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Abstract—X-ray powder diffraction (XRPD) is found consistently to be the most accurate analytical technique for quantitative analysis
of clay-bearing mixtures based on results from round-robin competitions such as the Reynolds Cup (RC). A range of computationally
intensive approaches can be used to quantify phase concentrations from XRPD data, of which the ‘full-pattern summation of prior
measured standards’ (FPS) has proven accurate and parsimonious. Despite its proven utility, the approach often requires time-consuming
selection of appropriate pure reference patterns to use for a given sample. As such, applying FPS to large and mineralogically diverse
datasets is challenging. In the present work, the accuracy of an automated FPS algorithm implemented within the powdR package for the
R Language and Environment for Statistical Computing was tested on a set of 27 samples from nine RC contests. The samples represent
challenging and diverse clay-bearing mixtures with known concentrations, with the added advantage of allowing the accuracy of the
algorithm to be comparedwith results submitted to previous contests.When supplied with a library of 201 reference patterns representing
a comprehensive range of phases that may be encountered in natural clay-bearingmixtures, the algorithm selected appropriate phases and
achieved a mean absolute bias of 0.57% for non-clay minerals (n = 275), 2.37% for clay minerals (n = 120), and 4.43% for amorphous
phases (n = 14). This accuracy would be sufficient for top-3 placings in all nine RC contests held to date (RC1 = 2nd, RC2 = 2nd, RC3 =
1st; RC4 = 2nd; RC5 = 1st; RC6 = 3rd; RC7 = 3rd; RC8 = 1st; RC9 = 2nd). The comparatively low values of absolute bias in combination
with the competitive placings in all RC contests tested is particularly promising for the future of automated quantitative phase analyses by
XRPD.
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INTRODUCTION

X-ray powder diffraction is a widely applied analytical
technique in the study of mineral mixtures, both for the qual-
itative identification of crystalline components and the quanti-
tative determination of their concentrations. Quantitative min-
eralogy from XRPD data has a long history, dating back to the
early 20th Century (Navias 1925; Clark and Reynolds 1936).
Since these early examples, advances in instrumentation,
databases (ICDD 2016; Gates-Rector and Blanton 2019),
sample-preparation methods (Hillier 1999), and software
(Rietveld 1969; Bergmann et al. 1998; Chipera and Bish
2002; Eberl 2003; Doebelin and Kleeberg 2015) have now
made obtaining accurate quantitative analysis of even very
challenging mixtures from XRPD data possible (Raven and
Self 2017).

Modern instrumentation and sample-preparation methods
can also result in the accumulation of large, high-throughput
datasets containing hundreds to thousands of reproducible
diffractograms – each representing a precise mineralogical
signature of a sample (Woodruff et al. 2009; Butler et al.
2018, 2020). High-throughput datasets with limited mineral-
ogical variation and primarily ordered crystalline phases can be

quantified readily using the now widely adopted Rietveld
approach (Rietveld 1969). With increasing mineralogical di-
versity of a dataset along with the presence of disordered (e.g.
clay minerals) and amorphous phases (e.g. volcanic glass or
soil organic matter), however, the process of identifying and
quantifying components in large numbers of samples can
become a challenging and particularly time-consuming under-
taking. These challenges create a need for an approach that can
move towards automation of mineral identification and quan-
tification of high-throughput, mineralogically diverse datasets
containing clay-bearing samples, whilst maintaining good
accuracy.

Round robin competitions such as the Reynolds Cup chal-
lenge participants to quantify complex mixtures containing a
wide variety of clay minerals, with an overall goal of stimulat-
ing improvements in analytical techniques for characterization
of clay-bearing mixtures. Of the many available analytical
techniques, XRPD analysis of bulk powders (i.e. randomly
oriented milled samples) is usually the primary technique for
quantifying RC samples (Omotoso et al. 2006; Raven and Self
2017), but is used in combination with auxiliary analyses to
complement the precision of the initial stage of mineral iden-
tification. Frequently, these auxiliary techniques often include
XRPD measurements of the clay fraction (<2 μm) of oriented
specimens subject to glycolation and subsequent heat treat-
ments, along with total bulk-sample elemental analysis to cross
check the feasibility of the quantitative mineralogical results.
Since 2002 the nine biennial RC contests have promoted the
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advancement of protocols for quantitative mineralogy, from
which a range of approaches have proven accurate, all of
which rely on XRPD as the primary tool for quantification.

One approach for quantifying RC samples that has
been placed in the top three at each of the nine contests
(2002–2018) is the full-pattern summation (FPS) of prior
measured standards (Smith et al. 1987; Chipera and Bish
2002; Eberl 2003; Vogt et al. 2002; Omotoso et al. 2006;
Raven and Self 2017). This approach is based upon the
principle that an observed XRPD measurement is the sum
of individual crystalline and amorphous components with-
in the sample, including instrument-dependent contribu-
tions (Smith et al. 1987; Chipera and Bish 2002). Full-
pattern summation utilizes a reference library of pure
diffraction patterns (‘standards’/‘reference patterns’)
which are preferably measured on the same instrument
used to run the unknowns in order to best match the
instrument-dependent variation in both the sample and
reference library data (Chipera and Bish 2002; Omotoso
et al. 2006; Eberl 2003). Upon optimizing an observed
pattern based on the sum of contributions from the appro-
priate pure standards, all of these methods derive phase
concentrations using Reference Intensity Ratios [RIRs;
Hillier (2000)], which describe the diffraction intensity
associated with a given phase relative to that of a standard
(usually corundum, Al2O3). It is worth noting that the way
in which the RIRs are described, derived, and formulated
varies from one implementation to another. All of these
recent FPS approaches also include the background in the
reference library patterns on the assumption that back-
ground effects, such as those due to fluorescence, are also
additive.

For the present investigation, the hypothesis was that, given
a comprehensive reference library that can cover most, if not
all, of the minerals that may be encountered in a given set of
samples, the FPS approach can be automated to provide both
identification and quantification of phases in mineralogically
diverse datasets. The algorithm presented for doing so was
implemented in version 1.2.3 of the powdR package (Butler
and Hillier 2020; Butler and Hillier 2021) for the R Language
and Environment for Statistical Computing (R Core Team
2020). Implementation in R implies that the software is open
source and multi-platform. The automated algorithm uses a
single bulk XRPD measurement in combination with a com-
prehensive reference library to identify and quantify the con-
centrations of non-clay, clay, and amorphous components.
Here, a mineralogically diverse dataset comprising 27 RC
samples, three from each of the previous nine contests (RC1
to RC9), has been utilized. The RC samples were considered
most suitable for testing the accuracy of the automated ap-
proach for several reasons: (1) the dataset exhibits substantial
mineralogical diversity; (2) implicit within this diversity is the
presence of clay minerals and occasional amorphous phases;
(3) all samples were prepared rigorously by independent lab-
oratories; and (4) the availability of anonymous results for each
contest allowed comparison of the accuracy relative to all other
participants.

MATERIALS AND METHODS

X-ray Powder Diffraction

Sample preparation and measurement. Samples fromRC1
to RC9 were available based on the participation of Stephen
Hillier in all previous Reynolds Cup contests. For RC1 and
RC2, samples were spiked with a known weight percentage of
an internal standard (~20% corundum), whereas for RC3
through to RC9, the sample-preparation protocol was changed
and all samples were prepared without addition of an internal
standard.

Each of the 27 RC samples was prepared for XRPD as
received by McCrone milling 3 g of sample for 12 min in
ethanol and spray drying the resulting slurry to obtain a
random powder specimen as described by Hillier (1999) and
demonstrated by Kleeberg et al. (2008). This preparation was
done at the time of each of the respective Reynolds Cups, so
over a 16 year period (2002–2018). To enable further the
detection of trace-mineral phases, very high quality diffraction
data were recorded by scanning over the range 4−70°2θ on a
Bruker D8 using Ni-filtered Cu Kα radiation, fixed divergence
slits, and a Lynxeye XE detector, with counts recorded for 16 s
per 0.0195°2θ step yielding scan times of 16 h. These scans
were already available for RC7 to RC9, but for RC1 to RC6 the
spray-dried specimens were retrieved from their storage (8−18
y) in capped glass vials and re-run on the D8 diffractometer,
which was not available in the authors’ laboratory prior to RC7
(2014).

Reference library preparation. A reference library of
standard XRPD patterns of pure minerals has been compiled in
StephenHillier’s laboratory over a period of time from specimens
of pure minerals obtained from various mineral collections or
purchased, such as from the Source Clays Repository of The Clay
Minerals Society (Costanzo and Guggenheim 2001). The purity
of theminerals was assessedmainly byXRPDdata, and formany
samples – especially the clay minerals – the best purity was
obtained by picking or by size-fractionation procedures. Inevita-
bly, small impurities remained in many samples, e.g. quartz is a
ubiquitous contaminant of most clays, even very fine-size clay
fractions. Where required, remaining impurities were, therefore,
removed electronically by subtraction of the whole pattern of the
pure phase impurity. All such treated patterns were scaled to a
maximum intensity of 10,000 counts prior to determination of a
full-pattern RIR from a mixture of the pure mineral (plus any
impurities) with corundum as an added internal standard, for
which the weight fractions were known. Further details of this
procedure will be presented elsewhere. All standards were run
under the same diffractometer conditions as the unknowns, except
that the recording time per 0.0195°2θ step for library standards
was just 2 s. All backgrounds of the standards and samples were
retained throughout.

The full reference library available for this investigation
included 201 diffractograms of pure standards designed to cover
most components associated with geologic, soil, and sediment
samples. Of these, 76 were clay mineral/phyllosilicate reference
patterns, 116 were non-clay, and nine were amorphous,
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nanocrystalline or paracrystalline (allophane, ferrihydrite, glass,
obsidian, opal-CT, opal-A, aluminosilicate gel, organic matter,
and graphite). Many of the library entries are for the same
mineral, e.g. the library as used contains patterns for seven
different specimens of kaolinite. Since RC5 was organized by
Hillier, this library contains patterns for exactly the same mineral
specimens that were used for the preparation of the RC5 samples.
Given this, the current testing of the automated algorithm for
RC5 samples represents a ‘best case scenario.’ In all other cases,
the minerals in the library are not necessarily from the same
source as the minerals in the unknown Reynolds Cup samples,
though some may be when RC organizers have used widely
available materials such as those from the Source Clays Repos-
itory of The Clay Minerals Society.

Mineral standards used to create this reference library were
also associated with the top-three place finishes in all RC contests
except for RC5 (organized by Hillier). The key component tested
here was, therefore, the ability of the present algorithm to pre-
select the appropriate phases from a large and comprehensive
reference library for subsequent automatic quantification.

Automated Full-Pattern Summation

The automated full-pattern summation algorithm and its
source code are freely available as the afps function in
version 1.2.3 of the powdR package (Butler and Hillier 2020;
Butler and Hillier 2021) for the R language and environment
for statistical computing (R Core Team 2020), and is hosted on
the Comprehensive R Archive Network (https://cran.r-project.
org/package=powdR). Detailed descriptions of afps
arguments and their usage are provided in the powdR
documentation. A flowchart detailing the use of afps in the
present study is provided in Fig. 1, and relevant arguments
summarized in Table 1. More detailed descriptions of the key
steps outlined in Fig. 1 are provided in subsequent sections.

Step 1: Sample alignment. Previous in-house experience
with full-pattern summation has highlighted the importance of
aligning the sample diffractogram along the 2θ axis to that of a
calibrated pattern in order to correct for common experimental
aberrations associated with the collection of XRPD data
(Butler et al. 2019). The discrete nature of XRPD peaks means
that seemingly small misalignments can have particularly det-
rimental effects on data analysis along with the accuracy of
phase identification and quantification.

The automated alignment of a sample via the afps algo-
rithm used here requires selection of a phase present within it
to use as an internal standard (std argument; Table 1). For
RC1 and RC2, samples were prepared with corundum as the
internal standard which was, therefore, used for this alignment.
For RC3–RC9, samples were prepared for XRPD analysis
without an internal standard, and hence the ‘internal standard’
for alignment was chosen simply as a component of the min-
eral mixture with sharp, well characterized diffraction features
for use as internal d-spacing standard. The designated ‘internal
standard’ for each sample was then used by afps to align the
diffractogram along the 2θ axis and hence correct for common
experimental aberrations such as sample displacement.

Alignment of the sample to the chosen standard is achieved
by maximizing the Pearson correlation via one-dimensional
optimization (Brent 1971) within a fixed limit of positive and
negative 2θ shifts defined by the align argument (Table 1).

With respect to many geologic and environmental samples,
the omnipresent mineral quartz can act as a suitable internal
standard for the large majority of cases. In the absence of quartz,
any well characterized non-clay mineral with few overlapping
peaks may be suitable (e.g. dolomite, calcite, anhydrite) provid-
ing it is present within the sample(s) being considered and that
any solid solutions are represented appropriately by a standard in
the reference library. For the present dataset, visual inspection of
each of the samples identified that quartz reference patterns
would be suitable internal standards in 18 cases. In the remaining
three cases where a suitable quartz signal was not observable,
internal standards of fluorite (RC5-2), anhydrite (RC7-1), and
dolomite (RC9-3) were selected. For all samples presented here,
the align argument was set to 0.1°2θ.

Step 2: Phase selection with non-negative least squares.
For high-throughput datasets that may display substantial min-
eralogical variation, a comprehensive reference library is nec-
essary that can cover most, if not all, of the non-clay, clay, and
amorphous phases that may exist within the sample set. In such
cases it is reasonable to expect that reference libraries contain-
ing >100 reference patterns would be required, in which case it
becomes impractical to optimize so many variables at once –
both in terms of accuracy and time. For this reason, phase
selection on a sample-by-sample basis is a key component of
automated full-pattern summation.

The afps algorithm applied here uses non-negative least
squares (NNLS) to identify quickly the phases that can be
removed from the reference library. Functionality for NNLS in
R is provided by the NNLS package (Mullen and van Stokkum
2012), which is based on the FORTRAN code of Lawson and
Hanson (1995). Application of NNLS facilitates rapid identifi-
cation of phases in the reference library that probably exhibit no
contribution to the observed pattern via derivation of coefficients
equal to zero, which are thus omitted from the process (Fig. 1).

Step 3: Minimization of an objective function. As outlined
by Chipera and Bish (2002), a range of functions can be
minimized for full-pattern summation. Choosing an appropri-
ate function for minimization is key to accurate quantitative
analysis via this approach. For mixtures containing clay min-
erals, non-clay minerals, and amorphous phases, past experi-
ence at the James Hutton Institute has shown that the minimi-
zation of Rwp (Bish and Post 1989), defined as:

Rwp ¼
∑ I−1m � Im−Icð Þ2
h i

∑ I−1m � I2m
� �

0
@

1
A

1
2

ð1Þ

often results in the most accurate quantitative results (Im and Ic are
vectors of measured and calculated intensities, respectively). In-
deed, the Rwp statistic is noted typically as one of several
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performance parameters in Rietveld refinements (Toby 2006), and
by weighting the count intensities via the I−1m terms, results in
calculated patterns that prioritize the fitting of regions near to
the tails of peaks (Bish and Post 1989). This attribute has
beneficial effects when handling the diffuse diffraction signal
of poorly ordered and amorphous phases that are encountered
commonly in RC samples. Hence, the Rwp was used as the
objective function for all RC samples presented here, and was
minimized using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm (Broyden 1970; Fletcher 1970; Goldfarb
1970; Shanno 1970).

The initial optimization of Rwp in the afps algorithm is
applied across all reference patterns that remain after NNLS (Fig.

1). The BFGS optimization routine does not constrain coefficients
to positive values; thus any reference patterns that have negative
coefficients after optimization are removed from the process, and
Rwp re-optimized until no negative values remain (Fig. 1).

Step 4: Shifting of reference library patterns. Further to
linear alignment of the sample pattern to a reference pattern
(Step 1), small additional 2θ shifts applied to each reference
pattern in the fitting process of the XRPDBULK program
(Hillier 2015, 2018) have been found to yield more accurate
results. Hence, a second alignment step implemented in the
afps algorithm seeks to apply small 2θ corrections to the
reference patterns relative to the sample pattern to account for

Fig. 1. Flowchart detailing the stages implemented within the afps algorithm as applied here. Arguments of afps are represented in bold, with
further details on their definitions and values provided in Table 1. NNLS = non-negative least squares
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additional small variations such as uncorrected sample dis-
placement errors that may be present in the reference library.
More specifically, after an initial optimization of the scaling
coefficients, the objective function (Eqn 1) is again minimized
by optimizing a shifting coefficient for each remaining refer-
ence pattern, which specifies its positive or negative adjust-
ment along the 2θ axis. During the optimization of the shifting
coefficients, the scaling coefficients are fixed and reference
patterns are maintained on the same 2θ axis interval using
cubic spline interpolation. If the absolute value of any opti-
mized shifting coefficient exceeds the value specified in the
shift argument, its shifting coefficient is reset to zero. Ref-
erence patterns are then shifted by the derived shifting coeffi-
cients, with cubic spline interpolation again used to ensure that
they all remain on the original 2θ axis interval, and the scaling
coefficients re-optimized (Step 3). In all cases presented here,
the shift argument was set to 0.5°2θ.

Step 5: Quantification and limit of detection estimation.
At this stage, appropriate phases were assumed to have been
selected from the reference library and the fitted pattern was
assumed to be reasonable, from which a reasonably accurate
estimation of phase concentrations can be obtained using the
RIRs. Because all RC samples presented here were prepared
without an internal standard, all detectable phases within the
mixture were assumed to be identifiable and that their
concentrations summed to 100 wt.%. As such, phase
concentrations (X) were computed by:

X ¼ s=RIR
∑ s=RIRð Þ � 100 ð2Þ

where s and RIR denote vectors of the scaling coefficients (i.e.
the parameters derived from NNLS and optimization of Rwp)
and RIRs covering all remaining phases, respectively.

At this point in the process, some phases, estimated to have
very small concentrations, may, inevitably, have been selected
in error. Whilst all phases below a defined limit (e.g. 0.1%)
could be simply excluded, such an approach would not ac-
count for the way in which different phases diffract X-rays
with different power (reflected in the RIRs) and, hence, have
different limits of detection (LOD) (Hillier 2003). For exam-
ple, a strong diffractor such as quartz, with a RIR (relative to
corundum) of ~5.7, would have a smaller LOD than a weak
diffractor such as muscovite (RIR ≈ 0.5). Thus the afps
algorithm uses the RIRs to derive sensible estimations of
LODs for all remaining phases via:

LOD ¼ LODstd � RIRstd

RIR
ð3Þ

where LODstd is the LOD of the internal standard (defined by
the lod and std arguments of the afps algorithm; Table 1),
RIRstd is the RIR of the internal standard, and RIR is a vector
of RIRs for all remaining phases. Upon calculating the LODs,
all clay and non-clay phases below their respective LOD are
removed from the process. For all RC samples presented here,

Table 1. Adjustable arguments for the afps algorithm (Fig. 1) applied here along with associated descriptions and values used. Further
arguments not relevant to the use of afps presented here are described in the powdR package documentation available at https://cran.r-
project.org/package=powdR

Argument name Description Value(s) used

std A unique identifier of the reference pattern to use as the
internal standard. This internal standard needs to be a
phase present in the sample, and is used for sample
alignment and computation of the limits of detection
for clay and non-clay phases.

Quartz for all RC samples except RC1 and RC2
(corundum), RC5-2 (fluorite), RC7-1 (anhydrite), and
RC9-3 (dolomite).

align A numeric parameter defining the maximum (positive
and negative) 2θ shifts applied during alignment of
the sample relative to the reference pattern of the
internal standard specified in the std argument.

0.1°2θ.

shift A numeric parameter defining the maximum (positive
and negative) 2θ shifts that can be applied to each
reference pattern after optimization of its shifting
coefficient relative to the sample.

0.5°2θ.

lod A numeric parameter (units of wt.%) defining the limit of
detection of the internal standard specified in the std
argument, from which all other limits of detection for
clay and non-clay phases are estimated via Eq 3.

0.15% assumed for quartz (RIR = 5.68), from which
LODs were computed for corundum (RIR = 1),
fluorite (RIR = 4.9), anhydrite (RIR = 3.05), and
dolomite (RIR = 2.31) ‘internal standards’ via Eq 3.

amorphous A string of unique identifiers used to define which
phases in the reference library should be treated as
amorphous.

Allophane, ferrihydrite, glass, obsidian, opal-CT,
opal-A, aluminosilicate gel, organic matter, and
graphite.

amorphous_lod A numeric parameter (units of wt.%) below which any
phases specified in the amorphous argument are
considered below the limit of detection and hence
excluded.

2%.
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the lod argument was based on the assumption that the LOD
of quartz (RIR = 5.68) was 0.15%, from which the LODs of
other internal standards used (fluorite, RIR = 4.9; anhydrite,
RIR = 3.0; and dolomite, RIR = 2.3) were estimated via Eq 3.
Note that the actual value for the LOD of any phase used as
reference can be calculated if a sample is spiked with a known
weight fraction of another phase as outlined by Hillier (2003),
but the simplified approach presented here is based on an
arbitrary but realistic LOD for quartz.

Amorphous phases need to be treated slightly differently in
the afps algorithm to account for the way in which their
diffusely scattered signal can be difficult to detect in XRPD
data, deeming the approach of Eq 3 as inappropriate. For this
reason the amorphous phases defined by the amorphous
argument are retained unless their estimated concentrations
are lower than the value specified in the amorphous_lod
argument (Table 1). For all RC samples presented here,
nine phases in the reference library were defined in the amor-
phous argument (allophane, ferrihydrite, glass, obsidian,
opal-CT, opal-A, aluminosilicate gel, organic matter, and
graphite), and the amorphous_lod argument set to 2%.

After omission of phases based on LODs, a final re-
optimization of Rwp was applied until no negative parameters
remained (Fig. 1). At this point the fitting process was consid-
ered complete, and final concentrations computed via Eq 2 in
units of wt.%.

Computation
Application of the afps algorithm to each of the 27 RC

samples was carried out in powdR version 1.2.3 (Butler and
Hillier 2020; Butler and Hillier 2021) on a Windows 10
machine equipped with an Intel® CoreTM i7-6600U CPU @
2.60 GHz. Computation time averaged ~1 h per sample. For
faster computation time of a batch of samples, the afps
algorithm can be used in combination with the foreach and
doParallel R packages for parallel processing across multiple
cores (Microsoft and Weston 2017, 2018).

With the exception of the specification of different ‘internal
standards’ (used for alignment in this case) and limits of detec-
tion, the same parameters were used for all arguments of the
afps algorithm for all 27 samples (Table 1). Further, no visual
inspection or amendments to the output were carried out. Whilst
it is always recommended to inspect visually outputs from full-
pattern summation, the aim of the present study was to test
whether an entirely automated approach to quantifying mineral-
ogically diverse samples could yield accurate results.

Pre-requisites for Automated Full-Pattern Summation

Although running the afps algorithm is relatively simple,
accurate quantification from it is ultimately facilitated by the
combination of reproducible diffraction data and a comprehen-
sive reference library that can account for all of the phases
present within a given dataset. The quality of the XRPD data,
both for the sample and the reference library, relates particu-
larly to the potential effects of particle statistics and preferred
orientation. Preferred orientation of minerals with prominent
cleavage planes can be eliminated during sample preparation

using techniques such as spray drying (Hillier 1999; Kleeberg
et al. 2008), and the reproducibility of diffraction data as a
result is a major advantage to methods using full-pattern sum-
mation of prior measured standards as presented here.

Although not tested in the present study, the size of the
library can prove influential on the accuracy of the final output
and the speed with which it can be obtained.More specifically,
whilst larger libraries (hundreds of reference patterns) promote
the selection of appropriate phases, it would be recommended
that they are customized for a given dataset based on the
minerals that are likely to be encountered. The presence of
additional phases that would not be encountered within the
samples simply acts to slow down the computation and/or
increase the chance of misidentification. Aside from misiden-
tifications, in some cases visual inspection of the output may
identify that a sample contains a mineral that is not present
within the library. This would require the user to source a
suitable reference mineral and add it to the library using
protocols outlined above. In either case the incidence of
misidentified and/or unidentified phases can be assessed
quickly via visual inspection of the outputs and residuals,
which would always be recommended.

Reynolds Cup Accuracy Determination
The accuracy of the automated algorithm for all RC sam-

ples was assessed based on absolute bias (in wt.%) for all
phases. In order to allow direct comparison with previous RC
contestants (i.e. to derive comparative contest placings), these
absolute bias values were summed to produce an overall score
using the procedures applied in the judging of each previous
contest. For RC1–RC3 placings were determined based on the
sum of absolute bias for all known phases. For RC4–RC9
placings were determined based on the sum of bias for all
known phases plus the summed weight percentages of any
misidentified phases (i.e. phases not present within the sam-
ple). The mineralogical groupings used for each RC contest are
provided in Tables S1–S9 in the Supplementary Material.

RESULTS

Phase Selection and Overall Accuracy
As outlined above and illustrated in Fig. 1, the afps

algorithm involves several steps that reduce the full reference
library to an appropriate subset for each sample. These include
the application of NNLS, removal of negative coefficients
during optimization, and exclusion of phases estimated to be
below the limit of detection. The number of phases remaining
at various points in the afps process for the 27 RC samples is
summarized in Fig. 2. From an initial library containing 201
reference patterns, application of NNLS and the associated
exclusion of any phase with a parameter equal to zero (Fig.
1) yielded a reduced library containing a mean of 52 patterns.
Subsequent optimization and removal of negative coefficients
resulted in the removal of another seven patterns, on average.
Shifting and reoptimizing the scaling coefficients until no
negatives remained resulted in removal of a further three
patterns, on average. Estimation of LODs and the associated
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removal of phases below their respective LOD (including any
amorphous phases estimated to be below the amorphous_lod
argument; Table 1) resulted in a further 43% reduction to the
library, with a mean of 24 remaining phases. Lastly, re-
optimization and the associated removal of phases with negative
coefficients resulted in a final selection of 23 reference patterns,
on average.

The resulting final phase selections across the 27 RC sam-
ples presented here covers 151 reference patterns from the full
library, representative of 61 correctly identified (i.e. present
within the sample and the afps output) clay/non-clay/amor-
phous groups (Table 2). This large number of reference pat-
terns selected across the dataset illustrates the mineralogical
diversity of the Reynolds Cup samples, whilst the relatively
small mean number of reference patterns in the final selection
from the afps algorithm indicates selectivity. The appropri-
ateness of the final selection for each sample determines ulti-
mately the quality of the fits and, therefore, the accuracy of the
resulting quantification.

All correctly identified, misidentified (i.e. not present with-
in the sample but present within the afps output), and un-
identified (i.e. present within the samples but not present
within the afps output) phases encountered across the 27
RC samples are summarized in Fig. 3. Misidentified phases
(Table 3) are scattered on the vertical at the intercept x = 0,
whilst unidentified phases (Table 4) are scattered on the hori-
zontal at the intercept y = 0. In summarizing all data displayed
in Fig. 3, the mean absolute bias for non-clay, clay, and
amorphous phases equates to 0.57% (n = 275), 2.37% (n =
120), and 4.43% (n = 14), respectively. Further exploration of
these results is provided below according to the correctly
identified, misidentified, and unidentified groupings.

By comparing the overall accuracy for each contest to the
anonymous results of all participants, the accuracy of the
afps outputs presented here would have been sufficient for
the following placings: RC1 = 2nd/15, RC2 = 2nd/35, RC3 =
1st/39; RC4 = 2nd/44; RC5 = 1st/64; RC6 = 3rd/63; RC7 = 3rd/

68; RC8 = 1st/70; RC9 = 2nd/74 (Table 5). Given that the
world’s leading mineralogists and laboratories are amongst
the participants of each Reynolds Cup (based on the published
top named finishers; www.clays.org/Reynolds.html), the
competitive accuracy of the afps algorithm in combination
with the small values of absolute bias together indicate that the
approach can derive accurate quantitative mineralogical
analysis from a single random powder XRPD measurement
when provided with a suitable reference library.

Correctly Identified Phases
The absolute bias of all correctly identified phases is sum-

marized in Table 2. The mean absolute bias of non-clay con-
stituents was 0.55% across the 0.20% to 45.70% known con-
centration range (n = 222). In contrast, the mean absolute bias
of the correctly identified clay constituents was 2.18% (n =
102) across the 1.00–40.20% known concentration range, with
that of the amorphous constituents being even higher at 3.74%
across the 6.90–18.27% known concentration range (n = 6).

Misidentified Phases
Across the 27 RC samples tested, the sum of misidentified

phases averaged 3.13% per sample. All misidentified phases are
presented in Tables S1–S9, and are summarized in Table 3. The
majority of misidentified phases were non-clay minerals, with a
mean misidentified concentration of 0.68% (n = 24). The number
of misidentified clay minerals across the 27 samples was smaller
than for non-clay minerals, but with a notably larger mean
misidentified concentration of 4.33% (n = 11). Three cases of
misidentified amorphous phases were found, all in RC1 samples,
with a mean misidentified concentration of 6.76%.

Unidentified Phases
Across the 27 RC samples, there was a total of 41 cases

where phases present within the samples remained unidentified
in the outputs from the afps algorithm, with the sum of
unidentified phases averaging 2.77% per sample. All

Fig. 2. Phase selection at various stages of the afps algorithm for all 27 RC samples. Red line represents the mean at each stage
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Table 2. Summary of the accuracy for correctly identified phases present in the RC samples

Phase n Min.–Max. (known,%) Mean absolute bias (%)

Non-clay

Alunite 1 10.7 0.0

Amphibole 2 3.9–4.0 0.6

Anatase 12 0.2–3.3 0.1

Anhydrite 3 5.2–22.7 0.8

Apatite 4 1.1–4.0 0.3

Aragonite 3 3.0–5.0 0.5

Barite 6 2.0–5.8 0.2

Bassanite 1 1.1 0.2

Birnessite 1 2.0 0.9

Boehmite 2 7.9–8.3 0.8

Calcite 16 2.1–18.6 0.3

Celestine 1 1.3 0.1

Cristobalite 1 3.9 2.6

Dolomite/ankerite 13 2.0–21.9 0.3

Epidote 1 4.0 0.7

Fluorite 4 1.9–3.9 0.6

Gibbsite 4 2.0–10.7 0.5

Goethite 7 1.6–7.8 1.5

Gypsum 6 1.3–21.8 1.1

Halite 7 1.5–5.0 0.8

Hematite 10 1.0–9.4 0.4

Huntite 1 5.0 0.1

Ilmenite 1 3.5 0.3

K-feldspar 17 1.8–11.4 0.6

Magnesite 6 2.6–5.7 0.3

Magnetite 6 0.2–6.4 1.2

Olivine 1 7.0 1.3

Opal CT 2 5.0–35.6 1.8

Plagioclase 19 2.0–10.7 0.3

Pyrite 10 0.8–3.0 0.3

Pyroxene 1 6.7 0.2

Quartz 26 2.1–45.7 0.8

Rutile 6 1.0–3.8 0.3

Siderite 8 1.0–6.6 0.6

Sodalite 1 2.5 0.5

Spinel 1 5.1 0.8

Sulphur 1 2.6 1.8

Topaz 1 10.8 0.2

Tourmaline 1 1.8 0.4

Vanadinite 1 0.8 0.2

Witherite 1 6.4 0.4

Zeolite 2 2.2–10.2 0.8

Zircon 4 0.2–2.9 0.1

Clay

Chlorite (trioct.) 17 3.0–14.2 1.0

Dickite 1 4.0 0.6

Halloysite 4 7.2–22.6 1.4
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unidentified phases are presented in Tables S1–S9, and are
summarized in Table 4. As found for misidentifications, the
majority of unidentified phases were non-clay minerals
(n = 29), with a mean known concentration of 0.63%. Three
of these unidentified non-clay minerals were not present within
the reference library (cryolite, nahcolite, and vivianite; Table 4).
In contrast to the number of unidentified non-clay minerals, only
seven cases of unidentified clay minerals were identified across
the 27 samples, with a mean known concentration of 2.18%.
Further to non-clay and clay minerals, five cases emerged where

amorphous phases within the sample were not identified by
afps, with a mean known concentration of 4.37%.

DISCUSSION

Reynolds Cup samples are prepared to be challenging
mixtures to quantify – mainly due to the diversity of clay
minerals that they may contain along with a relatively detailed
clay-mineral classification system that is applied to the results
(Raven and Self 2017). As would be expected, the accuracy of

Table 2. (continued)

Phase n Min.–Max. (known,%) Mean absolute bias (%)

Kaolin group* 7 8.0–25.3 0.7

Kaolinite 12 6.6–22.5 1.1

Mica (dioct.) 9 2.4–22.1 3.3

Mica (trioct.) 5 1.2–19.7 1.6

Mixed-layer (dioct.) 6 4.6–14.3 5.2

Palygorskite 2 7.5–15.2 1.3

Sepiolite 2 10.0–18.7 1.6

Serpentine 2 7.7–22.8 0.5

Smectite (dioct.) 8 2.4–40.2 4.4

Smectite (trioct.) 4 1.0–27.0 5.0

Talc 4 5.0–11.8 0.4

Total dioct. 2:1 mica or smectite* 12 6.1–33.0 2.9

Total trioct. 2:1 mica or smectite* 3 6.1–28.9 1.4

Vermiculite (trioct.) 3 4.3–11.2 3.0

Amorphous

Amorphous group 6 6.9–18.3 3.7

*denotes clay mineral groupings that were used only in RC1–RC4.

Fig. 3. Known concentrations of all phases (classified according to amorphous, clay, and non-clay groupings) from all 27 RC samples plotted
against the estimated concentrations from the afps algorithm
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the afps outputs shows a notable difference between the non-
clay and clay-mineral groupings (Fig. 3), with the mean abso-
lute bias of all non-clay minerals being ~4.2 times less than that
of clay minerals.

The inaccuracy of clay-mineral quantification relative to
non-clay minerals may reflect, in part, the difficulty in identi-
fying correctly clay minerals from a single bulk XRPD mea-
surement, as the afps algorithm seeks to do, due to the way in
which many clay minerals have many similar features in their
bulk diffraction patterns. The even greater inaccuracy with
respect to amorphous phases would also be expected given
the often ambiguous ‘background’ signal associated with
phases of this type which often lack any coherent Bragg
diffraction. In relation to clay-mineral and amorphous-phase
identification, the most successful participants of the Reynolds
Cup used oriented specimens and successive treatments of
these to identify precisely the clay-mineral components in a
sample, whilst total elemental analysis of bulk samples was
also often used to identify more accurately the nature of X-ray
amorphous phases (Omotoso et al. 2006; Raven and Self

2017). The finding that the afps algorithm produces highly
competitive results compared to other RC participants, even
without these additional analyses, is particularly promising for
the future of automated quantitative phase analysis by XRPD.

In addition to the bias associated with correctly identified
phases, an important aspect of the results is the presence of
misidentified phases (Tables 3, 5, and S1–S9), which can
easily compromise the accuracy of quantitative analysis.
Misidentified non-clay minerals were present in 21 of the 27
samples (Table 5), with an overall mean of 1.37% per sample.
Misidentified clay minerals were present in 11 of the 27
samples (Table 5), with an overall mean of 1.76% per sample.
The slightly higher concentrations for misidentified clay min-
erals compared to non-clay minerals again reflects the chal-
lenging nature of their identification from bulk XRPD data
alone.

Table 3. Summary of the misidentified phases present in the
outputs from afps

Phase n Mean misidentified concentration (%)

Non-clay

Anhydrite 2 0.4

Birnessite 1 0.4

Corundum 2 1.2

Erionite 1 0.4

Garnet 2 0.5

Huntite 1 0.9

Ilmenite 1 0.5

Magnesite 3 1.5

Magnetite 1 0.6

Plagioclase 1 2.5

Siderite 2 0.5

Sodalite 1 0.3

Sphalerite 4 0.2

Sylvite 1 0.1

Witherite 1 0.2

Clay

Mixed-layer (trioct.) 2 2.8

Palygorskite 2 2.5

Sepiolite 3 6.0

Serpentine 1 2.2

Smectite (dioct.) 1 1.9

Smectite (trioct.) 2 7.5

Amorphous

Amorphous group 3 6.8

Table 4. Summary of the accuracy for unidentified phases present
in the RC samples but not in the respective afps output

Phase n Mean known concentration (%)

Non-clay

Amphibole 2 0.8

Anatase 4 0.1

Arcanite 1 2.7

Calcite 3 0.1

Cassiterite 1 0.3

Cryolite* 1 0.5

Dolomite/ankerite 1 0.3

Goethite 2 0.1

Ilmenite 2 0.4

K-feldspar 1 2.1

Magnesite 1 0.5

Nahcolite* 1 2.5

Plagioclase 1 0.5

Rutile 1 0.1

Stilbite 1 1.3

Sylvite 1 0.3

Tourmaline 4 1.0

Vivianite* 1 0.3

Clay

Chlorite 2 1.7

Mica (dioct.) 1 0.1

Mixed-layer (dioct.) 1 2.4

Mixed-layer (trioct.) 1 4.1

Smectite (dioct.) 1 5.1

Talc 1 0.1

Amorphous

Amorphous group 5 4.4

*denotes phases that were not present within the reference library.
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The presence of ~7% misidentified amorphous material in
each of the 3 RC1 samples (Table S1) highlights the care
needed when quantifying amorphous phases from bulk XRPD
data alone, particularly since the reason for this consistent
misidentification in RC1 samples remains unclear. Of the
clay-mineral misidentifications, two stand out as being partic-
ularly high, relating to samples RC6-2 and RC7-2 (Tables 5,
S6, and S7). The RC6-2misidentification relates to selection of
a trioctahedral smectite reference pattern (8.22%; Table S6),
which, based on the true sample composition, is probably a
misidentification against the dioctahedral smectite it contains.
The RC7-2 misidentification relates to the selection of a sepi-
olite reference pattern (10.13%; Table S7), again probably
instead of the dioctahedral smectite.

When using theafps algorithm, ultimately a balancemust be
struck between the number of misidentified phases and the num-
ber of unidentified phases, which is controlled largely by the
appropriateness of the reference library and value that the user
specifies in the lod argument (Table 1). With respect to lod,
setting this parameter to a very small value or zerowould promote
increased numbers of misidentifications but may decrease the
number of unidentified phases. The reverse applies if the lod
value is excessively high. Thus, in the present case, the approxi-
mate balance of both misidentified and unidentified phases (3.5%
and 2.6% per sample on average, respectively) may represent a
reasonable compromise, based on the assumption that the LOD
for quartz in all samples would be 0.15% (Table 1). Further
reduction of the incidence ofmisidentified and unidentified phases

Table. 5 Accuracy of automated full-pattern summation relative to known weights of the samples, summarized as the sum of bias for
non-clay and clay phases along with misidentified non-clay and clay minerals. Further details for each RC contest are provided in
Tables S1–S9

Absolute bias Misidentified

Sample Non-clay Clay Non-clay Clay Total bias Total misidentified Placing/No. of participants

RC1-1 3.75 8.93 7.08 — 12.68 7.08

RC1-2 3.37 6.59 7.12 — 9.96 7.12 2nd/15

RC1-3 6.65 5.20 7.37 — 11.85 7.37

RC2-1 1.20 2.96 0.47 — 4.16 0.47

RC2-2 2.46 1.73 — — 4.19 — 2nd/35

RC2-3 3.51 4.19 0.61 — 7.64 0.61

RC3-1 4.14 5.04 1.32 3.89 9.19 5.21

RC3-2 3.83 6.73 1.70 6.77 10.56 8.47 1st/37

RC3-3 6.07 3.32 0.26 — 9.40 0.26

RC4-1 18.44 2.29 — 4.00 20.73 4.00

RC4-2 6.15 4.55 — — 10.70 — 2nd/43

RC4-3 5.06 2.93 1.67 2.97 7.99 4.64

RC5-1 9.87 19.43 1.84 — 29.30 1.84

RC5-2 3.59 14.14 — 1.85 17.74 1.85 1st/63

RC5-3 14.34 14.30 2.48 2.37 28.64 4.85

RC6-1 5.12 15.62 1.96 — 20.74 1.96

RC6-2 4.61 8.69 0.46 8.22 13.30 8.68 3rd/62

RC6-3 21.07 9.07 0.13 2.15 30.14 2.28

RC7-1 6.08 7.16 0.19 — 13.24 0.19

RC7-2 7.64 23.77 — 10.13 31.41 10.13 3rd/67

RC7-3 5.50 5.27 0.50 — 10.77 0.50

RC8-1 4.08 5.78 0.21 — 9.86 0.21

RC8-2 4.99 11.00 0.44 — 15.99 0.44 1st/69

RC8-3 3.00 4.75 0.27 — 7.75 0.27

RC9-1 14.94 20.56 0.68 — 35.50 0.68

RC9-2 4.61 15.17 — 2.02 19.78 2.02 2nd/73

RC9-3 7.25 8.07 0.15 3.22 15.32 3.37
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would almost certainly be achieved by visual inspection of the
results, which, as outlined above,was not undertaken in this study.

As previously mentioned, the clay-mineral classification of
RC samples is relatively detailed, creating a challenge for the
selection of appropriate reference patterns via an automated
approach. If instead, a very coarse description of clay is ap-
plied, i.e. total clay minerals, the accuracy of the results can be
improved (Fig. 4). Comparing the total clay mineral concen-
trations estimated by afps (including misidentified clay min-
erals) to the known total concentrations, the mean absolute bias
across the 27 samples reduces to 2.13% in the known range of
14.20% to 67.80% total clay. It is, therefore, worth emphasiz-
ing that if a completely automated approach is going to be
applied, the user may wish to adjust the clay-mineral classifi-
cation system to best reflect the limitations of the method - with
coarser descriptions providing greater accuracy in terms of
total clay or related clay groupings at the compromise of detail.

Viewed as a whole, the accuracy of the afps algorithm
presented here is promising, particularly as the results are
derived from a single bulk XRPD measurement. This relative
simplicity is important in the case of high-throughput datasets
because additional mineralogical (i.e. clay fractions) and geo-
chemical (e.g. total elemental) analyses are undoubtedly a
time-consuming and expensive undertaking. Whilst one
would not expect an automated approach to exceed the accu-
racy of that achieved from multiple forms of analyses com-
bined with expert input, the present data illustrate that accurate
results can still be obtained. For high-throughput cases, some
accuracy will inevitably need to be compromised in order to
quantify mineral concentrations in hundreds or thousands of
samples. Expert input is still no doubt necessary in such high-
throughput cases, and although not included within this inves-
tigation (outputs from the afps algorithm were not inspected
or altered in any way), would probably act to enhance the
accuracy of automated approaches. The most effective form
of expert input is visual inspection of fitted patterns and their
residuals relative to the original measurement (Butler and

Hillier, 2021). Such inspection allows a trained user to identify
phases that are missing from the analysis, or those that should
be removed.

Applicability to Natural Samples
Whilst RC samples are prepared to represent naturally

occurring clay-bearing mixtures, the challenging nature of
sourcing pure clay mineral standards increases the likelihood
that the standards in the reference library match exactly those
used to prepare the samples – resulting in artificially enhanced
accuracy compared to the quantification of natural samples. To
assess for the occurrence of exact matching in the present
study, available information on how RC samples were pre-
pared was collated and contest organisers contacted where
sufficient information was not available. Based on this infor-
mation, the majority (50–92%) of reference patterns in the
library supplied to the afps algorithm were not used to
prepare the RC samples for each contest (Table 6), with the
exception of RC5, which was organized by Stephen Hillier.

Fig. 4. Known concentration of total clay minerals for all 27 RC samples plotted against that estimated from the afps algorithm

Table 6. Summary of the clay mineral standards used to prepare
the samples for each RC contest that are not present as reference
patterns in the library supplied to the afps algorithm in this study

Contest n %

RC1 3/4 75%

RC2 5/7 71%

RC3 5/10 50%

RC4 10/13 77%

RC5 1/13 8%

RC6 6/12 50%

RC7 8/12 67%

RC8 11/13 85%

RC9 12/15 92%
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The general absence of exact matching between reference
library standards and RC sample constituents presented here
indicates, therefore, that the approach should be suitable for
natural clay-bearing samples if appropriate mineral standards
can be sourced.

Natural clay-bearing mixtures may contain more complex
clay minerals than those in RC samples, especially in relation
to interstratified clay minerals that are more difficult to isolate
as pure phases for use in round-robin contests. Furthermore,
phases with a broad solid solution series may make it difficult
to cover the whole range of each series without a large library
of standards specially designed to do so. That said, neither of
these issues is unsurmountable. The only way to gauge the
likely accuracy of any form of quantitative mineralogical anal-
ysis on natural samples is indirectly, however, e.g. by compar-
ing the measured bulk chemical composition to a bulk chem-
ical composition generated from the mineralogical analysis by
assuming, or obtaining, chemical compositions of the respec-
tive minerals quantified in any given sample. This approach
was used, for example, by Casetou-Gustafson et al. (2018) for
soils quantified by the FPS approach using the same standard
pattern library. Future testing of the afps algorithm will seek
to assess its accuracy when applied to natural samples, but such
assessments can never be as direct as those obtained from
application to round robin samples where accuracy can be
assessed precisely by comparison to the known mineralogical
compositions.

CONCLUSIONS

An open source, automated, full-pattern summation al-
gorithm has been shown to quantify accurately mineral
concentrations in complex clay-bearing mixtures from the
previous nine Reynolds Cup contests. The accuracy of the
automated results would have been sufficient for the top
three placings in all RC contests tested (RC1 = 2nd, RC2 =
2nd, RC3 = 1st; RC4 = 2nd; RC5 = 1st; RC6 = 3rd; RC7 =
3rd; RC8 = 1st; RC9 = 2nd). Non-clay minerals were quan-
tified with a mean absolute bias of 0.57%, whilst that of the
clay minerals was higher at 2.37%, and for amorphous
phases was 4.43%. In some cases the incorrect identification
of clay minerals was a key component of the overall bias;
when comparing total clay content, however, the automated
algorithm yielded very accurate values, suggesting that care-
ful consideration should be given to the level of clay
identification that can be expected of automated approaches
based on a single bulk XRPD measurement. The detection
and quantification of amorphous phases remains difficult
from bulk XRPD data alone, especially when mixed into
complex mineral assemblages. Although many ‘X-ray amor-
phous’ phases have quite distinctive features in their
scattering/diffraction patterns, others can look very alike,
and therefore manual inspection of afps outputs in com-
bination with auxiliary analysis (e.g. total element analysis)
remains beneficial and recommended for enhanced accuracy.
The results are ultimately promising, and the proven accu-
racy justifies the potential for further application to high-

throughput XRPD datasets. Future testing of the algorithm’s
accuracy on natural samples via the use of total elemental
analysis will act to assess further its performance and ap-
plicability for high-throughput mineral quantification of soils
and sediments.
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