (CT(JC, z), ar(w,y)) + (a(x, w), a(y, z)) 

= X2 { (JC, y) (z, w) + (x, z) (w, y) + (JC, W) (y, z)} for any JC, y,z,w G V. 

From now on, we assume that a is A ( > 0)-isotropic. Then a induces a map a: S" - 1 —» 

S^_1 defined by <T(JC) = <J(JC, JC) for JC G S" - 1 , where S" - 1 and S^_1 denote an (n — 1)-

dimensional sphere of radius 1 in V and a (k — l)-dimensional sphere of radius A in 

W, respectively. We shall investigate the map â from a differential geometric point of 

view. For instance, G is umbilic if and only if a is a constant map, that is, the image 

of â is exactly one point of Sk^1. a is minimal if and only if a is a harmonic eigenmap 

corresponding to the second eigenvalue of 5" _ 1 (cf Toth and D'ambra [11]). It is known 

that these harmonic eigenmaps can be parametrized by a compact convex body lying in 

a finite dimensional vector space E, where d i m £ = (n — 3)n(n + l)(n + 2 ) /12 for n > 4 

([11]). 
We shall now describe the inverse image < J - 1 ( £ ) for £ G S* -1: Since a symmetric 

endomorphism A^ of V satisfies (A^JC,JC) = (CT(JC,JC), £) < ||CT(JC,JC)|| ||£|| = A2 for any 
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unit vector* G V, the eigenvalues of Aç lie in the closed interval [—À2, À2]. This implies 
that for x G S"~~l, â(x) = £ if and only if x is an eigenvector of A^ with eigenvalue A2. 
We denote by V̂  the eigenspace of A^ with eigenvalue A2. Then if < J _ 1 ( 0 is not empty, 
we have ô~l(Q = V^ Pi S"-1. It is easily seen that a(x,y) = (x,y)£ for x,y G Vç and 
that VçnVv — {0} if £ ^ r\ for £, 77 G S*-1. From the argument above, we obtain the 
following: 

LEMMA 2.2. Ifô~l(Q is not empty for £ G «S*-1, f/ien <r-1(0 ^ fl totally geodesic 
sphere ofS"~l (it may occur that the dimension ofô~x(Ç) — 0, that is, a - 1 ( 0 consists of 
one point and its antipodal point). 

The tangent space TxS
n

x~
l at x G S"-1 is naturally identified with the subspace {v G 

V | (x, v) = 0}. Under this identification, the differential dâx of â at JC G S"~l is given 
by ^ ( v ) = 2a(x, v) for v G TxS

n
{~

1. Moreover we have 

LEMMA 2.3. ker rftf* = Vâ{x) n r ^ " 1 . 

PROOF. Since <T(JC, V) = (jc,v)<7(jc)forv G Vâ(x), we find that V^nTiS?"1 C ker do*. 
Conversely let v G r ^ - 1 which satisfies a(x, v) = 0. From Lemma 2.1, it follows that 
(a(x,JC), a(v, v)) = A2||v||2 and hence (Aâ(X), v, v) = A2||v||2. This means that v G Vâ(x)- • 

By virtue of Lemma 2.3, we see that the rank of da is constant on a~l (£) for £ G S*-l 

and that rank of dâx + dima-1(£) = n — 1, where £ = <T(JC). 

Here we fix some notation: 
m = Max{rankof é/fjjc | JC G S"-1} (< min{« — l,k— 1}), 
M = {x G S?"1 I rank of da* = m}, 
B — the image of M by a in S*_1. 

LEMMA 2.4. S^-1 — M is a closed real analytic subset in 5"_1 and hence M is open 
and dense inSn

x~
x. 

PROOF. For any x G V, we consider the linear map ax: V —> W defined by crx(v) = 
0-(JC, v) for v G V. Then we see that rank of dâx + 1 = rank of ox for x G S"-1. Let 
{e\,...,en} and {é?i,..., ëk} be orthonormal bases of V and W, respectively. Setting 
a(ei9 ej) = E ^ i (Tijëa, we have 

^ ( n \ n 

ax{et) = <T(X, e,0 = Z Z ^ a y r « f o r * = Z^eJ-
a=l[j=l J 7=1 

Let Ucrx)") be the matrix representing the linear map ax with respect to the above bases. 

By the above, (ax)<* = £?=1 x
jc^r Our assertion follows from S?_1 - M = [x G SJ"1 | 

all minor-determinants of order m + 1 of the matrix ((a*)? ) = 0}. • 

LEMMA 2.5. 5 is an m-dimensional regular submanifold ofSh^~l. 

PROOF. We put p = n — m — 1, which denotes the dimension of â~l(Q, £ £ ^-
We consider the case that /? > 1 (when p = 0, by the similar argument we can prove 
our assertion). By Lemma 2.4, M is an open submanifold of S"~l and the foliation J 
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consisting of /^-dimensional totally geodesic spheres is defined in M. Fix an arbitrary 
point x in M. Then there exist a distinguished open set O with distinguished coordinates 
w1, . . . , up, v1 , . . . , v™ of jF centered at x and a coordinate neighborhood U in Sk^1 with 
local coordinates wl,..., wk~l centered at â(x) such that â on O is represented as follows: 

w/(<7(iA...,w/7,v1,...,vm)) = v' fori <i<m 

wi(â(u\..^up,v\...,\^n)) = 0 form+1 < / < ifc - 1 

and that ô(0) H U = {(w\..., wk~l) G U \ wm+l = . . . = wk'1 = 0}. Denote by 
5(0) the saturation of O, which is defined by 5(0) = ô~x (<T(0)). S(0) is open in M and 
hence open in S?-1. 5?-1 - 5(0) is a compact subset of Sn

{'
1 and so âfâ'1 - 5(0)) 

is a compact subset of 5*_1 which does not contain â(x). We choose a neighborhood £/ 
of &(x) such that L/C (7 and Û H a(5y -1 - 5(0)) = 0 (i.e., empty). Then we have 
BHÛ = {(w1,..., wk~l) G Û | wm+l = • • • = wk~l = 0}. Therefore our assertion is 
proved. • 

By virtue of Lemma 2.5, â\M is a differentiable map of M onto B. Applying a theory 
of Hermann [6] to our discussion, we obtain the following: 

LEMMA 2.6. ô: M —» B is a fibre bundle whose fibre is Sn~m~l. 

To state Theorem 2.7, we recall the invariant vn defined by Ferus [4]. Let V't be a 
Stiefel manifold of ordered r-tuples of linearly independent vectors in Rl. We denote 
by p(t) the largest integer such that the natural fibration V£p(r) —> V£j has a global 
cross section. For every positive integer n we define i/n as the largest integer such that 
pin — i/n) > vn + 1. By definition of vn the following inequality is clear: vn < (n — l ) /2 . 
Some numerical values and estimates for vn are found in [4]. 

We are now in a position to prove the following: 

THEOREM 2.7. Let a: V x V —+ W be a \ (> 0)-isotropic symmetric bilinear form, 
where dim V = n(>2) and dim W = fc. Suppose that a is not umbilic. Then k > n—vn-\. 

PROOF. We use the notation of the preceding lemmas. Since a is not umbilic, we 
have m = dim B > 1. Fix £ G B. Let V̂  denote the eigenspace of A^ with eigenvalue A2 

and V}- denote the orthogonal complement of V^ in V. Put dim Vç = v + 1. We here note 
thatz/+ra = n—l.Wetakejt G V^n5i_1.Then(j(jc) = £andhencex G M. By Lemma 2.6, 
we have dâx(TxM) = T^B. Since M is an open submanifold of 5 j _ 1 , TXM = TxS

n
x~

l and 
hence dâx(TxS

n{~1) = 7£#. This, together with Lemma 2.3, implies that dâx restricted 
on Vç- is a linear isomorphism of V;1 onto T^B. Noticing that dôx{y) = 2cr(x, v) for 
v G TxS

n
x-\ we can define the bilinear form F: V ( x V ^ T^B as F(JC, v) = a(x, v) for 

x G Vf, v G Vçk Moreover F satisfies that for x (^ 0) the map defined by v i—> F(x, v) is 
a linear isomorphism of V^ onto T̂ Z? and for v (^ 0) the map defined by JC i—̂  F(x, v) is 
an injective linear map of V^ into T^B. 

Let {e\,..., eu+\} be an orthonormal basis of V .̂ We denote b y / the inverse map of 
the linear isomorphism of V^ onto T^B defined by v i—> F(e\, v). For any nonzero vector 
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ï] G T^B, {F(euf(rj)) = 77, F(e29f(rj))9..., F(eu+i ,f(rj))} is an ordered (V + l)-tuples 
of linearly independent vectors in T^B. Therefore the fibration V'm]/+l —> V'm x has a cross 
section. In particular, we have p(m) = p(n — 1 — 1/) > 1/ + 1 and hence v < vn-\ by 
definition of vn-\. This implies that k — dim W > dimB +1 = n — v >n — vn-\. m 

By the theorem above the following clearly holds, which is an improvement of a result 
of Kleinjohann and Walter (Proposition 5.A in [7]). 

COROLLARY 2.8. Letf be an isotropic immersion of an n (> 2)-dimensionalRieman-
nian manifoldMn into an (n+k)-dimensionalRiemannian manifoldMn+k. Ifk < n—i/n-\, 
thenf is totally umbilic. 

Now we consider the extremal case in Theorem 2.7. 

LEMMA 2.9. In addition to the assumption of Theorem 2.7, we suppose that k — 
n — vn-h Then â is a surjective map of S"~l onto Sk^1 and for x G M ax is also a 
surjective linear map of V onto W, where ox is defined by crx(v) — o(x, v)for v G V. 

PROOF. Since dim W = dim B + 1, B is an open submanifold of S*_1. We define 
the function d on Sk

x~
l by d(£) = det(A^ — À2 Id) for £ G S*-1. From the argument in 

Lemma 2.2 it follows that a(S1~l) = d~l(0). Since d is a real analytic function on Sk
x~

l 

and B C d_1(0), d vanishes identically on Sk
x~~l and hence < J ( ^ - 1 ) = 5^_1. The fact that 

rank of dâx + I — rank of ox gives us the second part of this lemma. • 
We note that i/n-\ <(n — 2)/2 and hence n — z/n_i > (n + 2)/2. So we shall consider 

the case of dim W = (n + 2)/2. We get the following: 

PROPOSITION 2.10. In addition to the assumption of Theorem 2.7, we suppose that 
k — (n + 2)/2. Then it occurs only when n = 2, 4, 8 or 16 and â gives fibrations of 
S2m~l onto Sm with fibres Sm~l, where n = 2m. Moreover for an arbitrary unit vector 
£ G W, the vector space V has the orthogonal decomposition V = V^ + V_̂  such that 
dim V̂  = dim V_£ and that V^ and V_£ are the eigenspaces of Aç with eigenvalues A 
and —A, respectively. In particular, a is minimal. 

PROOF. Put n — 2m and hence k — m + 1. By virtue of Lemma 2.9, <7-1(0 is 
not empty for an arbitrary £ G S%. Since dirnV^ = dimker ddx + 1 for x G â~l(Ç), 
we have dim V^ > m. The eigenspace V_£ of A_£ with eigenvalue A2 coincides with 
the eigenspace of Aç with eigenvalue —A2 so that V_̂  C V^. Since dim Vç > m and 
dim V_£ > m, we have dim V̂  = dim V_̂  = m and obtain the orthogonal decomposition 
V = Vç + VH. From Lemma 2.1, it follows that ||<T(JC, V)|| = A||JC|| \\y\\ for x G V$, 
y G V_£. Therefore we obtain the bilinear form F: V^ x V_̂  —• T^S™ such that dim V̂  = 
dim VH = dim T^ = m and \\F(x,y)\\ = X\\x\\ \\y\\. This implies that m = 1, 2, 4 or 8. 
Since dimkerda^ = dim Vç — 1 = m — 1 at every point JC G S"-1, the differential do* 
has the same rank m. From this and Lemma 2.6, it follows that a is a fibration of S2m~l 

onto Sm with fibres Sm~l. m 
We here provide a characterization of umbilic bilinear forms. 
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PROPOSITION 2.11. Let cr: V x V —-> W be a symmetric bilinear form. Then the 
following are equivalent: 

(i) a is umbilic. 
(ii) a is isotropic and for any £, 7/ E W A^A^ = A^A^. 

PROOF, (i) => (ii): Let f be the mean curvature vector of a. Since a(x, y) = (x,y)f, 
we have A^ = (£, f ) Id for any £ E W so that A^ and A^ commute for any £,77 £ W. 

(ii) =» (i): We assume that a is À (> 0)-isotropic. We take a unit vector x E V and put 
£ = a(jc,jt) E W. Note that JC is an eigenvector of A^ with eigenvalue A2. We choose an 
orthonormal basis {e\,..., en} of V such that A^ei = A,e; (/ = 1, . . . , n), where ei = x 
and Ai = A2. We fix / (> 2). From Lemma 2.1 it follows that 

(a(x, et), a(x, et)) = (A2 - A,)/2 • ètj for any j , 

and hence Aa^e.)X = (A2 — A,-)/2 • et. Since A^Aa^ei)x = A^e.y^*, we obtain 

(A2-A /)A / /2 = (A2-A /)A2 /2 

so that A, = A2 for / > 2, that is, V is the eigenspace of A^ with eigenvalue A2. And 
hence by the argument in Lemma 2.2, a is umbilic. • 

3. Isotropic immersions with flat normal connection. Proposition 2.11 gives us 
the following statement on submanifolds in a real space form. 

THEOREM 3.1. Let M be a submanifold immersed in a real space form M(c). Then 
the following are equivalent: 

(i) M is a totally umbilic submanifold, 
(ii) M is an isotropic submanifold with flat normal connection. 

PROOF. By the equation of Ricci, we see that a submanifold in a real space form 
has a flat normal connection if and only if A ^ = A^A^ for any normal vector fields 
£, rj (c.f Chen [2]). From this and Proposition 2.11, it follows that two conditions in 
Theorem 3.1 are equivalent. • 

As an immediate consequence of Theorem 3.1 we obtain the following: 

COROLLARY 3.2. Let M be a submanifold immersed in a real space form M(c). Then 
the following are equivalent: 

(i) M is a totally geodesic submanifold. 
(ii) M is an isotropic minimal submanifold with flat normal connection. 

Note that the statement above does not hold if we remove one of three notions 
"isotropic", "minimal" and "flat normal connection" of condition (ii) in Corollary 3.2. 

REMARK. In case that the ambient space M is a complex projective space, Theo­
rem 3.1 does not hold. Our discussion is as follows: 

Let PQ(4) be an «-dimensional complex projective space with Fubini-Study metric of 
constant holomorphic sectional curvature 4. Now we shall construct a flat manifold T1 
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in P£(4). We consider Mn+l = Sl(l/y/n+T) x • • • x Sl(l/y/nTÎ) in S2n+l(l)9 where 
Sl ( 1 / \/n+ 1) is a circle with radius 1 / \Jn-\-1. Making use of this manifold Mn+1, we get 
a fibration Sl —> M"+1 —> 7* which is compatible with the Hopf fibration Sl —> S2n+l —• 
1^(4) (cf. [13]). 

The submanifold T1 (in P£(4)) thus obtained has various beautiful properties. In fact, 
for n > 2 T1 is a totally real minimal submanifold with flat normal connection. More­
over, the second fundamental form of T1 is parallel (cf. [13]). But T1 is not isotropic in 
P£(4) m t n e case of n > 3. We emphasize the fact that T2 is isotropic in PQ(4) (C/. [8]). 
Consequently P^(4) admits a flat torus T2 as an isotropic submanifold with flat normal 
connection. Of course, the submanifold T2 is not totally umbilic in P\(4). 

4. Isotropic immersions with low codimension. Let M be an n (> 2)-dimensional 
A-isotropic submanifold of a real space form M(c). Noting that A2 is a differentiable 
function on M, we study the derivative of the second fundamental form a. 

LEMMA 4.1. For any JC, y G TpM the following holds: 

(4.1) ((Vxo)(x,x\a(x,y)) = d\2(x)(x,y)(x,x) - 1/2 • d\2(y)(x,x)(x,x). 

PROOF. We fix p e M. We take arbitrary vectors JC, y G TPM. Let 7: (—e, s) —* M 
be a differentiable curve satisfying 7(0) = p and 7(0) = v. We denote by X(t) a parallel 
vector field along 7 such that X(0) = JC. Then for any t E (—£, e) 

(4.2) (<r(X(0,X(f)), cr(X(0,X(0)) = \2(X(t),X(t))2. 

Differentiating (4.2) at t = 0, we find 

(4.3) ((Vya)(x9x)9a(x9x)) = 1/2-d\2(y)(x,x)2 foranyjc,v G TpM. 

In particular, putting y = x in (4.3), we get 

(4.4) ((V^CT)(JC, JC), a(x, JC)> = 1/2- t/A2(jc)(jc, JC)2 for any JC G TpM. 

So, using the symmetry of Va, we have 

3((Vya)(x,x), a(x,x)) + 2((Vxa)(x,x), a(x,y)) 

= 1/2 • d\2(y)(x,x)2 + 2d\2(x)(x9y)(x,x) for any jc,y G rpM. 

(4.3) and (4.5) yield (4.1). • 

PROPOSITION 4.2. Let Mn be an n (> 2)-dimensional X-isotropic connected sub­
manifold immersed in an (n + k)-dimensional real space form Mn+k(c). Ifk <n — l, then 
X is constant. 

PROOF. We shall prove that dX2 — 0 at every point/7 G M. First we study at a point 
p G M such that X(p) = 0. From (4.1), it follows that 

1/2 • JA2(JC)(JC, JC)2 = ( ( V » ( J C , JC), a(x,x)) = 0 for any JC G TPM. 
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Therefore we have dX2 — 0 at such a point p. 

Next we study at a point/? G M such that X(p) > 0. We denote by NPM the normal 

space at p. Since dim NPM < dim TpM— 1, for any y G TpM there exists a nonzero vector 

x G r p M such that o(x,y) = 0. From Lemma 2.1 it follows that 

((j(x,x),a(x,y)) = X2(x,y)(x,x) so that (x,y) — 0. 

So, from (4.1) we see that dX2(y) = 0 for any y G TpM, that is, JÀ2 = 0 at such a point 

p. m 

The purpose of this section is to prove the following: 

THEOREM 4.3. Let f be a X-isotropic immersion of an n ( > 2)-dimensional con­

nected Riemannian manifold Mn into an (n + k)-dimensional real space form Mn+k(c). 

Suppose thatk < min{n — l ,n — i/n-\}. Then eitherf is totally umbilic orf is locally 

congruent to one of the following first standard minimal immersions ofMn into Mn+k(c): 

(1) Mn = P2
c(4c/3)f Mn+k(c) = S7(c), 

(2) Mn = Pj(4c/3) , Mn+k(c) = Su(c), 

(3) Mn = Pc a y(4c/3), Mn+k(c) = S25(c), 

where Sm(c) denotes an m-dimensional sphere of constant sectional curvature c and 

P^(4c/3), P^(4c/3) and Pc (4c/3) denote the projective planes of maximal sectional 

curvature 4c/3 over the complex, quaternions and Cayley numbers, respectively. 

PROOF. Since k<n — l, Proposition4.2 tells us that À is constant. lfk<n — vn-\, 

by Corollary 2 . 8 / is totally umbilic. So we shall study the case k — n — vn-\. We denote 

by U the set of all umbilic points off and put Uc — M — U. We suppose that Uc is not 

empty and we shall prove that Uc = M and that the second fundamental form off is 

parallel on M. 

We denote by SPM the unit sphere in TpM at p G Uc. We consider the linear map 

ax: TPM —> NpM defined by v G TPM i—> a(x, v) G NpM for x G SPM. From Lemma 2.9 

it follows that TTP = {x G SPM \ ax is surjective} is an open and dense subset of SpM. 

Since À is constant, (4.1) yields that 

((Vxa)(x,x), a(x,y)} = 0 for any x,y G TpM. 

Therefore we have 

(Vjccr)(jt,x) = 0 for x G TTP, and hence (VXCJ)(X,X) = 0 for all x G SPM. 

By the symmetry of Va , V a = 0 at p G Uc. 

Now we define a differentiable function /z on M by /*(/?) = |\ap\\2—n\\ \p\\
2, where 11ap\\ 

and || fp|| denote the length of the second fundamental form a and the mean curvature f at 

p G M, respectively. Note that h is nonnegative and h~l(0) = U. In particular, Uc is open 

in M. Since V a = 0 in Uc, h is locally constant in Uc. We fix/?o £ ^ c and put /*o = ^(/?o) 

( > 0). Then hrx{ho) is a closed subset in M. On the other hand, since h~l(ho) C £/c, 

h~l(ho) is open. By the connectedness of M, h~l(ho) = M and hence Uc = M. 
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By the classification theorem of isotropic submanifolds with parallel second funda­
mental form in a real space form (Sakamoto [10] and also see Ferus [5]), we get our 
conclusion. • 

REMARK. In case of (1), (2) and (3) in Theorem 4.3, they satisfy k = (n + 2)/2. 
Therefore the second fundamental forms of the submanifolds satisfy the properties of 
Proposition 2.10. 
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