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ISOTROPIC IMMERSIONS INTO A REAL SPACE FORM

SADAHIRO MAEDA AND KAZUMI TSUKADA

ABSTRACT.  The main purpose of this paper is to investigate isotropic immersions
with low codimensions into a real space form.

1. Introduction. As an interesting class of isometric immersions, the notion of
isotropic immersions was introduced by O’Neill [9]. Its definition is given as follows:
Let M and M be Riemannian manifolds and f: M — M be an isometric immersion. We
denote by o the second fundamental form of f and call o(x, x) the normal curvature vec-
tor for a unit tangent vector x. An isometric immersion f is said to be isotropic provided
that every normal curvature has the same length at each point, that is, the length of the
normal curvature vector depends only on the point. In particular, if the length of the nor-
mal curvature vector is equal to A (a function on M), then the immersion f is said to be
A-isotropic.

A totally umbilic immersion is clearly isotropic but some examples of isotropic im-
mersions which are not totally umbilic are known. Now we give examples of isotropic
immersions into a unit sphere S}’:

(1) M is a compact symmetric space of rank one and f: M — SY is a standard minimal
immersion in the sense of Do Carmo and Wallach [3].

(2) M" is an n-dimensional isotropic totally real submanifold with parallel second
fundamental form of an n-dimensional complex projective space P¢(4) of constant holo-
morphic sectional curvature 4. We denote by i: M" — P{(4) its immersion and by
7§21+l — P%(4) the Hopf fibration. Then we obtain the lift f: M" — $3*! of i with
respect to 7, that is, the following diagram holds:

S%'H'l

-

M —— Pi(4).

We see that f is also isotropic. Such submanifolds M" of P¢(4) are completely classified
by Naitoh [8]. They are locally congruent to S' x $"~! (n > 2), SU(3)/ SO(3), SU(3),
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(3) M is a Riemann surface and f: M — S‘l‘ is a superminimal immersion in the sense
of Bryant [1].

Here we remark that in the case of (1) the property of isotropic immersions does not
characterize the standard minimal immersions among minimal immersions of spheres
into spheres (for details, see Tsukada [12]). Also we note that ) is constant in exam-
ples (1) and (2) but in general A is not constant in (3).

A complete and simply connected Riemannian manifold of constant curvature c is
called a real space form, which is denoted by M¥(c). In this paper we study isotropic
immersions into a real space form with flat normal connection (Theorem 3.1) and with
low codimension (Theorem 4.3). In Section 2, we are concerned with the second funda-
mental form of an isotropic immersion at one point and obtain the estimate of dimensions
of the normal space (Theorem 2.7).

2. Isotropy at one point. In this section we investigate the second fundamental
form at one point. Let V and W be the Euclidean vector spaces with inner products
(, ), whose dimensions are n and k, respectively. We abstract the second fundamen-
tal form at one point to a symmetric bilinear form o: V X V. — W. We adopt for o
the usual notation and terminology of isometric immersions. Let S?(V) be the space of
all symmetric endomorphisms of V. Then we define the linear map A: W — S%(V) by
(Aex,y) = (0(x,y),€) forx, y € V and £ € W. The mean curvature vector f is defined
by f = (1/n) 1, o(e;, e;), where {ey,...,e,} is an orthonormal basis of V. o is said to
be umbilic if it satisfies o(x,y) = (x,y)f for any x, y € V. o is minimal if § vanishes. We
say that o is A-isotropic if there exists a real constant A such that ||o(x, x)|| = X for every”
unit vector x € V.

The following lemma is due to O’Neill [9].

LEMMA 2.1. A A-isotropic symmetric bilinear form satisfies

(o(x,y),0(z,w)) + (0(x,2), a(W, y)) + (o (x, W), 0 (y, 2))
= )‘2{<x, yNz,w) + (x,2)(w,y) + (x,w){(y,2)} foranyx,y,z,w € V.

From now on, we assume that o is A (> 0)-isotropic. Then o induces a map 6: ST~ ' —
S%=1 defined by 6(x) = o(x,x) for x € S7~!, where $7~! and S5~! denote an (n — 1)-
dimensional sphere of radius 1 in V and a (k — 1)-dimensional sphere of radius A in
W, respectively. We shall investigate the map & from a differential geometric point of
view. For instance, o is umbilic if and only if 4 is a constant map, that is, the image
of 4 is exactly one point of S5~!. ¢ is minimal if and only if 4 is a harmonic eigenmap
corresponding to the second eigenvalue of $7~! (cf. Toth and D’ambra [11]). It is known
that these harmonic eigenmaps can be parametrized by a compact convex body lying in
a finite dimensional vector space E, where dimE = (n — 3)n(n+ 1)(n+2) /12 forn > 4
([11]).

We shall now describe the inverse image 6~ !(¢) for £ € S5!: Since a symmetric
endomorphism A, of V satisfies (A¢x,x) = (0(x,x),€) < [|o(x, )| ||£]| = A? for any
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unit vector x € V, the eigenvalues of A¢ lie in the closed interval [—A2, \2]. This implies
that for x € $77', 6(x) = ¢ if and only if x is an eigenvector of A¢ with eigenvalue A\2.
We denote by V; the eigenspace of A, with eigenvalue A2, Then if 6~'(€) is not empty,
we have 671(¢) = V. N ST~ 1t is easily seen that o(x,y) = (x,y)¢ for x,y € V; and
that Ve, NV, = {0}if € # nfor, n € S’f\". From the argument above, we obtain the
following:

LEMMA 2.2. If 6'(€) is not empty for £ € S’j_', then 6='(€) is a totally geodesic
sphere of S’l’_1 (it may occur that the dimension of 0‘"({ ) = 0, that is, 6~1(&) consists of
one point and its antipodal point).

The tangent space 7,7~ ! at x € $7~! is naturally identified with the subspace {v €
V| (x,v) = 0}. Under this identification, the differential d6, of 6 at x € S7~! is given
by dé,(v) = 20(x,v) forv € TXS’I’". Moreover we have

LEMMA 2.3. kerdd, = Vs NTS™ L.

PROOF.  Since o(x,v) = (x,v)6(x) forv € V), we find that VsyNT,S7~! C ker dé,.
Conversely let v € T,CS'I'_l which satisfies o(x, v) = 0. From Lemma 2.1, it follows that
(a(x,x),a(v,v)) = A?||v||* and hence (As(x), v, v) = A?||v||>. This means that v € V(). =

By virtue of Lemma 2.3, we see that the rank of dé is constant on 6~!(¢) for £ € %!
and that rank of d6, + dim6~1(€) = n — 1, where £ = 6(x).

Here we fix some notation:

m = Max{rank of d6, | x € S7'} (< min{n — 1,k — 1}),
M = {x € §7! | rank of d6, = m},
B = the image of M by ¢ in S~ 1.

LEMMA 24. S’l'“1 — M is a closed real analytic subset in S']"l and hence M is open
and dense in S}

PROOF. For any x € V, we consider the linear map o,: V — W defined by o,(v) =
o(x,v) for v € V. Then we see that rank of dé, + 1 = rank of o, for x € S’l'"'. Let
{e1,...,en} and {&y,...,&} be orthonormal bases of V and W, respectively. Setting
o(ei,e)) = Y _, 0;é,, we have

n n

xjaij}éa forx =Y ¥e;.
i

j=1

k
ox(e;) = o(x,e;) = Z{

a=1"j=

Let ((ax)?) be the matrix representing the linear map o, with respect to the above bases.
By the above, (0,)¢ = T, xfofj Our assertion follows from S7~! — M = {x eS|
all minor-determinants of order m + 1 of the matrix ((ax)?) = 0}. ]

LEMMA 2.5. B is an m-dimensional regular submanifold of S’;“l.

PROOF. We put p = n — m — 1, which denotes the dimension of 67!(¢), ¢ € B.
We consider the case that p > 1 (when p = 0, by the similar argument we can prove
our assertion). By Lemma 2.4, M is an open submanifold of S}'" and the foliation F
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consisting of p-dimensional totally geodesic spheres is defined in M. Fix an arbitrary
point x in M. Then there exist a distinguished open set O with distinguished coordinates
ul,...,uP v, ..., v" of F centered at x and a coordinate neighborhood U in S5~ ! with

local coordinates w!, ..., wf~! centered at 6(x) such that 6 on O is represented as follows:

wi (o', .V vh) =V forl <i<im

w (6@, W v, V) =0 form+1<i<k—1

and that 6(0) N U = {(W,..., w1y € U | w™! = ... = wk~! = 0}. Denote by
S(O) the saturation of O, which is defined by S(0) = 6! (6(0)). S(0) is open in M and
hence open in 877!, §7~! — S(0) is a compact subset of 7~ and so 6(S7~' — S(0))
is a compact subset of S5~! which does not contain 6(x). We choose a neighborhood U
of 6(x) such that U C U and U N 6(5'1’_’ — S(O)) = ) (i.e., empty). Then we have
BNU = {w',...,.ws!) € U | wm! = ... = wk=1 = 0}. Therefore our assertion is
proved. (]

By virtue of Lemma 2.5, 8|y is a differentiable map of M onto B. Applying a theory
of Hermann [6] to our discussion, we obtain the following:

LEMMA 2.6. 4:M — B is a fibre bundle whose fibre is S" ™.

To state Theorem 2.7, we recall the invariant v,, defined by Ferus [4]. Let V{ , bea
Stiefel manifold of ordered r-tuples of linearly independent vectors in R'. We denote
by p(z) the largest integer such that the natural fibration V,"p(,) — V;, has a global
cross section. For every positive integer n we define v, as the largest integer such that
p(n —v,) > v, + 1. By definition of v, the following inequality is clear: v, < (n—1)/2.
Some numerical values and estimates for v/, are found in [4].

We are now in a position to prove the following:

THEOREM 2.7. Let 0:V X V — W be a A (> 0)-isotropic symmetric bilinear form,
where dim V = n (> 2)and dim W = k. Suppose that o is not umbilic. Thenk > n—v,,_,.

PROOF. We use the notation of the preceding lemmas. Since o is not umbilic, we
have m = dimB > 1. Fix { € B. Let V, denote the eigenspace of A; with eigenvalue 2
and Vél denote the orthogonal complement of V¢ in V. Put dim V¢ = v + 1. We here note
thatv+m = n—1. We take x € V;NS}~!. Then 6(x) = £ and hence x € M. By Lemma 2.6,
we have dé6,(T,M) = T;B. Since M is an open submanifold of S’l‘", M = T,(S'l'_l and
hence d&x(TxS’l'“‘) = T¢B. This, together with Lemma 2.3, implies that d&, restricted
on VéL is a linear isomorphism of VéL onto T¢B. Noticing that dé(v) = 20(x,v) for
v E TxS’l’_l, we can define the bilinear form F: V, x VéL — T¢B as F(x,v) = o(x,v) for
xeVe,ve Vgl. Moreover F satisfies that for x (# 0) the map defined by v — F(x,v) is
a linear isomorphism of VEL onto T¢B and for v (# 0) the map defined by x — F(x,v) is
an injective linear map of V; into T;B.

Let {e,..., e, } be an orthonormal basis of V. We denote by f the inverse map of
the linear isomorphism of VEL onto T¢ B defined by v — F(ey, v). For any nonzero vector
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n € T¢B, {F(el,f(n)) =1, F(ez,f(n)), e ,F(e,,+1 ,f(n))} is an ordered (v + 1)-tuples
of linearly independent vectors in T¢ B. Therefore the fibration V;, ., — V, | has a cross

my+1
section. In particular, we have p(m) = p(n — 1 —v) > v + 1 and hence v < v, by
definition of v,,_;. This implies that k = dimW > dimB+1=n—v >n—v,. ]

By the theorem above the following clearly holds, which is an improvement of a result
of Kleinjohann and Walter (Proposition 5.A in [7]).

COROLLARY 2.8.  Letf be anisotropic immersion of an n (> 2)-dimensional Rieman-
nian manifold M" into an (n+k)-dimensional Riemannian manifold M"*. Ifk < n—v,_,,
then f is totally umbilic.

Now we consider the extremal case in Theorem 2.7.

LEMMA 2.9. In addition to the assumption of Theorem 2.7, we suppose that k =
n — vn_1. Then 6 is a surjective map of S7~" onto S’;" and for x € M o, is also a
surjective linear map of V onto W, where o, is defined by o,(v) = o(x,v) forv € V.

PROOF. Since dimW = dimB + 1, B is an open submanifold of SX~!. We define
the function d on SX~! by d(¢) = det(A; — A\*1d) for £ € S%~!. From the argument in
Lemma 2.2 it follows that 6(S7~!) = d~'(0). Since d is a real analytic function on S%~!
and B C d~!(0), d vanishes identically on S§~! and hence 4(S7~!) = $%~!. The fact that
rank of dé, + 1 = rank of o, gives us the second part of this lemma. »

We note thatv,_; < (n—2)/2 and hence n —v,_; > (n+2)/2. So we shall consider
the case of dim W = (n + 2) /2. We get the following:

PROPOSITION 2.10. In addition to the assumption of Theorem 2.7, we suppose that
k = (n+2)/2. Then it occurs only when n = 2, 4, 8 or 16 and 6 gives fibrations of
§?m=1 onto S™ with fibres S"~!, where n = 2m. Moreover for an arbitrary unit vector
§ € W, the vector space V has the orthogonal decomposition V. = V¢ + V_, such that
dimV, = dimV_; and that V¢ and V_; are the eigenspaces of A; with eigenvalues A
and — ), respectively. In particular, o is minimal.

PROOF. Putn = 2m and hence k = m + 1. By virtue of Lemma 2.9, 671(¢) is
not empty for an arbitrary £ € S7. Since dimV; = dimkerdd, + 1 forx € 67'(¢),
we have dim V; > m. The eigenspace V_; of A_, with eigenvalue A? coincides with
the eigenspace of A, with eigenvalue —\? so that Ve C Vgl. Since dim V¢ > m and
dim V_; > m, we have dim V; = dim V_; = m and obtain the orthogonal decomposition
V = V¢ + V_¢. From Lemma 2.1, it follows that |lo(x,y)|| = A||x|| [|y|| for x € V¢,
y € V_¢. Therefore we obtain the bilinear form F: V¢ X V_¢ — T¢S%' such that dim V; =
dimV_; = dimT;SY = mand ||F(x,y)|| = Al|x|| ||y||- This implies that m = 1,2, 4 or 8.
Since dimkerdé, = dimV; —1 = m — 1 at every point x € S7=1, the differential dé,
has the same rank m. From this and Lemma 2.6, it follows that 6 is a fibration of $2"~!
onto S™ with fibres S™~1. "

We here provide a characterization of umbilic bilinear forms.
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PROPOSITION 2.11. Let 0:V X V — W be a symmetric bilinear form. Then the
following are equivalent:

(i) o is umbilic.

(ii) o is isotropic and for any §,1 € W A¢A, = AjAc.

PROOF. (i) = (ii): Let | be the mean curvature vector of ¢. Since o(x,y) = (x,y)f,
we have A¢ = (£, 1) Id forany £ € W so that A, and A, commute for any §,7 € W.

(ii) = (i): We assume that ¢ is A (> 0)-isotropic. We take a unit vector x € V and put
&€ = o(x,x) € W. Note that x is an eigenvector of A; with eigenvalue 2. We choose an
orthonormal basis {el,...,e,,} of V such that Ace; = Ne; (i = 1,...,n), where e; = x
and \; = A% We fix i (> 2). From Lemma 2.1 it follows that

(o(x,e), 0(x,e))) = (A2 — \)/2-8; foranyj,
and hence Agxepx = (A2 — \;)/2 - €;. Since AgAo(xepX = Ag(xepAcX, We obtain
A2 = MA/2= (A2 = )22
so that \; = A fori > 2, that is, V is the eigenspace of A, with eigenvalue A2, And
hence by the argument in Lemma 2.2, ¢ is umbilic. »
3. Isotropic immersions with flat normal connection. Proposition 2.11 gives us
the following statement on submanifolds in a real space form.

THEOREM 3.1. Let M be a submanifold immersed in a real space form M(c). Then
the following are equivalent:
(i) M is a totally umbilic submanifold,
(ii) M is an isotropic submanifold with flat normal connection.

PROOF. By the equation of Ricci, we see that a submanifold in a real space form

has a flat normal connection if and only if A¢A,, = A,A, for any normal vector fields
&, n (cf. Chen [2]). From this and Proposition 2.11, it follows that two conditions in
Theorem 3.1 are equivalent. n

As an immediate consequence of Theorem 3.1 we obtain the following:

COROLLARY 3.2. Let M be a submanifold immersed in a real space form M(c). Then
the following are equivalent:
(i) M is a totally geodesic submanifold.
(ii) M is an isotropic minimal submanifold with flat normal connection.

Note that the statement above does not hold if we remove one of three notions

LLINY3

“isotropic”, “minimal” and “flat normal connection” of condition (ii) in Corollary 3.2.

REMARK. In case that the ambient space M is a complex projective space, Theo-
rem 3.1 does not hold. Our discussion is as follows:

Let P¢(4) be an n-dimensional complex projective space with Fubini-Study metric of
constant holomorphic sectional curvature 4. Now we shall construct a flat manifold 7"

https://doi.org/10.4153/CMB-1994-036-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1994-036-5

ISOTROPIC IMMERSIONS 251

in P{(4). We consider M™' = S'(1/v/n+1) x --- x S1(1/+/n+ 1) in $2"*1(1), where
S'(1/+/n + 1) is acircle with radius 1 /+/n + 1. Making use of this manifold M"*!, we get
a fibration S' — M"™*! — T" which is compatible with the Hopf fibration §! — §2*+! —
PL(4) (cf. [13]).

The submanifold 7" (in P¢(4)) thus obtained has various beautiful properties. In fact,
for n > 2 T" is a totally real minimal submanifold with flat normal connection. More-
over, the second fundamental form of 7" is parallel (cf. [13]). But 7" is not isotropic in
P((4) in the case of n > 3. We emphasize the fact that 72 is isotropic in P%(4) (cf. [8]).
Consequently P%(4) admits a flat torus 77 as an isotropic submanifold with flat normal
connection. Of course, the submanifold 7? is not totally umbilic in P%(4).

4. Isotropic immersions with low codimension. Let M be an n (> 2)-dimensional
M-isotropic submanifold of a real space form M(c). Noting that A\ is a differentiable
function on M, we study the derivative of the second fundamental form o.

LEMMA 4.1.  For any x,y € T,M the following holds:
4.1 ((V20)(x, %), 0(x,y)) = dN*x)(x, y)(x, x) — 1/2 - dA2(y){x, x){x, x).

PROOF. We fix p € M. We take arbitrary vectors x, y € T,M. Let V: (—¢,e) = M
be a differentiable curve satisfying Y(0) = p and ¥(0) = y. We denote by X(¢) a parallel
vector field along 7Y such that X(0) = x. Then for any ¢ € (—¢, €)

(4.2) (o(X(0),X(1)),0(X(1), X)) = N(X(0), X(2)).
Differentiating (4.2) at t = 0, we find

4.3) ((Vy0)(x,x),0(x,x)) = 1/2-d\*(y){x,x)*> foranyx,y € T,M.
In particular, putting y = x in (4.3), we get

4.4) (V20)(x, %), 0(x,x)) = 1/2- d\*(x)(x,x)*> forany x € T,M.
So, using the symmetry of V,, we have

3<(Vya)(x, x), 0(x, %)) + 2((V,0)(x, %), 0(x,))
=1/2-d\*(y){x, x)* + 2d)*(x)(x,y)(x,x) foranyx,y € T,M.

(4.3) and (4.5) yield (4.1). .

(4.5)

PROPOSITION 4.2. Let M" be an n (> 2)-dimensional )-isotropic connected sub-
manifold immersed in an (n + k)-dimensional real space form M™k(c). Ifk <n—1, then
A is constant.

PROOF. We shall prove that d\? = 0 at every point p € M. First we study at a point
p € M such that \(p) = 0. From (4.1), it follows that

1/2- dN*(0)(x,x)? = ((V,0)(x,x),0(x,x)) =0 foranyx € T,M.
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Therefore we have d\* = 0 at such a point p.

Next we study at a point p € M such that A(p) > 0. We denote by N,M the normal
space at p. Since dim N,M < dimT,M —1, forany y € T,M there exists a nonzero vector
x € T,M such that o(x, y) = 0. From Lemma 2.1 it follows that

(o(x, %), 0(x,y)) = XN (x,y){x,x) so that (x,y) = 0.

So, from (4.1) we see that dA\*(y) = O forany y € T,M, that is, d\* = 0 at such a point

p. n
The purpose of this section is to prove the following:

THEOREM 4.3. Let f be a \-isotropic immersion of an n (> 2)-dimensional con-
nected Riemannian manifold M" into an (n + k)-dimensional real space form M"*(c).
Suppose that k < min{n — 1,n — v, }. Then either f is totally umbilic or f is locally
congruent to one of the following first standard minimal immersions of M" into M™**(c):

(1) M" = Pi(4c/3), M™*(c) = S"(c),

(2) M" = Pi(4c/3), M"™*(c) = S'3(c),

(3) M" = Pg, (4c/3), M (c) = §%(c),
where S™(c) denotes an m-dimensional sphere of constant sectional curvature ¢ and
Pi(4c/3), Py(4c/3) and Pg, (4c/3) denote the projective planes of maximal sectional
curvature 4c /3 over the complex, quaternions and Cayley numbers, respectively.

PROOF. Since k < n — 1, Proposition 4.2 tells us that A is constant. If k < n—wv,_,
by Corollary 2.8 f is totally umbilic. So we shall study the case k = n —v,_;. We denote
by U the set of all umbilic points of f and put U° = M — U. We suppose that U* is not
empty and we shall prove that U° = M and that the second fundamental form of f is
parallel on M.

We denote by S,M the unit sphere in T,M at p € U°. We consider the linear map
ox: T,M — N,M defined by v € T,M +— o(x,v) € N,M for x € S,M. From Lemma 2.9
it follows that 7, = {x € S,M | o, is surjective} is an open and dense subset of S,M.
Since ) is constant, (4.1) yields that

((V40)(x,x),0(x,y)) =0 foranyx,y € T,M.
Therefore we have
(Vi0)(x,x) =0 forx € 7,, and hence (V,0)(x,x) = 0 forallx € S,M.

By the symmetry of Vo, Vo = 0 atp € U°.

Now we define a differentiable function h on M by h(p) = ||o,|>—n||f,||>, where ||o, ||
and ||f,|| denote the length of the second fundamental form o and the mean curvature f at
p € M, respectively. Note that 4 is nonnegative and A~'(0) = U. In particular, U° is open
inM. Since Vo = 0in U¢, his locally constant in U¢. We fix pg € U¢ and put hy = h(py)
(> 0). Then A !(ho) is a closed subset in M. On the other hand, since A~ (hy) C U,
h~'(ho) is open. By the connectedness of M, h~'(hy) = M and hence U = M.
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By the classification theorem of isotropic submanifolds with parallel second funda-
mental form in a real space form (Sakamoto [10] and also see Ferus [5]), we get our
conclusion. n

REMARK. In case of (1), (2) and (3) in Theorem 4.3, they satisfy k = (n + 2)/2.
Therefore the second fundamental forms of the submanifolds satisfy the properties of
Proposition 2.10.
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