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Abstract
We study an optimal investment problem under a joint limited expected relative loss and portfolio insurance con-
straint with a general random benchmark. By making use of a static Lagrangian method in a complete market
setting, the optimal wealth and investment strategy can be fully determined along with the existence and unique-
ness of the Lagrangian multipliers. Our numerical demonstration for various commonly used random benchmarks
shows a trade-off between the portfolio outperformance and underperformance relative to the benchmark, which
may not be captured by the widely used Omega ratio and its utility-transformed version, reflecting the impact of
the benchmarking loss constraint. Furthermore, we develop a new portfolio performance measurement indicator
that incorporates the agent’s utility loss aversion relative to the benchmark via solving an equivalent optimal asset
allocation problem with a benchmark-reference-based preference. We show that the expected utility performance is
well depicted by looking at this new portfolio performance ratio, suggesting a more suitable portfolio performance
measurement under a limited loss constraint relative to a possibly random benchmark.

1. Introduction
One of the crucial norms in the financial industry is benchmarking, which takes a relative performance
to a benchmark into account. For instance, every hedge fund manager is deemed successful if she can
beat the market. Here, the fund manager might choose any market return, for example, S&P 500 index
annual return, as the benchmark for her active portfolio management (see, e.g., Alexander et al. (2001)).
However, complete outperformance is not always feasible in practice, and the agent may have to adopt
passive portfolio management. Being more concerned about her underperformance outcomes, she wants
to track the benchmark, hence adopting a limiting underperformance restraint in choosing her portfolio
management strategies. From a risk management point of view, the underperformance can be controlled
by incorporating a risk constraint that mitigates the expected loss relative to the benchmark level. In
addition to the benchmarking concern, most firms in the financial industry are required to maintain a
minimal capital reserve to handle extreme financial crises. For an insurance company, it is usual that
a minimum guaranteed amount is required to be paid to the policyholders. Minimum guarantees are
typically modeled by a portfolio insurance (PI) constraint, see, for example, Grossman and Vila (1989);
Basak (1995); Grossman and Zhou (1996); Jensen and Sørensen (2001); Gabih et al. (2009); Di Giacinto
et al. (2014).

Taking these considerations into account, we investigate in this paper a utility maximization prob-
lem under a joint PI and limited expected relative loss (LERL) constraint, which is hereafter named
as LERL-PI problem. We remark that the limited expected loss (LEL) problem studied in Basak and
Shapiro (2001) can be treated as a special case of our LERL-PI problem. By applying a static Lagrangian

C© The Author(s), 2023. Published by Cambridge University Press on behalf of The International Actuarial Association. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/asb.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.26
https://orcid.org/0000-0003-0841-8826
https://orcid.org/0000-0002-0912-2392
mailto:tak-wa.ng.1@ulaval.ca
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/asb.2022.26


150 Tak Wa Ng and Thai Nguyen

approach in a complete financial market (see Karatzas et al. (1987); Cox and Huang (1989)), we explic-
itly obtain the optimal solution to the LERL-PI problem for a general random benchmark along with
delicate and rigorous demonstrations, confirming and extending the result in Basak et al. (2006). In
particular, except for the degenerate PI case, the optimal terminal wealth exhibits a 4-region solution,
including two Merton-type forms, the benchmark, and the PI level. Moreover, depending on the choice
of the benchmark, the investment outperformance (resp. underperformance) relative to the benchmark
may occur in favorable or in unfavorable economic states, indicating a significant trade-off between the
outperformance and the underperformance under the presence of a loss constraint.

Risk management (RM) under downside constraints has been widely considered in the literature,
see, for example, Grossman and Vila (1989); Basak (1995); Grossman and Zhou (1996); Jensen and
Sørensen (2001); Gabih et al. (2009); Chen et al. (2018); Dong et al. (2020); Dong and Zheng (2020);
Nguyen and Stadje (2020); Escobar-Anel et al. (2021); Gu et al. (2021). The LERL-RM framework is
suggested by Basak et al. (2006), where only the optimal terminal wealth for the stock market bench-
mark is given without rigorous proof. We extend the setting in Basak et al. (2006) to more general
benchmarks that include the so-called constant proportion portfolio insurance (CPPI) benchmark, see,
for example, Bertrand and Prigent (2003); Bertrand and Prigent (2005); Bertrand and Prigent (2011);
Maalej et al. (2016). With an additional PI constraint, our framework also incorporates the minimal capi-
tal requirement. Using concavification techniques, Liang et al. (2021) studied an optimization framework
with benchmark-dependent utility function, allowing discussion of various technical issues that typically
appear in risk management problems with constraints. In addition to the actuarial portfolio optimization
literature, our framework also falls into the mainstream of active portfolio management under a risk
constraint introduced in Browne (1999a,b, 2000) and widely studied thereafter. For a general review,
we refer to Grinold and Kahn (2019); see also Alexander and Baptista (2008, 2010); Lioui and Poncet
(2013).

To illustrate the results and understand the effect of the model parameters thereon, we conduct an
intensive numerical analysis for various benchmarking frameworks such as hybrid, mixed and CPPI
benchmarks. Our numerical results show that for an out/underperformance benchmark portfolio man-
agement, the LERL-PI risky investment ratio is bounded in the range limited by the LEL-PI and PI
strategies for the most part. In particular, the LERL-PI agent in very good market scenarios will adopt
an investment strategy close to the Merton ratio to beat the benchmark. However, when the market is
no longer extremely good, the agent is sensible to reduce the risky asset holding significantly due to the
loss constraint. Particularly, the LERL-PI decision-maker tries to match the benchmark return as much
as possible, hence enlarging the benchmarking region by taking higher risky exposures in intermediate
and bad market states. On the other hand, when the economy is extremely bad, the PI constraint now
forces her to reduce the risky investment rapidly, whereas the LERL strategy reverts to the Merton ratio.
Moreover, for each specific benchmark, the more prudent the benchmark is, for instance, with a higher
risk-free investment initiation in the case of a mixed benchmark or with a lower value of the multiplier m
in the case of a CPPI benchmark, the closer the LERL-PI strategy gets to the limiting LEL-PI strategy.

Inspired by Chen and Nguyen (2020), we show that the LERL optimal terminal wealth can be repli-
cated by the optimal solution of an optimal asset allocation problem with a benchmark-reference-based
utility (BRBU) function. Compared to Chen and Nguyen (2020), our benchmark-reference-based utility
does not include the part measuring the satisfaction of the terminal wealth. Remark that we can include
this component to achieve the partial equivalence too. However, this subtle adjustment allows us to
develop a new performance indicator called the BRBU ratio, which incorporates the LERL-PI agent’s
utility loss aversion relative to the benchmark. Our numerical analysis shows that compared with the
well-known Omega ratio (considering the actual relative performance) and its utility-transformed ver-
sion, the BRBU ratio is always positively proportional to the certainty equivalent, hence better reflecting
the impact of the benchmarking loss constraint on the underperformance against the outperformance.
This finding is aligned with recent literature on portfolio performance that considers the impact of loss
aversion on the performance measurements (see, e.g., Zakamouline (2014) and a short discussion in
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Section 6.1). It is worth noting that the connection with reference-based preference is a relatively new
quantitative aspect in this field of research, and we believe that our results shed light on the relation
between loss aversion with benchmarking behavior and portfolio performance measurements.

The rest of the paper is organized as follows. Section 2 depicts the model setting of this paper.
Section 3 gives a general benchmark setting together with commonly used benchmarks. The optimiza-
tion problem under a joint LERL and PI constraint is formulated and solved explicitly in Section 4.
Section 5 studies the utility maximization problem under the BRBU with a PI constraint and its relation
to the LERL-PI problem. In Section 6, numerical analyses for various benchmark choices are carried
out. Finally, a conclusion and perspectives are provided in Section 7. The detailed proofs and additional
expositions can be found in the Appendix.

2. Model setting
2.1. Financial market
We consider a complete financial market without transaction costs on a filtered probability space(
�, F , P; (Ft)t∈[0,T]

)
, equipped with d-dimensional Brownian motion W , where (Ft)t∈[0,T] is the natural

filtration of W , and T > 0 is the terminal time. It includes one risk-free asset S0 and d ≥ 1 risky assets
S = (S(1), · · · , S(d)) whose price dynamics are F-adapted semimartingales. Under the no-arbitrage con-
dition, there exists a unique equivalent martingale measure Q∼ P so that the discounted risky asset
processes

(
St/S0

t

)
t∈[0,T]

are (F , Q)-local martingales.
Denote the fractions of wealth invested in the risky assets by a d-dimension F-predictable pro-

cess π = (πt)t∈[0,T] =
(
π (1)

t , · · · , π (d)
t

)
t∈[0,T]

and assume that it is a self-financing strategy. Then, the
corresponding portfolio process Xπ with an initial capital x can be expressed as

Xπ

t = x +
∫ t

0

πsdSs, t ∈ [0, T]. (2.1)

As usual, we only consider investment strategies πt for which the portfolio process (2.1) admits a unique
strong solution, and Xπ

t is bounded from below so that arbitrage opportunities are excluded. It is known
that the discounted portfolio process Xπ/S0 is a (F , Q) super-martingale. Below, the superscript π in Xπ

will be omitted when there is no confusion.
We remark that such a complete market setting implies a unique stochastic discount factor or pric-

ing kernel defined by ξT := S0
0

S0
T

dQ
dP

, where dQ
dP

is the Radon-Nikodym derivative of Q with respect to P.
Economically, ξT reflects the status of the economy at time T in the sense that it is low if the economy
is booming and is high in a depression. Specifically, for any ω ∈ �, ξT(ω) can be viewed as the Arrow-
Debreu value per unit probability P of $1 payoff of an asset in state ω at time T , and 0 otherwise. Owing
to this explanation, we can later construct benchmarks characterizing optimal wealth and strategy as
functions of ξT to show how they evolve with respect to the state of the economy. Also, we assume that
ξT is atomless throughout this paper.

By the martingale approach (see, e.g., Karatzas et al. (1987); Cox and Huang (1989)), solving the
dynamic utility maximization problem by finding a self-financing optimal investment strategy π is
equivalent to selecting an optimal terminal wealth XT financed by the initial capital x. We denote the set
of all attainable terminal portfolios XT by

X := {XT : E(ξTXT) ≤ x, XT is FT-measurable, and XT ≥ 0 a.s.} ,

where E(ξTXT) ≤ x is the so-called budget constraint.
Later, we will adopt a one-dimension Black-Scholes model for numerical demonstration. Since we

consider a general complete market in the theoretical part, the results can be easily extended to other
complete market models like the local volatility model, stochastic interest rate model with a zero-coupon
bond, and the Heston stochastic volatility model with an additional financial derivative for completion.
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2.2. The agent’s preference
In this paper, the agent’s preference is modeled by a strictly increasing, strictly concave, and
continuously differentiable utility function U : (0, +∞) 	→ (−∞, +∞) satisfying the following two
conditions:

Assumption 1. (Inada’s conditions)
lim
y→0

U′(y) = +∞ and lim
y→+∞

U′(y) = 0. (2.2)

Note that the Inada’s conditions imply that
lim
y→0

I(y) = +∞ and lim
y→+∞

I(y) = 0, (2.3)

where I( · ) = (U′)−1( · ), which excludes utility functions with constant absolute relative aversion.
However, our approach can be easily extended to such a framework.

Assumption 2. (Integrability Conditions) For all λ > 0, it holds that
(i) E(ξTI(λξT)) < +∞ (ii) E(U(I(λξT))) < +∞ (iii) E

(
ξ 2

T |I ′(λξT)|)< +∞.

As shown below, while the first and second integrability conditions are technically needed to ensure
the existence of Lagrangian multipliers, the third condition in Assumption 2 allows one to switch the
expectation and the differential operators (see Appendix D) when examining the relationship between
Lagrange multipliers and other parameters in the optimization problem.

3. Benchmark setting and examples
3.1. General benchmark setting
Benchmarking is a universal practice in both active and passive asset management. This subsection
provides specifications on the benchmark process (Yt)t∈[0,T]. Typically, a benchmark represents a general
indicator of market sentiment and direction.1 A specific choice for the benchmark falls into three usual
categories: a portfolio, an index (including the stock indices, e.g., S&P 500 as the most popular example),
or any economic indicator. Motivated by various works on portfolio management with benchmarking, for
example, Basak et al. (2006); Cuoco and Kaniel (2011), we focus on a class of benchmark portfolios that
are positively correlated with the stock market. These benchmarks are the mostly used benchmark when
considering mutual funds and pension funds whose investment management is typically procyclical
to the overall state of the economy represented by the market price density ξT (see the discussion in
Section 2.1). Based on this, it is reasonable to set the benchmark process as an inversely monotone
function with respect to ξT . More precisely, we assume that YT = f (ξT) where f : [0, +∞) 	→ [0, +∞) is
a non-increasing and continuous function satisfying the following assumption:

Assumption 3. For any λ > 0, the functions f (ξ ) and I(λξ ) cross each other once at ξc ∈ (0, +∞) or
f (ξ ) = I(λBξ ) for some λB > 0.

As will be shown in Section 3.2, Assumption 3 can be checked directly for various popular bench-
marks. For convenience of presentation, we distinguish the following 3 cases: Cases (1), (2) (when the
benchmark curve f (ξ ) and the Merton curve I(λξ ) cross at a unique intersection) and Case (3) (when
f (ξ ) = I(λBξ )), which are summarized in Table 1. Obviously, Case (3) means that the benchmark belongs
to the family of Merton portfolios with some multiplier λB > 0. As illustrated in Figure 1, Case (1) (resp.
Case (2)) means that the Merton portfolio (resp. the benchmark) is more responsive to the economy
change than the benchmark (resp. the Merton curve). Therefore, below, Case (1) and Case (2) will be
named as out/underperformance and under/outperformance respectively. Note that by the intermediate

1An excellent exposition on the construction and the uses of benchmarks can be found, for example, in Siegel (2003). An
axiomatic and economic approach to index number theory which demonstrates that the existence of a benchmark naturally arises
from a few basic axioms and is tightly linked to the economic theory, can be found in Alekseev and Sokolov (2016).
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Table 1. Three situations for benchmarking and portfolio management

Market state Case (1): Case (2):
density out/underperformance under/outperformance Case (3)
ξ ∈ (0, ξc) I(λξ ) > f (ξ ) I(λξ ) < f (ξ ) f (ξ ) = I(λBξ )
ξ ∈ (ξc, +∞) I(λξ ) < f (ξ ) I(λξ ) > f (ξ )

Figure 1. Intersection of the Merton curve with the benchmark.

value theorem, it is easy to see that Case (1) is fulfilled if for any λ > 0, the function ξ 	→ f (ξ )/I(λξ ) is
increasing and the following asymptotic results hold

lim
ξ↗+∞

f (ξ )

I(λξ )
> 1 and lim

ξ↘0

f (ξ )

I(λξ )
< 1.

A similar condition can be easily used to verify Case (2).

Remark 3.1. We remark that for Case (1), f can even be an increasing function because it does not
violate Assumption 3. However, as mentioned above, it is economically reasonable to set f (ξT) as a
decreasing function of ξT . In Case (2), we can deduce that f is monotonically decreasing and satisfying

lim
ξ→0

f (ξ ) = +∞ and lim
ξ→+∞

f (ξ ) = 0, (3.1)

according to (2.3) and Table 1. It is also observed that Case (1) holds true if f is a positive constant (see
Example 1) or f is decreasing and bounded below by a positive constant.

Throughout the paper, we make use of the following assumption:

Assumption 4.

E(ξT f (ξT)) < +∞ and E(U(f (ξT))) < +∞.

Assumption 4 means that the benchmark is replicable and the benchmark expected utility is finite. The
above endogenous benchmark structure is quite general, and various widely used benchmark settings in
the literature can be included in our setting.

3.2. Benchmark examples
Before giving benchmark examples, we first introduce the Black-Scholes model consisting of one risky
asset S with return μ and volatility σ and a risk-free asset S0 with constant interest rate r. In particular,
the asset price dynamics are given by

dSt = St(μdt + σdWt), dS0
t = rS0

t dt, S0
0 = 1.
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It is well-known that the risky asset price can be expressed as St = S0 exp ((μ − σ 2

2
)t + σWt) by Itô’s

lemma, where S0 > 0 is the risky asset price at time 0. In such a complete market setting, the unique
market price density is defined by

dξt = −ξt(rdt + θdWt), ξ0 = 1,

where θ = μ−r
σ

is the market price of risk. Similarly to St, we have ξt = exp
(−rt − 1

2
θ 2t − θWt

)
. Let πt

be the fraction invested in the risky asset at time t. Then, the corresponding wealth process with an initial
capital x > 0 is given by

dXt = (r + πt(μ − r))Xtdt + πtσXtdWt, X0 = x. (3.2)

Below, we consider four benchmark examples that satisfy Assumption 3. Note that under a Black-Scholes
market, the counter-monotonicity of f to ξT indicates a nonnegative position in the risky asset S.

Example 1. (Money benchmarks) A simple benchmark is f (ξT) = x, where x is a constant. It is evident
that this case belongs to Case (1) and can be interpreted as the money market benchmark, see the
numerical Section 6.3.

Example 2. (Stock market benchmarks) Another important benchmark is f (ξT) = ST , as considered
in (Basak et al. 2006, Section 4.3) with a power utility U(y) = y1−γ

1−γ
with γ �= 1 and γ > 0. To verify

Assumption 3, it suffices to observe that

f (ξT) = ST = S0e

(
μ− σ2

2

)
T+σWT = S0e

(
μ− σ2

2

)
T−

(
r+ θ2

2

)
σT
θ × e

((
−r− θ2

2

)
T−θWT

)
×(− σ

θ ) := Aξ
− σ

θ

T ,

which is obviously a monotonically decreasing and differentiable function. To discuss the benchmark
classification,we can consider the following equation

f (y) − I(λy) = Ay− σ
θ − λ− 1

γ y− 1
γ = λ− 1

γ y− 1
γ

(
Aλ

1
γ y

1
γ − σ

θ − 1
)

= 0.

If σ

θ
= 1

γ
, we have f (y) = I(λBy) for λB = A−γ , which shows that the benchmark belongs to family

of Merton curves (i.e., Case (3)). If σ

θ
�= 1

γ
, the root is A

1
σ
θ

− 1
γ λ

1
γ σ
θ

−1 , and we obtain the following
classification:

Case (1): f (y) − I(λy)

⎧⎨
⎩< 0 if y < A

1
σ
θ

− 1
γ λ

1
γ σ
θ

−1

> 0 if y > A
1

σ
θ

− 1
γ λ

1
γ σ
θ

−1

for
σ

θ
<

1

γ
;

Case (2): f (y) − I(λy)

⎧⎨
⎩> 0 if y < A

1
σ
θ

− 1
γ λ

1
γ σ
θ

−1

< 0 if y > A
1

σ
θ

− 1
γ λ

1
γ σ
θ

−1

for
σ

θ
>

1

γ
.

As mentioned after Assumption 3, we remark that the benchmark classification can be checked by
considering the function f (ξ )/I(λξ ).

Example 3. (Hybrid benchmarks) Under the Black-Scholes market consisting of a risk-free asset and
only one risky asset, the choice of the benchmark is limited by the set of all possible combinations of
these two assets. In terms of combinations, one can form a benchmark whose return rate is a weighted
average of the risk-free rate r and the return of stock RS

T , called the hybrid benchmark (see, e.g., (Basak
et al. 2006, Section 4.2)). More precisely, the return of this benchmark RY

T from time 0 to time T is

RY
T = 1

T
ln

YH
T

YH
0

= αr + (1 − α)RS
T ,

where RS
T = 1

T
ln ST

S0
is the return of the stock market from time 0 to time T and the riskless invest-

ment proportion α ∈ [0, 1]. Then, the benchmark YH
T = f H(ξT) can be expressed as a function of ξT ,
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namely f H(ξT) := Bξ
− σ

θ (1−α)
T , where B = YH

0 e

(
αr+

(
μ− σ2

2

)
(1−α)

)
T−

(
r+ θ2

2

)
σ
θ (1−α)T

. Then, it is clear that f H is a
monotonically decreasing function. To check Assumption 3, we solve the following equation

f H(y) − I(λy) = By− σ
θ (1−α) − λ− 1

γ y− 1
γ = λ− 1

γ y− 1
γ

(
Bλ

1
γ y

1
γ − σ

θ (1−α) − 1
)

= 0. (3.3)

If σ

θ
(1 − α) = 1

γ
, we obtain Case (3) by setting λB = B−γ . For other cases, the root is B

1
σ
θ

(1−α)− 1
γ λ

1
γ σ
θ

(1−α)−1 .
Following a similar calculation as in Example 2, it belongs to Case (1) (resp. Case (2)) if σ

θ
(1 − α) < 1

γ

(resp. σ

θ
(1 − α) > 1

γ
).

Example 4. (Mixed benchmarks) Another benchmark example is to combine the risk-free asset and the
risky asset with different proportions. In particular, assuming that the proportion of capital invested
in the risk-free asset is β ∈ (0, 1) in the mixed benchmark and S0 = 1, the mixed benchmark YM is
defined by

YM
T = βYM

0 erT + (1 − β)YM
0 e

(
μ− σ2

2

)
T−

(
r+ θ2

2

)
σT
θ
ξ

− σ
θ

T .

Clearly YM
T is bounded from below by βYM

0 erT and we are in Case (1) if 1
γ

≥ σ

θ
, (see Remark 3.1). We

remark that if 1
γ

< σ

θ
, the Merton curve may intersect the benchmark more than once and Assumption 3

is violated.

Example 5. (CPPI benchmarks) With a portfolio insurance constraint in our setting, it is natural to
consider other portfolio insurance strategies as a benchmark. One standard method is the so-called
constant proportion portfolio insurance (CPPI, see, e.g., Bertrand and Prigent (2005)). To construct
a CPPI portfolio, the investor sets a floor Lt = L0ert as a lower bound of portfolio and dynamically
calculates a cushion Ct defined as the difference between the portfolio wealth XCPPI

t and the floor Lt.
The amount of capital invested in the risky asset is given by the cushion scaled by a predetermined
multiplier m. To embed a CPPI benchmark into our framework, we first infer the dynamic of Ct and
terminal benchmark value YCPPI

T = CT + LT as a function of ξT . By construction, we first have

dYCPPI
t = dCt + rLtdt = (

YCPPI
t − mCt

) dBt

Bt

+ mCt

dSt

St

= (Ct + Lt − mCt)rdt + mCt(μdt + σdWt),

which implies the cushion dynamics dCt = Ct[((1 − m)r + mμ)dt + mσdWt]. Solving this SDE, we
obtain

CT = (
YCPPI

0 − L0

)
e

[
(1− m

2 − mσ
θ )r+ mμ

2 − m2σ2
2

]
T
ξ

− mσ
θ

T := Fξ
− mσ

θ

T .

The terminal value of CPPI portfolio is then quantified as YCPPI
T = Fξ

− mσ
θ

T + L0erT .

Similarly to the mixed benchmark, the terminal value of CPPI benchmark is bounded from below,
implying only Case (1) is applicable when mσ

θ
≤ 1

γ
according to Remark 3.1.

4. The LERL-PI problem
In this section, we investigate an expected utility maximization problem under a joint LERL and PI con-
straint. In Basak et al. (2006), a similar problem is considered without a portfolio insurance constraint,
and the benchmark is specifically chosen as the stock market. However, the mentioned work focuses
on economic applications without giving rigorous proofs for the optimal portfolio. Here, we consider
a more general framework than the setting in Basak et al. (2006) by allowing the benchmark to follow
a stochastic process YT = f (ξT) generated by an initial capital Y0 (see Section 3) and assuming an addi-
tional lower bound L for terminal wealth. Below, the optimal solution to the LERL-PI problem will be
given explicitly.
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4.1. Problem formulation
The LERL-PI problem is stated as

max
XT ∈X, XT ≥L

E (U(XT)) s.t. E
(
ξT(f (ξT) − XT)1XT ≤f (ξT )

)≤ ε, (4.1)

where XT is the terminal wealth defined by (2.1), f (ξT) is the benchmark at time T as discussed in
Section 3, ε ≥ 0 is the LERL loss bound, and L ≥ 0 is the minimum guarantee level. The PI constraint
guarantees that the terminal wealth is above the level L at maturity.

Remark 4.1. (LERL constraint under Q or P?) Note that the LERL constraint under the risk-neutral
measure Q in Problem (4.1) determines the present value of the expected loss relative to the benchmark,
whereas the quantity E[(XT − f (ξT))−] provides the future expected loss relative to the benchmark under
the physical measure P which therefore, from a risk management perspective, seems more naturally to
solve.However, like the existing literature, for example, Basak and Shapiro (2001); Basak et al. (2006),
we focus in this paper on the optimal portfolio problem under the risk-neutral LERL constraint. There
are several reasons supporting our choice: First, by working on the closed-form solution under risk-
neutral LERL constraint, we manage to establish an (partial) equivalent result with our benchmark-
reference-based (BRBU) problem (5.1) whose the ratio of the loss-gain parameters eventually helps
define a new portfolio performance criterion. This will be investigated in detail in Sections 5-6 of the
paper. Second, while showing only the result on the risk-neutral LERL constraint, our methodology
can be directly applied to the version under the physical measure P. The Lagrangian analysis shall be
adjusted accordingly, but it seems unclear how to retain the equivalence result with the solution to the
BRBU problem (5.3) in this case. Third, as the expected loss under the risk-neutral measure provides
the financial value of that loss (relative to the benchmark) corrected by a discount factor, it would be
easier to communicate its interpretation to people who think about risk in terms of the value of holding
or selling it, see, for example, Gu et al. (2021). Lastly, we remark that under a particular setting in our
framework where the benchmark is a constant (money market benchmark) considered in Example 1 and
later in Section 6.2, it is shown in Gu et al. (2021, Proposition 2.1) that the optimal solution under the
risk-neutral expected loss satisfies the constraint under the physical measure P, indicating that, being
more restrictive, the risk-neutral LERL would be more suitable for risk management purposes than the
LERL constraint under the physical measure P.

Before solving the above constrained optimization, it is important to note that the LERL constraint
penalizes both the expected shortfall below the benchmark and the probability of being underperfor-
mance as

E
(
ξT(f (ξT) − XT)1XT ≤f (ξT )

)=E (ξT(f (ξT) − XT)|XT ≤ f (ξT)) P(XT ≤ f (ξT)).

To solve Problem (4.1), it is crucial to set a suitable value of the loss bound ε which ensures that the
LERL constraint is active. When the LERL constraint is not active, Problem (4.1) degenerates to a PI
problem maxXT ∈X,XT ≥L E (U(XT)) for which case the corresponding optimal terminal wealth is denoted
by XPI(L)

T . This case has been extensively considered in the literature, for instance, in Grossman and Vila
(1989); Basak (1995); Grossman and Zhou (1996); Jensen and Sørensen (2001); Gabih et al. (2009);
Chen et al. (2018). In our setting, the upper bound ε of the LERL loss can be obtained by substituting
XPI(L)

T into the LERL expression, that is

ε := E

(
ξT

(
f (ξT) − XPI(L)

T

)
1XPI(L)

T ≤f (ξT )

)
. (4.2)

We note that the lower bound ε of the LERL loss can be set equal to zero. In this case, Problem (4.1)
becomes

max
XT ∈X, XT ≥max{f (ξT ),L}

E (U(XT)) , (4.3)

which is admissible only if x ≥E(ξT max{f (ξT), L}). Remark that this special case is more general than
the setting with L = 0 and f (ξT) = ST , where ST follows a geometric Brownian motion, that has been
solved in Teplá (2001). For completeness, the optimal solution to Problem (4.3) is given in the following
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proposition for each of the 3 cases of benchmark summarized in Table 1 (see also the discussion on
economic interpretations and mathematical conditions on this benchmark classification before Table 1).

Proposition 4.1. Assume that x >E(ξT max{f (ξT), L}). The optimal terminal wealth of Problem
(4.3) is

XH
T := XH

T (λH , ξT) =

⎧⎪⎨
⎪⎩

I(λHξT)1ξT <ξH + f (ξT)1ξH≤ξT <ξH
L

+ L1ξT ≥ξH
L

, Case (1)

f (ξT)1ξT <ξH + I(λHξT)1ξH≤ξT <ξH
L

+ L1ξT ≥ξH
L
, Case (2)

XPI(L)
T = max

{
I(λPI(L)ξT), L

}
, Case (3)

where λH > 0 and λPI(L) > 0 are calculated by solving the budget constraint with equality, ξH and ξH
L are

obtained by solving f
(
ξH
)

= I
(
λHξH

)
and f

(
ξH

L

)= L, and ξH

L
= U′(L)/λH . If x =E(ξT max{f (ξT), L}),

then the solution to Problem (4.3) is given by max{f (ξT), L}.
Proof. It is a limiting case of Theorem 4.1 as ε tends to 0. �
When x <E(ξT max{f (ξT), L}), the lower bound of ε cannot be zero. In this case, the lower bound of

ε can be obtained by solving the following risk minimization problem:

min
XT ∈X, XT ≥L

E
(
ξT(f (ξT) − XT)1XT ≤f (ξT )

)
. (4.4)

Note that the initial capital x has to be above e−rTL to hedge the minimum guarantee level L. The solution
is summarized in the following lemma.

Lemma 4.1. If e−rTL ≤ x <E(ξT max{f (ξT), L}), then the solution to Problem (4.4) is
E(ξT max{f (ξT), L}) − x.

Proof. It is reported in Appendix A.1. �
With the above discussion and Lemma 4.1, we can set the lower bound of ε as

ε := max{0, E(ξT max{f (ξT), L}) − x}. (4.5)

When the other parameters are fixed, we assume that ε ≤ ε < ε to ensure the bindingness of the LERL
constraint in Problem (4.1). Remark that the admissibility of the LERL constraint also depends on other
parameters like the initial capital x and the minimum insurance level L. Now, when the other parameters
are fixed in Problem (4.1), the LERL constraint is binding if xmin ≤ x < xmax, where xmin and xmax are
defined in (A.3) and (A.2) respectively (See Appendix B for further elaborations).

4.2. Optimal terminal wealth of Problem (4.1)
The optimal terminal wealth of Problem (4.1) for each case of benchmark classification in Table 1 is
now summarized in Theorem 4.1 below, assuming that both the LERL and PI constraints are active
(see Appendix B for the comprehensive study of the admissibility of Problem (4.1)). We remark that for
common utility functions, the corresponding optimal strategies can be derived via the standard argument,
see, for example, Chen et al. (2018).

Theorem 4.1. Assume that both the LERL and PI constraints are active. Then, the optimal terminal
wealth of Problem (4.1) is given by

XLERL−PI
T =

⎧⎪⎨
⎪⎩

I(λ1ξT)1ξT <ξ + f (ξT)1ξ≤ξT <ξ + I((λ1 − λ2)ξT)1ξ≤ξT <ξL
+ L1ξT ≥ξL

, Case (1)

I((λ1 − λ2)ξT)1ξT <ξ + f (ξT)1ξ≤ξT <ξ + I(λ1ξT)1ξ≤ξT <ξ
L
+ L1ξT ≥ξ

L
, Case (2)

XPI(L)
T = max

{
I(λPI(L)ξT), L

}
, Case (3)

(4.6)

where λ1 > λ2 > 0 are obtained by solving the budget and LERL constraints with equality simultaneously
and λPI(L) > 0 is calculated by solving the budget constraint with equality. Here, ξ and ξ are obtained by
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Table 2. LERL-PI solution regions for Case (1) and Case (2)

Case Outperformance Benchmarking Underperformance PI

(1)
{
ξT < ξ

}
∪ {ξT ≥ ξL}

{
ξ ≤ ξT < ξ

} {
ξ ≤ ξT < ξL

} {
ξT ≥ ξ L

}
(2)

{
ξT ≥ ξ

} {
ξ ≤ ξT < ξ

} {
ξT < ξ

} {
ξT ≥ ξ

L

}

solving I(λ1ξ ) = f (ξ ) and I((λ1 − λ2)ξ ) = f (ξ ) respectively, ξ L = U′(L)/(λ1 − λ2), and ξ
L
= U′(L)/λ1.

In Case (3), the LERL loss bound is equal to ε or the LERL constraint is inactive.

From the solution structure of Theorem 4.1, we can observe that both Case (1) and Case (2) share a
4-region solution form. The optimal terminal wealth follows the benchmark in the second region, but it
takes the PI level L in the fourth region. Therefore, we name the former the benchmarking region and
the latter the PI region. However, in the first and third regions, it may refer to the different performance
of the portfolio relative to the benchmark. In particular, for the first (resp. third) region, the portfolio
outperforms (resp. underperforms) the benchmark for Case (1) and underperforms (resp. outperforms)
the benchmark for Case (2). The above observations are summarized in Table 2, where ξL is the crossing
point of the benchmark curve f and the PI level L,

According to Theorem 4.1 and Table 2, the agent in Case (1) is willing to surpass the benchmark (i.e.,
outperform) in good market scenarios at the cost of being below the benchmark (i.e., underperform) in
bad market scenarios due to the budget constraint. On the contrary, it is observed that the agent in Case
(2) wants to beat the benchmark in bad market states at the expense of being underperforming in good
market states. Therefore, we name the former case as out/underperformance portfolio management (PM)
and the latter as under/outperformance PM.

Remark 4.2. As shown in Theorem 4.1, the LERL-PI optimal terminal wealth is counter-monotonic to
the pricing kernel ξT , which is consistent with the existing literature on optimal portfolio with thequantile
approach, see, for example, He and Zhou (2011); Bernard et al. (2015); Rüschendorf and Vanduffel
(2020). While the quantile formulation seems applicable to general portfolio choice problems with utility
functions that are not necessarily concave, the resolution heavily relies on a delicate analysis of a reduced
optimization problem in a subspace of real functions under monotonicity restrictions and the existence
of a Lagrangian multiplier. In our setting, with a nonsmooth state-dependent LERL risk constraint, it
is unclear if the quantile function, the solution to the reduced functional optimization, exists and how
this critical ingredient is chosen in connection with a Lagrangian multiplier. Nevertheless, by relying on
a combination of the classical Lagrangian approach and the martingale approach for complete markets
(see Karatzas et al. (1987); Cox and Huang (1989)), we manage to fully solve the state-dependent-
constrained optimization problem. We also remark that in (Rüschendorf and Vanduffel, 2020, Section 5),
the authors study an optimization problem with the state-dependent constraint modeled by the copula
between the terminal wealth and the benchmark payoff. In our setting, the dependence structure between
the portfolio and the benchmark is implicitly described via the LERL constraint.

To prove Theorem 4.1, we adopt the static martingale approach. The idea is to find the optimal ter-
minal wealth and derive the corresponding optimal strategy thereon. For λ1 > λ2 > 0, L > 0 and ξ > 0,
we first solve the following Lagrangian maximization problem:

max
X≥L

G(λ1, λ2, X) := max
X≥L

(
U(X) − λ1ξX − λ2ξ (f (ξ ) − X)1X≤f (ξ )

)
. (4.7)

Lemma 4.2. The unique solution to problem (4.7) is given by

X∗(λ1, λ2, ξ ) =
{

I(λ1ξ )1ξ<ξ + f (ξ )1ξ≤ξ<ξ + I((λ1 − λ2)ξ )1ξ≤ξ<ξL
+ L1ξ≥ξL

, Case (1),

I((λ1 − λ2)ξ )1ξ<ξ + f (ξ )1ξ≤ξ<ξ + I(λ1ξ )1ξ≤ξ<ξ
L
+ L1ξ≥ξ

L
, Case (2),

where ξ , ξ , ξ L and ξ
L

are defined in Theorem 4.1. For Case (3), the unique solution to Problem (4.7) is
stated in Table 3.
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Table 3. The unique solution to Problem (4.7) for Case (3)

Case Condition X∗(λ1, λ2, ξ )
(3a) f (ξ )≤I(λ1ξ ) < I((λ1 − λ2)ξ ) I(λ1ξ )1ξ<ξ

L
+ L1ξ≥ξ

L

(3b) I(λ1ξ ) < f (ξ )≤I((λ1 − λ2)ξ ) f (ξ )1ξ<ξL + L1ξ≥ξL

(3c) I(λ1ξ ) < I((λ1 − λ2)ξ ) < f (ξ ) I((λ1 − λ2)ξ )1ξ<ξL
+ L1ξ≥ξL

Proof. It is shown in Appendix A.2. �
By making use of Lemma 4.2, the optimal terminal wealth of Problem (4.1) is given by XLERL−PI

T =
X∗(λ1, λ2, ξT). To finish, we need to show the existence of the Lagrange multipliers. To this end, for each
Case (i), i = 1, 2, let us define two auxiliary functions:

Hi(λ1, λ2) =E
(
ξTXLERL−PI

T

)
and Ki(λ1, λ2) =E

(
ξT

(
f (ξT) − XLERL−PI

T

)
1XLERL−PI

T ≤f (ξT )

)
. (4.8)

With the aid of these auxiliary functions, the following proposition asserts the existence of the
Lagrange multipliers.

Proposition 4.2. Assume that both the LERL and PI constraints are active. Then, there exists a unique
solution (λ1, λ2) ∈ D to the system of equations{

Hi(λ1, λ2) = x,

Ki(λ1, λ2) = ε,
(4.9)

for each Case (i), i = 1, 2. The domain D is defined as

D = {
(λ1, λ2) ∈ (0, +∞) × (0, +∞) : λ1 ∈ [λPI(L), λ1), λ2 ∈ [0, λ1)

}
, (4.10)

where

λ1 =

⎧⎪⎨
⎪⎩

λH , if E(ξT max{f (ξT), L}) < x,

+∞, if E(ξT max{f (ξT), L}) ≥ x and Case (1),
λa, if E(ξT max{f (ξT), L}) ≥ x and Case (2).

The multiplier λH is defined in Proposition 4.1, and λa is defined as a limit of λ1 such that limλ1→λa ξ =
ξ

L
= ξL.

Proof. It is depicted in Appendix A.3. �
With the above preparation, we can now complete the proof of Theorem 4.1.

Proof [Proof of Theorem 4.1]. By Assumptions 2,4 and the following observation

U
(
XLERL−PI

T

)≤ U(f (ξT)) + U(L) + U (I ((λ1 − λ2) ξT)) ,

we have E(U
(
XLERL−PI

T

)
) < +∞. Let XT be any admissible terminal wealth of Problem (4.1), we

obtain

E(U(XT)) ≤E
(
U(XT) + λ1(x − ξTXT) + λ2

(
ε − ξT(f (ξT) − XT)1XT ≤f (ξT )

))
≤E

(
sup
XT ≥L

(
U(XT) − λ1ξTXT − λ2ξT(f (ξT) − XT)1XT ≤f (ξT )

))+ xλ1 + ελ2

=E
(
U
(
XLERL−PI

T

))+ λ1

(
x −E

(
ξTXLERL−PI

T

))
+ λ2

(
ε −E

(
ξT

(
f (ξT) − XLERL−PI

T

)
1XLERL−PI

T ≤f (ξT )

))
=E

(
U
(
XLERL−PI

T

))
,
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where the first inequality follows from the budget and LERL constraints, the first equality follows from
Lemma 4.2, and the last equality follows from the bindingness of both constraints:

E
(
ξTXLERL−PI

T

)= x and E

(
ξT

(
f (ξT) − XLERL−PI

T

)
1XLERL−PI

T ≤f (ξT )

)
= ε. (4.11)

In the expression of XLERL−PI
T , the Lagrangian multipliers (λ1, λ2) can be obtained by solving (4.11). The

existence is proved in Proposition 4.2. Hence, XLERL−PI
T is optimal. To finish, we remark that in Case (3),

either the LERL constraint is inactive or its loss bound is equal to ε. The former corresponds to cases
(3a) and (3b) in Lemma 4.2, whose LERL loss is obviously equal to 0. The latter corresponds to the
case (3c) in Lemma 4.2, and its LERL loss can be computed by substituting XPI(L)

T into (4.11). �

5. Benchmark-reference-based utility maximization
In this section, we study the following benchmark-reference-based utility (BRBU) maximization
problem:

max
XT ∈X,XT ≥L

E
(
Ũ(XT)

)
, (5.1)

where

Ũ(y) = κ(U(y) − U(f (ξT))1y>f (ξT ) − η(U(f (ξT)) − U(y))1y≤f (ξT ), (5.2)

and η ≥ κ > 0. Compared with the usual utility function U, the benchmark-reference-based utility Ũ
includes two components that measure the gain or loss in terms of utility if the portfolio deviates from
the benchmark. These components depict the outperformance and underperformance effects controlled
by the parameters κ and η respectively. If κ = η, then Problem (5.1) becomes

max
XT ∈X,XT ≥L

E
(
Ũ(XT)

)= κ max
XT ∈X,XT ≥L

E(U(XT) − U(f (ξT)),

which is equivalent to the PI case. The rationale behind the condition η ≥ κ > 0 is that the agent has loss
aversion in benchmarking behavior.

We remark that loss aversion and reference-dependent preferences originated in Kahneman and
Tversky (1979). Further discussions can be found, for example, in Köbberling and Wakker (2005);
Köszegi and Rabin (2006, 2009). A connection between loss aversion and reference-dependent prefer-
ences under an intertemporal choice model can be found in Park (2016). Our benchmark-reference-based
utility is motivated by the gain-loss utility component in the reference-based utility literature. A similar
idea has been considered in Chen and Nguyen (2020), wherein the risk management problem under
a weighted limited expected loss constraint is linked to an optimal asset allocation problem with an
exogenous multiple-reference-based preference. Compared to Chen and Nguyen (2020), our benchmark-
reference-based utility (5.2) allows for endogenous benchmarks, which are market-state-dependent. In
addition, in contrast to Chen and Nguyen (2020), it does not include the part measuring the satisfaction
of the terminal wealth U(XT) in (5.2). This adjustment enables us not only to characterize the outper-
formance and the underperformance relative to the benchmark in terms of the Lagrange multipliers but
also to develop a utility-based performance ratio thereon. We also note that our setting can be extended
to the case with a weighted LERL constraint with different random benchmarks.

Our first attempt is to connect Problem (5.1) and Problem (4.1) so that a quantitative linkage among
benchmarking, loss aversion, and reference-dependent preferences can be established. To this end, we
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first solve Problem (5.1) in the following theorem, where the three different benchmark cases are the
same as the one depicted in Table 1.

Theorem 5.1. The optimal terminal wealth XBRBU
T of Problem (5.1) is given by

XBRBU
T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I
(

z
κ
ξT

)
1ξT <ξκ + f (ξT)1ξκ≤ξT <ξη + I

(
z
η
ξT

)
1ξη≤ξT <ξ

η
L
+ L1ξT ≥ξ

η
L
, Case (1)

I
(

z
η
ξT

)
1ξT <ξη + f (ξT)1ξη≤ξT <ξκ + I

(
z
κ
ξT

)
1ξκ≤ξT <ξκ

L
+ L1ξT ≥ξκ

L
, Case (2)

XPI(L)
T = max

{
I(λPI(L)ξT), L

}
, Case (3)

(5.3)

where z > 0 and λPI(L) > 0 are calculated such that the corresponding budget constraint holds, ξ κ and
ξη are obtained by solving I

(
z
κ
ξ κ
)= f (ξ κ) and I

(
z
η
ξ η

)
= f (ξη), respectively, ξ

η

L = ηU′(L)/z, and ξ κ
L =

κU′(L)/z.

Proof. It is depicted in Appendix A.5. �
We observe that Theorems 4.1 and 5.1 share a similar solution structure. If we set the same initial

capital x, the same benchmark f (ξT), and the same portfolio insurance level L in both Problem (4.1) and
Problem (5.1), a natural question is to ask if we can achieve an equivalence between them. The answer
is partially positive. Indeed, setting

λ1 = z

κ
and λ1 − λ2 = z

η
, (5.4)

then, their solutions (5.3) and (4.6) can be matched. It means that we can replicate XLERL−PI
T from (4.6) by

a given XBRBU
T from (5.3). In this case, the corresponding LERL loss bound ε∗ is needed and calculated

as follows:

ε∗ =E
(
ξT

(
f (ξT) − XBRBU

T

)
1XBRBU

T ≤f (ξT )

)
. (5.5)

However, the situation is different if we want to replicate XBRBU
T by a given XLERL−PI

T . Note that if (z, κ , η)
satisfies (5.4), so does the triple (cz, cκ , cη) for any c > 0. Based on this discussion, we can develop a
partial equivalence result summarized in the following proposition.

Proposition 5.1. Assume that both the LERL and PI constraints are binding. Then, the optimal terminal
wealth of Problem (4.1) stated in (4.6) can be replicated by the optimal terminal wealth of Problem (5.1)
stated in (5.3) by setting

λ1 = z

κ
and λ2 = z(η − κ)

κη
,

given that both problems share the same initial capital x, the same benchmark f (ξT), and the same
portfolio insurance level L.

Proof. It is directly followed by matching (4.6) and (5.3) and calculation of corresponding LERL
loss bound by (5.5). �

We call κ/η the benchmark-reference-based utility (BRBU) performance ratio as it indicates how the
LERL-PI agent evaluates her portfolio outperformance proportion over her underperformance propor-
tion relative to the benchmark. Although it seems hard to calculate the corresponding κ and η directly
from a given XLERL−PI

T , its ratio can be obtained easily by using the multipliers of the LERL-PI problem
as follows:

κ

η
= λ1 − λ2

λ1

. (5.6)

Unlike the Omega ratio (see (6.1)) which only captures the actual relative performance, the BRBU ratio
quantifies the relative utility gain/loss to the benchmark (i.e., loss aversion). In the next section, we will
numerically compare the BRBU ratio with Omega performance ratio for different types of benchmark.
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Table 4. Parameter values in numerical examples

Case μ r σ T t x ε Y0 L γ

(1) 0.08 0.01 0.3 4 2 100 0.75 100 30erT 0.8
(2) 0.08 0.01 0.3 2 1 10 0.025 10 4erT 4

6. Numerical examples
In this section, we numerically illustrate our results and demonstrate various sensitivity properties
proved in Appendix A.2 in a one-dimension Black-Scholes market (see Section 3.2) with a power utility
U(y) = y1−γ

1−γ
, where γ �= 1 and γ > 0. The inverse of the first derivative U’ is then given by I(y) = y− 1

γ .
In the sequel, unless specified otherwise, the model parameters for numerical analysis are fixed in
Table 4.

6.1. Portfolio performance with benchmark
A performance measurement for a risky portfolio typically means a score attached to the portfolio. The
goal of any investor who uses a particular performance measure is to select the portfolio for which
this measure is the greatest. The literature on portfolio performance evaluation is vast, starting with the
Sharpe ratio (see Sharpe (1966)). Alternative performance measures are reward-to-risk ratios represent-
ing a fraction where a measure of reward is divided by a measure of risk. Examples of such reward-to-risk
ratios include the Sortino ratio (see, e.g., Sortino and Price (1994); Sortino et al. (1999)) and the
Omega ratio (see, e.g., Keating and Shadwick (2002)). For further expositions, we refer to Caporin et al.
(2014).

In our framework, we adopt the Omega ratio of the portfolio XT with respect to the benchmark YT

defined by

�YT (XT) := E (max{XT − YT , 0})
E (max{YT − XT , 0}) , (6.1)

which quantifies the expected outperformance over the expected underperformance of a portfolio XT with
respect to the benchmark YT at maturity. We remark that the Omega ratio is also known as a gain-loss
ratio, see, for example, Bernardo and Ledoit (2000); Cochrane and Saa-Requejo (2000); Cherny and
Madan (2009). Furthermore, it is well-documented that the Omega ratio is deemed a better portfolio
performance measurement than the Sharpe ratio and the Sortino ratio as its calculation captures the
whole portfolio distribution (see also Bernard et al. (2019); Lin et al. (2019); Guan et al. (2021) for
related elaborations).

For our expected utility maximization under a joint LERL-PI framework, it is reasonable to look
at the following portfolio performance measurement, which we call the “utility-transformed” Omega
ratio,

U�YT (XT) := �U(YT ) (U(XT)) = E
(
(U(XT) − U(YT))1XT >YT

)
E
(
(U(YT) − U(XT))1XT <YT

) . (6.2)

Observe that U�YT is the Omega ratio of the utility of the portfolio U(XT) with respect to the utility
of the benchmark U(YT), and it quantifies utility gain over utility loss of the portfolio performance
relative to the benchmark YT . Compared to the Omega ratio �YT , the utility-transformed ratio U�YT

aims at measuring the relative utility performance to the benchmark. Below, these measurements are
numerically compared with the new BRBU performance ratio κ/η defined by (5.6). It turns out that the
BRBU ratio is aligned with the certainty equivalent defined by

CE := U−1
(
E
(
U
(
XLERL−PI

T

)))
,
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a certain terminal wealth level that generates the same expected utility. As shown below, while the Omega
ratio and the utility-transformed Omega ratio do not vary consistently with the CE, the utility gain-loss
ratio of the BRBU problem which positively moves with the CE in all the cases of benchmark.

Remark 6.1. As mentioned above, a performance measurement for a risky portfolio typically means a
score attached to the portfolio, and the goal of any investor who uses a particular performance measure is
to select the portfolio for which this measure is the greatest. Such a performance measure should incorpo-
rate the agent’s preference and risk profiles modeled by a utility function. In the utility-based approach,
an investor equipped with a particular utility function computes a performance measure related to the
expected utility level provided by a risky portfolio. Intuitively, the higher the performance measure of
a portfolio is, the higher the level of expected utility the portfolio provides. We remark that using the
level of expected utility, which can be seen by computing the certainty equivalent, as a basic indicator
is aligned with the so-calledmaximum principle stated in (Pedersen and Satchell, 2002, Proposition 1).

Remark 6.2. Note that because the agent in our setting has to satisfy a benchmark-dependent loss
constraint, her portfolio performance with respect to a benchmark is hardly determined. Following the
portfolio performance literature, we numerically study various widely used performance indicators, such
as the Omega ratio and the utility-transformed Omega ratio, but at the same time look at the CE when
discussing about these ratios. As mentioned above, a “good” performance measure should capture the
basic indicator CE in a reasonable way; in particular, it should be positively aligned with the CE.

We conclude this subsection by commenting on related literature on performance measurement.
Rational performance measures can be constructed in an axiomatization framework (see, e.g., De
Giorgi (2005); Cherny and Madan (2009)) or in a utility-based approach (see, e.g., Pedersen and
Satchell (2002); Zakamouline and Koekebakker (2009a,b)). In Zakamouline (2014), the author demon-
strates that loss aversion plays a vital role in performance measurement. Performance measurement
in a portfolio insurance context is also studied in Bertrand and Prigent (2011); Ameur and Prigent
(2018).

6.2. Money benchmark
In this subsection, we set the benchmark as a positive constant x (interpreted as a money market bench-
mark). Note that the condition x > L is needed; otherwise, the LEL constraint is not active. As discussed
in Example 1, this constant benchmark satisfies Assumption 3 and corresponds to Case (1), that is,
out/underperformance PM. Problem (4.1) now becomes an expected utility maximization problem under
a joint LEL and PI constraint, named LEL-PI problem. We set the constant benchmark x = 100erT , unless
specified otherwise. We remark that if the PI level L is set to zero, the LEL-PI problem becomes a limited
expected loss (LEL) risk management which has been studied in Basak and Shapiro (2001). We start
with a numerical demonstration for the properties of the LEL-PI solution stated in Lemmas A.4–A.9
and Remark A.1. In particular, Figure 2a shows that while keeping the outperformance region and the
benchmarking region unchanged, the PI constraint only influences the underperformance region, which
demonstrates the discussion in Remark A.1. In addition, Figure 2b demonstrates that the initial capital x
has no impact on the underperformance region. When additional capital is provided, the outperformance
region enlarges with a shrinking benchmarking region, which aligns with the results from Lemma A.4.
Economically, when the LERL loss bound ε is fixed (so is the underperformance), the risk manager in
Case (1) would devote the additional capital to improve the portfolio performance in good states so as
to maximize her utility.

The impact of the loss bound ε is shown in Figure 2c. It can be observed that the benchmarking region
shrinks for a larger loss bound. Specifically, when ε ≥ ε = 22.8091 (see (4.2)), the LEL constraint is no
longer binding, and the problem turns into a PI problem with minimum capital level L. Moreover, ε = 0
means that the agent has no tolerance for the underperformance relative to x, which corresponds to the
PI problem with minimum capital level x.
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Table 5. Impact of x on the certainty equivalent and the portfolio performance ratios

x CE κ/η �x

(
XLEL−PI

T

)
U�x

(
XLEL−PI

T

)
85erT 114.135 0.371567 141.225 86.8027
90erT 112.366 0.326046 104.097 60.075
95erT 109.929 0.273234 62.2445 41.0754
100erT 105.872 0.178625 10.984 7.79227

Figure 2. Impact of the PI level L, the initial capital level x, the LEL loss bound ε, and the constant
benchmark level x on the optimal terminal wealth for the LEL-PI model in out/underperformance PM.

In Figure 2d, the impact of constant benchmark x on the optimal terminal wealth XLEL−PI
T is

numerically depicted. Notably, the larger x, the larger the benchmarking region, but the smaller the
outperformance and underperformance regions. Interestingly, as observed from Table 5, all the perfor-
mance ratios decrease with the benchmark level x, hand in hand with a lower certainty equivalent. This
means that setting a higher benchmark level (e.g., higher guaranteed payment requirement or higher stan-
dard) would induce the agent to have a higher loss aversion, hence suffering a more significant utility
loss from underperformance. Consequently, her optimal strategy is to enlarge the benchmarking region
as much as possible. Due to the budget restriction, this will reduce the trade-off between the outperfor-
mance and the underperformance. In addition, due to the LERL constraint, adjusting the deterministic
benchmark would mainly influence the outperformance region, indicating that a LERL-PI-RM with a
higher benchmark (i.e., the agent is bearing a greater loss aversion relative to the benchmark) leads to
smaller values for all the performance ratios.

The above sensitivity analysis suggests that all the performance ratios depict the portfolio perfor-
mance quite well for the money benchmark case. Note that when x increases to 104.86, the initial capital
x is no longer enough to hedge such a high level of x (see Lemma A.6). In this case, all the ratios tend to
zero since λ1 = +∞ and ξ = 0, according to Lemma A.7. We also remark that with a smaller constant
benchmark value x, it is easier for the agent to achieve a higher relative performance to the benchmark,
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Figure 3. Impact of the initial capital x, the PI level L, and the LERL loss bound ε on the optimal
terminal wealth for under/outperformance PM with stock market benchmarks.

hence implying a greater expected utility level. However, due to various considerations like solvency
requirements and risk management perspectives, the benchmark x might be set above a certain value.

Below we will see that for various random benchmarks, while the Omega ratio (as well as the utility-
transformed Omega ratio) may no longer well capture the portfolio performance, the BRBU ratio κ/η

still does quite well, however.

6.3. Stock market benchmark
This subsection presents a numerical analysis of the stock benchmark for under/outperformance PM,
that is, Case (2). It can be observed from Figure 3b that in contrast to the case with money bench-
mark, an adjustment of initial capital x has no influence on the underperformance region but on the
benchmarking and outperformance regions, substantiating again the result reported in Lemma A.4.
It economically implies that the agent using a benchmark that asymptotically dominates the uncon-
strained Merton curve in good market scenarios (i.e., under/outperformance) is more concerned about
the outperformance region and would use any additional capital to improve the portfolio perfor-
mance in the relatively unfavorable states. From Figure 3a, in contrast to the money benchmark case
(out/underperformance), adjusting the PI level L does not change the underperformance region but only
influences the outperformance region (see a mathematical justification in Lemma A.8).

Figure 3c depicts the impact of the loss bound ε on the optimal terminal portfolio. Compared with
the initial capital and the PI level, the upper bound of relative expected loss ε has a notable impact on all
regions of market states. As the loss bound ε directly affects the underperformance region (loss region)
via the LERL constraint, there is a trade-off between the loss region and the other regions due to the
budget constraint. In addition, the higher (resp. lower) the LERL loss bound ε, the lower the optimal
terminal wealth in the underperformance (resp. outperformance) region.

As indicated in Table 6, the higher the present value S0 of the stock benchmark, the lower the cer-
tainty equivalent and the performance ratios. Indeed, for the under/outperformance benchmark portfolio
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Table 6. Impact of S0 on the certainty equivalent and the portfolio performance ratios

S0 CE κ/η �ST

(
XLERL−PI

T

)
U�ST

(
XLERL−PI

T

)
9.7 9.15169 0.0164632 2.8558 2612
9.8 8.99921 0.0126861 1.88809 2229.2
9.9 8.79616 0.00868936 0.978827 1690.61
10 8.45107 0.00360799 0.164988 716.235

Figure 4. Comparison of different optimal strategies

management, the outperformance (resp. underperformance) region corresponds to bad (resp. good) mar-
ket states. Therefore, in this case, a higher initial benchmark value will induce the agent to have a higher
loss aversion. According to Figure 3d, the agent chooses to enlarge the benchmarking region to take
care of this concern, similar to the situation in which she faces a higher x in the money benchmark case
(see Figure 2d). At the same time, both the underperformance and outperformance regions diminish.
As a result, a smaller outperformance region causes a decrease in expected utility. As seen above, all
performance ratios capture well the portfolio performance in this situation.

To further investigate the LERL-PI agent’s investment behavior, we plot the optimal strategies for
both money market and stock market benchmarks in Figure 4 and compare them with the unconstrained
(Merton) optimal strategy. As shown in Figure 4a, compared to the LEL strategy, the LEL-PI strategy
is more conservative in the very bad market states due to the additional PI constraint. As pointed out in
(Basak and Shapiro, 2001, Proposition 5 (ii)), the LEL strategy is bounded from above by the Merton
strategy, which also applies to the LEL-PI strategy.

In Figure 4b, we compare the LERL-PI, LERL, and Merton optimal strategies for the stock market
benchmark. It is observed that with an extra PI constraint, the LERL-PI strategy falls to zero in the very
bad market states. On the contrary, without a PI constraint, the LERL strategy is bounded below by
the Merton strategy and asymptotically converges to the Merton ratio when the market state worsens.
Aligned with what is observed in Figure 3, the agent is more concerned about the underperformance
relative to the benchmark (i.e., good market states).

In the remaining subsections, we take a deeper look at the LERL-PI solution for hybrid, mixed, and
CPPI benchmarks.

6.4. Hybrid benchmark
In this subsection, we study the impact of hybrid benchmarks with respect to the riskless investment pro-
portion α. As mentioned in Example 3, out/underperformance (i.e., Case (1)) or under/outperformance
(i.e., Case (2)) PM can happen depending on whether σ

θ
(1 − α) is greater or smaller than 1

γ
.
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Table 7. Effect of α in the hybrid benchmark: out/underperformance PM (Case (1))

α ξ ξ CE κ/η �f H (ξT )

(
XLERL−PI

T

)
U�f H (ξT )

PI (α ≈ 0.083) N/A N/A 119.218 1 N/A N/A
0.1 0.912781 1.05111 119.216 0.989573 10.2874 3.25871
0.2 0.799829 1.3449 119.123 0.912053 20.6262 5.66379
0.3 0.756242 1.53686 118.471 0.819912 29.7637 8.19258
0.4 0.725234 1.69734 118.335 0.722129 37.3137 10.8326
0.5 0.697299 1.84025 117.538 0.624155 42.6317 13.4872
0.6 0.668655 1.97036 116.397 0.529369 45.0089 15.9313
0.7 0.636364 2.09201 114.832 0.439166 43.8568 17.7656
0.8 0.596562 2.20914 112.729 0.353505 38.5775 18.2703
0.9 0.54113 2.32458 109.892 0.270439 28.2744 16.041
LEL-PI (α = 1) 0.435904 0.178625 105.872 0.178625 10.984 7.79227

Table 8. Summary of the effect of changing α in under/outperformance PM (Case (2)) with hybrid
benchmarks

α ξ ξ CE κ/η �f H (ξT )

(
XLERL−PI

T

)
U�f H (ξT )

0 0.462879 1.79926 8.45107 0.00360799 0.164988 760.415
0.1 0.476928 1.48166 9.09374 0.0163558 0.836228 683.726
0.2 0.492655 1.36342 9.50869 0.041997 1.45363 393.411
0.3 0.510749 1.28526 9.8116 0.0907749 1.97409 219.608
0.4 0.532417 1.22102 10.034 0.177076 2.37941 114.504
0.5 0.560054 1.15794 10.1904 0.319361 2.66154 54.3668
0.6 0.599466 1.08126 10.2891 0.536037 2.82832 24.9167
0.7 0.671513 0.949943 10.3358 0.828366 2.95822 13.0867
PI (α ≈ 0.76) N/A N/A 10.3418 1 N/A N/A

The result for out/underperformance (resp. under/outperformance) PM is presented in Table 7 (resp.
Table 8). We can observe that for out/underperformance PM, the higher the riskless investment propor-
tion α, the lower the certainty equivalent. In addition, we can also observe from Figure 5a and Table 7
that a lower riskless investment proportion α indicates a shrinking benchmarking region. Eventually, it
would become the PI solution when ξ = ξ . It happens when α ≈ 0.083, which is obtained by solving

E
(
ξT

(
f H(ξT , α) − XPI

T

)
1XPI

T ≤f (ξT )

)= ε. (6.3)

On the other hand, if we keep increasing the riskless investment proportion α, it would eventually become
the LEL-PI solution when α = 1 since f H(ξT) = YH

0 erT in this situation.
Interestingly, for out/underperformance hybrid benchmark PM (Case (1)), both the Omega and utility-

transformed Omega ratios do not increase with the certainty equivalent. Indeed, Table 7 shows that the
Omega ratio reaches the highest value when α ≈ 0.6. The utility-transformed Omega ratio shares a very
similar trend with the Omega ratio when changing α. In particular, the measurement U�f H (ξT ) increases
in α ∈ (0, 0.8) but decreases in α ∈ (0.8, 1) and thus attains the maximum value at α ≈ 0.8. Apparently,
none of these two values of α corresponds to the highest certainty equivalent, which is attained for α ∈
[0, 0.083] (PI case). This suggests that the portfolio performance in such a random benchmark LERL-
RM situation may not be well reflected by using the Omega ratio or its utility-transformed version.
Nevertheless, the BRBU indicator still captures well the portfolio performance relative to the benchmark
in this case. Remarkably, as shown in both Tables 7 and 8, κ/η is always positively proportional to the
certainty equivalent, which is not always the case for the classical and the utility-transformed Omega
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Figure 5. Out/underperformance PM with hybrid benchmark: impact of the riskless investment
proportion α on the optimal terminal wealth XLERL−PI

T .

ratio. Let us take a closer inspection. For Case (1), recall that for a lower value of κ/η means that the agent
is more concerned about underperformance (unfavorable market states) than outperformance (favorable
market states). From Table 7, it can be observed that being more concerned about the underperformance
region, the agent would prefer a higher risk-free investment proportion benchmark, which explains why
κ/η is negatively proportional to α. In addition, to deal with this concern, the agent chooses to enlarge
the benchmarking region so that the underperformance region diminishes. However, due to the budget
constraint, this results in smaller upside potentials and so is the outperformance region, according to
Figure 5a and Table 7; hence, a decrease in the expected utility.

To gain further insight related to the optimal terminal wealth, we plot in Figure 5b the estimated
distribution of XLERL−PI

T by simulating 107 paths of the market price density ξT for different values of α

in Case (1) of the hybrid benchmark. In this density plot, the left tail (resp. right tail) corresponds to the
underperformance region (resp. outperformance region), and the central area reflects the benchmarking
region, which can be seen by comparing Figure 5b and 5a (the plot of XLERL

T against ξT). As pointed out
in Figure 5b, as the riskless investment proportion α increases, a less dispersed distribution with thinner
tails is displayed. The less dispersed shape corresponds to the larger benchmarking region depicted in
Figure 5a and indicates a smaller variance; thus, a less risky investment behavior, which matches the
less risky benchmark (higher α). The thinner left tail (resp. right tail) coincides with the shrinking PI
region (resp. outperformance region), as observed in Figure 5a. Moreover, the size change of both the
left and right tails with respect to the change of α confirms the trade-off between the underperformance
and the outperformance. For instance, a decrease of α induces a fatter left tail (higher probability of the
underperformance) associated with a fatter right tail (higher probability of the outperformance).

Table 8 shows that when the riskless investment proportion α increases, all the measurements, except
for the utility-transformed Omega ratio, rise, capturing well the augmentation in the certainty equivalent.
This observation seems surprising as a more prudent investment (i.e., higher α) leads to greater expected
utility. However, this can be explained by recalling that for under/outperformance PM (Case (2)), the
outperformance region corresponds to the bad market states, and an increase in κ/η means that the
agent gets more concerned about this region and will hence choose a more conservative benchmark
(i.e., higher α). In this situation, the agent chooses to reduce the benchmarking region, as depicted
in Figure 6a and Table 8, while simultaneously expanding the outperformance and underperformance
regions. As a result, this leads to a higher expected utility.

The failure of the utility-transformed Omega ratio raises an alert about using performance measures
based on merely computing the portfolio performance relative to the benchmark. Unlike the classical
Omega ratio, the utility-transformed Omega ratio is inversely proportional to the expected utility. In
particular, while an increase in the riskless investment proportion α in the hybrid benchmark (Case (2))
induces a smaller the utility-transformed Omega ratio, it creates a higher κ/η (i.e., the agent is less
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Figure 6. Under/outperformance PM with the hybrid benchmark: Impact of the riskless investment
proportion α on the optimal terminal wealth XLERL−PI

T .

loss-averse), resulting in a higher certainty equivalent. Furthermore, as illustrated in Table 8, the BRBU
ratio moves in tandem with the certainty equivalent, indicating a potentially suitable candidate for the
utility-based performance measure. This aspect will be further investigated in the remaining numerical
analysis.

Remark that α = 0 corresponds to the stock market benchmark studied in Section 6.3, whereas the
problem becomes a pure PI problem when the riskless investment proportion α exceeds a specific value
(≈ 0.76) obtained by solving (6.3) with the given parameters of Case (2) (see Table 4).

Similarly to Case (1), it is shown in Figure 6b that an increase in the riskless investment proportion
α (less risky benchmark) also induces a less dispersed distribution as observed in Figure 5b. Another
similarity between Case (1) and Case (2) lies in the trade-off between the outperformance region and
the underperformance region. However, the difference between Case (1) and Case (2) is notable. In
particular, for a hybrid benchmark, the LERL-PI terminal wealth in Case (1) displays a single peak dis-
tribution (see Figure 5b), whereas it exhibits a multi-peak distribution structure in Case (2), as reported
in Figure 6b. Unlike Case (1), the left tail (resp. right tail) of the density plot in Case (2) corresponds to
the outperformance region (resp. underperformance region), but the central area (between the first peak
and the last peak) also reflects the benchmarking region.

6.5. Mixed benchmark
This subsection considers the mixed benchmark in Example 4 with various proportions of capital
invested in the risk-free asset β. Recall first from Remark 3.1 that the mixed benchmark can only be
fitted in Case (1), that is, out/underperformance PM.

Our numerical result in Table 9 shows that the higher the ratio of capital β invested in the money
market in the mixed benchmark construction, the higher the certainty equivalent. Surprisingly, both the
Omega and utility-transformed Omega ratios decrease with the certainty equivalent, indicating that using
these ratios in out/underperformance PM with mixed benchmarks would lead to a largely inaccurate
portfolio performance measurement. Interestingly, like Case (1) of the hybrid benchmark, the BRBU
indicator well captures the portfolio performance relative to mixed benchmarks. In particular, both the
BRBU ratio κ/η and the certainty equivalent decrease with β. This can be explained as in Case (1) of the
hybrid benchmark that both metrics decrease in α. In addition, as seen in Table 9, the lower the ratio of
capital β invested in the money market, the higher the certainty equivalent. This confirms the intuition
that a higher risky investment proportion corresponds to a smaller loss aversion, consequently resulting
in an increase in the expected utility. According to Figure 7a and Table 9, a lower β is also accompanied
with expanding outperformance and underperformance regions, whereas the benchmarking region is
contracting. Moreover, similarly to Case (1) of the hybrid benchmark, we can see that if β decreases to
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Table 9. Summary of the effect of changing β in the mixed benchmark

β ξ ξ CE κ/η �YM
T

(
XLERL−PI

T

)
U�YM

T

PI (β ≈ 0.06) N/A N/A 119.218 1 N/A N/A
0.1 0.789816 1.28651 119.198 0.959202 3.77621 1.0636
0.2 0.631943 1.64214 118.935 0.823892 5.75598 1.3269
0.3 0.566255 1.85706 118.346 0.688178 7.04206 1.65435
0.4 0.528089 2.00361 117.452 0.572151 7.9768 2.04564
0.5 0.502108 2.11288 116.269 0.475871 8.7008 2.51503
0.6 0.482794 2.19997 114.804 0.395816 9.29168 3.08716
0.7 0.467616 2.2727 113.05 0.328546 9.79385 3.80118
0.8 0.455225 2.33543 110.997 0.271284 10.2335 4.72231
0.9 0.444823 2.39075 108.617 0.221873 10.6268 5.96923
LEL-PI (β = 1) 0.435904 2.44033 105.872 0.178625 10.984 7.79227

Figure 7. Impact of the ration of capital invested in the money market β on the optimal terminal wealth
for out/underperformance PM with the mixed benchmark.

a certain point (≈ 0.06), the benchmarking region disappears, and the LERL-PI problem becomes the
PI case. Likewise, the PI solution, which corresponds to κ = η, indicates that the agent is indifferent
between the outperformance and underperformance effects.

6.6. CPPI benchmark
In this subsection, we analyze the same metrics as in the previous subsections for CPPI benchmarks
presented in Example 5, where it is assumed that the multiplier m is bounded from above by the Merton
strategy θ/(σγ ).2 We remark that for m in the range of [0, θ/(σγ )], the LERL constraint is always
binding and never turns into the PI case, unlike the other benchmarks considered before. Note also
that with such a CPPI benchmark, we are in a out/underperformance PM (Case (1)) because the CPPI
benchmark entails a lower bound, see Remark 3.1. In the following numerical demonstration, we assume
that the PI level is the same as the terminal floor of CPPI benchmarks (LT = L).

The numerical results are reported in Figure 8 and Table 10 with different values of m ∈ [0, 0.9].
According to Table 10, the higher the predetermined multiplier m, the higher the certainty equivalent
and the BRBU ratio κ/η. The reason is that by adopting a utility function with smaller loss aversion, the
agent can gain higher upside potentials in good market states, which eventually leads to an increase in
certainty equivalent. As demonstrated for hybrid benchmarks (Case (1)) and mixed benchmarks, neither

2Recall that Assumption 3 is violated if m > θ/σγ .
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Table 10. Summary of the effect of changing predetermined multiplier m in the CPPI benchmark

m ξ ξ CE κ/η �XCPPI
T

(
XLERL−PI

T

)
U�XCPPI

T

LEL-PI (m = 0) 0.435904 2.44033 105.872 0.178625 10.984 7.79227
0.1 0.434509 2.36657 107.715 0.207468 10.7317 6.56755
0.2 0.433973 2.29642 109.453 0.240355 10.4781 5.54938
0.3 0.434541 2.22986 111.072 0.277725 10.219 4.70917
0.4 0.436565 2.16685 112.564 0.320019 9.94883 3.9959
0.5 0.440579 2.10731 113.916 0.367661 9.65947 3.40705
0.6 0.44743 2.05113 115.122 0.421002 9.3389 2.91573
0.7 0.458583 1.99818 116.172 0.480236 8.96838 2.50593
0.8 0.476799 1.94831 117.062 0.545236 8.51607 2.16494
0.9 0.507955 1.90134 117.787 0.615237 7.92061 1.88308

Figure 8. Impact of the predetermined multiplier m on the optimal terminal wealth XLERL−PI
T with the

CPPI benchmark.

the Omega ratio nor the utility-transformed Omega ratio fully captures the portfolio performance relative
to CPPI benchmarks.

To gain more insights into the investment choice, we plot in Figures 9 and 10 the optimal LERL-PI
investment strategies in the out/underperformance PM (Case (1)) for hybrid, mixed, and CPPI bench-
marks in comparison with the limiting LEL-PI, PI, Merton, and the LERL strategy. It is interesting to
observe that these three benchmark settings share a very similar investment pattern. In all cases, the
LERL-PI risky investment ratio is mostly bounded in the range limited by the LEL-PI and PI strategies,
whereas the LERL strategy is limited by the LERL-PI and Merton investment ratio. In particular, the
LERL-PI agent in very good market scenarios will adopt an investment strategy close to the Merton
ratio to beat the benchmark. When the market is no longer extremely good, the agent, due to the loss
constraint, is sensible to reduce the risky asset holding significantly but always keep it smaller than that
of the PI strategy and simultaneously greater than the LEL-PI one. In intermediate market states, she
tries to replicate the benchmark as much as possible, namely enlarging the benchmarking region, by
taking higher risky exposures. However, in bad market states, because of dealing with the underperfor-
mance and the LERL constraint, the agent adopts a riskier investment behavior by increasing her risky
investment exposures in this region. In addition, without PI constraint, the LERL agent takes even riskier
investment behavior than the LERL-PI agent in the intermediate and bad market states. When the mar-
ket states are extremely bad (i.e., with a very high value of the pricing density ξt), the PI constraint now
forces her to reduce the risky investment rapidly, whereas the LERL strategy reverts to the Merton ratio.
Moreover, for each specific benchmark, a more prudent benchmark (i.e., with higher risk-free investment
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Figure 9. LERL-PI optimal investment strategies for out/underperformance PM.

Figure 10. Comparison of optimal investment strategies for out/underperformance PM.

initiation α (resp. β) in case of the hybrid benchmark (resp. mixed benchmark) or with a lower value
of the multiplier m in case of the CPPI benchmark) the agent choose, the closer the LERL-PI strategy
reaches the limiting LEL-PI strategy.

6.7. Discussion
We close this section by commenting on the portfolio performance measurement in a LERL-PI-RM
framework, where the agent has to control the portfolio loss relative to a random benchmark. From the
above analysis, it is observed that increasing certainty equivalent not only results from a contraction of
the benchmarking region but also forms an enlargement of the outperformance region. However, when
the loss constraint relative to the benchmark is active, the regulatory effects on the outperformance and
underperformance regions may offset each other; hence, the investment performance cannot be fully
captured by only looking at the well-known Omega ratio or its utility-transformed version.

Our numerical analysis with various benchmarks shows that the Omega ratio and its utility-
transformed version can only reflect the expected utility gain or loss due to the change of loss aversion
caused by the different reference levels, but fail to reflect the expected utility performance caused
by changing risk profile in the benchmark. Nevertheless, compared with the classical and utility-
transformed Omega ratios, the BRBU ratio derived from the benchmark-reference-based utility problem
does well for all benchmark types. To account for this result, it is worth recalling that the BRBU ratio
takes the agent’s loss aversion into account, whereas the (utility-transformed) Omega ratio does not, as
explained in Section 5. Hence, our results suggest a more proper portfolio performance indicator which
incorporates the agent’s loss aversion in the LERL benchmarking risk management.
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7. Conclusion
We study an optimal investment problem under the joint constraint of portfolio insurance and lim-
ited expected relative loss with respect to a general random benchmark. Applying a static martingale
approach, we are able to fully characterize the explicit optimal solution with delicate and rigorous
demonstrations and perform a sensitivity analysis for the model parameters. More interestingly, we
show that the LERL-PI optimal terminal wealth can be replicated by the optimal terminal wealth of the
optimization problem with a benchmark-reference-based utility function. We believe that this replication
result is of both theoretical and practical interest as it not only builds a connection from risk manage-
ment to the literature on reference-based preference asset allocation but also enables us to examine the
expected utility performance relative to the benchmark in terms of utility gain and loss.

Our intensive numerical analysis sheds light on the optimal portfolio and strategy structure for various
benchmarking frameworks such as hybrid, mixed, and CPPI benchmarks. Throughout our numerical
experiment, the investment performance under benchmarking loss constraint for different benchmarking
frameworks is also compared along with the certainty equivalent, the widely used Omega ratio and its
utility-transformed version. Surprisingly, we find that the portfolio performance to the benchmark might
not be fully captured by the classical and utility-transformed Omega ratio, reflecting the impact of the
benchmarking loss constraint on the underperformance against the outperformance. More interestingly,
the expected utility performance can be well depicted by looking at a new portfolio performance ratio
obtained from the replicating benchmark-reference-based utility problem, suggesting a more suitable
utility-based portfolio performance measurement in the LERL benchmarking risk management.

Our results bring new insights into the agent’s benchmarking behavior and performance measure-
ment, and the linkage with the reference-based preference is a new quantitative aspect in this field of
research. Future research may be to consider more general settings, for example, stochastic volatility
models and/or multiple periods.
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Appendix
A. Proofs of main results
A.1. Proof of Lemma 4.1
We first define an auxiliary set �2 := {ω ∈ � : XT(ω) > f (ξT(ω))}. Observing

(f (ξT) − XT)1XT ≤f (ξT ) + XT =
{

f (ξT), for XT ≤ f (ξT)

XT , for XT > f (ξT)
and {ω ∈ � : ξT(ω) ≥ ξL} ⊂ �2,

where ξL is calculated by solving f (ξT) = L or ξL = +∞ if f (ξT) > L a.s. and thus {ω ∈ � : ξT(ω) ≥ ξL} =
∅. With the budget constraint, we have

E
(
ξT(f (ξT) − XT)1XT ≤f (ξT )

)≥E
(
ξT(f (ξT) − XT)1XT ≤f (ξT )

)+E(ξTXT) − x

=E
(
ξT(XT − f (ξT))1�2

)+E(ξT f (ξT)) − x

≥E
(
ξT(L − f (ξT))1ξT ≥ξL

)+E(ξT f (ξT)) − x

=E (ξT max{f (ξT), L}) − x.

Then, this lower bound is attained if the budget constraint holds with equality and �2 = {ω ∈ � : ξT(ω) ≥
ξL}, which is possible if we consider an argmin of the form max{Df (ξT), L}, where 0 ≤ D < 1 and it
satisfies E(ξT max{Df (ξT), L}) = x.

Finally, the existence of D follows directly from the intermediate value theorem and the case D = 0
corresponds to x = e−rTL, and thus, XT = L a.s.

A.2. Proof of Lemma 4.2
Define two auxiliary functions G1, G2 : (0, +∞) 	→R given by

G1(X) = U(X) − λ1ξX and G2(X) = U(X) − λ1ξX − λ2ξ (f (ξ ) − X),

and their first derivatives are

G′
1(X) = U′(X) − λ1ξ and G′

2(X) = U′(X) − (λ1 − λ2)ξ .

Then, G(λ1, λ2, X) = G1(X)1X≥f (ξ ) + G2(X)1L≤X<f (ξ ), and G′(λ1, λ2, X) = G′
1(X)1X>f (ξ ) + G′

2(X)1L<X<f (ξ ) for
X �= f (ξ ). Since G1 and G2 are strictly concave and continuously differentiable on (0, +∞), the
Lagrangian G exhibits the same properties in [L, f (ξ )) and (f (ξ ), +∞). Furthermore, G1 and G2

attain their maximum at X1 := I(λ1ξ ) and X2 := I((λ1 − λ2)ξ ) respectively. Moreover, we have X2 > X1

because I is strictly decreasing and λ1 > λ2 > 0. Below, we solve Problem (4.7) case by case.
Case (1): To find the global maximum of G, we consider the following cases:

(1a) ξ < ξ : In this case, X1 > f (ξ ). We will show that G is increasing in [L, f (ξ )) implying the max-
imum of G occurs in [f (ξ ), +∞), which is X1. Indeed, for X ∈ [L, f (ξ )), where G′(X) = G′

2(X).
Since X < f (ξ ) < X1 < X2, we have U′(X) > (λ1 − λ2)ξ , and thus G is increasing in [L, f (ξ )).

(1b) ξ ≤ ξ < ξ : This implies that X1 ≤ f (ξ ) < X2. Let us show that the Lagrangian G is increasing
in [L, f (ξ )) and decreasing in (f (ξ ), +∞); hence, f (ξ ) is the global maximizer. Indeed, for
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Table 11. Summary of the proof and maximizers for Case (3)

Case Equivalence Proof like Global Maximizer
(3a), ξ < ξ

L
X1 > L (2c) X1

(3a), ξ ≥ ξ
L

X1 ≤ L (2d) f (ξ )
(3b), ξ < ξL f (ξ ) > L (1b) X2

(3b), ξ ≥ ξL f (ξ ) ≤ L (2d) L
(3c), ξ < ξ L X2 > L (1c) X2

(3c), ξ ≥ ξ L X2 ≤ L (1d) f (ξ )

X ∈ [L, f (ξ )), we have G′(X) = G′
2(X) and X < f (ξ ) < X2, which implies U′(X) > (λ1 − λ2)ξ ,

and thus G is increasing in X ∈ [L, f (ξ )).
For X ∈ (f (ξ ), +∞), we have G′(X) = G′

1(X) and X > f (ξ ) ≥ X1 implying U′(X) < λ1ξ .
Therefore, G is decreasing in (f (ξ ), +∞).

(1c) ξ ≤ ξ < ξ L: The equivalence to this case is f (ξ ) ≥ X2 > L. For X ∈ (f (ξ ), +∞), we have X >

f (ξ ) ≥ X2 > X1, which implies U′(X) < λ1ξ , and thus, G is decreasing in (f (ξ ), +∞). It means
that G attains its maximum X2 in [L, f (ξ )).

(1d) ξ ≥ ξ L: This is equivalent to X2 ≤ L and X2 < f (ξ ), we need to show G is decreasing on [L, +∞),
which implies that L is the global maximizer.
Since ξ > ξ , G is decreasing in (f (ξ ), +∞) from (1c). If L ≥ f (ξ ), then the result follows.
Otherwise, if L < f (ξ ), we need to consider X ∈ [L, f (ξ )) and observe that X > L ≥ X2, which
implies U′(X) < (λ1 − λ2)ξ , and hence G is decreasing in [L, f (ξ )) as well.

Case (2): Similarly to Case (1), we consider different situations depending on the range of ξ to find
the global maximum of G.

(2a) ξ < ξ : We have X2 < f (ξ ) in this case, and X2 is the global maximizer by showing that G is
decreasing in [f (ξ ), +∞). The deduction is the same as the one in (1c).

(2b) ξ ≤ ξ < ξ : This is tantamount to X1 < f (ξ ) ≤ X2, and the proof is the same as the one in (1b).
(2c) ξ ≤ ξ < ξ

L
: We have X1 ≥ f (ξ ) and X1 > L in this case. If L ≥ f (ξ ), then G(X) = G1(X), and the

maximizer is X1. On the other hand, if L < f (ξ ), we show that X1 is also the global maximizer
by proving G is increasing in [L, f (ξ )), and it attains its maximum in (f (ξ ), +∞). Its proof is
the same as the one in (1a).

(2d) ξ ≥ ξ
L
> ξ : It is equivalent to f (ξ ) < X1 ≤ L, and thus, G(X) = G1(X)1X≥L. By showing G is

decreasing on [L, +∞), G reaches its maximum at X = L. Since X ≥ L ≥ X1, we deduce that
U′(X) ≤ λ1ξ , and G is decreasing on [L, +∞).

The proof of Case (3) shares a similar deduction as the above and is summarized in Table 11.

A.3. Proof of Proposition 4.2
To prove Proposition 4.2, we first discuss the range of two Lagrange multipliers with different cases and
ranges of the initial capital x. Their lower bounds are the same for the two cases. Fix λ1, then λ2 can
reach zero, and thus, ξ = ξ . About the lower bound of λ1, it should not be smaller than λ2. In the extreme
such that λ2 = 0, since ξ = ξ , we have a PI solution; hence, the lower bound of λ1 is λPI(L).

Let us discuss the upper bound of λ2 and λ1. On one hand, it is clear that λ2<λ1, so the optimal
terminal wealth is well-defined. On the other hand, the upper bound of λ1 is more complicated, and
we explore it case by case in the sequel. If E(ξT max{f (ξT), L}) < x, then the initial capital x can hedge
max{f (ξT), L}. According to Proposition 4.1, the upper bound of λ1 is λH .

IfE(ξT max{f (ξT), L}) ≥ x, then the initial capital x is not enough to hedge max{f (ξT), L}. Additionally,
for Case (1), λ1 can be as large as possible. However, for Case (2), λ1 can only reach a constant λa such
that ξ = ξ

L
= ξL. Similarly, for Case (1), if λ1 − λ2 → λa, then we have ξ = ξ L = ξL.
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Based on the above discussion, we set the domain of these two functions as (4.10). Below, we prove
functions defined in (4.8) exhibiting the following properties.

Lemma A.1. For i = 1, 2, Hi(λ1, λ2) and Ki(λ1, λ2) (see (4.8)) satisfy the following

(HK1) Hi(λ1, λ2) and Ki(λ1, λ2) are of class C1 on D.
(H2) ∂

∂λ1
Hi(λ1, λ2) < 0 on D.

(H3) ∂

∂λ2
Hi(λ1, λ2) > 0 on D.

(H4) Hi(λPI(L), 0) = x and Hi(λ1, 0) < x for all λ1 ∈ (λPI(L), λ1

)
.

(H5) There exist a λ2 such that Hi(λ1, λ2) := limλ2→λ2
H(λ1, λ2) > x for all λ1 ∈ (λPI(L), λ1

)
.

(K2) ∂

∂λ1
Ki(λ1, λ2) > 0 on D.

(K3) ∂

∂λ2
Ki(λ1, λ2) < 0 on D.

(K4) Ki(λPI(L), 0) = ε and Ki(λ1, 0) > ε (see (4.2)) for all λ1 ∈ (λPI(L), λ1

)
.

Proof.

(HK1) From the expressions of Hi and Ki, it is apparent that they are of class C1 on D.
(H4) When λ1 = λPI(L) and λ2 = 0, then XLERL−PI

T = XPI(L)
T since ξ = ξ , and the first result follows from

the definition of λPI(L). The second result is implied by (H2).
(H5) Fix λ1 ∈ (λPI(L), λ1

)
, let

λ2 =
{

λ1 − λa Case (1),
λ1 Case (2).

Therefore, we have ξ = ξ L = ξL for Case (1)) and ξ = 0 for Case (2)). Then,

lim
λ2→λ2

XLERL−PI
T =

{
I(λ1ξT)1ξT <ξ + f (ξT)1ξ≤ξT <ξL + L1ξT ≥ξL Case (1)
f (ξT)1ξT <ξ + I(λ1ξT)1ξ≤ξT <ξ

L
+ L1ξT ≥ξ

L
Case (2)

>

{
XH

T if x >E (ξT max {f (ξT), L}) ,

max{f (ξT), L} if x ≤E (ξT max {f (ξT), L}) ,

where XH
T is defined in Proposition 4.1 with the same initial capital in this case. In addition, we

have XLERL−PI
T ≤ L + f (ξT) + I((λ1 − λ2)ξT) a.s. By Lebesgue dominated convergence theorem,

we can switch the limit and expectation operator to get

Hi(λ1, λ2) = lim
λ2→λ2

Hi(λ1, λ2) =E

(
ξT lim

λ2→λ2

XLERL−PI
T (λ1, λ2)

)
> x.

(K4) If λ1 = λPI(L) and λ2 = 0, then XLERL−PI
T = XPI(L)

T and the first result follows from the definition of
ε, and the second assertion is deduced from (K2).

(H2), (H3), (K2), and (K3) are proved by direct calculation (see Appendix D for mathematical justifi-
cation of interchanging the expectation and derivative operators) and utilizing the fact that I is strictly
decreasing, namely,

∂H1

∂λ1

=E
(
ξ 2

T I ′(λ1ξT)1ξT <ξ

)+E
(
ξ 2

T I ′((λ1 − λ2)ξT)1ξ≤ξT <ξL

)
< 0,

∂H2

∂λ1

=E
(
ξ 2

T I ′((λ1 − λ2)ξT)1ξT <ξ

)+E

(
ξ 2

T I ′(λ1ξT)1ξ≤ξT <ξ
L

)
< 0,

−∂K1

∂λ2

= ∂K1

∂λ1

= ∂H1

∂λ2

= −E
(
ξ 2

T I ′((λ1 − λ2)ξT)1ξ≤ξT <ξL

)
> 0,

−∂K2

∂λ2

= ∂K2

∂λ1

= ∂H2

∂λ2

= −E
(
ξ 2

T I ′((λ1 − λ2)ξT)1ξT <ξ

)
> 0.

�
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Table 12. The asymptotic behavior of λ1, λ2, λ1 − λ2 and XLERL−PI
T

Case Condition λ1 λ2(λ1) λ1 − λ2(λ1) XLERL−PI
T

(1) E(ξT max{f (ξT), L}) < x λH λH − λa λa XH
T

(1) E(ξT max{f (ξT), L}) = x +∞ +∞ λa max{f (ξT), L}
(1) E(ξT max{f (ξT), L}) > x +∞ +∞ λ∗ ∈ (λa, λ1) X∗

T

(2) E(ξT max{f (ξT), L}) < x λH λH 0 XH
T

(2) E(ξT max{f (ξT), L}) = x λa λa 0 max{f (ξT), L}
(2) E(ξT max{f (ξT), L}) > x λa λa − λ∗ λ∗ ∈ (0, λa) X∗

T

A.4. Limiting results
We then study the dependence of λ2 on λ1 and its properties; the result is summarized in the following
proposition.

Proposition A.1. For i = 1, 2, we have
(1) For all λ1 ∈ (λPI(L), λ1

)
, there exists a unique λ2 = λ2(λ1) such that Hi(λ1, λ2(λ1)) = x.

(2) The function λ1 	→ λ2(λ1) is of class C1 and strictly increasing on
(
λPI(L), λ1

)
.

(3) λ2(λPI(L)) := limλ1→λPI(L) λ2(λ1) = 0.
(4) Assume that limλ1→λ1

Hi(λ1, λ2(λ1)) = x, the asymptotic behavior when λ1 → λ1 is summarized
in Table 12.

In Table 12, λ∗ is a constant if x > e−rTL, λ∗ = +∞ if x = e−rTL, and X∗
T is given by

X∗
T =

{
f (ξT)1ξT <ξ∗ + I(λ∗ξT)1ξ∗≤ξT <ξ∗

L
+ L1ξT ≥ξ∗

L
, Case (1),

I(λ∗ξT)1ξT <ξ∗ + f (ξT)1ξ∗≤ξT <ξL + L1ξT ≥ξL , Case (2),

where ξ ∗ is obtained by solving f (ξ ∗) = I(λ∗ξ ∗), ξ ∗
L = U′(L)

λ∗ , and XH
T and λH are defined in Proposition

4.1 with E(ξTXH
T ) = x. Moreover, the LERL loss of limλ1→λ1

XLERL−PI
T is ε (see (4.5)).

Proof.
(1) With Lemma A.1 (HK1), (H3), (H4), and (H5), the result follows by applying the intermediate

value theorem.
(2) The regularity result follows from Lemma A.1 (HK1), (H3), and the implicit function theorem.

By Lemma A.1 (HK1), (H2) and (H3), we have dλ2
dλ1

= − ∂Hi
∂λ1

/ ∂Hi
∂λ2

> 0, and the second assertion
follows.

(3) Firstly, the existence of the limit follows from (1) and (2). Then, by Lemma A.1 (H4), we get
x = H(λPI(L), 0) = limλ1→λPI(L) H(λ1, λ2(λ1)), implying λ2(λPI(L)) = 0.

(4a) E(ξT max{f (ξT), L}) < x: In this circumstance, we have λ = λH . According to Proposition 4.1,
we must have ξ = ξ L for Case (1); thus, λ1 − λ2 → λa and λ2 → λH − λa; for Case (2), we
obtain ξ = 0; hence λ1 − λ2 → 0 and λ2 → λH; otherwise, limλ1→λ1

Hi(λ1, λ2(λ1)) = x would
be violated.

(4b) E(ξT max{f (ξT), L}) = x: For Case (1), because λ1 = +∞, we have ξ = 0. From
limλ1→λ1

Hi(λ1, λ2(λ1)) = x =E(ξT max{f (ξT), L}), we must have ξ = ξ L implying λ1 − λ2 → λa

and λ2 → +∞. For Case (2), we get ξ = ξ
L

since λ1 = λa. limλ1→λ1
Hi(λ1, λ2(λ1)) = x =

E(ξT max{f (ξT), L}) implies that ξ = 0, λ1 − λ2 → 0 and λ2 → λa.
(4c) E(ξT max{f (ξT), L}) > x: λ1 = +∞ implies ξ = 0 in Case (1). According to

limλ1→λ1
Hi(λ1, λ2(λ1)) = x <E(ξT max{f (ξT), L}), the initial capital x is not enough to hedge

max{f (ξT), L}. Therefore, we have ξ<ξ L; thus, λ1 − λ2 → λ∗ ∈ (λa, λ1) and λ2 → +∞. For
Case (2)), λ1 = λa implies ξ = ξ

L
. Similarly, limλ1→λ1

Hi(λ1, λ2(λ1)) = x <E(ξT max{f (ξT), L})
means that the initial capital x cannot hedge max{f (ξT), L}; hence, we deduce that
λ1 − λ2 → λ∗ ∈ (0, λa) and λ2 → λa − λ∗ because ξ > 0.
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Finally, we compute the LERL loss is ε for the above cases. For the case (4a) and (4b), since their
limits of XLERL−PI

T are greater than or equal to f (ξT) a.s., their LERL loss is 0. For the case (4c) and the
case of x = e−rTL, it follows from utilizing the fact that X∗

T satisfies both constraints with equality and
direct calculation. �

Now, we can prove Proposition 4.2 by treating Ki(λ1, λ2) (see (4.8)) as a function of λ1, for i = 1, 2.

Proof [Proof of Proposition 4.2]. We first define two auxiliary functions:

hi(λ1) = Ki(λ1, λ2(λ1)) for λ1 ∈ [λPI(L), λ1) and i = 1, 2.

First, combining the result from Proposition A.1 (2) and Lemma A.1 (HK1), we assert that hi is of
class C1.

Then, we show that hi(λ1) can be greater than or less than ε. On the one hand, according to Proposition
A.1 (3) and Lemma A.1 (K4), we have hi(λPI(L)) = Ki(λPI(L), 0) = ε > ε. On the other hand, we obtain
hi(λ1) := limλ1→λ1

hi(λ1) = limλ1→λ1
Ki(λ1, λ2(λ1)) = ε < ε, according to Proposition A.1 (4).

In the last part, we prove h′
i(λ1) < 0. First, we introduce the following new notations and compute

h′
i(λ1) by the chain rule,

Hij := ∂

∂λj

Hi(λ1, λ2(λ1)) and Kij := ∂

∂λj

Ki(λ1, λ2(λ1)), for j = 1, 2,

h′
i(λ1) = ∂

∂λ1

Ki(λ1, λ2(λ1)) + ∂

∂λ2

Ki(λ1, λ2(λ1))λ
′
2(λ1) = 1

Hi2

(Ki1Hi2 − Ki2Hi1).

Hence, it is sufficient to prove Ki1Hi2 − Ki2Hi1 < 0 since Hi2 > 0 from Lemma A.1 (H3). From the
proof of Lemma A.1, we have Hi2 = Ki1 = −Ki2, and thus, Ki1Hi2 − Ki2Hi1 = Ki1(Ki1 + Hi1) < 0 by direct
calculation. Then, the assertion follows by applying the intermediate value theorem and Proposition
A.1 (1). �

A.5. Proof of Theorem 5.1
We follow the same methodology used in the proof of Theorem 4.1. First, for z, ξ > 0, we consider the
following Lagrangian

ϒ(z, ξ , X) := Ũ(X) − zξX =
{

η(U(X) − U(f (ξ ))) − zξX for X ≤ f (ξ )

κ(U(X) − U(f (ξ ))) − zξX for X > f (ξ )
,

which is a continuous function of X ∈ (0, +∞). We remark that it is differentiable in X except for the
point X = f (ξ ). Then, the following lemma solves the corresponding Lagrangian maximization problem.

Lemma A.2. Consider the Lagrangian maximization problem maxXT ∈X,X≥L ϒ(z, ξ , X), then �(z, ξ ) :=
arg maxXT ∈X,X≥Lϒ(z, ξ , X) is given by

�(z, ξ ) :=

⎧⎪⎨
⎪⎩

I
(

z
κ
ξ
)

1ξ<ξκ + f (ξ )1ξκ≤ξ<ξη + I
(

z
η
ξ
)

1ξη≤ξ<ξ
η
L
+ L1ξ≥ξ

η
L
, Case (1)

I
(

z
η
ξ
)

1ξ<ξη + f (ξ )1ξη≤ξ<ξκ + I
(

z
κ
ξ
)

1ξκ≤ξ<ξκ
L
+ L1ξT ≥ξκ

L
, Case (2)

For Case (3), there are three situations summarized in Table 13.

Proof. It is the same as the proof of Lemma 4.2 by considering the following replacements:

X1 → I
( z

κ
ξ
)

, X2 → I

(
z

η
ξ

)
, ξ → ξ κ , ξ → ξη, ξ

L
→ ξ κ

L , ξ L → ξ
η

L ,

G1(X) → κ(U(X) − U(f (ξ ))) − zξX, G2(X) → η(U(X) − U(f (ξ ))) − zξX,

G′
1(X) → κU′(X) − zξ , G′

2(X) → ηU′(X) − zξ . �
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Table 13. The Lagrangian maximizer of Case (3)

Case Condition Solution

(3a) f (ξ )≤I
(

z
κ
ξ
)
< I

(
z
η
ξ
)

I
(

z
κ
ξ
)

1ξ<ξκ
L
+ L1ξ≥ξκ

L

(3b) I
(

z
κ
ξ
)
< f (ξ )≤I

(
z
η
ξ
)

f (ξ )1ξ<ξL + L1ξ≥ξL

(3c) I
(

z
κ
ξ
)
< I

(
z
η
ξ
)

< f (ξ ) I
(

z
η
ξ
)

1ξ<ξ
η
L
+ L1ξ≥ξ

η
L

Moreover, we need the existence result of Lagrangian multiplier z, which is stated in the next lemma.

Lemma A.3. There exist a unique solution z ∈ (0, +∞) to E(ξT�(z, ξT)) = x.

Proof. �(z, ξT) is monotonically decreasing in z, and we thus have limz→+∞ �(z, ξT) = L and
limz→0 �(z, ξT) = +∞. Applying the monotone convergence theorem, we obtain

lim
z→+∞

E(ξT�(z, ξT)) = e−rTL < x and lim
z→0

E(ξT�(z, ξT)) = +∞ > x.

Then, the result follows from the intermediate value theorem. �
With these two lemmas, the proof of Theorem 5.1 is wrapped up below.

Proof [Proof of Theorem 5.1]. With Assumption 2, 4 and the following observation

Ũ
(
XBRBU

T

)≤ (η + κ)(U(f (ξT)) + U(L) + U

(
I

(
z

η
ξT

))
+ U

(
I
( z

κ
ξT

))
,

we have E(Ũ
(
XBRBU

T

)
) < ∞. Furthermore, let XT be any admissible terminal wealth of Problem (5.1),

we obtain

E(Ũ(XT)) ≤E
(
Ũ(XT) + z(x − ξTXT

)≤E

(
sup
XT ≥L

(
Ũ(XT) − zξTXT

))+ xz

=E
(
Ũ
(
XBRBU

T

))+ z
(
x −E

(
ξTXBRBU

T

))=E
(
Ũ
(
XBRBU

T

))
,

where the first inequality follows from the budget constraint, the first equality follows from Lemma A.2,
and the last equality follows from E

(
ξTXBRBU

T

)= x, which is possible according to Lemma A.3. �

B. Bindingness, admissibility and properties of the LERL-PI solution
Having presented the LERL-PI solution in Section 4.2, this appendix studies the admissibility of
Problem (4.1) when the parameters can change (ceteris paribus) and further explore properties implied
by the optimal solution. Remark first that a related study of the LERL loss bound ε is completed in
Section 4.1, wherein the condition ε ≤ ε < ε ensures the bindingness of the LERL constraint.

In addition to the loss bound ε, the solvability of Problem (4.1) also depends on the initial capital x.
Given that other parameters are fixed, we study the minimal and maximal capital such that the LERL
constraint is active. In other words, for a minimal capital xmin (defined by (A.3)) and a maximal capital
xmax (defined by (A.2)), the LERL constraint is binding if xmin ≤ x < xmax.

First, we need to know how the Lagrange multipliers λ1 and λ2 respond to the change of the initial
capital x, which is the result of the following lemma.

Lemma A.4. Assume that the LERL loss bound ε and the minimum insurance level L are fixed, and the
LERL constraint is active. We have

∂(λ1 − λ2)

∂x
= 0 and

∂λ1

∂x
= ∂λ2

∂x
< 0. (A.1)
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With Lemma A.4, we can determine the minimal and maximal capital for which the LERL constraint
is active. We first characterize xmax in the next lemma.

Lemma A.5. Given that the LERL loss bound ε and the PI level L are fixed, if the initial capital x fulfills

x ≥ xmax := E(ξT max{I((λ1 − λ2)ξT), L}), (A.2)

then the LERL constraint is not binding so that Problem (4.1) becomes a PI problem with a minimum
constraint XT ≥ L.

Proof. It is reported in Appendix C.1. �
It is obvious that the LERL loss for x = xmax is ε (see (4.2)). So then, we study xmin and its

corresponding optimal terminal wealth and LERL loss in the following lemma.

Lemma A.6. Assume that the minimum insurance level L and the LERL loss bound ε are fixed,
Problem (4.1) is admissible if the initial capital x satisfies

x ≥ xmin := E(ξT max{f (ξT), L}) − ε. (A.3)

Moreover, the LERL loss is ε (see (4.5)), and the corresponding optimal terminal wealth Xmin
T fulfills{

ω ∈ � : Xmin
T (ω) > f (ξT(ω))

}= {
ω ∈ � : Xmin

T (ω) = L and ξT(ω) ≥ ξL

}
. (A.4)

Proof. It is demonstrated in Appendix C.2. �
The above deduction can also be seen as a sensitivity analysis of initial capital x. Further, the optimal

terminal wealth Xmin
T where x = xmin is shown in the next lemma.

Lemma A.7. If x = xmin, then the optimal terminal wealth Xmin
T of Problem (4.1) is given by

Xmin
T =

⎧⎪⎨
⎪⎩

f (ξT)1ξT <ξ∗ + I(λ∗ξT)1ξ∗≤ξT <ξ∗
L
+ L1ξT ≥ξ∗

L
, Case (1),

I(λ∗ξT)1ξT <ξ∗ + f (ξT)1ξ∗≤ξT <ξL + L1ξT ≥ξL , Case (2),
XPI(L)

T = max
{
I(λPI(L)ξT), L

}
, Case (3),

where ξ ∗ is obtained by solving f (ξ ∗) = I(λ∗ξ ∗), ξ ∗
L = U′(L)

λ∗ , and λ∗ and λPI(L) are computed by solving the
budget constraint with equality.

Proof. It is a special case of Theorem 4.1 when the initial capital x tends to xmin. We remark that the
budget and LERL constraints are equivalent in this case. �

Let us now study the admissibility of Problem (4.1) with respect to the minimum insurance level L.
We first perform a sensitivity analysis in the following lemma.

Lemma A.8. Fixing the LERL loss bound ε and the initial capital x, we have
∂λ1

∂L
≥ 0 and

∂(λ1 − λ2)

∂L
> 0 Case (1),

∂λ1

∂L
= ∂λ2

∂L
> 0 Case (2).

and the sign of ∂λ2
∂L

is undetermined in Case (1).

With the aid of Lemma A.8, we then discuss the influence of L on the solution to Problem (4.1) in
the sequel. For Case (2), on the one hand, if we keep increasing L, then the optimal terminal wealth
XLERL

T will eventually become Xmin
T , and thus, the LERL constraint is still active. On the other hand, if we

keep lowering L, then the optimal terminal wealth XLERL
T will eventually become XPI(L)

T ; hence, the LERL
constraint is not active anymore. It is due to how xmin and xmax respond to the change of L, namely

∂xmin

∂L
=E

(
ξT1ξT ≥ξL

)
> 0 and

∂xmax

∂L
=E

(
ξT1ξT ≥ξL

)
> 0,
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which implies that when L increases, xmin reaches x, and XLERL
T becomes Xmin

T . Likewise, xmax reaches x if
we decrease L, and hence, XLERL

T becomes XPI(L)
T .

All in all, the introduction of PI constraint and the parameter L gives additional flexibility to change
the range of [xmin, xmax) and [ε, ε).

Remark A.1. One particular scenario for Case (1) is that f (ξT) > L a.s. In this situation, we have ξL =
+∞. From the proof of Lemma A.8, we obtain

∂λ1

∂L
= 0 and

∂(λ1 − λ2)

∂L
> 0.

Finally, to complete the sensitivity analysis, we study how two Lagrange multipliers respond to the
change of the LERL loss bound ε. The results are depicted in the following lemma.

Lemma A.9. Assuming the initial capital x and the PI level L are fixed, we have
∂λ1

∂ε
< 0,

∂λ2

∂ε
< 0, and

∂(λ1 − λ2)

∂ε
> 0.

Remark A.2. The proof of Lemmas A.4, A.8, and A.9 are similar and straightforward, whose idea is
to differentiate both sides of (4.9) and utilizing the results and techniques in the proof of Lemma A.1;
therefore, those proofs are omitted.

C. Auxiliary technical proofs
C.1. Proof of Lemma A.5
From Lemma A.4, we can observe that if we increase x, then λ1 and λ2 will decline, but λ1 − λ2 remains
unchanged. Therefore, some level of x, we have λ2 = 0, which implies ξ = ξ . Then, the optimal wealth
XLERL−PI

T changes to max{I((λ1 − λ2)ξT), L}, which means the LERL constraint is not active anymore. So
the capital level for this case is xmax defined by (A.2).

C.2. Proof of Lemma A.6
Let XT be any admissible solution to Problem (4.1). Then, from the budget and LERL constraints, we
have

x ≥E(ξTXT) =E(ξT f (ξT)) −E
(
ξT(f (ξT) − XT)1XT ≤f (ξT )

)−E
(
ξT(f (ξT) − XT)1XT >f (ξT )

)
≥E(ξT f (ξT)) − ε +E

(
ξT(XT − f (ξT))1XT >f (ξT )

)
≥E(ξT f (ξT)) − ε +E

(
ξT(L − f (ξT))1ξT ≥ξL

)
=E(ξT max{f (ξT), L}) − ε = xmin,

and above inequalities become equalities if two constraints hold with equality and (A.4) is satisfied.
Finally, we can infer that ε = ε for x = xmin according to Lemma 4.1.

D. On the interchange of expectation and derivative functionals
Throughout the paper, some computations require the interchange of expectation and derivative opera-
tors. This section depicts the rationale behind this operation (see similar results in, e.g., (Durrett, 2019,
Appendix A.5)). The result can be easily generalized to the version with the conditional expectation.

Lemma A.10. Let X be a random variable defined on a probability space (�, F , P) and t 	→ g(t, X) ∈R

be a random function such that g(t,X) is a smooth function with respect to t ∈ (a, b) and integrable for
all t ∈ (a, b), where (a,b) is an open interval in the real line. Assume that there exists a random variable
Y such that
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∀t ∈ (a, b) :

∣∣∣∣ ∂

∂t
g(t, X)

∣∣∣∣≤ Y a.s. and E(Y) < +∞.

Then,
∂

∂t
E(g(t, X)) =E

(
∂

∂t
g(t, X)

)
.

Proof. From the definition of the first derivative and the mean value theorem, we have
∂

∂t
E(g(t, X)) = lim

h→0
E

(
g(t + h, X) − g(t, X)

h

)
=E

(
lim
h→0

∂

∂t
g(�(h), X)

)
=E

(
∂

∂t
g(t, X)

)
,

where �(h) ∈ (t, t + h) for each ω ∈ � and the interchange of limit and expectation is guaranteed by the
dominated convergence theorem since ∂

∂t
g(�(h), X) ≤ Y and E(Y) < +∞. �

In this paper, we have to deal with the piecewise function, and the smoothness is not always satisfied.
The following lemma allows circumventing this technical difficulty with an extra condition applied on
non-differentiable points.

Lemma A.11. Let X be an atomless random variable defined on a probability space (�, F , P) and
t 	→ g(t, X) ∈R be a continuous random function of the form

g(t, X) =
n∑

i=0

gi(t, X)1X∈[fi(t),fi+1(t)),

which satisfies the following properties:

(a) For all t ∈ [0, +∞), gi(t, X) are integrable, that is, E(gi(t, X)) < +∞.
(b) For all t ∈ [0, +∞), f0(t) ≡ 0, fn+1(t) = +∞, and fi(t) are differentiable functions for all

i = 1, · · · , n.
(c) For all i = 0, · · · , n, gi(t, X) are continuously differentiable in (fi(t), fi+1(t)), and for all

t ∈ (0, +∞), there exists a random variable Yi such that∣∣∣∣ ∂

∂t
gi(t, X)

∣∣∣∣≤ Yi and E(Yi) < +∞.

(d) For all i = 0, · · · , n − 1, gi(t, fi(t)) = gi+1(t, fi(t)). Then, E(g(t, X)) is differentiable, and

∂

∂t
E(g(t, X)) =E

(
n∑

i=1

(
∂

∂t
gi(t, X)

)
1X∈(fi(t),fi+1(t))

)
. (A.5)

Proof. Since X is atomless, we have E(g(t, X)) =E
(∑n

i=1 gi(t, X)1X∈(fi(t),fi+1(t))

)
, and the differentia-

bility ofE(g(t, X)) follows from the differentiability ofE(gi(t, X)1X∈(fi(t),fi+1(t))), according to Lemma A.10.
Then, we compute the following expression

E

(
n∑

i=0

gi(t, X)
∂

∂t
1X∈(fi(t),fi+1(t))

)
=

n∑
i=1

∫ +∞

−∞
δ(X − fi(t))f

′
i (t)(gi−1(t, X) − gi(t, X))FX(z)dz = 0,

where δ is the Dirac delta function, FX is the probability density function of the distribution of X whose
existence is guaranteed because X is atomless. The last equality follows from the definition of the
Dirac delta function and (d). Then, we get the result (A.5) by applying the product rule to calculate
∂

∂t
E(g(t, X)). �
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