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Abstract

The Minkowski functionals, including the Euler characteristic statistics, are standard
tools for morphological analysis in cosmology. Motivated by cosmic research, we exam-
ine the Minkowski functional of the excursion set for an isotropic central limit random
field, whose k-point correlation functions (kth-order cumulants) have the same structure
as that assumed in cosmic research. Using 3- and 4-point correlation functions, we derive
the asymptotic expansions of the Euler characteristic density, which is the building block
of the Minkowski functional. The resulting formula reveals the types of non-Gaussianity
that cannot be captured by the Minkowski functionals. As an example, we consider an
isotropic chi-squared random field and confirm that the asymptotic expansion accurately
approximates the true Euler characteristic density.
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1. Introduction

1.1. Minkowski functional in cosmology

The Minkowski functional is a fundamental concept in integral and stochastic geometry.
It is a series of geometric quantities defined for a bounded set in the Euclidean space. In the
2-dimensional case, the Minkowski functional of the set M is a triplet consisting of the area
Vol2(M), the half-length of the boundary 1

2 Vol1(∂M), and the Euler characteristic χ (M) times
π . The Minkowski functional measures the morphological features of M in a different way
from conventional moment-type statistics and has been used in various scientific fields.

In cosmology, the Minkowski functional was introduced around the 1990s. It was used to
analyze first the large-scale structure of the universe, and then the cosmic microwave back-
ground (CMB). In particular, the Minkowski functional for the excursion set of the smoothed
CMB map was first analyzed by [21] (cf. [22]). The CMB radiation provides rich informa-
tion on the early stages of the universe. Its signal is recognized as an isotropic and nearly
Gaussian random field. However, hundreds of inflationary models are available to infer the
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Expected Minkowski functional 1391

various types of non-Gaussianity. The Minkowski functional is used for the selection of such
candidate models.

More precisely, let X(t), t ∈ T ⊂R
n, be such a random field. The sup-level set with a

threshold x,
Tx = {t ∈ T | X(t) ≥ x} = X−1([x,∞)),

is referred to as the excursion set. Subsequently, the Minkowski functional curves Mj(Tx), 0 ≤
j ≤ n, can be calculated as functions of x. The departure of the sample Minkowski functional
from the expected Minkowski functional under the assumed model is used as a measure for the
selection of models.

When X(t), t ∈ M, is Gaussian, the Minkowski functional density (i.e., the expected
Minkowski functional per unit volume) is explicitly known (see (2.11)). However, the expected
Minkowski functional for a non-Gaussian random field is unknown (except for the Gaussian-
related random fields [3, Section 5.2]). In cosmology, a weak non-Gaussianity is expressed
through the k-point correlation function, or the kth-order cumulant, for k ≥ 2 as

cum(X(t1), . . . , X(tk)) = O
(
νk−2), ν� 1, (1.1)

where ν is a non-Gaussianity parameter ([13]). These asymptotics are the same as that of the
central limit random field introduced by [5]. That is, for independent and identically distributed
(i.i.d.) random fields Z(i)(t), t ∈ T (i ≥ 1), with zero mean and unit variance, the central limit
random field defined by

X(t) = XN(t) = 1√
N

N∑
i=1

Z(i)(t), t ∈ T ⊂R
n, (1.2)

has a cumulant of the form (1.1) with ν = 1/
√

N. This is a typical weakly non-Gaussian ran-
dom field when N is large. In this study, we discuss the asymptotic expansion of the Minkowski
functionals in the framework of the central limit random field.

Research in cosmology and astrophysics is often based on massive numerical simulations.
Because the computational cost of the simulator is extremely high, analytic methods, includ-
ing asymptotic expansion, can be immensely helpful if they provide the same information as
simulators.

Finally, we make a few further comments on the use of Minkowski functionals in astro-
physics and on recent related work. The systematic application of the Minkowski functional to
Planck CMB data was reported in [19]. The paper [8] discusses the use of the Minkowski
functional for the CMB data in the presence of sky masks. In addition to the CMB, the
Minkowski functionals have been applied to various types of survey observations, including
2-dimensional maps of the weak-lensing field of galaxy surveys, and 3-dimensional maps of
the large-scale structure of the universe probed by galaxy distributions. The exact treatment
of the 2-dimensional cosmological data as a random field on the celestial sphere has been
studied (e.g., [8, 12]). For recent developments in the applications of the Euler characteristic,
Minkowski functional, and related geometric methods, see [20].

1.2. Scope of this paper

In reality, the index set (i.e., the survey area) T is a bounded domain, and boundary cor-
rections should always be incorporated. Let Mj(T), 0 ≤ j ≤ n, be the Minkowski functional of
the domain T . Then, if T is a C2-stratified manifold of positive reach (see Section 2.1 for the
definition), it is known that
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1392 S. KURIKI AND T. MATSUBARA

E[χ (Tx)] =
n∑

j=0

Lj(T)�j,N(x), (1.3)

if the expectation exists, where Lj(T) =ω−1
n−j

(n
j

)Mn−j(T) is referred to as the Lipschitz–Killing

curvature of T , ωj is the volume of the unit ball in R
j, and �j,N(x) is the Euler characteristic

density of the random field XN(t) in (1.2) restricted to the j-dimensional linear subspace. See
[28], or [5, Theorem 1] for a proof based on Hadwiger’s theorem.

Moreover, the expected Minkowski functionals are expressed as

E[Lk(Tx)] =ω−1
n−k

(
n

k

)
E[Mn−k(Tx)] =

n−k∑
j=0

[
k + j

k

]
Lk+j(T)�j,N(x), (1.4)

where [
k + j

k

]
= �

( k+j+1
2

)
�
( 1

2

)
�
( k+1

2

)
�
( j+1

2

) .

A proof based on Crofton’s theorem is presented in the next section (Section 2.1).
In this study, we obtain the asymptotic expansion formula for the Euler characteristic den-

sity�n,N(x) for a large N and examine the effect of the non-Gaussianity. The resulting formula
also automatically provides the asymptotic expansion formula for the expected Euler charac-
teristic and the expected Minkowski functionals via (1.3) and (1.4), respectively. Prior research
[9, 13] has provided a perturbation formula for the expected Minkowski functional up to O(ν)(
ν = N− 1

2
)

using the 3-point correlation function for dimension n ≤ 3, while [14] provided the
formula up to O

(
ν2
) (
ν2 = N−1

)
using the 3- and 4-point correlation functions for n = 2. This

study completes the asymptotic expansion formulas up to O
(
N−1

)
using the 3- and 4-point cor-

relation functions for an arbitrary dimension n. Moreover, in addition to completing the existing
research, we provide informative discussions for arbitrary n which reveal the properties of the
Minkowski functionals (e.g., Theorem 2).

In related work, [5] derived an approximation for the expected Euler characteristic of the
excursion set of an isotropic central limit random field. The approach in [5] is based on a ver-
sion of the saddle-point approximation, which is different from the Edgeworth-type expansion
approach used in this study. Our results are described in terms of the derivatives of k-point
correlation functions, and can be translated in terms of the higher-order spectra. Another dif-
ference is that in [5] the threshold x increases as the sample size N increases, whereas x in this
study is assumed fixed.

The authors are preparing another cosmic paper [15], where the perturbation formula for
the Euler characteristic density up to O

(
ν2
)

is derived using an alternative approach. The final
formulas are presented in terms of higher-order spectra. It has been confirmed that the formulas
in the two studies are consistent.

This paper is organized as follows. In Section 2, the Minkowski functional and the
Lipschitz–Killing curvature are defined, and (1.4) is proved. The formula for the Euler char-
acteristic density is then presented as the starting point of this study. The main results are
presented in Section 3. The isotropic k-point correlation functions are introduced, and then the
asymptotic expansion formula for the Euler characteristic density up to O

(
N−1

)
is derived.

In addition, a class of non-Gaussianity which cannot be captured by the Minkowski func-
tional approach is identified. In Section 4, as an example, we consider an isotropic chi-squared
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random field, which is a typical weakly Gaussian random field when the number of degrees
of freedom is large. The isotropic chi-squared random field belongs to a class of Gaussian-
related random fields whose Euler characteristic density is explicitly known. We analytically
and numerically confirm the precision of the asymptotic expansion approximations. Proofs of
the main results are presented in Section 5. In the appendix, the Hermite polynomial identi-
ties are proved (Section A.1), and the regularity conditions for the asymptotic expansion are
summarized (Section A.2).

2. Preliminaries

2.1. Tube and Minkowski functional

We begin with a quick review of the Minkowski functional. Let M be a bounded closed
domain in R

n. For u ∈R
n, let uM be a point such that ‖uM − u‖ = minw∈M ‖w − u‖. Note that

uM exists but may not be unique. A tube about M with radius r is defined by a set of points
whose distance from M is less than or equal to r:

Tube(M, r) = {u ∈R
n | ‖uM − u‖ ≤ r

}
. (2.1)

Then, the critical radius or reach is defined as

rcri(M) = inf
{
r ≥ 0 | uM is unique for all u ∈ Tube(M, r)

}
.

The critical radius rcri(M) is the maximum radius for which the tube Tube(M, r) does not have
self-overlap ([11, Section 2.2]). M is said to be of positive reach if rcri(M) is strictly positive.
The classical Steiner formula states that when M is a C2-stratified manifold (C2-piecewise
smooth manifold [24]) of positive reach, for all r ∈ [0, rcri(M)], the volume of the tube (2.1)
can be expressed as a polynomial in r:

Voln(Tube(M, r)) =
n∑

j=0

ωn−jr
n−jLj(M) =

n∑
j=0

rj
(

n

j

)
Mj(M), (2.2)

where Voln(·) is the n-dimensional volume and ωj = π j/2/�(j/2 + 1) is the volume of the unit
ball in R

j. The Minkowski functional Mj(M) of M and the Lipschitz–Killing curvature Lj(M)
of M are defined as the coefficients of the polynomial. Note that Lj(M) is defined indepen-
dently of the dimension n of the ambient space. There are variations of the definitions of the
Minkowski functional. The definition in (2.2) is from [23, Section 14.2].

Because of the Gauss–Bonnet theorem, the Minkowski functional of the largest degree is
proportional to the Euler characteristic of M:

χ (M) =L0(M) =Mn(M)/ωn.

Throughout this study, it is assumed that the domain T of the random field X(t) is a C2-
stratified manifold of positive reach. In the following, we prove (1.4). Let A(n, k) be the set of
k-dimensional affine subspaces in R

n. Let L ∈ A(n, n − k), and let X|L be the restriction of X to
L, that is, a random field on T ∩ L. Because X is isotropic, when L is given, from (1.3) we have

E[χ ((T ∩ L)x)] =
n−k∑
j=0

Lj(T ∩ L)�j,N(x).

Note that (T ∩ L)x = Tx ∩ L. Let μn,n−k be the invariant measure over A(n, n − k), normalized
so that μn,k({L ∈ A(n, k) | L ∩B

n �= ∅}) =ωn−k, where B
n denotes the unit ball in R

n. Taking
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the integral
∫

A(n,k) dμn,n−k(L), by the generalized Crofton theorem for a positive-reach set
[10], we obtain

cn,0,kE[Lk(Tx)] =
n−k∑
j=0

cn,j,kLk+j(T)�j,N(x),

where

cn,j,k = �
( k+1

2

)
�
( k+j+1

2

)
�
( j+1

2

)
�
( n+1

2

) ,
which proves (1.4).

2.2. Marginal distributions of X and its derivatives

In this study, we deal with the central limit random field X(t) = XN(t) in (1.2) on T ⊂R
n.

We assume that X(t) has zero mean, unit variance, and a smooth sample path t �→ X(t) in the
following sense: X(t), ∇X(t) = (Xi(t))1≤i≤n ∈R

n, and ∇2X(t) = (Xij(t))1≤i,j≤n ∈ Sym(n) (the
set of n × n real symmetric matrices) exist and are continuous with respect to t = (t1, . . . , tn)
almost surely, where

Xi(t) = ∂

∂ti
X(t), Xij(t) = ∂2

∂ti∂tj
X(t). (2.3)

In addition, it is assumed that X(·) is isotropic. That is, the arbitrary finite marginal distribution
{X(t)}t∈T ′ , where T ′ ⊂R

n is a finite set, is invariant under the group of rigid motions of t.
This isotropic property implies that the marginal moment is independent of t. Recall that

we assumed E[X(t)] = 0 and E
[
X(t)2

]= 1. The covariance function of an isotropic field is a
function of the distance between two points:

E[X(t1)X(t2)] =E[Z(i)(t1)Z(i)(t2)] = ρ
( 1

2‖t1 − t2‖2), (2.4)

where Z(i) was used in (1.2). This covariance function is sufficiently smooth at t1 = t2 if we
assume the following condition on ρ:

ρ(0) = 1, ρ′(0)< 0, and d4ρ(x)/dx4 exists. (2.5)

Under the condition (2.5), ∂4ρ
( 1

2‖t1 − t2‖2
)
/∂ti11 ∂tj11 ∂ti22 ∂tj22 exists, and the mean square

derivatives X∗
i and X∗

ij of X exist. Their moments of order up to 2 are obtained by exchanging
the derivatives and the expectation symbol E[·] ([1, Theorem 2.2.2]). For instance,

E
[
X∗

ij(t)X
∗
kl(t)

]= ∂4

∂ti1∂tj1∂tk2∂tl2
E[X(t1)X(t2)]

∣∣∣
t1=t2=t

. (2.6)

Moreover, (2.6) is equivalent to E[Xij(t)Xkl(t)] when the almost-sure derivatives (2.3)
exist. In this manner, we obtain the moments of (X(t),∇X(t),∇2X(t)) of order up to 2
as follows: E[Xi(t)] =E[Xij(t)] =E[Xi(t)X(t)] =E[Xij(t)Xk(t)] = 0, E[Xi(t)Xj(t)] = −ρ′(0)δij,
E[Xij(t)X(t)] = ρ′(0)δij, and

E
[
Xij(t)Xkl(t)

]= ρ′′(0)
(
δikδjl + δilδjk + δijδkl

)
,

where δij is the Kronecker delta. In particular, ∇X(t) is uncorrelated with X(t) for each fixed t.
We change the variable from ∇2X(t) to

R(t) = (Rij(t))1≤i,j≤n = ∇2X(t) + γX(t)In, γ = −ρ′(0).
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Then R(t) is uncorrelated with X(t) and ∇X(t) for each fixed t. This simplifies the entire
manipulation process. R(t) has zero mean and the covariance structure

E
[
Rij(t)Rkl(t)

]= α
1

2

(
δikδjl + δilδjk

)+ βδijδkl, (2.7)

where α = 2ρ′′(0) and β = ρ′′(0) − ρ′(0)2. As an
(n+1

2

)× (n+1
2

)
covariance matrix, (2.7) is

nonnegative definite if and only if α ≥ 0 and α+ nβ ≥ 0, and is positive definite if and only if

α > 0, α+ nβ > 0, or equivalently, ρ′′(0)>
n

n + 2
ρ′(0)2 > 0. (2.8)

In this study, we assume (2.8). This is satisfied when (X(t),∇X(t),∇2X(t)) ∈R
1+n+(n+1

2 ) has
a probability density function. This assumption is sufficient for our motivating applications in
cosmology ([13]).

In the limit as N → ∞, for each fixed t, X(t), ∇X(t), and R(t) are independently distributed as
Gaussian distributions X(t) ∼N (0, 1), ∇X(t) ∼Nn(0, γ In), and R(t) ∈ Sym(n) is a zero-mean
Gaussian random matrix with a covariance structure (2.7). This limiting Gaussian random
matrix R(t) is referred to as the Gaussian orthogonal invariant matrix ([6]) and has a probability
density function

p0
R(R) ∝ exp

{
− 1

2α
tr
((

R − 1
n tr(R)In

)2)− 1

2n(α + nβ)
tr(R)2

}
with respect to dR =∏1≤i≤j≤n dRij.

The paper [6] proved that in the boundary case ρ′′(0) = (n/(n + 2))ρ′(0)2 > 0, there exists
an isotropic Gaussian random field. For non-Gaussian random fields in the boundary case,
nothing seems to be known.

2.3. Euler characteristic density

In the following, let V(t) = (Vi(t))1≤i≤n = ∇X(t). The probability density function of
(X(t),V(t), R(t)) with respect to the Lebesgue measure dXdVdR, dV =∏n

i=1 dVi, dR =∏
1≤i≤j≤n dRij, is denoted by pN(X, V, R) if it exists. This is irrespective of the point t.
Morse’s theorem is a fundamental tool for counting the Euler characteristics of a set. The

following is a result of the Kac–Rice formula, which is the integral form of Morse’s theorem.

Proposition 1. ([2].) Suppose that the regularity conditions in Theorem 11.2.1 of [2] with
f(t) and g(t) replaced by ∇X(t) and (X(t),∇2X(t)), respectively, are satisfied. Then the Euler
characteristic density in (1.3) and (1.4) is

�n,N(x) =
∫ ∞

x

[∫
Sym(n)

det
(−R + γ x′In

)
pN(x′, 0, R)dR

]
dx′. (2.9)

When the random field X(·) is Gaussian, the conditions for Proposition 1 are simplified (see
[2, Corollary 11.2.2]). We use the formula (2.9) as the starting point of the analysis. In the limit
as N → ∞, p∞(x, 0, R) = φ(x)p0

V (0)p0
R(R), where

φ(x) = 1√
2π

e−x2/2 (2.10)
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is the probability density function of the standard Gaussian distribution N (0, 1) and p0
V (0) =

(2πγ )−n/2 is the probability density function of V evaluated at V = 0. We then have the well-
known result

�n,∞(x) = γ n/2

(2π )n/2
φ(x)Hn−1(x), (2.11)

where

Hk(x) = φ(x)−1
(
− d

dx

)k
φ(x) (2.12)

is the Hermite polynomial (e.g., [2, 26]).
The primary purpose of this study is to derive the asymptotic expansion formula for�n,N(x)

around N = ∞.

3. Main results

This section presents the main theorems of this study. The statements are given in terms of
the isotropic cumulants introduced below.

3.1. Isotropic cumulants and their derivatives

If a function f (t1, . . . , tk), ti ∈R
n, is isotropic, then f is a function of the ti through the dis-

tances between them: ‖ti − tj‖, 1 ≤ i< j ≤ k. The k-point correlation function of the isotropic
central limit random field X(·) in (1.2) is then written as

cum(X(t1), . . . , X(tk)) = N− 1
2 (k−2)κ (k)(x12, x13, . . . , xk−1,k), xab = 1

2‖ta − tb‖2, (3.1)

where κ (k) denotes the kth-order cumulant of Z(i)(·) in (1.2). Note that the cumulant of a random
vector (Y1, . . . , Yk) is defined by

cum(Y1, . . . , Yk) =
∑

(−1)�(�− 1)!E[∏i∈I1
Yi
] · · ·E[∏i∈I�Yi

]
,

where the summation runs over all possible set partitions of {1, . . . , k} such that I1 � · · · � I� =
{1, . . . , k} ([17]). When and only when the k-dimensional marginal (X(t1), . . . , X(tk)) has a
kth-order moment, the k-point correlation function exists. The 2-point correlation function
κ (2)(·) is the covariance function ρ(·) in (2.4). The 3- and 4-point correlation functions are as
follows:

cum(X(t1), X(t2), X(t3)) =E[X(t1)X(t2)X(t3)] = N− 1
2 κ (3)(x12, x13, x23),

cum(X(t1), X(t2), X(t3), X(t4))

=E[X(t1)X(t2)X(t3)X(t4)] −E[X(t1)X(t2)]E[X(t3)X(t4)][3]

= N−1κ (4)(x12, x13, x14, x23, x24, x34),

where the expression ‘[3]’ represents the three symmetric terms. Note that κ (3)(x12, x13, x23) is
symmetric in its arguments, but κ (k) (k ≥ 4) are not symmetric.

We assume the smoothness of κ (k) in (3.1) as a generalization of (2.5):

∂2kκ (k)(x12, x13, . . . , xk−1,k)∏
1≤a<b≤k (∂xab)nab

exists for
∑

nab = 2k, nab ≤ 4, (3.2)

from which it is proved that

∂2kκ (k)(x12, x13, . . . , xk−1,k)

∂ti11 ∂tj11 · · · ∂tikk ∂tjkk
, xab = 1

2‖ta − tb‖2, exists. (3.3)
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(a) (b) (c) (d)

FIGURE 3.1. Diagrams with cycle ((a)–(c)) and without cycle ((d)). (a) κ
(3)
(12),(12),(13)(0),

(b) κ (3)
(12),(13),(23)(0), (c) κ (6)

(12),(13),(14),(23),(45),(46)(0), (d) κ (6)
(12),(13),(14),(45),(46)(0).

Under this condition, the kth-order cumulants of (X(t),∇X(t),∇2X(t)) are obtained by
exchanging the derivatives and the cumulant symbol. For instance,

cum(Xi(t), Xj(t), Xkl(t)) = ∂4

∂ti1∂tj2∂tk3∂tl3
cum(X(t1), X(t2), X(t3))

∣∣∣
t1=t2=t3=t

. (3.4)

(The proof is identical to that in Section 2.2. The mean square derivatives X∗
i and X∗

ij that exist
under (2.5) satisfy (3.4) under (3.3).)

To state the main theorems, the following notation is used:

κ
(k)
(a1b1),...,(aKbK )(0) = κ

(k)
E (0) =

( ∏
(a,b)∈E

( ∂

∂xab

))
κ (k)((xab)1≤a<b≤k

)∣∣∣
x12=···=xk−1,k=0

(3.5)

with E = {(a1, b1), . . . , (aK, bK)}. Here, an undirected graph (V , E) with vertex set V =
{1, . . . , k} and edge set E is considered. Note that the edge set E is a multiset that allows
multiple edges connecting a pair of two vertices. Next, a diagram is defined as the undirected
graph (V , E) without the information of vertex labels. In addition, isolated vertices are omitted
from the diagram. That is, two diagrams are identical if their undirected graphs are identi-
cal after a suitable relabeling of the vertices. As shown in Figure 3.1, some diagrams contain
cycles, while others do not.

Table 3.1 lists the cycle-free derivatives (3.5) for k ≤ 4 and their abbreviations. This table is
needed for the statement of the main theorem in the next section. The multiplicity is the number
of undirected graphs that are identical by way of relabeling the vertices.

3.2. Asymptotic expansion of the Euler characteristic density

The two theorems are stated here as the main results. These are proved in the following
sections.

Assumption 1.

(i) The covariance function ρ in (2.4) and the third- and fourth-order cumulant func-
tions given by κ (k) in (3.1) for k = 3, 4 exist, and they satisfy (2.5), and (3.2) or (3.3),
respectively.

(ii) The probability density function pN(X, V, R) of (X(t),V(t),R(t)) for t fixed exists for N ≥
1, and is bounded for some N. Furthermore, (X(t),V(t),R(t)) has a moment of order(n+2

2

)+ 1 ( ≥ 4) under p1.
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TABLE 3.1. Derivatives of cumulant functions κ (k) with cycle-free diagram (k = 2, 3, 4).

abbreviation representative derivative multiplicity diagram

−γ ρ′(0) 1

κ0 κ (3)(0) 1
κ1 κ

(3)
(12)(0) 3

κ11 κ
(3)
(12),(13)(0) 3

κ̃0 κ (4)(0) 1
κ̃1 κ

(4)
(12)(0) 6

κ̃a
11 κ

(4)
(12),(13)(0) 12

κ̃aa
11 κ

(4)
(12),(34)(0) 3

κ̃d
111 κ

(4)
(12),(13),(14)(0) 4

κ̃a
111 κ

(4)
(12),(13),(24)(0) 12

Theorem 1. Under Assumption 1, as N → ∞, the Euler characteristic density (2.9) can be
expanded as

�n,N(x) = γ n/2

(2π )n/2
φ(x)

(
Hn−1(x) + 1√

N
�1,n(x) + 1

N
�2,n(x)

)
+ o
(
N−1)

uniformly in x, where

�1,n(x) = 1
2γ

−2κ11n(n − 1)Hn−2(x) − 1
2γ

−1κ1nHn(x) + 1
6κ0Hn+2(x),

�2,n(x) =
(
− 1

6γ
−3(3̃κa

111 + κ̃d
111) + 1

8γ
−4κ2

11(n − 7)
)

n(n − 1)(n − 2)Hn−3(x)

+
(

1
8γ

−2(̃κaa
11 (n − 2) + 4̃κa

11(n − 1)
)

− 1
4γ

−3κ1κ11(n − 1)(n − 4)
)

nHn−1(x)

+
(
− 1

4γ
−1κ̃1 + 1

24γ
−2(3κ2

1 (n − 2) + 2κ0κ11(n − 1)
))

nHn+1(x)

+
(

1
24κ0 − 1

12γ
−1κ0κ1n

)
Hn+3(x) + 1

72κ
2
0 Hn+5(x).

Here, the symbols γ , κ0, κ1, κ11, κ̃0, κ̃1, κ̃a
11, κ̃aa

11 , κ̃d
111, and κ̃a

111 are defined in Table 3.1.

Note that, in principle, the asymptotic expansion of �n,N(x) can be obtained up to an arbi-
trary order in N by modifying Assumption 1. In�1,n(x) and�2,n(x), derivatives with cycles in
their diagrams, such as those in Figures 3.1(a)–(b), do not appear in the expansions. Conversely,
all types of derivatives of κ (3) and κ (4) with cycle-free diagrams listed in Table 3.1 appear. The
first half of this observation holds true for an arbitrary order as follows.

Theorem 2. Suppose that the diagram of the derivative κ (k)
(a1b1),...,(aKbK )(0) in (3.5) has cycles

of length greater than or equal to 2. Then this derivative does not appear in the asymptotic

expansion of �n,N(x) even when expanded to O
(
N− 1

2 (k−2)).
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We conjecture that the non-Gaussianity (that is, κ (k) and its derivatives) captured by the
Minkowski functional approach is characterized by the presence or absence of cycles in the
diagrams.

4. Chi-squared random field

Here we consider a chi-squared random field defined by the squared sum of the independent
copies of a Gaussian random field.

Let Y(t) be a C2-Gaussian random field on T ⊂R
n with zero mean and covariance function

E[Y(s)Y(t)] = ρY
( 1

2‖s − t‖2
)

such that ρY (0) = 1, ρ′
Y (0) = −g< 0, ρ′′

Y (0)> (n/(n + 2))ρ′
Y (0)2,

and d4ρY (x)/dx4 exists. (For example, we could have ρY (x) = e−gx, g> 0.) Then, define

X(t) = XN(t) = 1√
2N

N∑
i=1

(
Y(i)(t)

2 − 1
)
,

where the Y(i)(·) are i.i.d. copies of Y(·).
The chi-squared random field has been well studied as one of the simplest non-Gaussian

random fields (see e.g. [1, Section 7.1], [27], [16], and [25]). Here, we verify that Assumption
1 is satisfied.

According to [27, Lemma 3.2], ∇X = ∇X(t) and ∇2X = ∇2X(t) can be decomposed as

∇X = 2g
1
2 X

1
2 U, ∇2X = 2g

(
P + UU� − XIn − X

1
2 R
)
, (4.1)

where X = X(t) ∼ χ2
N , U ∼Nn(0, In), P ∼Wn×n(N − 1, In), and R ∈ Sym(n), which is a

Gaussian orthogonal invariant matrix with parameters α= 2ρ′′
Y (0)/g2 and β = ρ′′

Y (0)/g2 − 1
in (2.7), are independently distributed. From (4.1), (X,∇X,∇2X) has moments of arbitrary
order. In addition, the conditional probability density of (X,∇X,∇2X) given R is obtained as

p(X,∇X,∇2X|R) ∝ det (P)
1
2 (N−n−2)e− 1

2 tr(P)e− 1
8gX ‖∇X‖2

X
1
2 (N−n)−1e−X/21(P � 0),

where
P = (2g)−1∇2X − (4g)−1X−1(∇X)(∇X)� + XIn + X

1
2 R,

and P � 0 indicates that P is positive definite. This conditional density is continuous and
bounded above when N is large. Hence, so is the unconditional density p(X,∇X,∇2X) =
E

R[p(X,∇X,∇2X|R)], and Assumption 1(ii) is satisfied.
The k-point correlation function κ (k) is the same as the cumulant of Z(t) = (Y(t)2 − 1)/

√
2

as follows. Let xab = 1
2‖ta − tb‖2. We have

ρ(x12) = κ (2)(x12) = cum(Z(t1), Z(t2)) = ρY (x12)2,

κ (3)(x12, x13, x23) = cum(Z(t1), Z(t2), Z(t3)) = 23/2ρY (x12)ρY (x13)ρY (x23),

and

κ (4)(x12, x13, . . . , x34) = cum(Z(t1), Z(t2), Z(t3), Z(t4))

= 4
[
ρY (x13)ρY (x14)ρY (x23)ρY (x24) + ρY (x12)ρY (x14)ρY (x23)ρY (x34)

+ ρY (x12)ρY (x13)ρY (x24)ρY (x34)
]
.
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We see that κ (k), k = 2, 3, 4, as defined above satisfy the requirements (2.5) and (3.2). Hence,
Assumption 1(i) is satisfied.

The cumulants listed in Table 3.1 are as follows:

ρ(0) = 1, −γ = ρ′(0) = −2g, κ0 = 2
√

2, κ1 = −√
2γ, κ11 = γ 2/

√
2,

κ̃0 = 12, κ̃1 = −4γ, κ̃a
11 = γ 2, κ̃aa

11 = 2γ 2, κ̃d
111 = 0, κ̃a

111 = −γ 3/2.

The quantities �1,n(x) and �2,n(x) in Theorem 1 are

�1,n(x) = √
2
( 1

4 n(n − 1)Hn−2(x) + 1
2 nHn(x) + 1

3 Hn+2(x)
)
,

�2,n(x) = 1
16 n(n − 1)(n − 2)(n − 3)Hn−3(x) + 1

4 n2(n − 2)Hn−1(x)

+ 1
12 n(5n + 4)Hn+1(x) + 1

6 (2n + 3)Hn+3(x) + 1
9 Hn+5(x).

(4.2)

The exact formula for the isotropic chi-squared random field is obtained in [27, Theorem
3.5] as follows:

�n,N(x) = gn/2

(2π )n/2

1

2N/2−1�(N/2)
H(N−1)

n−1 (
√

y)e−y/2, y = N + x
√

2N, (4.3)

where

H(N)
n (x) = ex2/2

(
− d

dx

)n(
xNe−x2/2).

This formula can also be obtained as a special case of the Euler characteristic density of the
Gaussian-related random fields (see [2, 3] and [18]).

Through direct calculations using a generating function (not using Theorem 1), the
following proposition can be shown. The proof is provided at the end of this section.

Proposition 2. The Euler characteristic density �n,N(x) in (4.3) can be expanded as

�n,N(x) = γ n/2

(2π )n/2
φ(x)

(
Hn−1(x) + 1√

N
�1,n(x) + 1

N
�2,n(x)

)
+ o
(
N−1)

as N → ∞, where �1,n(x) and �2,n(x) are defined in (4.2).

Figure 4.1. shows the Euler characteristic densities of the chi-squared random field on R
4

when the number of degrees of freedom N is 10, 100, and ∞. The curve converges to the
limiting Gaussian curve as N increases.

Figure 4.2. shows the Euler characteristic density �n,N(x) (n = 4) of the chi-
squared random field and its Gaussian approximation: (2π )−n/2φ(x)Hn−1(x), the first
approximation (2π )−n/2φ(x)

(
Hn−1(x) +�1,n(x)/

√
N
)
, and the second approximation

(2π )−n/2φ(x)
(
Hn−1(x) +�1,n(x)/

√
N +�2,n(x)/N

)
.

In Figure 4.2, the four curves are too close to distinguish. Figure 4.3 shows the differ-
ence between the three approximations with respect to the true curve �n,N(x). We see that
the first approximation is more accurate than the Gaussian approximation, and that the second
approximation is more accurate than the first approximation, as expected.

Proof of Proposition 2. We prove that

2−n/2

2N/2−1�(N/2)
H(N−1)

n−1 (
√

y)e−y/2, y = N + x
√

2N, (4.4)
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FIGURE 4.1. Euler characteristic density for a chi-squared random field on R
4 with N degrees of freedom

(dotted line, N = 10; dashed line, N = 100; solid line, N = ∞).

1 2 3 4 5

0.1

–0.5

–0.4

–0.3

–0.2

–0.1

FIGURE 4.2. Euler characteristic density for a chi-squared random field on R
4 with 100 degrees of free-

dom, and its approximations (dot-dashed line, true curve; dotted line, Gaussian approximation; dashed
line, first approximation; solid line, second approximation).

1 2 3 4 5

–0.03

–0.02

–0.01

0.01

0.02

FIGURE 4.3. Approximation error of Euler characteristic density for a chi-squared random field on R
4

with 100 degrees of freedom (dotted line, Gaussian approximation; dashed line, first approximation; solid
line, second approximation).
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can be expanded as φ(x)
(
Hn−1(x) +�1,n(x)/

√
N +�2,n(x)/N

)+ o
(
N−1

)
, where �1,n(x) and

�2,n(x) are given in (4.2).
By multiplying (4.4) by zn−1/(n − 1)! and taking the summation over n ≥ 1, we obtain the

generating function of (4.4) as

1

2(N−1)/2�(N/2)

(−z/
√

2 + √
y
)N−1

e
− 1

2

(
−z/

√
2+√

y
)2

, y = N + x
√

2N. (4.5)

The generating function (4.5) can be expanded around N = ∞ as

ϕ0(z, x)
(
1 + p1(z, x)/

√
N + p2(z, x)/N

)+ o
(
N−1),

where
ϕ0(z, x) = e− 1

2 (x−z)2
/
√

2π,

and

p1(z, x) = ( 1
3 x(2x2 − 3) − (x − 1)(x + 1)z + 1

2 xz2 − 1
6 z3)/√2,

p2(z, x) = 1
36

(
4x6 − 30x4 + 27x2 − 6

)− 1
12 (x − 2)x(x + 2)

(
4x2 − 3

)
z

+ 1
12

(
5x4 − 15x2 + 6

)
z2 − 1

36 x
(
11x2 − 21

)
z3

+ 7
48 (x − 1)(x + 1)z4 − 1

24 xz5 + 1
144 z6.

We select the coefficient of the term zn−1/(n − 1)!. Because ezx−z2/2 is the generating function
of the Hermite polynomial, the coefficient of the term zn−1/(n − 1)! in ϕ(z, x)za is

φ(x)Hn−a−1(x)(n − 1)a, (n − 1)a = (n − 1)(n − 2) · · · (n − a),

where φ(x) = ϕ(0, x) denotes the probability density function of N (0, 1). Based on this term-
rewriting rule, we obtain the two terms �1,n(x) and �2,n(x) in terms of the polynomials in x
and the Hermite polynomials in x. By applying the three-term relation

xHk(x) = Hk+1(x) + kHk−1(x), (4.6)

we have the expressions for �1,n(x) and �2,n(x) in terms of the Hermite polynomials only. �

5. Proofs of the main results

In this section, we prove the main theorems. The outline is as follows. We first describe the
characteristic function of (X(t),∇X(t),∇2X(t)) using the 3- and 4-point correlation functions
of Z(i)(·) in (1.2) (Section 5.1). The resulting characteristic function is modified into the condi-
tional characteristic function of (X(t),∇2X(t)) when ∇X(t) = 0 is given. Then the integral (2.9)
is obtained by taking derivatives of the conditional characteristic function (Section 5.2). The
validity of the asymptotic expansion is proved separately. Theorem 2 is proved in Section 5.3.

5.1. Isotropic cumulant generating function

The objective function �n,N(x) is an expectation with respect to the distribution of (X, V ,
R), V = ∇X, R = ∇2X + γXIn. The index t is supposed to be fixed and is therefore omitted.
To evaluate this, we first identify the characteristic function of (X,∇X,∇2X). We introduce
parameters T = (τi) ∈R

n and �= (θij) ∈ Sym(n) such that

θij = 1 + δij

2
τij (i ≤ j). (5.1)
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The characteristic function of the 1 + n + n(n + 1)/2 = (n+2
2

)
-dimensional random variables

(X,∇X,∇2X) is

ψN(s, T, �) =E

[
e
√−1(sX+∑i τiXi+∑i≤j τijXij)

]
=E

[
e
√−1(sX+〈T,∇X〉+tr(�∇2X))

]
. (5.2)

When (X,∇X,∇2X) has the k1th moments, the cumulant generating function
logψN(s, T, �) has the following Taylor series:

logψN(s, T, �) =
k1∑

k=2

∑
u+v+w=k

N− 1
2 (k−2)√−1

k

u! v! w! Ku,v,w(s, T, �) + o
(
N− 1

2 (k1−2)),
where

N− 1
2 (k−2)Ku,v,w(s, T, �)

= cum
(
sX, . . . , sX︸ ︷︷ ︸

u

, 〈T,∇X〉, . . . , 〈T,∇X〉︸ ︷︷ ︸
v

, tr(�∇2X), . . . , tr(�∇2X)︸ ︷︷ ︸
w

)
= N− 1

2 (k−2)su

(
u+v∏

b=u+1

〈T,∇tb〉
k∏

c=u+v+1

tr
(
�∇2

tc

))
κ (k)

((
1
2‖ta − tb‖2

)
a<b

) ∣∣∣
t1=···=tk

(5.3)

with ∇tb = (∂/∂tib
)

1≤i≤n, ∇2
tc =

(
∂2/∂tic∂tjc

)
1≤i,j≤n

.

For instance,

N− 1
2 K0,2,1(s, T, �) = cum

(
〈T,∇X〉, 〈T,∇X〉, tr

(
�∇2X

))
=

n∑
i,j,k,l=1

τiτjθklcum(Xi, Xj, Xkl),

and, as shown in (3.4),

cum(Xi, Xj, Xkl) = ∂4N− 1
2 κ (3)

( 1
2‖t1 − t2‖2, 1

2‖t1 − t3‖2, 1
2‖t2 − t3‖2

)
∂ti1∂tj2∂tk3∂tl3

∣∣∣
t1=t2=t3

= N− 1
2
(−2κ11δijδkl + κ11

(
δikδjl + δilδjk

))
,

where we let κ11 = ∂2κ (3)(x12, x13, x23)/∂x12∂x13|x12=x13=x23=0. Thus, we obtain

K0,2,1(s, T, �) = −2κ11‖T‖2tr(�) + 2κ11T��T .

In this example, the factors ‖T‖2tr(�) and T��T are invariant under the trans-
formation (T, �) �→ (

PT, P�P�), P ∈ O(n). This results from the isotropic property
(X,∇X,∇2X) =d

(
X, P∇X, P∇2XP�). The general form of Ku,v,w(s, T, �) is specified by the

isotropic assumption.

Lemma 1. (i) Ku,2v,w(s, T, �) is a linear combination of terms of the form

su
∏
j≥0

(
T��jT

)vj
∏
k≥1

tr(�k)wk , (5.4)
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where (vj)j≥0 and (wk)k>0 are non-negative integers satisfying∑
j≥0

vj = v,
∑
j≥1

jvj +
∑
k≥1

kwk = w.

(ii) Ku,2v+1,w(s, T, �) = 0.

Proof of Lemma 1. Because of the isotropic property and the multilinearity of the cumulant,
we have

Ku,v,w(s, T, �) = suKu,v,w(1, T, �) = suKu,v,w
(
1, P�T, P��P

)
, P ∈ O(n).

By letting P = −In, we can observe that Ku,v,w(1, T, �) = 0 when v is odd. When v is even,
Ku,v,w(1, T, �) is an even polynomial in τi, and is a function of (τiτj)1≤i,j≤n = TT� ∈ Sym(n)
as well.

As an extension of the zonal polynomial in multivariate analysis, [7] introduced an
invariant polynomial of two symmetric matrices A, B ∈ Sym(n) which is invariant under the
transformation (A, B) �→ (

P�AP, P�BP
)
, P ∈ O(n).

Ku,v,w(1, T, �) is an invariant polynomial in
(
TT�, �

)
, which is a linear combination of

terms of the form (5.4), as shown in [7, (4.8)]. �
Next, the expression for the Ku,v,w in (5.3) is obtained. The abbreviations

(
γ, κ0,

κ1, κ11, κ̃0, κ̃1, κ̃
a
11, κ̃

aa
11 , κ̃

d
111, κ̃

a
111

)
are defined in Table 3.1. Because of Theorem 2 (to be

proved in Section 5.3), the derivatives that have a cycle of length greater than or equal to 2 in
their diagram do not contribute to the final results, and are denoted by the symbol ‘(∗)’ (the
explicit form is not required).

Below, we give Ku,2v,w for k = u + 2v + w = 2, 3, 4:

• The second-order cumulants:

K2,0,0 = s2, K0,2,0 = γ ‖T‖2, K1,0,1 = −γ tr(�),

K0,0,2 = ρ′′(0)
[
2tr(�2) + tr(�)2]= (∗).

• The third-order cumulants:

K3,0,0 = κ0s3, K1,2,0 = −κ1s‖T‖2, K2,0,1 = 2κ1s2tr(�),

K1,0,2 = 3κ11str(�)2 + (∗), K0,2,1 = −2κ11‖T‖2tr(�) + 2κ11T��T,

K0,0,3 = (∗).

• The fourth-order cumulants:

K4,0,0 = κ̃0s4, K2,2,0 = −κ̃1s2‖T‖2, K0,4,0 = 3̃κaa
11‖T‖4,

K3,0,1 = 3̃κ1s3tr(�), K2,0,2 = (6̃κa
11 + 2̃κaa

11

)
s2tr(�)2 + (∗),

K1,2,1 = −(2̃κa
11 + κ̃aa

11

)
s‖T‖2tr(�) + 2̃κa

11sT��T,

K1,0,3 = (12̃κa
111 + 4̃κd

111

)
str(�)3 + (∗),

K0,2,2 = −(6̃κa
111 + 2̃κd

111

)‖T‖2tr(�)2 + (8̃κa
111 + 4̃κd

111

)
T��Ttr(�)

− 8̃κa
111T��2T + (∗), K0,0,4 = (∗).

The term ‘(∗)’ can be set to be zero in the calculations below.
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5.2. Proof of Theorem 1

In the previous section, the Taylor series of the cumulant generating function
logψN(s, T, �) in (5.2) was obtained up to O

(
N−1

)
. This is rewritten as the cumulant

generating function of (X, V , R), V = ∇X, and R = ∇2X + γXIn.
The distribution of (X, V , R) when N → ∞ is presented in Section 2.2. The characteristic

functions of X, V , and R when N → ∞ are

ψ0
X(s) = e− 1

2 s2
, ψ0

V (T) = e− 1
2 γ ‖T‖2

, ψ0
R(�) = e− 1

2αtr(�2)− 1
2βtr(�)2

,

where γ = −ρ′(0), α= 2ρ′′(0), and β = ρ′′(0) − ρ′(0)2.
From this definition, the characteristic function of (X, V , R) is

E

[
e
√−1(sX+〈T,V〉+tr(�R))

]
=ψN (̃s, T, �), s̃ = s̃(s, �) = s + γ tr(�). (5.5)

Because we assume that (X, V , R) has fourth moments (Assumption 1(ii)), the cumulant
generating function is

logψN (̃s, T, �) = logψ0
X(s) + logψ0

V (T) + logψ0
R(�)

+ 1√
N

Q3(̃s, T, �) + 1

N
Q4(̃s, T, �) + o

(
N−1),

where

Qk (̃s, T, �) =
∑

u+v+w=k

1

u! v! w!Ku,v,w (̃s, T, �), k = 3, 4.

Therefore, ψN (̃s, T, �) = ψ̂N (̃s, T, �) + o
(
N−1

)
, where

ψ̂N (̃s, T, �) =ψ0
X(s)ψ0

V (T)ψ0
R(�)

×
(

1 + 1√
N

Q3(̃s, T, �) + 1

N
Q4(̃s, T, �) + 1

2N
Q3(̃s, T, �)2

)
.

(5.6)

Define

ψN|V=0(̃s, �) =
∫
R

∫
Sym(n)

e
√−1(sx+tr(�R))pN(x, 0, R)dR dx

= 1

(2π )n

∫
Rn
ψN (̃s, T, �)dT .

(5.7)

Its truncated version is

ψ̂N|V=0(̃s, �) =
∫
R

∫
Sym(n)

e
√−1(sx+tr(�R))̂pN(x, 0, R)dR dx

= 1

(2π )n

∫
Rn
ψ̂N (̃s, T, �)dT,

(5.8)

where p̂N(x, V, R) denotes the Fourier inversion of ψ̂N (̃s, T, �). The explicit form of
p̂N(x, V, R) is not required here. Recall that the terms in parentheses in (5.6) are a linear
combination of terms of the form (5.4). In the following, we obtain the concrete form of (5.8).
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In (5.8), the integration with respect to dT is conducted as an expectation with respect to
the Gaussian random variable T ∼Nn

(
0, γ−1In

)
, multiplied by the normalizing factor

1

(2π )n

∫
Rn

e− 1
2 γ ‖T‖2

dT = (2πγ )−n/2. (5.9)

Let
(n)m = n(n − 1) · · · (n − m + 1) = �(n + 1)/�(n − m + 1)

be the falling factorial. Because ‖T‖ is independent of
∏

j≥1

(
T��jT/‖T‖2

)vj under T ∼
Nn
(
0, γ−1In

)
, the expectation of the factor of (5.4) including T becomes

E
T
[∏

j≥0

(
T��jT

)vj
]
=E

T[‖T‖2v]
E

T

[∏
j≥1

(
T��jT

)vj

‖T‖2(v−v0)

]

=E
T[‖T‖2v]ET

[∏
j≥1

(
T��jT

)vj
]

ET
[‖T‖2(v−v0)

]
= (−2/γ )v0 (−(n/2 + v − v0))v0 × ζv1,v2,...(�),

where v =∑j≥0 vj and

ζv1,v2,...(�) =E

[∏
j≥1

(
ξ��jξ

)vj

]
, ξ ∼Nn(0, In)

is a polynomial in tr(�j), j ≥ 1. For example, ζ1(�) = tr(�), ζ2(�) = tr(�2), ζ1,1(�) =
tr(�)2 + 2tr(�2). Note that ζv1,v2,...(�) does not include the dimension n explicitly.

The terms in Q3, Q4, and 1
2 Q2

3 in (5.6) including T can be rewritten according to the rules

‖T‖2 �→ γ−1n, ‖T‖4 �→ γ−2n(n + 2),

T��kT �→ γ−1tr(�k), k = 1, 2,

‖T‖2 · T��T �→ γ−2(n + 2)tr(�),

(T��T)2 �→ γ−2
[
tr(�)2 + 2tr(�2)

]
,

(5.10)

and multiplied by the normalizing factor (5.9). Then the truncated version of ψN|V=0(̃s, �) in
(5.7) is obtained as

ψ̂N|V=0(̃s, �) = 1

(2π )n

∫
Rn
ψ̂N (̃s, T, �)dT

=ψ0
X(s)ψ0

R(�)(2πγ )−n/2

×
(

1 + 1√
N

Q̃3(̃s, �) + 1

N
Q̃4(̃s, �) + 1

2N
Q̃(2)

3 (̃s, �)

)
,

(5.11)

where Q̃3(̃s, �), Q̃4(̃s, �), and Q̃(2)
3 (̃s, �) are Q3(̃s, T, �), Q4(̃s, T, �), and Q3(̃s, T, �)2 with

terms including T replaced according to the rules (5.10).
Recall that the integral we are going to obtain is �n,N(x) in (2.9). Define

ψN|x,V=0(�) =
∫

Sym(n)
e
√−1tr(�R)pN(x, 0, R)dR

= 1

2π

∫
R

e−√−1sxψN|V=0(̃s, �)ds,
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where ψN|V=0(̃s, �) is defined in (5.7). Using this,∫
Sym(n)

det (−R + γ xIn)pN(x, 0, R)dR = det
(
− 1√−1

D� + γ xIn

)∣∣∣
�=0

ψN|x,V=0(�),

where D� is an n × n symmetric matrix differential operator defined by

(D�)ij = 1 + δij

2

∂

∂(�)ij
= ∂

∂τij
(i ≤ j). (5.12)

Therefore, (2.9) is evaluated as

�n,N(x) =
∫ ∞

x

[
det
(
− 1√−1

D� + γ xIn

)∣∣∣
�=0

1

2π

∫
R

e−√−1sxψN|V=0(̃s, �)ds

]
dx.

The truncated version of �n,N(x) is

�̂n,N(x) =
∫ ∞

x

[
det
(
− 1√−1

D� + γ xIn

)∣∣∣
�=0

1

2π

∫
R

e−√−1sxψ̂N|V=0(̃s, �)ds

]
dx, (5.13)

which is the valid asymptotic expansion formula for �n,N(x), as follows.

Lemma 2. Under Assumption 1,

�n,N(x) = �̂n,N(x) + o
(
N−1) as N → ∞, uniformly in x.

The proof is provided in Section A.2.
Lemma 2 states that our target is �̂n,N(x). The integral in (5.13) with respect to ds can easily

be evaluated using
1

2π

∫
R

e−√−1sxψ0
X(s)

(√−1s
)kds = Hk(x)φ(x), (5.14)

where φ(x) is the probability density function of the standard Gaussian distribution N (0, 1) in
(2.10), and Hk(x) is the Hermite polynomial of degree k defined in (2.12). For the derivatives
with respect to �, we use the lemma below. The proof is presented in Section A.1.

Lemma 3. For ψ0
R(�) = e− 1

2αtr(�2)− 1
2βtr(�)2

, γ = √
α/2 − β, and positive integers ci such that

m =∑k
i=1 ci ≤ n,

det
(
− 1√−1

D� + γ xIn

)(
ψ0

R(�)tr(�c1 ) · · · tr(�ck )
)∣∣∣
�=0

= √−1
m
γ n−m(−1/2)m−k(n)mHn−m(x).

(5.15)

We now summarize the entire procedure for obtaining �̂n,N(x) in (5.13).

Step 0. Express Ku,v,w(s, T, �) with the base functions in (5.4) and the derivatives of κ (k),
k = 2, 3, 4 (executed in Section 3.1).

Step 1. Expand the expression inside the parentheses in ψ̂N (̃s, T, �) in (5.6), and apply
the term-rewriting rules in (5.10) to obtain ψ̂N|V=0(̃s, �) in (5.11). The resulting
function is the product of ψ0

X(s)ψ0
R(�) and a polynomial in s and tr(�k), k ≤ 4.

Step 2. Applying (5.14) and (5.15) to the result of Step 1 yields the quantity in the inner
brackets in (5.13), which is φ(x) multiplied by a polynomial in xk and Hk(x).
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Step 3. Using the three-term relation xHk(x) = Hk+1(x) + kHk−1(x) in (4.6), we rewrite the
result of Step 2 to be φ(x) multiplied by a linear combination of Hk(x).

Step 4. Applying the integration
∫∞

x dx to the result of Step 3, using∫ ∞

x
Hk(x′)φ(x′)dx′ = Hk−1(x)φ(x),

yields the integral �̂n,N(x) in (5.13). Let H−1(x) = φ(x)−1
∫∞

x φ(x′)dx′.

Each of these steps can be carried out using computational algebra. Performing all the steps
completes the proof of Theorem 1.

5.3. Undetectable non-Gaussianity and proof of Theorem 2

In this section, we prove Theorem 2.
For �≥ 2, let

��(�) = tr(�)� − (−2)�−1tr(��).

Because of Lemma 3, for positive integers ci such that m =∑k
i=1 ci ≤ n − �, we have

det
(
− 1√−1

D� + γ xIn

)(
ψ0

R(�)tr(�c1 ) · · · tr(�ck )��(�)
)∣∣∣
�=0

= √−1
m+�

γ n−(m+�)(−1/2)(m+�)−(k+�)(n)m+�Hn−(m+�)(x)

− (−2)�−1
√−1

m+�
γ n−(m+�)(−1/2)(m+�)−(k+1)(n)m+�Hn−(m+�)(x)

= 0.

Therefore, if terms containing the factor ��(�) exist, they automatically vanish in Step 2.
Actually, such a term appears. For instance,

K0,0,3(s, T, �) = tr
(
�∇2

t1

)
tr
(
�∇2

t2

)
tr
(
�∇2

t3

)
κ (3)

((
1
2‖ta − tb‖2

)
1≤a<b≤3

) ∣∣∣∣
t1=t2=t3

= 6κ (3)
(12),(12),(23)(0)�2(�)tr(�) + 2κ (3)

(12),(13),(23)(0)�3(�).

(5.16)

Each term on the right-hand side in (5.16) includes a factor ��(�) and a derivative of κ (3)

which has a cycle in its diagram (Figures 3.1(a)–(b)).

Proof of Theorem 2. Let xab = 1
2‖ta − tb‖2. Suppose that the diagram of the derivative

κ
(k)
E (0) =

( ∏
(a,b)∈E

( ∂

∂xab

))
κ (k)((xab)1≤a<b≤k

)∣∣∣
t1=···=tk

contains a cycle C = {(1, 2), . . . , (�− 1, �), (1, �)} ⊂ E.
The derivative κ (k)

E (0) appears in the Taylor series

κ (k)((xab)1≤a<b
)= · · · + κ

(k)
E (0) ×��̃+ · · · , (5.17)

where �= x12 · · · x�−1,�x1,� and �̃=∏(a,b)∈E\C xab.

We consider applying the operators 〈T,∇tb〉 and/or tr(�∇2
tc) to (5.17), and evaluate it at

t1 = · · · = tk. After the application of these differentiation operations, the coefficient ��̃ of
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κ
(k)
E (0) should be reduced to a nonzero constant. (Otherwise, it vanishes when evaluated at

t1 = · · · = tk.) At least, � should be reduced to a nonzero constant.
The only possible operation that makes � a nonzero constant is

∏�
a=1 tr

(
�∇2

ta

)
:

tr
(
�∇2

t1

) · · · tr
(
�∇2

t�

)
(x12 · · · x�−1,�x1,�)

=
n∑

i1,...,iv,j1,...,jv=1

θi1j1 · · · θivjv

�∏
a=1

∂2

∂tiaa ∂tjaa
(x12 · · · x�−1,�x1,�). (5.18)

By selecting the non-vanishing terms, we obtain

�∏
a=1

∂2

∂tiaa ∂tjaa
(x12 · · · x�−1,�x1,�) =

�∏
a=1

∂2xa,a+1

∂tiaa ∂tjaa
+

�∏
a=1

∂2xa,a+1

∂tia+1
a+1∂tja+1

a+1

+
∑

(ε1,...,ε�)∈{0,1}�

�∏
a=1

(
(1 − εa)

∂2xa,a+1

∂tiaa ∂tja+1
a+1

+ εa
∂2xa,a+1

∂tia+1
a+1∂tjaa

)

= 2
�∏

a=1

δiaja + (−1)�
�∏

a=1

(
δiaja+1 + δia+1ja

)
(letting x�,�+1 = x1,� and i�+1 = i1, j�+1 = j1), and hence

(5.18) = 2tr(�)� − (−1)�2�tr(��) = 2��(�).

This implies that the coefficients of κ (k)
E (0) have the factor ��(�). �

Appendix A.

A.1. Identities on the Hermite polynomial and proof of Lemma 3

Here we present the identities involving the Hermite polynomial, which are crucial in the
derivation of the expansion.

For an n × n symmetric matrix A = (aij), the principal minor matrix corresponding to
indices K ⊂ {1, . . . , n} is denoted by A[K] = (aij)i,j∈K . We note that A = A[{1, . . . , n}].

We first prove the following lemma. Recall that�= (θij) and D� = (dij) are defined in (5.1)
and (5.12), respectively.

Lemma 4. For positive integers ci such that m =∑k
i=1 ci ≤ n,

det (xI + D�)
(

etr(�2)tr(�c1 ) · · · tr(�c�)
)∣∣∣
�=0

= (−1/2)m−�(n)mHn−m(x). (A.1)

Proof. Based on the expansion formula

det(xIn + D�) =
n∑

k=0

xn−k
∑

K:K⊂{1,...,n}, |K|=k

det
(
D�[K]

)
,

the left-hand side of (A.1) is a polynomial in x with coefficients of the form

det
(
D�[K]

)(
etr(�2)tr(�c1 ) · · · tr(�c�)

)∣∣∣
�=0

. (A.2)

By symmetry, it suffices to consider the case K = {1, . . . , k}. Let �k =�[{1, . . . , k}].

https://doi.org/10.1017/apr.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.2


1410 S. KURIKI AND T. MATSUBARA

By the definition of the determinant,

det (D�k ) =
∑
σ∈Sk

sgn(σ )d1σ (1) · · · dnσ (k),

where Sk denotes the permutation group on {1, . . . , k}.
We have that tr(�c) is a linear combination of terms of the form θj1j2θj2j3 · · · θjc−1jcθjcj1 . The

form
di1σ (i1) · · · dieσ (ie)

(
θj1j2θj2j3 · · · θjc−1jcθjcj1

)∣∣∣
�=0

(1 ≤ i1 < · · ·< ie ≤ k) (A.3)

is non-vanishing if and only if e = c, the map

(
i1 · · · ic
σ (i1) · · · σ (ic)

)
forms a cycle of length c,

and

(j1, . . . , jc) = (ih, σ (ih), σ 2(ih) . . . , σ c−1(ih)) or (ih, σ
−1(ih), . . . , σ−(c−1)(ih))

for some h = 1, . . . , c (i.e., there are 2c ways for this to hold). The value of (A.3) is (1/2)c if
it does not vanish.

The form
di1σ (i1) · · · dieσ (ie)e

tr(�2)
∣∣∣
�=0

(1 ≤ i1 < · · ·< ie ≤ k) (A.4)

is non-vanishing if and only if e is even, and the map

(
i1 · · · ie
σ (i1) · · · σ (ie)

)
is a product of e/2

cycles of length 2. The value of (A.4) is 1 if it does not vanish.
Therefore,

sgn(σ )d1σ (1) · · · dkσ (k)
(
etr(�2)tr(�c1 ) · · · tr(�c�)

)∣∣∣
�=0

is non-vanishing if and only if σ (expressed as a product of cycles) factors into � cycles of
length ci, i = 1, . . . , �, and e/2 cycles of length 2, where e = k −∑�

i=1 ci = k − m is even.
Note that the number of cycles made from c distinct atoms is (c − 1)!, and the number of such
σ is (

k − c1

c1

)
(c1 − 1)! ×

(
k − c1 − c2

c2

)
(c2 − 1)! × · · ·

×
(

k − c1 − · · · − c�−1

c�

)
(c� − 1)! × (k − m)!!

= (k)m∏
ci

× (k − m)!
2

1
2 (k−m)( k−m

2

)! = k!
(
∏

ci)2
1
2 (k−m)( k−m

2

)! .

The sign of σ is

sgn(σ ) =
�∏

i=1

(−1)ci−1 × (−1)(k−m)/2 = (−1)m−�+(k−m)/2.

Therefore,

(A.2) = k!
(
∏

ci)2
1
2 (k−m)( k−m

2

)! ×
�∏

i=1

(
2ci × (1/2)ci

)× 1 = k!
2m−�+(k−m)/2

( k−m
2

)! .
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We now show that the left-hand side of (A.1) is

n∑
k=m, k−m:even

xn−k
(

n

k

)
k!

2m−�+(k−m)/2
( k−m

2

)! (−1)m−�+(k−m)/2

= (−1/2)m−�
[ n−m

2 ]∑
k′=0

xn−m−2k′ n!
2k′ (n − m − 2k′)!k′! (−1)k′ (

k′ = k − m

2

)
= (−1/2)m−�(n)mHn−m(x). �

Lemma 5. For any β, and positive integers ci such that m =∑k
i=1 ci ≤ n,

det (xI + D�)
(
e(1+β)tr(�2)+ β

2 tr(�)2
tr(�c1 ) · · · tr(�c�)

)∣∣∣
�=0

= (−1/2)m−�(n)mHn−m(x).
(A.5)

Proof. Equation (A.5) with β = 0 holds from Lemma 4. We demonstrate that the left-hand
side of (A.5) is independent of β. Using the expansion around β = 0,

eβ(tr(�2)+ 1
2 tr(�)2) =

∑
k≥0

βk

k!
∑

0≤h≤k

(
k

h

)
tr(�2)k−htr(�)2h(1/2)h,

the left-hand side of (A.5) becomes a series in β. The coefficient of βk/k! is∑
0≤h≤k

(
k

h

)
(−1/2)2k−(k+h)(n)2kHn−2k(x)(1/2)h = 0

except when k = 0. �
Proof of Lemma 3. Recall that γ = √

α/2 − β. Equation (A.5) from Lemma 5 with β :=
β/γ 2, � := √−1γ�, and x := −x yields (5.15). �

A.2. Conditional asymptotic expansion and proof of Lemma 2

We begin by summarizing the asymptotic expansion for the probability density function and
the moment in the i.i.d. setting of [4].

Let q1(x), x ∈R
k, be the probability density of a random vector X with zero mean and covari-

ance � � 0. Let ψ1(t) be the characteristic function of X. Let qN(x), x ∈R
k, be the probability

density with the characteristic function ψN(t) =ψ1(t/
√

N)N . Let φk(x;�) be the probability
density of the Gaussian distribution Nk(0, �). Assume that the sth moment exists under q1.
Then

logψN(t) = N logψ1

( t√
N

)
= −1

2
t��t +

s∑
j=3

N− 1
2 (j−2)√−1

j

j!
∑

i:|i|=j

cit
i + Nrs

( t√
N

)
,

where t = (t1, . . . , tk
)�

and i = (i1, . . . , ik) is a multi-index such that ci = (ci1, . . . , cik ) ∈R
k,

ti = (t1)i1 · · · (tk)ik , and rs(t) is a function such that rs(t) = o
(|t|s−2

)
. Let

ψ̂
(s)
N (t) = e− 1

2 t��t

(
1 +

s∑
j=3

N− 1
2 (j−2)

√−1
j
F3(j−2)(t)

)
, (A.6)

https://doi.org/10.1017/apr.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.2


1412 S. KURIKI AND T. MATSUBARA

where the expression inside the parentheses represents the expansion of

exp

(
s∑

j=3

N− 1
2 (j−2)√−1

j

j!
∑

i:|i|=j

cit
i

)

around N = ∞ up to the order of N− 1
2 (s−2). Here, F3(j−2)(t) is an even or odd polynomial in t

of degree 3(j − 2). Let

q̂(s)
N (x) = φk(x;�)

(
1 +

s∑
j=3

N− 1
2 (j−2)G3(j−2)(x)

)
, x = (x1, . . . , xk), (A.7)

be the Fourier inversion of ψ̂ (s)
N (t). Here, G3(j−2)(x) is an even or odd polynomial in x of degree

3(j − 2).

Proposition 3. (Corollary to [4, Theorems 19.1 and 19.2].) Assume that the probability density
function qN(x) exists for N ≥ 1, and is bounded for some N. Assume that E[‖X‖s]<∞ under
q1. Then qN(x) is continuous for sufficiently large N, and

sup
x∈Rk

(1 + ‖x‖s)
∣∣qN(x) − q̂(s)

N (x)
∣∣= o

(
N− 1

2 (s−2)
)

as N → ∞.

Write x = (x1, x2), x1 ∈R
k1 , x2 ∈R

k2 (k1 + k2 = k). In the following, x2 is assumed to be a
constant vector x20.

Corollary 1. Let f (x1) be a function such that |f (x1)| ≤ C(1 + ‖x1‖s1 ). For s ≥ s1 + k1 + 1 and
for s0 ≤ s, ∫

R
k1

f (x1)qN(x1, x20)dx1 =
∫
R

k1
f (x1)̂q(s0)

N (x1, x20)dx1 + o
(

N− 1
2 (s0−2)

)
.

Proof. We have∣∣∣∣∫
R

k1
f (x1)qN(x1, x20)dx1−

∫
R

k1
f (x1)̂q(s0)

N (x1, x20)dx1

∣∣∣∣
≤
∫
R

k1
|f (x1)||qN(x1, x20) − q̂(s)

N (x1, x20)|dx1

+
∫
R

k1
|f (x1)||̂q(s)

N (x1, x20) − q̂(s0)
N (x1, x20)|dx1.

The first term is bounded above by

o
(

N− 1
2 (s−2)

)
× C

∫
R

k1

1 + ‖(x1, x20)‖s1

1 + ‖(x1, x20)‖s
dx1.

This integral exists when s − s1 − (k1 − 1)> 1.
For the second term, because q̂(s)

N (x1, x20) − q̂(s0)
N (x1, x20) is

φk((x1, x20);�) × (a polynomial in x1),
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the integral exists, and the coefficients of the polynomials are multiples of

N− 1
2 (s0+1−2), . . . ,N− 1

2 (s−2) (if s0 < s), or 0 (if s0 = s). Therefore, the second term is
O
(
N− 1

2 (s0−1)) when s0 < s.

The sum of the first and second term is o
(
N− 1

2 (s−2))+ O
(
N− 1

2 (s0−1))1{s0<s} =
o
(
N− 1

2 (s0−2)). �
Proof of Lemma 2. We apply Corollary 1 to evaluate (2.9). The characteristic functionψN(t)

and its truncated version ψ̂ (s)
N (t) in (A.6) are given by ψN (̃s, T, �) in (5.5) and ψ̂N (̃s, T, �) in

(5.6), respectively. The probability density function qN(x) and its truncated version q̂(s)
N (x) in

(A.7) are respectively the pN(x, V, R) and p̂N(x, V, R) used in (5.8). Let x1 = (X, R), x2 = V =
x20 = 0, and f (x1) = 1{X≥x} det (−R + γXI). Then∫

R
k1

f (x1)qN(x1, 0)dx1 =�n,N(x)

and ∫
R

k1
f (x1)̂qN(x1, 0)dx1 = �̂n,N(x).

Here, k1 = 1 + n(n + 1)/2, k2 = n, and s1 = n. Note that s1 + k1 + 1 = (n+2
2

)+ 1. The con-
stant C in |f (x1)| ≤ C(1 + ‖x1‖s1 ) in Corollary 1 can be chosen independently of x. Hence, the
remainder term is independent of x.

In Theorem 1, we choose s0 = 4. If the joint density is bounded and has a moment of

order s ≥ max
((n+2

2

)+ 1, s0
)= (n+2

2

)+ 1, then the remaining term is o
(
N− 1

2 (s0−2))= o(N−1)
at least, and the manipulation of the asymptotic expansion is validated. �
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