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We develop a theory of minimal models for algebras over a Koszul operad with
trivial differential defined over a commutative ring (containing Q in the symmetric
case), not necessarily a field, extending and supplementing the work of Sagave for
the associative case. Our minimal models are bigraded and contain a projective
resolution of the homology.
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1. Introduction

Over a field, minimal models for operadic algebras go back to Kadeishvili’s theorem
[23]. He showed that the homology graded algebra H∗(A) of a differential graded
associative algebra A carries an essentially unique A∞-algebra structure, consisting
of degree r − 2 maps, r � 3,

mr : H∗(A)⊗
r −→ H∗(A)

satisfying certain equations, which is ∞-quasi-isomorphic to A. This struc-
ture on H∗(A) is minimal because it has trivial differential. The extension
of this result to algebras over Koszul operads in characteristic zero follows
from the homotopy transfer theorem [28, §10.3]. This is possible over a field
because all modules are projective, hence any chain complex is homotopy equiv-
alent to its homology, but this does not happen over a general commutative
ring.

Over a commutative ring k, Sagave [37] had the clever idea of replacing complexes
with k-projective bicomplexes whose vertical homology is also k-projective. It is well
known that any chain complex, regarded as a bicomplex concentrated in horizontal
degree 0, has a k-projective resolution of that kind concentrated in non-negative
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horizontal degrees [7, §XVII.1].

Sagave used simplicial techniques to extend this to associative algebras, and then
he constructed a bigraded minimal model AM for any differential graded associative
algebra A. This minimal model is a bicomplex which carries a structure resembling
A∞-algebras that he called derived A∞-algebra. It consists of bidegree (−i, i− 1)
morphisms, i � 2,

di : AM −→ AM ,

and bidegree (i, r − 2− i) maps, r � 2, i � 0,

mi,r : A⊗r

M −→ AM ,

satisfying certain equations. It is minimal in the sense that the vertical differential
vanishes. Moreover, the horizontal differential of AM is a projective resolution of
H∗(A). It was later discovered by Cirici, Egas Santander, Livernet and Whitehouse
that derived A∞-algebras are the same as split filtered A∞-algebras [8, theorem
4.56]. The minimal model is equipped with a filtration-preserving ∞-morphism
AM � A which induces an isomorphism between the E2 pages of the source and
target bicomplex spectral sequences.

In this paper we extend Sagave’s results to algebras A over a Koszul operad O
(in the sense of [16]) with trivial differential such that O is non-symmetric or Q ⊂ k.
We start with the Cartan–Eilenberg model structure on bicomplexes bChCE defined
in [32], whose cofibrant resolutions are k-projective and have k-projective vertical
homology. In §2, we transfer this model structure to O-algebras in bicomplexes, as
a semi-model structure, so we can take a cofibrant resolution AQ → A here. In §3,
we define an operad dO in the category GrCh of graded chain complexes whose
algebras are the same as O-algebras in bicomplexes. We show that dO is Koszul
(theorem 4.10), so we can apply the homotopy transfer theorem to a contraction
of AQ onto its vertical homology to obtain a minimal model AM of A, see §6. This
minimal model carries a dO∞-algebra structure and it is essentially unique. This
essential uniqueness, which is established at the end of §7, is what requires the
aforementioned hypotheses on O, for most of the paper we can do with less.

For O = A the associative operad, dA had already been considered by Liver-
net, Roitzheim and Whitehouse in [27]. They also computed dA∞ and showed
that their algebras coincide with Sagave’s derived A∞-algebras. For other operads,
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we define derived O∞-algebras as dO∞-algebras concentrated in non-negative
horizontal degrees instead. We then show that they coincide with split filtered
O∞-algebras, as in the associative case, see §5.

We avoid Sagave’s simplicial techniques, since the Dold–Kan correspondence is
not strictly symmetric [36] and this could cause problems with symmetric operads.
Our approach via Koszul duality theory has the advantage that it yields closed for-
mulas for the structure maps of a minimal model, unlike the inductive construction
used by Kadeishvili and Sagave. Moreover, we show that most of the times we do
not need a full cofibrant resolution AQ to proceed (remark 6.6). We illustrate this
with example 6.7, fully computing a minimal model for the Dugger–Shipley integral
differential graded associative algebra [13],

A =
Z〈e, x±1〉

(e2, ex + xe− x2)
, |e| = |x| = 1, d(e) = p, d(x) = 0,

where p ∈ Z is a prime. This minimal model is remarkably small, although non-
trivial,

AM =
Z〈x±1, c〉

(c2, cx + xc)
, (|x|h, |x|v) = (0, 1), (|c|h, |c|v) = (1, 0),

dh(x) = 0, dh(c) = −p,
m1,2(x2i−1, cxj) = x2i+j , m1,2(cx2i−1, cxj) = cx2i+j .

The map m0,2 is the product of the associative algebra AM and the non-indicated
operations are trivial. As far as we know, this is the third full computation of a non-
trivial derived A∞-algebra in the literature, after [37, example 5.1] and [3, §5.2].
Sagave’s example, though, is non-trivial because it has a non-formal underlying
complex (see remark 7.23) unlike Dugger–Shipley’s whose non-formality is related
to the associative product. We do not know if the example of Aponte Román,
Livernet, Robertson, Whitehouse and Ziegenhagen is non-formal. We compute a
commutative and a Lie example too (examples 6.9 and 6.12).

We also address the strictification process, consisting of reconstructing any dif-
ferential graded O-algebra A from a minimal model AM , up to quasi-isomorphism.
Sagave did this in the associative case, using a non-functorial construction due to
Kontsevich and Soibelman [24, §6.2] since he actually works with strictly unital
derived A∞-algebras. We instead define a functorial construction Tot Ω̄dO BdO AM

based on the bar-cobar adjunction, which is also used to prove the essential unique-
ness of minimal models. This Tot Ω̄dO BdO AM is actually a cofibrant replacement
of A (theorem 7.22, remark 8.5). As an application, we prove that the set of homo-
topy classes of differential graded O-algebra maps A→ B is a quotient of the set of
derived∞-morphisms AM � B from a minimal model of the source (corollary 8.6).
This is new even for the associative operad. We apply it to give an elementary proof
of the fact that Dugger–Shipley’s A is not formal (example 8.7). Further examples
will be computed in a forthcoming paper on universal Massey products for operadic
algebras over a ring.

Some of the results in §3 and §4, most notably theorem 4.10, were obtained by
the first author in his thesis [30], directed by the second author. The proofs here
are substantially different and simpler. We here use the operadic Koszul complex
while [30] uses the bar construction.
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We assume that the reader is familiar with operad theory and Koszul duality
theory for operads. We mostly refer to [16] and other papers by Fresse, since we
work over a commutative ring. Nevertheless, we borrow terminology and notation
from [28] because we feel it is nowadays more common.

2. Cartan–Eilenberg resolutions of algebras over an operad

A Cartan–Eilenberg resolution of a chain complex is a bicomplex which yields
projective resolutions of chain, cycle, boundary and homology modules, see
[7, §XVII.1]. In this section, we construct Cartan–Eilenberg resolutions with
algebraic structure for O-algebras in Ch.

Definition 2.1. An unbounded bicomplex X is a bigraded module equipped with
horizontal and vertical differentials,

dh : Xp,q −→ Xp−1,q, dv : Xp,q −→ Xp,q−1,

satisfying dhdv + dvdh = 0. The horizontal and vertical degrees of an element x ∈
Xp,q are |x|h = p and |x|v = q, respectively, and the total degree is |x| = p + q.
The bidegree of x is the pair |x|b = (p, q). A morphism of unbounded bicomplexes
is a bigraded morphism f : X → Y which commutes with horizontal and vertical
differentials. We denote the category of unbounded bicomplexes by bChu. This
category is equipped with a closed symmetric monoidal structure given by

(X ⊗ Y )p,q =
⊕

i+s=p
j+t=q

Xi,j ⊗ Ys,t.

and

dh(x⊗ y) = dh(x)⊗ y + (−1)|x|x⊗ dh(y)

dv(x⊗ y) = dv(x)⊗ y + (−1)|x|x⊗ dv(y).

Moreover, the symmetry constraint uses the Koszul sign rule with respect to the
total degree,

x⊗ y 	→ (−1)|x||y|y ⊗ x.

A bounded bicomplex, or just bicomplex in this paper, is an unbounded bicomplex X
which vanishes in negative horizontal degrees, Xp,q = 0, p < 0. The full subcategory
formed by these objects will be denoted by bCh. This category inherits the closed
monoidal structure from bChu.

It may look strange to keep the name bicomplex for bounded ones but these are
the only ones we need in the homotopical part. Unbounded complexes are just used
from a combinatorial viewpoint.
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Remark 2.2. A chain complex can be regarded as a bicomplex concentrated in
horizontal degree 0. This yields a full inclusion

Ch ↪→ bCh

which strictly preserves tensor products and related constraints, like bCh ↪→ bChu.
We can use it to consider algebras in bCh over an operad O in Ch. The category
of O-algebras in bCh is denoted by AlgbCh(O). The previous full inclusion extends
to O-algebras,

AlgCh(O) ↪→ AlgbCh(O).

Cartan–Eilenberg resolutions of O-algebras in Ch will live in AlgbCh(O). We use
some homotopical techniques to construct them.

Given an adjoint pair F 
 U ,

M
F

�
U

C

with M a model category, we say that C admits the transferred model structure if
it has a (necessarily unique) model structure where a morphism f in C is a weak
equivalence or (trivial) fibration if and only if the morphism U(f) is so in M .

Semi-model categories are one of the many relaxations of the axioms of a model
category, albeit a very close one, see [17, §12.1.3]. Given an adjunction as above,
where M is a cofibrantly generated honest model category with given sets of gen-
erating (trivial) cofibrations, we say that C admits the transferred semi-model
structure if the hypotheses of [17, theorem 12.1.4] are satisfied.

We consider the adjoint pair

bCh
O◦−
�
U

AlgbCh(O). (2.3)

Here, U is the obvious forgetful functor and O ◦ − denotes the free O-algebra
functor. We endow bCh with the Cartan–Eilenberg combinatorial model structure
in [32, §4], denoted by bChCE, and with the sets of generating (trivial) cofibra-
tions therein. Here, cofibrant resolutions are Cartan–Eilenberg resolutions and weak
equivalences are E2-equivalences, i.e. bicomplex morphisms which induce an isomor-
phism in the E2 term of the spectral sequence associated to the filtration by the
horizontal degree. We recall the definition of E2-equivalences in a wider context in
definition 6.2 below.

A graded operad is an operad in Ch with trivial differential.

Proposition 2.4. Let O be a graded operad such that each O(r) is Sr-projective.
The category AlgbChCE

(O) admits the transferred semi-model structure from the
Cartan–Eilenberg model structure bChCE along (2.3). Moreover, the forgetful func-
tor U : AlgbChCE

(O)→ bChCE preserves cofibrant objects and cofibrations with
cofibrant source.

Proof. This is just an application of [17, theorem 12.3.A and proposition 12.3.2]. We
just have to check that O is S-cofibrant as an operad in bChCE, i.e. its underlying
S-module is cofibrant in bChS

CE with the projective model structure.
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Let S0,q be the bicomplex which is just k concentrated in bidegree (0, q), q ∈ Z.
The maps 0� S0,q are some of the generating cofibrations of bChCE. Hence, any
S-module M in bChCE concentrated in horizontal degree 0 with trivial differential
and such that each M(r) is Sr-projective, r � 0, is cofibrant in bChS

CE. �

Remark 2.5. Cofibrant objects and cofibrant resolutions in semi-model categories
behave as in model categories. Given an O-algebra A in Ch, a cofibrant resolu-
tion of A in AlgbChCE

(O) is a Cartan–Eilenberg resolution by proposition 2.4 and
[32, §4].

In some cases, the semi-model structure in proposition 2.4 is an honest model
category structure, e.g. when O = A is the associative operad, whose algebras are
non-unital monoids, or O = uA is the unital associative operad, whose algebras are
honest (unital) monoids.

Proposition 2.6. The categories AlgbChCE
(A) and AlgbChCE

(uA) admit the trans-
ferred model structure along (2.3) from bChCE.

This follows from [32, proposition 4.2] and [33, theorem 1.2], see also [34].
We should mention that related model structures on twisted complexes have been

considered in [10, 14, 29]. Weak equivalences are defined in terms of the pages of the
spectral sequence of the twisted complex. None of these model structures coincides
with any our (semi-)model structures here or in [32].

3. Algebras in bicomplexes and their operads

LetO be a graded operad. Here we describeO-algebras in bChu as operadic algebras
in the following category of graded complexes. For the associative operad, this was
done in [27]. This will allow us to define minimal models from the Cartan–Eilenberg
resolutions given by proposition 2.4.

Definition 3.1. The category GrCh of graded complexes is the product category
ChZ. An object X is a sequence of complexes

X = (Xp,∗)p∈Z = (. . . , Xp,∗,Xp+1,∗, . . . ).

The horizontal, vertical and total degrees, and the bidegree, are defined as in
definition 2.1. The differential d of X preserves the horizontal degree and decreases
the vertical degree by one,

d : Xp,q −→ Xp,q−1.

A graded complex X is bounded if it is concentrated in non-negative horizontal
degrees, i.e. Xp,∗ = 0 if p < 0.

The category GrCh is equipped with a closed symmetric monoidal structure with
tensor product defined also as in definition 2.1.
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Remark 3.2. The full inclusion in horizontal degree 0,

Ch ↪→ GrCh,

strictly preserves tensor products and related constraints. An unbounded bicomplex
X has an underlying graded complex (X, dv).

Definition 3.3. The quadratic algebra of dual numbers D = k[ε]/(ε2) is the
monoid in GrCh generated by ε in bidegree (−1, 0) with relation and ε2 = 0 and
differential d(ε) = 0. We regard it as an operad concentrated in arity 1.

Remark 3.4. A D-algebra X in GrCh is an unbounded bicomplex. The vertical
differential dv is the graded complex differential of X and dh(x) = ε(x), x ∈ X.

Recall the general notion of operadic distributive law, see e.g. [28, §8.6.1]. They
are used to construct a new operad from two existing ones. This concept goes back
to [4].

Definition 3.5. Let O be a graded operad. The operadic distributive law

ϕ : D ◦ O −→ O ◦ D

is the morphism of S-modules defined as follows for any μ ∈ O(r),

ϕ(1;μ) = (μ; 1, . . . , 1),

ϕ(ε;μ) = (−1)|μ|
r∑

i=1

(μ; 1, i−1. . ., 1, ε, 1, r−i. . ., 1).

A bigraded operad is an operad in GrCh with trivial differential. The derived
operad dO is the bigraded operad O ◦ϕ D with underlying S-module O ◦ D and
composition

The operadic unit is (1; 1).

Lemma 3.6. The morphism ϕ is indeed an operadic distributive law.

Proof. According to [28, §8.6.1] we have to check that four diagrams, called (i), (ii),
(I) and (II), commute. The commutativity of (i) is equivalent to the first formula
in definition 3.5. For (ii) we use that ϕ(ε; 1) = (1; ε) by the second formula.

In order to check (I) we take an element of D ◦ O ◦ O, that we can denote in
either way

(ε; (μ; ν1, . . . , νr)) = ((ε;μ); ν1, . . . , νr)

according to how we associate the triple composite. Here νi ∈ O(si). On the one
hand, if we apply the operad composition γO : O ◦ O → O to the part in O ◦ O and
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then ϕ we obtain

ϕ(ε;μ(ν1, . . . , νr)) = (−1)|μ|+
∑ r

i=1 |νi|

∑ r
j=1 sj∑
i=1

μ(ν1, . . . , νr)(1, i−1. . ., 1, ε, 1, . . . , 1).

On the other hand,

(ϕ(ε;μ); ν1, . . . , νr) = (−1)|μ|
r∑

i=1

((μ; 1, i−1. . ., 1, ε, 1, r−i. . ., 1); ν1, . . . , νr)

=
r∑

i=1

(−1)|μ|+
∑ i−1

j=1 |νj |(μ; (1; ν1), . . . , (1; νi−1), (ε; νi), (1; νi+1), . . . , (1; νr)).

If we now apply ϕ to all factors in D ◦ O we obtain
r∑

i=1

si∑
j=1

(−1)|μ|+
∑ i

j=1 |νj |(μ; (ν1; 1, . . . , 1), . . . , (νi; 1, j−1. . . , ε, . . . , 1), . . . , (νr; 1, . . . , 1))

= (−1)|μ|+
∑ r

i=1 |νi|

∑ r
j=1 sj∑
i=1

((μ; ν1, . . . , νr); (1, i−1. . ., 1, ε, 1, . . . , 1)).

If we now apply γO we obtain the same result as above.
Finally, for (II) we consider

(ε; (ε;μ)) = ((ε; ε);μ).

If we apply the operad composition γD of D we obtain 0 because ε2 = 0. Moreover,

(ε;ϕ(ε;μ)) = (−1)|μ|
r∑

i=1

(ε; (μ; 1, i−1. . ., ε, . . . , 1))

= (−1)|μ|
r∑

i=1

((ε;μ); 1, i−1. . ., ε, . . . , 1),

and

(−1)|μ|
r∑

i=1

(ϕ(ε;μ); 1, i−1. . ., ε, . . . , 1) =
r∑

i,j=1

((μ; 1, j−1. . . , ε, . . . , 1); 1, i−1. . ., ε, . . . , 1)

=
∑

1�j<i�n

(μ; (1; 1), . . . , (ε; 1)︸ ︷︷ ︸
j slot

, . . . , (1; ε)︸ ︷︷ ︸
i slot

, . . . , (1; 1))

+ (μ; (1; 1), . . . , (ε; ε), . . . , (1; 1))

−
∑

1�i<j�n

(μ; (1; 1), . . . , (1; ε)︸ ︷︷ ︸
i slot

, . . . , (ε; 1)︸ ︷︷ ︸
j slot

, . . . , (1; 1)).

If we now apply γD and use that ε2 = 0 the result is again∑
1�j<i�n

(μ; 1, . . . ,
j
ε, . . . ,

i
ε, . . . , 1)−

∑
1�i<j�n

(μ; 1, . . . ,
i
ε, . . . ,

j
ε, . . . , 1) = 0. �
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Proposition 3.7. A dO-algebra in GrCh is the same as an O-algebra in the
category of unbounded bicomplexes.

Proof. Let 1 be the initial operad in GrCh, which is the monoidal unit for the circle
product ◦ in GrChS, and let ηP : 1→ P be the unit of a generic operad P in GrCh.

We have operad morphisms induced by the units of O and D, respectively,

Therefore, any dO-algebra A is an O-algebra in GrCh as well as a bicomplex, see
remark 3.4.

The second equation of definition 3.5 implies

dh(μ(x1, . . . , xr)) =
r∑

s=1

(−1)|μ|+
∑ s−1

t=1 |xt|μ(x1, . . . , dh(xs), . . . , xr),

This shows that A is not only an O-algebra as a graded complex but as an
unbounded bicomplex. The converse is essentially the same. �

Recall that the quadratic operad P(E,R) generated by a reduced S-module E,
i.e. E(0) = 0, is the quotient T (E)/(R) of the free operad T (E) generated by E
by the operadic ideal generated by a given sub-S-module R ⊂ E ◦(1) E = T (E)(2)

of weight 2 relations, see [16, §5.2.5] and [28, §7.1.2].

Proposition 3.8. The derived operad of a reduced quadratic operad O = P(E,R)
is quadratic and has the following presentation

dO = P(E ⊕ k · ε, R⊕D ⊕ k · ε2).

Here D ⊂ k · ε ◦(1) E ⊕ E ◦(1) k · ε is the sub-S-module defined as

D(r) =
{

ε ◦1 μ− (−1)|μ|
r∑

i=1

μ ◦i ε; μ ∈ E(r)
}

.

Proof. Let P be the operad defined by the presentation in the statement. On the one
hand, there is an operad morphism P → dO defined on generators by the inclusions

E ∼= E ◦ 1 −→ O ◦ϕ D ←− 1 ◦ k · ε ∼= k · ε.

These arrows are given by the inclusions of generators E ⊂ O and k · ε ⊂ D and
the corresponding operadic units.

On the other hand, it is easy to check that

(O ◦ D)(r) = O(r)⊗D⊗r

as Sr-modules, with the permutation action on the tensor power and the diagonal
action on the tensor product. Hence, there is an S-module morphism

O ◦ D −→ P,

(μ; εi1 , . . . , εir ) 	→ μ(εi1 , . . . , εir ).

Here, each ij ∈ {0, 1}. This morphism is surjective because of the relations in D.

https://doi.org/10.1017/prm.2022.42 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.42


Derived homotopy algebras 1207

The composite

O ◦ D −→ P −→ dO
is clearly the identity on the underlying S-module O ◦ D. Since the first one is
surjective, both are isomorphisms. �

4. Koszul duality

We here prove that, if O is a Koszul graded operad, then its derived operad dO
from definition 3.5 is also Koszul. Moreover, we compute its Koszul dual dO¡ in
terms of the Koszul dual O¡ of O. We will use it in the next section to compute
the structure of a minimal model of a differential graded O-algebra arising from a
Cartan–Eilenberg resolution.

We always consider cooperads with respect to the usual composite ◦ of S-modules
since all of them are reduced in this paper, see [28, §5.1.15] and [15, proposition
1.1.15].

Given a graded operad O and a graded cooperad C, a twisting morphism ζ : C →
O, called twisting cochain in [16, §4.5], is a degree −1 morphism of S-modules such
that the composite

vanishes, see [28, §6.4]. Here Δ(1) is the infinitesimal decomposition of the cooperad
C and γ(1) is the infinitesimal composition of the operad O, see [28, §6.1.4, §6.1.2].

We will denote the decomposition Δ of a cooperad C by using a Sweedler notation
like in [28, §5.8.1],

Δ: C −→ C ◦ C, Δ(μ) =
∑
[μ]

(ν; ν1, . . . , νl) · τ. (4.1)

The (left) twisted composite product O ◦ζ C [28, §6.4.5] is the S-module O ◦ C
equipped with the following differential

d(ρ;μ1, . . . , μr) =
r∑

i=1

∑
[μ]

(−1)|ρ|+|νi|
∑ i−1

j=1 |μj |(ρ ◦i ζ(νi); . . . , μi−1, ν
1
i , . . .

. . . , νl
i , μi+1, . . . ) · (id×τ × id). (4.2)

Here the two id’s are identity permutations, the first one on the sum of the arities
of the μk for k < i, and similarly the second one for k > i. In terms of labelled trees,
this differential can be better described as
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Beware that the formula for the differential of O ◦ζ C in [16, §4.5.1] is not fully
correct as written (it does not even have degree −1). Here, we have used the correct
definition from [28, §6.4.5]. We also borrow the tree notation from [28, 6.4.5], where
it is used to describe the differential of the right twisted composite product C ◦ζ O
which we do not use here.

Suppose both O and C are weighted, reduced and connected, i.e. their weight 0
part is 1, e.g. quadratic (co)operads generated by a reduced S-module. Then we
ask ζ to be weight-preserving and we say that it is Koszul if the twisted composite
product O ◦ζ C is acyclic in positive weight. It is nevertheless customary to just say
that it is acyclic since in weight zero it is always 1 ◦ 1 ∼= 1, which is obviously not
acyclic.

The suspension sX of a chain complex is defined by shifting one degree up and
changing the sign of the differential. Equivalently, s is defined as a functor by the
existence of a natural degree 1 isomorphism s : X → sX.

The Koszul dual cooperad O¡ = C(sE, s2R) of a reduced quadratic operad
O = P(E,R) is cogenerated by sE with corelations s2R. The canonical twisting
morphism

κ : O¡ → O
is the composite

O¡ � sE
s−1

−→ E ↪→ O
given by the projection onto the cogenerators (the weight 1 part), the desuspension
and the inclusion of the generators (again the weight 1 part). The operad O is
Koszul if both O and O¡ are k-projective and κ is Koszul, i.e. the operadic Koszul
complex, which is the twisted composite product O ◦κ O¡, is acyclic. We will use
the following characterization instead.

Lemma 4.3. A reduced quadratic operad O in GrMod is Koszul if and only if
there exists a weighted, reduced and connected cooperad C in GrMod and a weight-
preserving twisting morphism ζ : C → O such that both O and C are k-projective, ζ
is acyclic, and ζ vanishes in weight �= 1. In this case, the Koszul dual cooperad of
O is O¡ = C.

Proof. The ‘only if’ part follows by definition. If we now assume the existence of C
with the required properties then there is an adjoint cooperad morphism ζ̄ : C →
BO [28, theorem 6.5.7]. Here BO is the bar construction, see [16, §3.1.9] and
[28, §6.5.1]. The morphism ζ̄ is a quasi-isomorphism by the left module version of
[28, theorem 2.1.13] and [28, lemma 4.7.2], see also [28, theorem 6.6.1]. Since C
has trivial differential (it is a cooperad in GrMod), it is the homology of the bar
construction BO. Moreover, since ζ vanishes in weights �= 1, ζ̄ maps to the maximal
weight part of BO on each bar degree, see [16, lemma 5.2.2]. Therefore, the lemma
follows, see [16, §5.2.3]. �

We can regard a graded complex X as a complex equipped with a splitting

Xn =
⊕

p+q=n

Xp,q
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such that d(Xp,q) ⊂ Xp,q−1. In this way, it is easy to see that, if we start with
an object in GrCh, most constructions in Ch performed in Koszul duality theory
remain in GrCh. Therefore, we can freely use notions and results from Koszul
duality theory in [16, 18, 28] in this graded context.

The suspension of a graded complex, regarded as a sequence of complexes, is
defined component-wise. This means shifting the vertical degree and changing the
sign of the differential. The suspension construction extends to S-modules in the
obvious way.

We would like to use lemma 4.3 to show that the derived operad dO of a reduced
quadratic operad O = P(E,R) is Koszul, and compute its Koszul dual dO¡. In order
to find a candidate for this cooperad, we define the distributive law in definition
4.5 below.

Proposition 4.4. The algebra D, regarded as an operad concentrated in arity 1, is
Koszul. Its Koszul dual D¡ = k[δ] is the polynomial coalgebra on one generator δ of
bidegree (−1, 1) with trivial differential.

Proof. Let κ : k[δ]→ k[ε]/(ε2) be the morphism of vertical degree −1 defined by
κ(δ) = ε and κ(δr) = 0 for r �= 1. This is a twisting morphism. The differential
of the corresponding Koszul complex k[ε]/(ε2)⊗κ k[δ] is d(1⊗ δr) = ε⊗ δr−1 for
r > 0, d(1⊗ 1) = 0, and d(ε⊗ δr) = 0 for r � 0. This is clearly acyclic. �

A cooperadic distributive law is the dual categorical notion of operadic distribu-
tive law. Such a law can be used to construct a new cooperad from two given ones.
A (bi)graded cooperad is a cooperad in (Gr)Ch with trivial differential.

Definition 4.5. Let C be a graded cooperad. The cooperadic distributive law

ϕ¡ : D¡ ◦ C −→ C ◦ D¡

is the morphism of S-modules in GrCh defined as follows for any μ ∈ C(r) and i � 0,

ϕ¡(δi;μ) =
∑

j1+···+jr=i

(μ; δj1 , . . . , δjr ).

The derived cooperad dC of C is the bigraded cooperad D¡ ◦ϕ¡ C, with underlying
S-module D¡ ◦ C and decomposition

If εC : C → 1 denotes the counit of C, the counit of D¡ ◦ϕ¡ C is εD¡ ◦ εC .

Lemma 4.6. The morphism of S-modules ϕ¡ in definition 4.5 is indeed a cooperadic
distributive law.

Proof. We have to check that the categorical duals of the four diagrams in
[28, §8.6.1] commute. These diagrams are called (i), (ii), (I) and (II). By the very
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definition,

ϕ¡(1;μ) = (μ; 1, . . . , 1), ϕ¡(δi; 1) = (1; δi).

We choose an element (δi;μ) ∈ (D¡ ◦ O¡)(r) and decompose the O¡ term, using the
Sweedler notation in remark 5.23,

(δi,Δ(μ)) =
∑
[μ]

(δi; (ν; ν1, . . . , νl) · τ)

=
∑
[μ]

((δi; ν); ν1, . . . , νl) · τ.

We apply ϕ¡ to the D¡ ◦ O¡ component
∑
[μ]

(ϕ¡(δi; ν); ν1, . . . , νl) · τ =
∑
[μ]

∑
j1+···+jl=i

((ν; δj1 , . . . , δjl); ν1, . . . , νl) · τ

=
∑
[μ]

∑
j1+···+jl=i

(ν; (δj1 ; ν1), . . . , (δjl ; νl)) · τ.

We now apply ϕ¡ to all factors in D¡ ◦ O¡. If νj ∈ O¡(sj), this yields
∑
[μ]

∑
j1+···+jl=i

(
ν;

∑
k1,1+···+k1,s1=j1

(ν1; δk1,1 , . . . , δk1,s1 ), . . . ,

∑
kl,1+···+kl,sl

=jl

(νl; δkl,1 , . . . , δkl,sl )
)
· τ.

The composite C ◦ D¡ is given by

(C ◦ D¡)(r) = C(r)⊗ (D¡)⊗
r

as Sr-modules, with the permutation action on the tensor power and the diagonal
action on the tensor product, like in the proof of proposition 3.8.

Since necessarily
∑l

j=1 sj = r, the previous summation coincides with

∑
[μ]

∑
j1+···+jr=i

((ν; ν1, . . . , νl); δj1 , . . . , δjr ) · τ

=
∑

j1+···+jr=i

∑
[μ]

((ν; ν1, . . . , νl) · τ ; δjτ(1) , . . . , δjτ(r)).

Changing variables, this equals
∑

j1+···+jr=i

∑
[μ]

((ν; ν1, . . . , νl) · τ ; δj1 , . . . , δjr ).

This is the same as if we first consider ϕ¡(δi, μ) in definition 4.5 and then decompose
μ ∈ O¡(r). This proves the dual of (II).
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We can also start by applying the decomposition to the D¡ term δi,

(Δ(δi), μ) =
∑

j+k=i

((δj ; δk);μ)

=
∑

j+k=i

(δj ; (δk;μ)),

then we apply ϕ,∑
j+k=i

(δj ;ϕ(δk;μ)) =
∑

j+k=i

∑
l1+···+lr=k

(δj ; (μ; δl1 , . . . , δlr ))

=
∑

j+k=i

∑
l1+···+lr=k

((δj ;μ); δl1 , . . . , δlr )),

and ϕ again,∑
j+k=i

∑
l1+···+lr=k

(ϕ(δj ;μ); δl1 , . . . , δlr )

=
∑

j+k=i

∑
l1+···+lr=k

∑
m1+···+mr=j

((μ; δm1 , . . . , δmr ); δl1 , . . . , δlr )

=
∑

j+k=i

∑
l1+···+lr=k

∑
m1+···+mr=j

(μ; (δm1 ; δl1), . . . , (δmr ; δlr ))

=
∑

l1+···+lr+m1+···+mr=i

(μ; (δm1 ; δl1), . . . , (δmr ; δlr )).

This is the same as if we take ϕ(δi;μ) in definition 4.5 and decompose all terms
in D¡, ∑

j1+···+jr=i

(
μ;

∑
m1+l1=j1

(δm1 ; δl1), . . . ,
∑

mr+lr=jr

(δmr ; δlr )
)

=
∑

m1+l1+···+mr+lr=i

(μ; (δm1 ; δl1), . . . , (δmr ; δlr )).

This checks the dual of (I).
In order to show the commutativity of the dual of (i), we take ϕ(δi;μ) in

definition 4.5. Then we apply the counit εD¡ : D¡ → 1 to the D¡ factors, which
yields (μ; 1, . . . , 1) if i = 0 and 0 otherwise. We finally apply the unit isomorphism
O¡ ◦ 1 ∼= O¡, which yields μ in the first case. The result is the same as if we first
apply the counit εD¡ to the D¡ factor of (δi;μ), which yields (1;μ) if i = 0 and 0
otherwise, and then the unit isomorphism 1 ◦ O¡ ∼= O¡.

The commutativity of the dual of (ii) is easy because the only O¡ term appearing
in ϕ(δi;μ) is μ itself, see definition 4.5. Therefore, on the one hand, if μ has positive
weight, we obtain zero either if we apply εO¡ to all μ’s in ϕ(δi;μ) or if we directly
apply it to the only μ in (δi;μ). On the other hand, if μ = 1 is the operadic unit,
then εO¡(1) = 1, ϕ(δi; 1) = (1, δi), and both (δi; 1) and (1, δi) map to δi via the
unit isomorphisms D¡ ◦ 1 ∼= D¡ ∼= 1 ◦ D¡. �

https://doi.org/10.1017/prm.2022.42 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.42


1212 J. Maes and F. Muro

We are almost ready to prove the main theorem of this section. First, we need to
recall a spectral sequence comparison result which will be used several times.

Definition 4.7. A filtered complex is a chain complex X equipped with an
increasing filtration F∗X by subcomplexes indexed by the integers,

· · · ⊂ FnX ⊂ Fn+1X ⊂ · · · ⊂ X.

This filtration is exhaustive if X =
⋃

n FnX and bounded below if FNX = 0 for
certain N . A morphism f : X → Y of filtered complexes is a chain map such that
f(FnX) ⊂ FnY .

Remark 4.8. Bounded below filtered complexes are complete in the sense of
[31, definitions 3.1 and 3.8].

A filtered complex X has an associated spectral sequence with E0-term

E0
p,q(X) =

FpXp+q

Fp−1Xp+q
,

see [31, §2.2]. A morphism of filtered complexes induces (functorially) a map
between the corresponding spectral sequences.

We will also consider decreasingly filtered cochain complexes in some proofs
below, and their associated cohomological spectral sequences.

Lemma 4.9 ([31, theorem 3.9]). If f : X → Y is a morphism of complete and
exhaustive filtered complexes which induces an isomorphism on some page En of
the corresponding spectral sequences, then f is a quasi-isomorphism.

Theorem 4.10. If O is graded Koszul and arity-wise projective over the correspond-
ing symmetric group, then dO is Koszul and its Koszul dual is the derived cooperad
of the Koszul dual of O, (dO)¡ = d(O¡).

Proof. Let ζ : D¡ ◦ϕ¡ O¡ → O ◦ϕ D = dO be the composite

D¡ ◦θ¡ O¡ � 1 ◦ sE ⊕ k · δ ◦ 1 ∼= sE ⊕ k · δ s−1

−→ E ⊕ k · ε ∼= E ◦ 1⊕ 1 ◦ k · ε ↪→ O ◦θ D.

These arrows are the projection onto the weight 1 part, the desuspension, and the
inclusion of the weight 1 part, respectively, i.e. ζ vanishes in weight �= 1, and in
weight 1 it is given by

ζ(δ; 1) = (1; ε), ζ(1; sμ) = (μ; 1, . . . , 1), μ ∈ E.

This degree −1 morphism is a twisting morphism, i.e. the composite ζ � ζ

vanishes. Let us check this claim.
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The infinitesimal decomposition Δ(1) of a cooperad C will be denoted by

Δ(1) : C −→ C ◦(1) C, Δ(1)(μ) =
∑
(μ)

(μ(1) ◦l μ(2)) · σ, (4.11)

like in [28, §10.1.2]. See also (4.1).
With this notation, the infinitesimal decomposition of D¡ ◦ϕ¡ O¡ is

Δ(1)(δi;μ) =
∑

j+k=i

∑
(μ)

((δj ;μ(1)) ◦l (δk;μ(2))) · σ, μ ∈ O¡.

Therefore, ζ � ζ vanishes except possibly in weight 2. In weight 2 it also vanishes
by the following formulas,

ζ � ζ(δ2; 1) = ζ(δ; 1) ◦1 ζ(δ; 1) = (1; ε) ◦1 (1; ε) = (1; ε2) = 0.

Given μ ∈ E,

ζ � ζ(δ; sμ) = ζ(δ; 1) ◦1 ζ(1; sμ)− (−1)|μ|
r∑

i=1

ζ(1; sμ) ◦i ζ(δ; 1)

= (1; ε) ◦1 (μ; 1, . . . , 1)− (−1)|μ|
r∑

i=1

(μ; 1, . . . , 1) ◦i (1; ε)

= ϕ(ε;μ)− (−1)|μ|
r∑

i=1

(μ; 1, i−1. . ., 1, ε, 1, r−i. . ., 1) = 0

by definition of ϕ. We have that (O¡)(2) = s2R, and given
∑

μ ◦l ν ∈ R ⊂ E ◦(1) E,

ζ � ζ
(
1;

∑
(−1)|μ|sμ ◦l sν

)
= −

∑
ζ(1; sμ) ◦l ζ(1; sν)

= −
∑

(μ; 1, . . . , 1) ◦l (ν; 1, . . . , 1)

=
(
−

∑
μ ◦l ν; 1, . . . , 1

)
= 0

by the relations R in O.
We now show that the twisted composite product (O ◦ϕ D) ◦ζ (D¡ ◦ϕ¡ O¡) is

acyclic in positive weights. The decomposition of D¡ ◦ϕ¡ O¡, which plays a role in
the definition of the previous twisted complex, is

Δ(δi;μ) =
∑
[μ]

∑
j+k1+···+kl=i

((δj ; ν); (δk1 ; ν1), . . . , (δkl ; νl)) · τ.

Here we use the Sweedler formula for the decomposition of O¡ in (4.1). We increas-
ingly filter (O ◦ϕ D) ◦ζ (D¡ ◦ϕ¡ O¡) according to the weight of O¡. This is indeed a
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filtration because, according to the previous formulas

(ζ ◦ id)Δ(δi;μ) = ((1; ε); (δi−1;μ))

+
∑
[μ]

ν∈sE

∑
k1+···+kl=i

(s−1ν; 1, . . . , 1); (δk1 ; ν1), . . . , (δkl ; νl)) · τ,

and the sum of the weights of the νi is one less than the weight of μ. This filtration
is bounded below and exhaustive. Moreover, the previous formula also shows that
E0((O ◦ϕ D) ◦ζ (D¡ ◦ϕ¡ O¡)) = O ◦ (D ◦κ D¡) ◦ O¡, with d0 given just by the Koszul
complex differential of D. We have that

O ◦ D ◦ D¡ ◦ O¡ =
⊕
r�0

O(r)⊗Sr
(D ◦ D¡ ◦ O¡)⊗

r

.

The homology of D ◦κ D¡ is 1 by proposition 4.4. Therefore, the homology of
D ◦ D¡ ◦ O¡ is O¡. Since each O(r) is projective as an Sr-module, we conclude
that the homology of O ◦ (D ◦κ D¡) ◦ O¡ is O ◦ O¡. Moreover, as a graded com-
plex E1((O ◦ϕ D) ◦ζ (D¡ ◦ϕ¡ O¡)) = O ◦κ O¡ is the Koszul complex of O. Indeed,
the spectral sequence differential d1 is the Koszul complex differential because O is
a sub-operad of dO = O ◦ϕ D, O¡ is a sub-cooperad of D¡ ◦ϕ¡ O¡, and the twisting
morphism ζ restricts to the canonical twisting morphism κ : O¡ → O on O¡. Since
O is Koszul, E1 is acyclic in positive weights, hence so is (O ◦ϕ D) ◦ζ (D¡ ◦ϕ¡ O¡),
see lemma 4.9. Now this theorem follows from lemma 4.3. �

Henceforth, the Koszul dual of dO will simply be denoted by dO¡.

Remark 4.12. In [27], the authors prove the previous theorem for O = A the
associative operad using the standard quadratic presentations of A and D and
[28, theorem 8.6.5 and proposition 8.6.6]. These results are based on [28, Theorem
8.6.4], whose proof contains a gap. Loday and Vallette use an increasing filtration
of the bar construction by number of inversions. This filtration is not compatible
with the differential, as we now show with a simple example.

We consider two copies of the ring of dual numbers, k[x]/(x2) and k[y]/(y2). We
regard them as operads in Ch concentrated in arity 1 and degree 0. Let

λ : k · y ⊗ k · x −→ k · x⊗ k · y

be the homomorphism (rewriting rule) defined by λ(y ⊗ x) = x⊗ y. With the
notation in [28],

k[x]/(x2) ∨λ k[y]/(y2) = k[x, y]/(x2, y2).

A k-linear basis of this commutative algebra is {1, x, y, xy}. The bar
construction B(k[x, y]/(x2, y2)) is the non-unital Hochschild complex, i.e. the
(non-commutative) polynomial coalgebra generated by {s(x), s(y), s(xy)} in degree
1 endowed with the Hochschild differential. Here, the number of inversions of a
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monomial consists of counting the occurrences of

· · · s(y)s(x) · · · , · · · s(xy)s(x) · · · , · · · s(y)s(xy) · · · , · · · s(xy)s(xy) · · · .

The filtration of the bar construction is by number of inversions. The monomial
s(y)s(y)s(x)s(x) has one inversion but its differential s(y)s(xy)s(x) has two.

5. Derived homotopy algebras and infinity-morphisms

Recall that, given a Koszul operad O, its infinity operad O∞ = ΩO¡ is obtained by
applying the cobar construction to its Koszul dual cooperad.

Definition 5.1. Let O be a graded operad. A derived homotopy O-algebra or
derived O∞-algebra is a dO∞-algebra with underlying bounded graded complex.

Here and elsewhere dO∞ is to be understood as the infinity operad of the derived
operad dO, not the derived operad of the infinity operad O∞, i.e. dO∞ = (dO)∞ �=
d(O∞). The latter is related but considerably smaller. Hence, if O is graded Koszul
dO∞ is the cobar construction of the derived cooperad dO¡, see theorem 4.10.

We would like to characterize derived homotopy dO∞-algebras as split filtered
O∞-algebras, which is a more familiar structure. For this, we need a down-to-earth
description of dO∞-algebras in terms of operations and equations.

Remark 5.2. For O a graded operad, an O∞-algebra can be described in terms
of the infinitesimal decomposition Δ(1) of the coaugmented cooperad O¡, see
[28, §10.1.2]. We use the Sweedler notation for Δ(1) in (4.11).

An O∞-algebra is a complex A equipped with structure morphisms

O¡(r)n0 ⊗An1 ⊗ · · · ⊗Anr
−→ An0−1+n1+···+nr

,

μ⊗ x1 ⊗ · · · ⊗ xr 	→ μ(x1, . . . , xr),

satisfying

(μ · σ)(x1, . . . , xr) = (−1)ασμ(xσ−1(1), . . . , xσ−1(r)), ασ =
∑
s<t

σ(s)>σ(t)

|xs||xt|,

(5.3)
for any permutation σ ∈ Sr,

d(μ(x1, . . . , xr)) +
r∑

s=1

(−1)βμ(x1, . . . , d(xs), . . . , xr)

+
∑
(μ)

(−1)γμ(1)(xσ−1(1), . . . , μ
(2)(xσ−1(l), . . . ), . . . ) = 0, (5.4)

where

β = |μ|+
s−1∑
t=1

|xt|, γ = ασ + |μ(1)|+ (|μ(2)| − 1)
l−1∑
m=1

|xσ−1(m)|, (5.5)
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and

1(x) = 0,

where 1 ∈ O¡(1)0 is given by the coaugmentation.
Moreover, O-algebras are the same as O∞-algebras with μ(x1, . . . , xr) = 0 for

μ ∈ O¡ of weight � 2. This reflects the definition of the canonical quasi-isomorphism
O∞ � O.

This description also works in the category of graded complexes. In that case, the
structure morphisms have bidegree (0, −1) and the signs are computed by using
the total degree.

If the graded operadO is Koszul, any dO∞-algebra has an underlyingD∞-algebra
since D¡ ⊂ dO¡, see theorem 4.10. We will start by describing D∞-algebras. This
was done in [28, 10.3.7] for the non-bigraded version of D. The bigraded version is
very similar.

Definition 5.6. A twisted complex X is a bigraded module equipped with module
morphisms

di : Xp,q −→ Xp−i,q+i−1, i � 0,

satisfying ∑
j+k=i

djdk = 0, i � 0. (5.7)

Proposition 5.8. A D∞-algebra is the same thing as a twisted complex.

Proof. By proposition 4.4, D¡ = k[δ] is the polynomial coalgebra on one generator
of bidegree (−1, 1) with trivial differential. Its infinitesimal decomposition is

Δ(1)(δi) =
∑

j+k=i

δj ◦1 δk.

Applying the graded complex version of remark 5.2, the correspondence between
twisted complexes and D∞-algebras is given by the equations

d0(x) = d(x), di(x) = δi(x), i > 0.

Equation (5.7) corresponds to (5.4) for D¡ with the previous infinitesimal decom-
position. �

Remark 5.9. Proposition 5.8 extends to an isomorphism of categories if we define
a morphism of twisted complexes f : X → Y as a family of module morphisms
fp,q : Xp,q → Yp,q, p, q ∈ Z, commuting with all the di. These morphisms are known
as strict morphisms.
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Proposition 5.10. Let O be a graded Koszul operad. A dO∞-algebra A is the same
as a twisted complex equipped with module morphisms, i � 0,

O¡(r)s ⊗Ap1,q1 ⊗ · · · ⊗Apr,qr
−→ Ap1+···+pr−i,s−1+q1+···+qr+i,

μ⊗ x1 ⊗ · · · ⊗ xr 	→ μi(x1, . . . , xr),

satisfying the following equations for i � 0 :

(μ · σ)i(x1, . . . , xr) = (−1)ασμi(xσ−1(1), . . . , xσ−1(r)), σ ∈ Sr, (5.11)

∑
j+k=i

dj(μk(x1, . . . , xr)) +
r∑

s=1

(−1)β
∑

j+k=i

μj(x1, . . . , dk(xs), . . . , xr)

+
∑
(μ)

(−1)γ
∑

j+k=i

μ
(1)
j (xσ−1(1), . . . , μ

(2)
k (xσ−1(l), . . . ), . . . ) = 0, (5.12)

and

1i(x) = 0. (5.13)

Here, ασ, β, γ are as in (5.1) and (5.3).

Proof. We can split the Sweedler notation for the infinitesimal decomposition of O
in (4.11) as follows. If μ ∈ O¡ has positive weight,

Δ(1)(μ) = 1 ◦i μ +
∑
(μ)′

(μ(1) ◦l μ(2)) · σ +
r∑

s=1

μ ◦s 1,

where (μ)′ stands for the summands where both μ(1) and μ(2) have positive weight,
and

Δ(1)(1) = 1 ◦1 1.

The infinitesimal decomposition of dO¡ is then

Δ(1)(δi;μ) =
∑

j+k=i

(δj ; 1) ◦1 (δk;μ) +
r∑

s=1

∑
j+k=i

(δj ;μ) ◦s (δk; 1)

+
∑
(μ)′

∑
j+k=i

((δj ;μ(1)) ◦l (δk;μ(2))) · σ,

see theorem 4.10.
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By the graded version of remark 5.2, a dO∞-algebra is a graded complex A with
differential d0 equipped with module morphisms

(D¡ ◦ϕ¡ O¡)(r)p0,q0 ⊗Ap1,q1 ⊗ · · · ⊗Apr,qr
−→ Ap0+p1+···+pr,q0−1+q1+···+qr

,

satisfying certain equations. Note that D¡ ◦ O¡ = k[δ]⊗O¡. If we denote

(δi ⊗ μ)(x1, · · · , xr) = μi(x1, . . . , xr), μ of positive weight and i � 0;

(δi ⊗ 1)(x) = di(x), i > 0;

(δ0 ⊗ 1)(x) = 10(x);

the equations are

(μi · σ)(x1, . . . , xr) = (−1)ασμi(xσ−1(1), . . . , xσ−1(r))

for any permutation σ ∈ Sr, which coincides with (5.11),

d0(μi(x1, . . . , xr)) +
r∑

t=1

(−1)βμi(x1, . . . , d0(xt), . . . , xr) (5.14)

+
∑

j+k=i
j>0

djμk(x1, . . . , xr) +
r∑

s=1

(−1)β
∑

j+k=i
k>0

μj(x1, . . . , dk(xs), . . . , xr)

+
∑
(μ)′

(−1)γ
∑

j+k=i

μ
(1)
j (xσ−1(1), . . . , μ

(2)
k (xσ−1(l), . . . ), . . . ) = 0,

if μ has positive weight,

d0(di(x1)) + di(d0(x1)) +
∑

j+k=i
j,k>0

dj(dk(x1)) = 0, (5.15)

and

10(x) = 0. (5.16)

Observe that (5.15) is the equation (5.7) defining twisted complexes. Moreover,
(5.14) is (5.12) replacing the summation index (μ) with (μ)′. We want to avoid
this replacement, because (μ)′ has been solely introduced for this proof. For that
reason, we are going to make a new convention which will make the summands in
(μ) but not in (μ)′ vanish. This convention is

1i(x) = 0, i > 0;

which, together with (5.16), amounts to (5.13) . �

Remark 5.17. For O graded Koszul, any dO∞-algebra has an underlying O∞-
algebra in GrCh since O¡ ⊂ dO¡ by theorem 4.10, so O∞ ⊂ dO∞. The graded
complex differential of this underlying structure is d0 and the structure operations
are the μ0 for μ ∈ O¡.
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Example 5.18. We apply the previous proposition to the classical operads A, C
and L, whose algebras are associative, commutative and Lie algebras, respectively,
as well as to the initial operad 1, which is k concentrated in arity and degree 0
(generated by the operadic unit).

1. A derived homotopy associative algebra A is a twisted complex equipped with
bidegree (−i, r − 2 + i) operations mi,r : A⊗r → A, r � 2, i � 0, satisfying

∑
j+k=i

dj(mk,r(x1, . . . , xr)) +

r∑
s=1

(−1)r−1+
∑s−1

t=1 |xt|
∑

j+k=i

mj,r(x1, . . . , dk(xs), . . . , xr)

+
∑

s+t=r+1

s∑
l=1

(−1)(s−l)(t−1)+s−1+t
∑ l−1

n=1 |xn| ∑
j+k=i

mj,s(x1, . . . , mk,t(xl, . . . ), . . . )=0,

compare [28, §9.2.1 and the formula in the proof of proposition 9.2.4]. As
noticed in the previous remark, A equipped with the differential d0 and the
operations m0,r is a usual A-infinity algebra, hence m0,2 is a binary product,
associative up to the chain homotopy m0,3, d0 satisfies the Leibniz rule, etc.
Among the new operations, d1 satisfies the Leibniz rule up to the homotopy
±m1,2,

d1m0,2(x1, x2)−m0,2(d1(x1), x2)− (−1)|x1|m0,2(x1, d1(x2))

= d0(−m1,2(x1, x2)) + m1,2(d0(x1), x2) + (−1)|x1|m1,2(x1, d0(x2)).

Our derived A∞-algebras differ from Sagave’s [37] in some signs. This is
because Sagave works with bicomplexes with commuting differentials and
uses the Koszul sign rule with respect to the horizontal and vertical degrees
separately, while we use bicomplexes with anti-commuting differentials and
apply the Koszul sign rule with respect to the total degree. Both approaches
are equivalent by [32, remarks 2.2 and 2.8].

2. Recall that a (non-trivial) (p, q)-shuffle, p, q � 1, is a permutation σ ∈ Sp+q

of the form (
1 · · · p p + 1 · · · p + q
u1 · · · up v1 · · · vq

)

where u1 < · · · < up and v1 < · · · < vq. They form a subset Sp,q ⊂ Sp+q. We
say that a map g : X⊗r → Y vanishes on shuffles if

∑
σ∈Ss,r−s

(−1)
∑

up>vq
|xup ||xvq |g(xσ−1(1), . . . , xσ−1(r)) = 0

for all 1 < s < r. The exponent of −1 is indeed ασ in (5.1). A derived homo-
topy commutative algebra is a derived homotopy associative algebra such that
the mi,r vanish on shuffles, compare [9, §5]. In particular, the binary product
m0,2 is commutative.

https://doi.org/10.1017/prm.2022.42 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.42


1220 J. Maes and F. Muro

3. A map g : X⊗r → Y is skew-symmetric if

g(x1, . . . , xr) = (−1)ασ sign(σ)g(xσ−1(1), . . . , xσ−1(r))

for any permutation σ ∈ Sr, see (5.1). A derived homotopy Lie algebra L
is a twisted complex equipped with skew-symmetric bidegree (−i, r − 2 + i)
operations �i,r : A⊗r → A, r � 2, i � 0, satisfying the following generalized
Jacobi identity

∑
j+k=i

dj(�k,r(x1, . . . , xr)) +
r∑

s=1

(−1)r−1+
∑s−1

t=1 |xt|
∑

j+k=i

�j,r(x1, . . . , dk(xs), . . . , xr)

+
∑

s+t=r+1
σ∈St,s−1

(−1)(s−1)t+ασ sign(σ)
∑

j+k=i

�j,s(�k,t(xu1 , . . . , xut), xv1 , . . . , xvs−1) = 0,

compare [26]. Here, ασ can be computed as in (2). Like in previous cases,
L equipped with the differential d0 and the operations λ0,r is a usual L-infinity
algebra. Hence, �0,2 is a binary skew-symmetric product which satisfies the
Jacobi identity up to the chain homotopy �0,3, d0 satisfies the Leibniz rule,
and d1 too up to the skew-symmetric homotopy ±�1,2,

d1�0,2(x1, x2)− �0,2(d1(x1), x2)− (−1)|x1|�0,2(x1, d1(x2))

= d0(−�1,2(x1, x2)) + �1,2(d0(x1), x2) + (−1)|x1|�1,2(x1, d0(x2)).

4. A derived homotopy 1-algebra is just a twisted complex.

Definition 5.19. A split filtered O∞-algebra A is an O∞-algebra in Ch such
that:

(1) For each n ∈ Z, the degree n module splits as

An =
⊕

p+q=n

Ap,q

with Ap,q = 0 if p < 0.

(2) If we denote

FmAn =
⊕

p+q=n
p�m

Ap,q,

the differential of A satisfies d(FmAn) ⊂ FmAn−1.

(3) The O∞-algebra structure is compatible with the filtration, i.e. the structure
maps (co)restrict to

O¡(r)⊗ Fm1A⊗ · · · ⊗ Fmr
A −→ Fm1+···+mr

A.

Remark 5.20. Derived homotopy algebras are examples of filtered complexes which
are exhaustive and bounded below, see definition 4.7, so we can use lemma 4.9.
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Corollary 5.21. A derived homotopy O-algebra A is the same as a split filtered
O∞-algebra.

Proof. Since A is filtered, the restriction of the differential to Ap,q is determined by
its components,

di : Ap,q −→ Ap−i,q+i−1, i � 0.

There are finitely many for each p since Ap−i,q+i−1 = 0 for i > p. It is well known
that (5.7) is equivalent to the differential of A squaring to zero.

Similarly, the restriction to O¡(r)s ⊗Ap1,q1 ⊗ · · · ⊗Apr,qr
of the structure maps

in remark 5.2 are determined by their components

O¡(r)s ⊗Ap1,q1 ⊗ · · · ⊗Apr,qr
−→ Ap1+···+pr−i,s−1+q1+···+qr+i, i � 0,

since these structure maps are compatible with the filtration of A. If we denote
these components by

μ⊗ x1 ⊗ · · · ⊗ xr 	→ μi(x1, . . . , xr),

the equations in proposition 5.10 are a mere translation of those in remark 5.2. �

Remark 5.22. Proposition 5.10 extends to an equivalence of categories if we
define morphisms of split filtered O∞-algebras f : A→ B as O∞-algebra morphisms
preserving the horizontal and the vertical degree, f(Ap,q) ⊂ Bp,q, p, q ∈ Z.

Now, we would like to do the same for ∞-morphisms between derived homotopy
O-algebras, i.e. we want to characterize them as filtration-preserving∞-morphisms
between split filtered O∞-algebras. In order to achieve this goal we need a down-
to-earth description of dO∞-algebra ∞-morphisms.

Remark 5.23. For a graded operad O, an ∞-morphism between O∞-algebras can
be described in terms of the decomposition Δ and the infinitesimal decomposition
Δ(1) of O¡. We use the Sweedler notations in (4.1) and (4.11) for these Δ and Δ(1).

An ∞-morphism between O∞-algebras f : A� B is given by structure mor-
phisms

O¡(r)n0 ⊗An1 ⊗ · · · ⊗Anr
−→ Bn0+n1+···+nr

,

μ⊗ x1 ⊗ · · · ⊗ xr 	→ f(μ)(x1, . . . , xr),

satisfying the following equations, where we borrow notation from remark 5.2 for
signs:

f(μ · σ)(x1, . . . , xr) = (−1)ασf(μ)(xσ−1(1), . . . , xσ−1(r)),
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for any permutation σ ∈ Sr, and

d(f(μ)(x1, . . . , xr))−
r∑

s=1

(−1)βf(μ)(x1, . . . , d(xs), . . . , xr)

=
∑
(μ)

(−1)γf(μ(1))(xσ−1(1), . . . , μ
(2)(xσ−1(l), . . . ), . . . )

−
∑
[μ]

(−1)λν(f(ν1)(xτ−1(1), . . . ), . . . , f(νl)(. . . , xτ−1(r))),

where β and γ are as in remark 5.2 and λ consists of adding up ατ and

|νu||xτ−1(v)|

whenever νu appears after xτ−1(v). This follows from [28, §10.2.3].
The underlying morphism of an ∞-morphism f : A� B is f(1) : A→ B. The

composition of f with another ∞-morphism g : B � C is given by

(gf)(μ)(x1, . . . , xr) =
∑
[μ]

(−1)λg(ν)(f(ν1)(xτ−1(1), . . . ), . . . , f(νl)(. . . , xτ−1(r))),

see also [28, §10.2.3]. The category of O∞-algebras and ∞-morphisms between
them will be denoted by Alg∞Ch(O∞).

This description also works in the category of graded complexes using the total
degree for signs.

Definition 5.24. For O a graded Koszul operad, a derived ∞-morphism between
derived homotopy O-algebras is an ∞-morphism of dO∞-algebras between them.

Proposition 5.25. Let O be a graded Koszul operad. An ∞-morphism of dO∞-
algebras f : A� B is the same as a family of module morphisms, i � 0,

O¡(r)s ⊗Ap1,q1 ⊗ · · · ⊗Apr,qr
−→ Bp1+···+pr−i,s+q1+···+qr+i,

μ⊗ x1 ⊗ · · · ⊗ xr 	→ f(μ)i(x1, . . . , xr),

satisfying the following equations for i � 0,

f(μ · σ)i(x1, . . . , xr) = (−1)ασf(μ)i(xσ−1(1), . . . , xσ−1(r)), σ ∈ Sr,

∑
j+k=i

dj(f(μ)k(x1, . . . , xr))−
r∑

s=1

(−1)β
∑

j+k=i

f(μ)j(x1, . . . , dk(xs), . . . , xr)

=
∑
(μ)

(−1)γ
∑

j+k=i

f(μ(1))j(xσ−1(1), . . . , μ
(2)
k (xσ−1(l), . . . ), . . . )

−
∑
[μ]

(−1)λ
∑

j+k1+···+kl=i

νj(f(ν1)k1(xτ−1(1), . . . ), . . . , f(νl)kl
(. . . , xτ−1(r))).

Here, ασ, β, γ are as in (5.3) and (5.5), and λ is as in remark 5.23.
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The proof is analogous to that of proposition 5.10, hence we skip it.

Definition 5.26. Given a graded Koszul operad O and two split filtered O∞-
algebras A, B we say that an ∞-morphism f : A� B is filtration preserving if the
structure maps (co)restrict to

O¡(r)⊗ Fm1A⊗ · · · ⊗ Fmr
A −→ Fm1+···+mr

A.

Corollary 5.27. Let O be a graded Koszul operad. A derived ∞-morphism of
derived homotopy O-algebras is the same as a filtration-preserving ∞-morphism
between split filtered O∞-algebras.

This is analogous to corollary 5.11 so we also skip it. This correspondence is
compatible with composition of (derived)∞-morphisms, so it defines an equivalence
of categories.

Example 5.28. We explicitly describe derived ∞-morphisms for the operads in
example 5.18.

(1) A derived ∞-morphism of derived homotopy associative algebras f : A�
B consists of bidegree (−i, r − 1 + i) maps fi,r : A⊗r → B, r � 1, i � 0,
satisfying

∑
j+k=i

dj(fk,r(x1, . . . , xr)) −
r∑

s=1

(−1)r−1+
∑s−1

t=1 |xt|
∑

j+k=i

fj,r(x1, . . . , dk(xs), . . . , xr)

=
∑

s+t=r+1

s∑
l=1

(−1)s−1+(s−l)(t−1)+t
∑ l−1

n=1 |xn| ∑
j+k=i

fj,s(x1, . . . , mk,t(xl, . . . ), . . . )

−
r∑

s=2

∑
s∑

l=1
tl=r

(−1)

s∑
l=1

(
(tl+1)(s−l)+(tl−1)

l−1∑
v=1

tv∑
u=1

|xu|
)

∑
j+k1+···+ks=i

mj,s(fk1,t1(x1, . . . ), . . . , fks,ts(. . . , xr)).

The morphism f0,1 : A→ B is a chain map with respect to the differential d0.
It preserves the product up to the chain homotopy f0,2. Moreover, f0,1 com-
mutes with the differential d1 up to a chain homotopy defined from f1,1, etc.
These derived ∞-morphisms coincide with Sagave’s maps between derived
A∞-algebras [37] up to the changes of sign conventions explained in example
5.18 (1).

(2) A derived∞-morphism of derived homotopy commutative algebras f : A� B
is a derived ∞-morphism of derived homotopy associative algebras such that
the fi,r vanish on shuffles.

(3) A derived ∞-morphism of derived homotopy Lie algebras f : L� L′ consists
of skew-symmetric bidegree (−i, r − 1 + i) maps fi,r : L⊗r → L′, r � 1, i � 0,

https://doi.org/10.1017/prm.2022.42 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.42


1224 J. Maes and F. Muro

satisfying
∑

j+k=i

dj(fk,r(x1, . . . , xr)) −
∑

j+k=i

(−1)r−1+
∑s−1

t=1 |xt|fj,r(x1, . . . , dk(xs), . . . , xr)

=
∑

s+t=r+1
σ∈St,s−1

(−1)(s−1)t+ασ sign(σ)
∑

j+k=i

fj,s(�k,t(xu1 , . . . , xut), xv1 , . . . , xvs−1)

−
∑

2�s�n
t1+···+ts=r
τ∈St1,...,ts

(−1)
s(s−1)

2 +
s−1∑
l=1

tl(s−l)+ατ +λ

sign(τ)
∑

j+k1+···+ks=i

�j,s(fk1,t1(xw1,1 , . . . ), . . .

. . . , fks,ts(. . . , xws,ts
)).

A (t1, . . . , ts)-shuffle, tl � 1, is a permutation of the form(
1 · · · t1 · · · · · ·

∑s−1
l=1 tl + 1 · · ·

∑s
l=1 tl

w1,1 · · · w1,t1 · · · · · · ws,1 · · · ws,ts

)

with wl,1 < · · · < wl,tl
for each l. This is the obvious generalization of (p, q)-

shuffles. The set St1,...,ts
in the last summation is the set of (t1, . . . , ts)-shuffles

such that, if tl = tl+1 then wl,1 < wl+1,1. Moreover, λ consists of adding
(tu − 1)|xwp,q

| for all p < u. Compare [1, definition 2.3].

(4) A derived ∞-morphism of derived homotopy 1-algebras is a twisted mor-
phism f : X � Y between twisted complexes. It consists of a family of module
morphisms

fi : Xp,q −→ Xp−i,q+i, i � 0,

satisfying ∑
j+k=i

fjdk =
∑

j+k=i

djfk, i � 0.

The composition of f with another twisted morphism g : B � C is given by

(gf)i =
∑

j+k=i

gjfk.

Remark 5.29. For O graded Koszul, a derived ∞-morphism of derived O∞-
algebras f : A� B has an underlying twisted morphism f(1) : A� B given
by

f(1)i : Ap,q −→ Bp−i,q+i, i � 0.

6. Minimal models

Throughout this section O = P(E,R) stands for a graded reduced quadratic Koszul
operad which, arity-wise, is a projective module over the corresponding symmetric
group. Hence we can apply theorem 4.10.
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Definition 6.1. A derived ∞-morphism between derived homotopy O-algebras
f : A� B is an E2-equivalence if, regarded as a filtration-preserving ∞-morphism
between split filtered O∞-algebras (see corollary 5.27), it induces an isomorphism
between the E2 pages of the spectral sequences associated to the filtrations.

A differential graded O-algebra is an O-algebra in Ch.

Definition 6.2. A twisted complex X is minimal if it has trivial vertical differential
d0 = 0. A dO∞-algebra is minimal if its underlying twisted complex is minimal
(see proposition 5.10).

A minimal model for a differential graded O-algebra A is an E2-equivalence
f : AM � A whose source is a k-projective minimal derived O∞-algebra.

Remark 6.3. Since E2-equivalences are the inverse image of isomorphisms by a
functor, they are closed under composition and, moreover, they satisfy the 2-out-of-3
property.

The homology of a graded complex X is denoted by H∗(X). If A is a dO∞-algebra,
then H∗(A) is a dO-algebra since H∗(dO∞) = dO by Koszulity.

If A is minimal then H∗(A) = A, hence it also carries an underlying dO-algebra
structure. Regarded as an O-algebra in bChu (see proposition 3.7), the vertical dif-
ferential is trivial dv = 0, the horizontal differential is dh = d1, and given a generator
μ ∈ E of O

μ(x1, . . . , xr) = (sμ)0(x1, . . . , xr).

Here, the right-hand side is part of the dO∞-algebra structure as described in
proposition 5.10, and the left-hand side is the O-algebra structure which is part of
the underlying dO-algebra structure

If f : A� B is an dO∞-algebra ∞-morphism, then the map f(1)0 : A→ B in
GrCh induces a dO-algebra morphism H∗(A)→ H∗(B). In particular, if A and B
are minimal f(1)0 : A→ B is a morphism between the previous underlying dO-
algebra structures.

Proposition 6.4. Any differential graded O-algebra A has a minimal model.

Proof. Any cofibrant object X in Ch (endowed with the projective model struc-
ture) with degree-wise projective homology H∗(X) is chain homotopy equivalent to
H∗(X) endowed with the trivial differential. Indeed, H∗(X) is also cofibrant in Ch
under these assumptions and all objects in Ch are fibrant. Therefore, any quasi-
isomorphism H∗(X)→ X is a homotopy equivalence. Such a quasi-isomorphism
(a cycle selection map) can be constructed because H∗(X) is projective. Moreover,
any homotopy equivalence H∗(X)→ X is the inclusion of a deformation retract
because chain homotopic endomorphisms of H∗(X) are equal since H∗(X) has
trivial differential. We can actually make it part of a contraction in the sense of
[5, definition 2.1 and remark 2.1]. This obviously extends to the category of graded
complexes GrCh = ChZ with the product model structure.

Let AQ → A be a cofibrant resolution in the semi-model category AlgbChCE
(O) of

proposition 2.4. The bicomplex underlying AQ is a Cartan–Eilenberg resolution, see
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remark 2.5, so AQ has projective vertical homology. We simply denote the vertical
homology by H∗(AQ), since it is the homology of the underlying graded complex.

The graded complex underlying AQ is cofibrant because the graded complex mor-
phisms underlying the generating cofibrations in bChCE are cofibrations in GrCh,
see [32, §4], and colimits are computed point-wise both in bCh and GrCh. Therefore,
we can take a map i : H∗(AQ)→ AQ in GrCh which is part of a contraction. We can
now invoke the homotopy transfer theorem, see [28, theorem 10.3.1] and [5, theorem
1.3]. This theorem endows H∗(AQ) with a minimal derived homotopy O-algebra
structure AM and enhances the map of graded complexes i : H∗(AQ)→ AQ to a
derived∞-morphism i : AM � AQ. This derived∞-morphism is an E2-equivalence.
It actually induces an isomorphism on the E1 page of the corresponding spectral
sequences, since this term is the vertical homology. If we compose it with AQ → A
we obtain the desired minimal model AM � A. �

Remark 6.5. The homotopy transfer theorem applied in the proof of proposition
6.4 is purely combinatorial and does not depend on the underlying ground ring. We
will however need further hypotheses later when we want to find an left inverse for
i : AM � AQ. Such a left inverse will be needed to ensure the essential uniqueness
of minimal models.

Remark 6.6. The proof of proposition 6.4 provides a method for the construction
of minimal models. Cofibrant resolutions in AlgbChCE

(O) are usually huge because
their underlying bigraded O-algebras are free. Nevertheless, in practice, it is often
possible to find an E2-equivalence Ã→ A in AlgbChCE

(O) with Ã smaller than any
AQ whose homology H∗(Ã) is k-projective and Ã contracts onto H∗(Ã), and this
suffices to enhance H∗(Ã) to a minimal model. This is how we obtain the minimal
models in the examples below.

Example 6.7. For p ∈ Z = k a prime, Dugger and Shipley consider in [13] the
differential graded unital associative algebra

A =
Z〈e, x±1〉

(e2, ex + xe− x2)
, |e| = |x| = 1,

with differential

d(e) = p, d(x) = 0.

The homology is

H∗(A) = Z/(p)〈x±1〉.
Consider the unital associative algebra in bCh with underlying bigraded algebra

AM =
Z〈x±1, c〉

(c2, cx + xc)
, |x|b = (0, 1), |c|b = (1, 0).

The vertical differential is trivial dv = 0 and the horizontal differential is given by

dh(c) = −p, dh(x) = 0.

Since c is a square-zero element in the centre, it is easy to see that the horizontal
homology of AM coincides with H∗(A).
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We can extend AM to a (minimal) derived homotopy A-algebra whose higher
operations vanish except for m1,2, i.e. d1 = dh is the horizontal differential, m0,2

is the binary associative product, di = 0 for i �= 1, and mi,r = 0 for (i, r) �=
(0, 2), (1, 2). Moreover, m1,2 is given by

m1,2(xi, xj) = 0, i, j ∈ Z;

m1,2(cxi, xj) = 0, i, j ∈ Z;

m1,2(xi, cxj) =
{

0, i even,
xi+j+1, i odd;

m1,2(cxi, cxj) =
{

0, i even,
cxi+j+1, i odd.

We also consider the map f : AM → A of bigraded unital associative algebras
given by f(x) = x and f(c) = 0. This map is not compatible with horizontal dif-
ferentials, but we can extend it to a derived ∞-morphism f : AM � A of derived
homotopy A-algebras whose only non-trivial pieces are f0,1 (the map AM → A
above) and f1,1, i.e. fi,n = 0 for (i, n) �= (0, 1), (1, 1), and

f1,1(xn) = 0;

f1,1(cxn) = exn.

We do not include here an explicit computation showing that the derived
∞-morphism equations hold. However, it is clear that f is an E2-equivalence
because of the previous computation of H∗(A) and the horizontal homology of
AM .

We would also like to indicate how we have obtained this minimal model by the
method described in the proof of proposition 6.4 and in remark 6.6.

We consider the unital associative algebra in bCh with underlying bigraded
algebra

Ã =
Z〈x±1, a, b, c〉

(a2, c2, ax + xa− x2, ba− ab, bx− xb, cx + xc, ac + ca, bc− cb)
.

The generators have bidegrees

|x|b = |a|b = (0, 1), |b|b = (0, 0), |c|b = (1, 0).

The first two relations are nilpotency relations, the third one is a twisted commu-
tativity relation, and the rest are plain commutativity relations (the middle signs
correspond to the Koszul sign rule). The bicomplex differentials are defined by

dv(x) = 0, dv(a) = b, dv(b) = 0, dv(c) = 0, dh(c) = b− p.

The horizontal differential of horizontal degree 0 elements must be trivial for degree
reasons. The relations d2

v = 0 = d2
h and dvdh + dhdv = 0 are clear on generators.
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We define the map Ã→ A of unital associative algebras in bCh as

x 	→ x, a 	→ e, b 	→ p, c 	→ 0.

The vertical homology H∗(Ã) is AM above as a unital associative algebra in bCh.
We have a contraction in GrCh

where i, as a map of unital associative bigraded algebras, is the obvious inclu-
sion. Beware that this algebra map is not compatible with horizontal differentials
(it is compatible with vertical differentials though). A k-basis of AM is {xn, cxn}n∈Z

and a k-basis of Ã is {bkxn, bkcxn, abkxn, abkcxn}n∈Z,k�0. The retraction g is the
identity on the basis elements xn, cxn, n ∈ Z, and trivial on the rest, and the
homotopy h is given by

h(xn) = h(cxn) = 0;

h(bkxn) = abk−1xn, k > 0;

h(bkcxn) = abk−1cxn, k > 0;

h(abkxn−1) = h(abkcxn−1) = 0, k � 0.

A direct application of the homotopy transfer theorem for the operad dA yields the
previous minimal model.

Since we are not carrying out all computations step by step, the A-algebra Ã
may seem counter-intuitive. However, the idea behind it is very easy. The complex
underlying A is a direct sum of shifted copies of

· · · → 0→ eZ
p−→ 1Z→ 0→ · · · .

Here, the left superscripts indicate the generators of one of the copies, the rest
are obtained by multiplication with xn, n ∈ Z. The smallest Cartan–Eilenberg
resolution of this complex in bCh is

(6.8)

The complex is to the left of the vertical line, and the Cartan–Eilenberg resolution
is to the right. The non-depicted part is trivial. The A-algebra Ã has been obtained
by making an associative algebra out of this, incorporating the unit x, and imposing
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as many relations as possible to make the underlying bicomplex similar to shifted
copies of this Cartan–Eilenberg resolution.

Example 6.9. Let k = Q[t] and let C be the (non-unital) commutative operad. We
denote by S the free symmetric algebra functor and consider the symmetric graded
algebra

A =
S(x, y, xt, yt)

(x2, y2, xy, xxt, yyt, xty)
, |x| = |y| = 2, |xt| = |yt| = 3,

endowed with the differential defined by

d(x) = d(y) = 0, d(xt) = tx, d(yt) = ty.

The compatibility of the differential with the relations is easy to check. A k-linear
basis of A is {x, y, xt, yt, xyt, xtyt}. Hence H∗(A) is a Q-vector space with basis
{x, y, xyt} and trivial product.

In this case, we have a minimal model with underlying free bigraded k-module

AM = k · {x, y, z, cx, cy, cz}, |x|b = |y|b = (0, 2), |z|b = (0, 5),

|cx|b = |cy|b = (1, 2), |cz|b = (1, 5),

trivial vertical differential dv = 0, and horizontal differential

dh(x) = dh(y) = dh(z) = 0, dh(cx) = −tx, dh(cy) = −ty, dh(cz) = −tz.

All derived C∞-algebra operations in AM are trivial except for d1 = dh and m1,2

(even the product m0,2 is trivial). The operation m1,2 is determined by the formulas

m1,2(x, cx) = 0, m1,2(x, cy) = z, m1,2(cx, y) = 0, m1,2(y, cy) = 0,

m1,2(cx, cx) = 0, m1,2(cx, cy) = cz, m1,2(cy, cy) = 0.

The remaining cases either follow from the fact that m1,2 is skew-symmetric, since
it is a binary operation which vanishes on shuffles, or they vanish for degree reasons.

The maps fi,r defining the E2-equivalence f : AM � A are trivial except for f0,1

and f1,1, which are given by

f0,1(x) = x, f0,1(y) = y, f0,1(z) = xyt,

f1,1(cx) = xt, f1,1(cy) = yt, f1,1(cz) = xtyt.

The remaining cases vanish for degree reasons.
For this computation, we have used the version of the Cartan–Eilenberg resolution

(6.8) for Q[t], consisting of replacing Z with Q[t] and p with t. With this in mind,
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we can consider the bigraded commutative algebra Ã with generators

ux, bx, uy, by︸ ︷︷ ︸
(2,0)

, ax, ay︸ ︷︷ ︸
(3,0)

, cx, cy︸ ︷︷ ︸
(1,2)

, (6.10)

with the indicated bidegree. The relations are that all binary products vanish except
for

uxay, bxay, cxay, axay (6.11)

and their symmetrics. The map Ã→ A is in this case given by

ux 	→ x, bx 	→ tx, ax 	→ xt, uy 	→ y, by 	→ ty, ay 	→ yt,

and zero on cx, cy.
A k-linear basis of Ã is given by the elements (6.10) and (6.11). Hence, the

underlying bicomplex of Ã consists of three shifted copies of (6.8) for Q[t] and the
vertical homology H∗(Ã) is AM above as a commutative algebra in bCh.

We have a contraction in GrCh

with

i(x) = ux, i(y) = uy, i(z) = uxay, i(cx) = cx, i(cy) = cy, i(cz) = cxay.

Note that i preserves products. The retraction g is the identity on the image of i
and trivial on the rest of the basis, and the homotopy h is given by the formulas

h(bx) = ax, h(by) = ay, h(bxay) = axay, hi = 0, h2 = 0.

The minimal model AM is obtained by direct application of the homotopy transfer
theorem for the operad dC to this contraction.

Example 6.12. Let k = Q[t] again and let L be the Lie operad. We con-
sider the graded Lie algebra generated by x, y, xt, yt in degrees |x| = |y| = 2,
|xt| = |yt| = 3 with relations all possible triple brackets and all binary brack-
ets except for [x, yt], [xt, yt] and their symmetrics. A k-linear basis of A is
therefore {x, y, xt, yt, [x, yt], [xt, yt]}, and H∗(A) is a Q-vector space with basis
{x, y, [x, yt]} and trivial bracket.

The same minimal model AM as in example 6.9 works in this case, with trivial
Lie bracket and �1,2 instead of m1,2 in this case. The E2-equivalence f : AM � A
is also defined by the same formulas.

7. The (co)bar construction for derived homotopy algebras

In this section O = P(E,R) is a graded reduced quadratic Koszul operad. More-
over, either O is non-symmetric (or rather the symmetrization of a non-symmetric
operad) or Q ⊂ k. In particular O and O¡ are arity-wise projective over the
corresponding symmetric group and we can apply theorem 4.10.
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We have already reached our goal of constructing minimal models for differen-
tial graded O-algebras, regardless of the ground ring. These minimal models are
derived homotopy O-algebras. Now we would like to show that minimal models
are essentially unique and, moreover, that they can be strictified so that we can
recover the original differential graded O-algebra up to quasi-isomorphism. In the
non-derived case, this is done by means of the bar-cobar adjunction. We will use a
modified bar-cobar adjunction for dO- and dO∞-algebras. In the derived setting,
the problem is that if we start with a derived homotopy O-algebra and apply the
bar and the cobar constructions, the resulting dO-algebra is not bounded. We have
to truncate it in a clever way so as not to change its homotopy type.

We borrow from [18, §0.2] the concept of perturbed complex, called twisted
complex therein, but this has a different meaning here.

Definition 7.1. A perturbed complex is a complex X with differential d and a
degree −1 endomorphism ∂ : X → X of the underlying graded module, often called
perturbation, such that (d + ∂)2 = 0, so the underlying graded module of X with
the new differential d + ∂ is another complex that we denote by (X, ∂).

Remark 7.2. This notion extends from Ch to GrCh and to the corresponding cat-
egories of S-modules in the obvious way. Since d2 = 0, (d + ∂)2 = 0 is equivalent
to d∂ + ∂d + ∂2 = 0. Quite often ∂ is itself a differential, ∂2 = 0, so the previ-
ous equation reduces to d∂ + ∂d = 0. Some of our perturbed complexes will have
additional algebraic structure, hence we will talk about perturbed (co)algebras, etc.

Definition 7.3. A quasi-cofree dO¡-coalgebra in GrCh is a perturbed dO¡-
coalgebra of the form (dO¡ ◦X, ∂), where X is a graded complex and dO¡ ◦X
is a cofree dO¡-coalgebra (i.e. the structure maps are given by those of the
cooperad dO¡).

The conditions on ∂ for (dO¡ ◦X, ∂) to be a dO¡-coalgebra can be found in
[18, propostion 4.1.4]. Moreover, by [18, propostion 4.1.5] or [28, proposition
11.4.1], there is an equivalence

BdO : Alg∞GrCh(dO∞) −→ Coalgqf
GrCh(dO¡) (7.4)

from the category of dO∞-algebras and ∞-morphisms to the category of quasi-
cofree dO¡-coalgebras. This equivalence is given by BdO A = (dO¡ ◦A, ∂A) for a
certain perturbation ∂A.

Let us describe the functor BdO on the category Alg∞(dO∞) of derived homotopy
O-algebras and derived∞-morphisms between them, which is a full subcategory of
Alg∞GrCh(dO∞) by definition.

We split the Sweedler notation for the infinitesimal decomposition of O in (4.11)
as follows,

Δ(1)(μ) =
r∑

s=1

μ ◦s 1 +
∑
(μ)′′

(μ(1) ◦l μ(2)) · σ.

Here μ ∈ O(r) and (μ)′′ stands for the summands where μ(2) has positive weight.
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If A is a derived homotopy O-algebra, then ∂A is given by the following formula,

∂A((δi; μ); x1, . . . , xr) =
r∑

s=1

(−1)β
∑

j+k=i
k>0

((δj ; μ); x1, . . . , dk(xs), . . . , xr)

+
∑
(μ)′′

(−1)γ
∑

j+k=i

((δj ; μ(1)), xσ−1(1), . . . , μ
(2)
k (xσ−1(l), . . . ), . . . ).

(7.5)

Here β and γ are as in (5.5).
If A is just a derived O-algebra, formula (7.5) simplifies to

∂A((δi; μ); x1, . . . , xr) =
r∑

s=1

(−1)β((δi−1; μ); x1, . . . , dh(xs), . . . , xr)

+
∑
(μ)′′

(−1)γ((δi; μ(1)); xσ−1(1), . . . , κ(μ(2))(xσ−1(l), . . . ), . . . ).

(7.6)

Here κ : O¡ → O is the canonical twisting morphism.
Given an ∞-morphism f : A� B between derived homotopy O-algebras, the

induced morphism BdO(f) : BdO(A)→ BdO(B) is defined as

BdO(f)((δi;μ);x1, . . . , xr)

=
∑
[μ]

∑
j+k1+···+kl=i

(−1)γ((δj ; ν); f(ν1
k1

)(xτ−1(1), . . . ), . . . , f(νl
kl

)(. . . , xτ−1(r))).

(7.7)

Here we use the Sweedler formula for the decomposition of dO¡ in (4.1).
If we restrict BdO to the subcategory of dO-algebras in GrCh, then it is the right

adjoint of an adjoint pair ΩdO 
 BdO,

Coalgqf
GrCh(dO)

ΩdO
�

BdO
AlgGrCh(dO), (7.8)

such that ΩdOB = (dO ◦B, ∂) for a certain perturbation ∂, see [28, §11.3 and
§11.5.3]. Here, dO ◦B is a free dO-algebra. Since (7.1) is an equivalence, it suffices
to define ΩdO BdO A for A a dO∞-algebra. In this case ΩdO BdO A = (dO ◦ BdO A,
d ◦ idA) where d is the differential of the Koszul complex dO ◦ζ dO¡.

Given a dO∞-algebra A, we have a natural ∞-morphism

A� ΩdO BdO(A) (7.9)

corresponding through the equivalence (7.4) to the unit of the adjunction (7.8),

BdO(A) −→ BdO ΩdO BdO(A),

see [28, §11.4.3].
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We endow Ch with the projective model structure, GrCh = ChZ with the product
model structure, and GrChS with the projective model structure.

Lemma 7.10. The S-modules dO and dO¡ are cofibrant in GrChS.

Proof. First of all, notice that any object in GrChS with trivial differential which
is arity-wise projective as a module over the corresponding symmetric group is
cofibrant in GrChS. We will show that both dO and dO¡ satisfy this property. They
clearly have trivial differential. The second one is arity-wise dO¡(r) = (D¡ ◦ O¡)(r) =
k[δ]⊗O¡(r) by theorem 4.10. As an Sr-module this is just an infinite direct sum of
copies of O¡(r), which is Sr-projective by the standing hypotheses of this section.

The case of dO is slightly more difficult. We have seen in the proof of proposition
3.8 that

(O ◦ D)(r) = O(r)⊗D⊗r

with Sr acting on the tensor power by permutation of tensor factors and diagonally
on the first tensor product. We want to prove that this Sr-module is projective
using the fact that O(r) is. The tensor power is k-projective. Hence, it suffices to
show that, given a group G and a G-module M , the tensor product k[G]⊗M with
the diagonal action is isomorphic as a G-module to M ⊗ k[G] with G acting just
on the right tensor factor. It is easy to check that the map

k[G]⊗M −→M ⊗ k[G],

g ⊗ x 	→ xg−1 ⊗ g,

provides the desired isomorphism. �

Proposition 7.11. If A is a dO∞-algebra A which is cofibrant in GrCh then the
morphism in GrCh underlying (7.6) is a weak equivalence.

Proof. The argument is like in [28, theorem 11.4.4], but here we should invoke
[17, proposition 11.5.3 (b)] instead of [28, proposition 6.2.3]. We apply [17, propo-
sition 11.5.3 (b)] to A, which is cofibrant in GrCh by hypothesis, and to the inclusion
of the weight 0 part 1 into the Koszul complex dO ◦ζ dO¡, which is a weak equiva-
lence in GrChS by theorem 4.10. The object 1 is obviously cofibrant in GrChS. We
have to check that the Koszul complex is too. For this, we need to use left modules
over the operad dO, which are just dO-algebras in GrChS, see [17, §3.2.9]. They
carry a semi-model category structure transferred along

GrChS
dO◦−
�

forget
AlgGrChS(dO),

see [17, theorem 12.3.A]. The model structure on GrChS is combinatorial with sets
of generating (trivial) cofibrations inherited from the usual ones in Ch.

Let us check that the Koszul complex is cofibrant as a left dO-module. This
will conclude the proof since any cofibrant left dO-module is cofibrant in GrChS

by [17, proposition 12.3.2] because dO is also cofibrant therein, see lemma 7.10
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below. If we filter the Koszul complex dO ◦ζ dO¡ by the weight of dO¡, the differ-
ential strictly decreases the filtration level. Hence Fn(dO ◦ζ dO¡) is obtained from
Fn−1(dO ◦ζ dO¡) by freely attaching the S-module (dO¡)(n), compare the proof of
[18, proposition 2.12]. The object (dO¡)(n) is cofibrant in GrChS by lemma 7.4.
This suffices to prove that the left dO-module dO ◦ζ dO¡ is cofibrant. �

We are now ready to define the wise cobar construction in the context of derived
homotopy algebras.

Definition 7.12. Let A be a derived O∞-algebra. The negative ideal I<0 ⊂
ΩdO BdO(A) is the dO-algebra ideal generated by the negative horizontal degree
part. The good cobar construction is the quotient dO-algebra

Ω̄dO BdO(A) = ΩdO BdO(A)/I<0.

By definition of I<0, the dO-algebra Ω̄dO BdO(A) is concentrated in horizontal
degrees � 0, so it is actually an O-algebra in bCh, see proposition 3.7.

Proposition 7.13. Given a derived O∞-algebra A and an O-algebra B in bCh,
a dO-algebra morphism f : ΩdO BdO(A)→ B factors uniquely through the natural
projection onto the good cobar construction

ΩdO BdO(A)� Ω̄dO BdO(A)→ B.

Proof. It suffices to notice that the generators of the dO-ideal I<0 must be in the
kernel of f , since they have negative horizontal degree. �

Remark 7.14. By proposition 3.7, there is a full inclusion

AlgbCh(O) ↪→ AlgGrCh(dO).

Both categories are categories of algebras over a finitary monad in a locally pre-
sentable category, therefore they are locally presentable, see [2, §2.78]. Limits and
filtered colimits in these categories are computed point-wise, as in the underlying
categories, see [6, §4.3]. This implies that AlgbCh(O) is closed under limits and
filtered colimits in AlgGrCh(dO), hence reflective by [2, §2.48]. We therefore have
an adjoint pair

AlgGrCh(dO)
R
�AlgbCh(O) (7.15)

where the left adjoint R is the reflector and the right adjoint is the full inclusion.
We have the following commutative diagram of solid arrows given by the obvious

forgetful functors

Each of these forgetful functors has a left adjoint, in dashed arrows. The vertical
left adjoints are the corresponding free algebra functors. The bottom left adjoint
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first sends a graded complex X to the free unbounded bicomplex D ◦X, see remark
3.4, and then kills all the negative horizontal part by means of the naive horizontal
truncation functor th�0 : bChu → bCh, which is the left adjoint of the full inclusion
bCh ↪→ bChu. The diagram of left adjoints (dashed arrows) commutes up to natural
isomorphism, by uniqueness of adjoints.

Corollary 7.16. If A is a derived O∞-algebra then RΩdO BdO(A) = Ω̄dO BdO(A).

Corollary 7.17. We have an adjoint pair

Coalgqf
GrCh(dO¡)

Ω̄dO
�

BdO
AlgbCh(O).

We now check that the quotient performed to push the cobar construction into
the category of bicomplexes does not change the homotopy type if we start with a
k-projective derived homotopy algebra, e.g. a minimal model.

Proposition 7.18. If A is a k-projective derived O∞-algebra, then the mor-
phism in GrCh underlying natural projection ΩdO BdO(A)� Ω̄dO BdO(A) is a weak
equivalence.

Proof. It suffices to check that the underlying graded complex of I<0 has trivial
homology. First, we filter ΩdO BdO(A). Its underlying bigraded module is O ◦ D ◦
D¡ ◦ O¡ ◦A, and we filter it according to the weight of O¡ and the horizontal degree
of A. This filtration is bounded below and exhaustive. We have to check that this
is a filtration in GrCh, i.e. compatibility with the differential.

The differential of ΩdO BdO(A) consists of three pieces. This first one is induced
by the differential d0 of the underlying graded complex of A, so it preserves the
filtration. The second one, given by the perturbation ∂A of BdO(A), is compatible
with the filtration because, in (7.5), dk reduces the horizontal degree since k > 0,
and the weight of μ(1) is smaller than the weight of μ because μ(2) has positive
weight. Actually, this piece strictly decreases the filtration level. The third part
is induced by the differential of the Koszul complex of dO. In this piece, the fil-
tration has already been considered in the proof of theorem 4.10. Using also the
computation therein we see that

E0(ΩdO BdO(A)) = O ◦ (D ◦κ D¡) ◦ O¡ ◦A,

with the differential coming from the Koszul complex of D and from d0 of A.
We now describe the bigraded module underlying I<0. We have that

O ◦ D ◦ D¡ ◦ O¡ ◦A =
⊕
r�0

O(r)⊗Sr
(D ◦ D¡ ◦ O¡ ◦A)⊗

r

with the permutation action on the tensor power. Denote by C<0 the nega-
tive horizontal degree part of D ◦ D¡ ◦ O¡ ◦A = D ⊗D¡ ⊗ (O¡ ◦A) and i : C<0 ↪→
D ⊗D¡ ⊗ (O¡ ◦A) its (split) inclusion in the category of graded complexes. Recall
that the push-out product of two morphisms f : X → Y and g : U → V in a monoidal
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category with push-outs is the morphism f � g in the following commutative
diagram

Its source will be denoted by s(f � g), as indicated in the diagram. Then, the
bigraded module underlying I<0 is⊕

r�0

O(r)⊗Sr
s(i�

r

) (7.19)

and the inclusion morphism I<0 ↪→ ΩdO BdO(A) is
⊕

r�0O(r)⊗Sr
i�

r

.
We endow the ideal I<0 ⊂ ΩdO BdO(A) with the induced filtration. We consider

(D ⊗κ D¡)⊗ (O¡ ◦A) as a graded complex and C<0 as a graded subcomplex. In
this way, (7.19) describes the graded complex E0(I<0) associated to the filtration
of I<0. Hence, by lemma 4.9, in order to conclude this proof, it suffices to prove
that (7.19) has trivial homology.

The bigraded module O¡ ◦A is k-projective since A is and O¡ is arity-wise pro-
jective over the corresponding symmetric group. The bigraded module D ◦ D¡ is
also k-projective. The homology of the Koszul complex D ⊗κ D¡ is 1. Hence, the
homology of (D ⊗κ D¡)⊗O¡ ◦A coincides with the homology of O¡ ◦A, which is
concentrated in non-negative horizontal degrees, because A is. Therefore, C<0 has
trivial homology. Now, by Mayer–Vietoris and induction we see that s(i�

r

) has triv-
ial homology. Since O is also arity-wise projective over the corresponding symmetric
group, we conclude that (7.19) has trivial homology too. �

Definition 7.20. The total complex Tot(X) of a bicomplex X is

Tot(X)n =
⊕

p+q=n

Xp,q

with differential dh + dv. This construction defines a totalization functor

Tot : bCh −→ Ch .

Remark 7.21. The totalization functor strictly preserves tensor products and
related constraints, so it lifts to algebras,

Tot : AlgbCh(O) −→ AlgCh(O).

This functor is left inverse to the full inclusion AlgCh(O) ↪→ AlgCh(O).

We can finally state our strictification theorem, which says that any differential
graded O-algebra can be recovered from a minimal model up to quasi-isomorphism.
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Theorem 7.22. Let A be a differential graded O-algebra and f : AM � A a minimal
model. Consider the image BdO f : BdO AM → BdO A of f along the equivalence
(7.4), its adjoint morphism Ω̄dO BdO AM → A in AlgbCh(O) along the adjunction
in corollary 7.17, and its totalization Tot Ω̄dO BdO AM → A, which is a morphism
in AlgCh(O). This last morphism is a quasi-isomorphism.

Proof. The map f decomposes as

The first ∞-morphism is that in (7.9). It is an E2-equivalence, since it actually
induces an isomorphism on the E1 page by proposition 7.11. This proposition
applies because the graded complex underlying AM is k-projective with trivial
differential, so it is cofibrant. The second morphism is the one in proposition 7.18,
which is an E2-equivalence for the same reason. Since f is an E2-equivalence, the
2-out-of-3 property implies that the third arrow, which is the one in the state-
ment, is an E2-equivalence. Therefore its totalization is a quasi-isomorphism by
lemma 4.9. �

In remark 8.5 below we see that Tot Ω̄dO BdO AM → A in the previous theorem
is a cofibrant replacement in AlgbChTot

(O) whenever this category carries the
projective model structure.

Remark 7.23. A minimal derived homotopy O-algebra structure is trivial if it
reduces to its underlying dO-algebra structure, see remark 6.3. If the differential
graded O-algebra A has a trivial minimal model AM , then taking vertical homology
on f : AM � A we see that AM is also a minimal model of H∗(A), so A is formal
by theorem 7.22. If k has projective dimension � 2 there are complexes which are
not formal. Obviously, a differential graded O-algebra with non-formal underlying
complex cannot be formal. As a consequence, most differential graded O-algebras
have necessarily non-trivial minimal models. Sagave’s [37, example 5.1] fits into
this case, since k = Z/(p2) and the underlying complex is

· · · → 0→ Z/(p2)
p−→ Z/(p2)→ 0→ · · · .

Since Z and Q[t] have projective dimension 1, examples 6.7, 6.9 and 6.12 are non-
trivial for deeper reasons. In the case of example 6.7, we show below in example
8.8 that it is non-formal, hence there cannot be a trivial minimal model. The same
can be done for examples 6.9 and 6.12. We will give an easy proof of this claim
in a forthcoming paper on universal Massey products for operadic algebras over
commutative rings [35], which extends part of [11].

Proposition 7.24. If A is a k-projective minimal dO∞-algebra then Ω̄dO BdO(A)
is cofibrant in AlgbChCE

(O).

Proof. We filter BdO(A) = (dO¡ ◦A, ∂A) by the weight of dO¡. This actually defines
a filtration because, since A is minimal, the differential of BdO(A) is just ∂A, which
strictly decreases the filtration level, see (7.5). Indeed, in the first summation
of (7.5), (δj ;μ) has less weight than (δi;μ) since k > 0, so j < i. In the second
summation, μ(2) has positive weight, so μ(1) has less weight than μ.
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The previous filtration of BdO(A) induces a dO-algebra filtration of
ΩdO BdO(A) = (dO ◦ BdO A, d ◦ idA) with FnΩdO BdO(A) = (dO ◦ Fn BdO A, d ◦
idA). This holds because here d is the Koszul complex differential of dO ◦ζ dO¡,
which strictly decreases the filtration level. Hence, FnΩdO BdO(A) is obtained
from Fn−1ΩdO BdO(A) by freely attaching the graded complex (dO¡)(n) ◦A in
AlgGrCh(dO). The attaching map is defined by ∂A and d ◦ idA, compare the proof
of [18, proposition 2.12]. If we apply the reflector R in remark 7.14, we get a filtra-
tion of Ω̄dO BdO(A) such that FnΩ̄dO BdO(A) is obtained from Fn−1Ω̄dO BdO(A)
by freely attaching the bicomplex th�0D ◦ (dO¡)(n) ◦A in AlgbCh(O). The propo-
sition will follow if we show that (dO¡)(n) ◦A is cofibrant in bChCE. Since A is
k-projective and each O¡(r) is projective as a Sr-module,

(dO¡)(n) ◦A =
⊕
r�0

u+v=n

k · δu ⊗ (O¡)(v)(r)⊗Sr
A⊗r

is a k-projective graded complex. It has trivial differential because A is min-
imal. Therefore, th�0D ◦ (dO¡)(n) ◦A is a retract of a direct sum of copies of
the bicomplexes S0,q, ∂vD

p,q, p > 0, q ∈ Z, which are cofibrant in bChCE, see
[32, §4]. �

The following theorem is the improved version of proposition 6.4. It shows that
minimal models are essentially unique.

Theorem 7.25. Any O-algebra A has a minimal model A′
M � A such that, if

AM � A is another minimal model, then there exists an E2-equivalence AM � A′
M

which induces the identity in H∗(A) on E2 terms.

Proof. The minimal model i : A′
M � A is that constructed in the proof of proposi-

tion 6.4 from a cofibrant resolution AQ → A in AlgbCh(O). In particular the graded
complex (with trivial differential) underlying A′

M is the vertical homology H∗(AQ),
and A′

M � A factors through the cofibrant resolution

A′
M � AQ → A.

Under our hypotheses, Berglund’s version of the homotopy transfer theorem
[5, theorem 1.3] yields a left inverse AQ � A′

M to i. This left inverse is an
E2-equivalence by the 2-out-of-3 property.

Let AM � A be another minimal model. We consider the following diagram,
where the bottom row is the decomposition of AM � A in the proof of theorem
7.22

The vertical arrow is a trivial fibration because it is a cofibrant resolution in
AlgbCh(O). Moreover, Ω̄dO BdO AM is cofibrant in this semi-model category by

https://doi.org/10.1017/prm.2022.42 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.42


Derived homotopy algebras 1239

proposition 7.24. Hence, there is a lifting (dashed arrow). All arrows here are E2-
equivalences by the 2-out-of-3 property, see the proof of proposition 6.4. The desired
E2-equivalence AM � A′

M is the composition of AM � AQ in the previous diagram
with the derived ∞-morphism AQ � A′

M above. �

The same argument proves the following result.

Proposition 7.26. Any differential graded O-algebra A has a minimal model
A′

M � A such that, if f : B → A is an O-algebra morphism and BM � B is a
minimal model, then there exists a derived ∞-morphism BM � A′

M which induces
H∗(f) on E2 terms.

8. The total model structure

So far we have only considered the Cartan–Eilenberg model structure on the
category bCh of bicomplexes. In this section we consider the total model structure
bChTot, which is Quillen equivalent to Ch (with the projective model structure),
see [32, §3]. We extend this to algebras over an operad in Ch.

Weak equivalences in bChTot are the morphisms whose totalization (see definition
7.20) are quasi-isomorphisms in Ch. A morphism of bicomplexes is a (trivial) fibra-
tion in bChTot if it is bidegree-wise surjective and it induces an isomorphism in
vertical homology in positive (resp. all) horizontal degrees.

Consider the adjoint pair

Ch
O◦−
�
U

AlgCh(O). (8.1)

analogue to (2.3) for complexes instead of bicomplexes.

Proposition 8.2. Let O be an operad in Ch such that AlgCh(O) admits the trans-
ferred model structure along (8.1). Then the category AlgbCh(O) of O-bialgebras
admits the transferred model structure from the total model structure bChTot along
(2.1), and we denote it by AlgbChTot

(O).

Proof. We are going to check that the conditions in [22, theorem 11.3.2] are satis-
fied. Since AlgbCh(O) is a locally presentable category, it suffices to prove that, if
JTot denotes the set of generating trivial cofibrations for bChTot [32, §3], then any
relative O ◦ JTot-cell complex f : A→ B is a weak equivalence in bCh, i.e. Tot(f)
is a quasi-isomorphism in Ch.

The totalization functor in definition 7.20 preserves all colimits, which are com-
puted point-wise in source and target. It also preserves tensor products, see remark
7.21. Therefore, the usual construction of the push-out of a free map in a cate-
gory of algebras over an operad (see e.g. [19, §7]) shows that the totalization of a
relative O ◦ JTot-cell complex f is a relative O ◦ Tot(JTot)-cell complex Tot(f) in
Ch. Maps in Tot(JTot) are trivial cofibrations in Ch, see [32, §3], hence Tot(f) is a
quasi-isomorphism by the hypothesis on AlgCh(O). �

Proposition 8.3. Let O be an operad in Ch such that AlgCh(O) admits the trans-
ferred model structure along (8.1). The inclusion i : AlgCh(O) ↪→ AlgbChTot

(O) in
remark 2.2 is a left Quillen equivalence.
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Proof. The functor i has a right adjoint given by A 	→ A0,∗. Indeed, the horizontal
degree 0 part of an O-algebra in bCh is naturally an O-algebra in Ch. This right
adjoint clearly preserves (trivial) fibrations, i.e. it is a right Quillen functor, so i is a
left Quillen functor. The proof of [32, proposition 3.4] shows that, for B an arbitrary
O-algebra in Ch and A a fibrant O-algebra in bChTot, a morphism f : i(B)→ A in
AlgbChTot

(O) is a weak equivalence if and only if the adjoint morphism f0,∗ : B →
A0,∗ is a weak equivalence in AlgCh(O). This proves that the previous Quillen pair
is a Quillen equivalence. �

The following result is a version of proposition 7.24 for the total model structure.

Proposition 8.4. Under the standing assumptions of §7, if A is a k-projective
minimal dO∞-algebra then Ω̄dO BdO(A) is cofibrant in AlgbChTot

(O).

Proof. Under the assumptions of §7, AlgCh(O) admits the transferred model struc-
ture along (8.1), see [20, 21, 33, 34]. The proof is the same as that of proposition
7.24. One just has to notice that the bicomplexes S0,q, ∂vDp,q, p > 0, q ∈ Z, are
also cofibrant in bChTot by [32, §3]. �

Remark 8.5. The argument in the proof of proposition 8.2 also shows that the
totalization of a cofibrant object in AlgbChTot

(O) is cofibrant in AlgCh(O) since the
totalization of a generating cofibration in bChTot is a cofibration in Ch, compare
[32, §3]. Therefore, under the assumptions of §7, theorem 7.22 produces a cofibrant
replacement of a differential graded O-algebra out of any minimal model.

Corollary 8.6. Under the standing assumptions of §7, given two differential
graded O-algebras A, B and a minimal model AM � A, maps A→ B in the homo-
topy category of AlgO(Ch) are represented by derived ∞-morphisms AM � B. A
derived∞-morphism AM � B represents an isomorphism in the homotopy category
if and only if it is an E2-equivalence.

Proof. By proposition 8.3, we can place A, B in AlgbChTot
(O). They are fibrant here

since they are concentrated in horizontal degree 0. By theorem 7.22 and proposition
8.4, Ω̄dO BdO(AM ) is a cofibrant replacement of A, so maps A→ B in the homo-
topy category of AlgO(Ch) are represented by honest maps Ω̄dO BdO(AM )→ B in
AlgbChTot

(O). By corollary 7.17 and (7.4), a map Ω̄dO BdO(AM )→ B is essentially
the same thing as a derived ∞-morphism AM � B.

The E2-term of the spectral sequence of AM is H∗(A) concentrated in horizontal
degree 0 by definition of minimal model. By propositions 7.11 and 7.18 and standard
spectral sequence arguments, a map Ω̄dO BdO(AM )→ B is a weak equivalence in
AlgbChTot

(O) if and only if the corresponding derived ∞-morphism AM � B is an
E2-equivalence. �

Remark 8.7. It should be possible to work out a notion of derived ∞-homotopy,
like in [5, 12], to describe the equivalence relation on the set of derived
∞-morphisms AM � B whose quotient is the set of maps A→ B in the homotopy
category. For O = A the associative operad, derived ∞-homotopies should coin-
cide with filtration-preserving ∞-homotopies in the sense of [25, definition 1.2.1.7]
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and §5. These derived ∞-homotopies were considered in [8] under the name of
0-homotopies. They also defined 0-homotopies for twisted complexes, which should
be the right notion of derived ∞-homotopy for O = 1 the initial operad.

Example 8.8. We here apply corollary 8.6 to show by contradiction that the dif-
ferential graded associative algebra of Dugger and Shipley considered in example
6.7 is not formal. Otherwise, there should be an E2-equivalence of derived homo-
topy associative algebras f : AM � H∗(A) given by bidegree (−i, r − 1 + i) maps
fi,r : A⊗r

M → H∗(A), i � 0, r � 1. We can assume without loss of generality that f
induces the identity on E2 terms, therefore f0,1(xn) = xn, n ∈ Z and f0,1(cxn) = 0
for degree reasons.

The graded algebra H∗(A) regarded as a derived homotopy associative algebra
satisfies mi,r = 0 and dj = 0 for (i, r) �= (0, 2) and all j. The minimal model AM

in example 6.7 satisfies the same equations for (i, r) �= (0, 2), (1, 2) and j �= 1. The
operation m0,2 is the binary associative product in both cases. For degree reasons,
fi,r = 0 for i > r. Moreover, d1(AM ) ⊂ p ·AM and p ·H∗(A) = 0. Therefore, the
derived ∞-morphism equation in example (5.28) (1) reduces to

0 =
r−1∑
l=1

(−1)l+1 (fi,r−1(x1, . . . , xlxl+1, . . . ) + fi−1,r−1(x1, . . . ,m1,2(xl, xl+1), . . . ))

−
i∑

k=0

r−1∑
t=1

(−1)
(t+1)+(r−t−1)

t∑
u=1

|xu|
fk,t(x1, . . . )fi−k,r−t(. . . , xr),

for all i � 0 and r � 1.
For (i, r) = (1, 2) we obtain

f1,1(x1x2) + f0,1m1,2(x1, x2) = f1,1(x1)f0,1(x2) + f0,1(x1)f1,1(x2).

Taking (x1, x2) = (c, x),

f1,1(cx) = f1,1(c)x.

Taking (x1, x2) = (x, c),

f1,1(xc) + f0,1m1,2(x, c) = xf1,1(c).

By the relations in AM ,

xc = −cx,

see example 6.7. For degree reasons, f1,1(c) = a · x for some a ∈ Fp, hence

xf1,1(c) = f1,1(c)x.

Using the formula for m1,2 in example 6.7 we obtain

−f1,1(c)x + x2 = f1,1(c)x,

i.e.

2f1,1(c)x = x2.
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This yields a contradiction if p = 2. Otherwise, it yields the formula

f1,1(c) =
1
2
x.

Suppose p �= 2. For (i, r) = (2, 2), the derived ∞-morphism equation is

f1,1m1,2(x1, x2) = f1,1(x1)f1,1(x2).

In particular,

f1,1m1,2(c, c) = f1,1(c)f1,1(c) =
1
4
x2,

but the left-hand side is 0 by the formula for m1,2 in example 6.7. This is a
contradiction.

The interested reader can prove the non-formality of examples 6.9 and 6.12 along
the same lines. We will give an elementary proof of this fact in a forthcoming paper
by using secondary operations.
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