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Abstract. We build a Shannon orbit equivalence between the universal odometer and a
variety of rank-one systems. This is done in a unified manner using what we call flexible
classes of rank-one transformations. Our main result is that every flexible class contains
an element which is Shannon orbit equivalent to the universal odometer. Since a typical
example of flexible class is {T } when T is an odometer, our work generalizes a recent result
by Kerr and Li, stating that every odometer is Shannon orbit equivalent to the universal
odometer. When the flexible class is a singleton, the rank-one transformation given by the
main result is explicit. This applies to odometers and Chacon’s map. We also prove that
strongly mixing systems, systems with a given eigenvalue, or irrational rotations whose
angle belongs to any fixed non-empty open subset of the real line form flexible classes. In
particular, strong mixing, rationality or irrationality of the eigenvalues are not preserved
under Shannon orbit equivalence.
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1. Introduction
At the level of ergodic probability measure-preserving bijections, quantitative orbit
equivalence aims at bridging the gap between the well studied but very complicated
relation of conjugacy and the trivial relation of orbit equivalence, which is equality of
orbits up to conjugacy.

To be more precise, given two ergodic probability measure-preserving bijections S and
T on a standard atomless probability space (X, A, μ), if S and some system �−1T �

conjugate to T have the same orbits, then S and T are said to be orbit equivalent and
the probability measure-preserving bijection � : X → X is called an orbit equivalence
between T and S. Dye’s theorem [Dye59] states that if S and T are ergodic, then they are
orbit equivalent.

To get an interesting theory, let us define the cocycles associated to �, these
are the integer-valued functions cS and cT defined by Sx = �−1T cS(x)�(x) and
T x = �ScT (x)�−1(x). Shannon orbit equivalence requires that there exists an orbit
equivalence whose cocycles are Shannon, meaning that the partitions associated to cS and
cT are both of finite entropy. For ϕ-integrable orbit equivalence, we ask that both integrals∫
X

ϕ(|cS(x)|) dμ(x) and
∫
X

ϕ(|cT (x)|) dμ(x) are finite. In the particular case of a linear
map ϕ, ϕ-integrable orbit equivalence exactly requires the integrability of the cocycles,
and is simply called integrable orbit equivalence.

Belinskaya’s theorem [Bel69] implies that integrable orbit equivalence is exactly
flip-conjugacy (S and T are flip-conjugate if S is conjugate to T or T −1). In fact, it only
requires that one of the two cocycles is integrable. Carderi et al [CJLMT23] proved
that this result is optimal, meaning that ϕ-integrable orbit equivalence never implies
flip-conjugacy for a sublinear map ϕ. Moreover, ϕ-integrable orbit equivalence implies
Shannon orbit equivalence when ϕ is asymptotically greater than log. An impressive result
of Kerr and Li [KL24] guarantees that these relations are not trivial: entropy is preserved
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FIGURE 1. Schematic view of the interplay between the relations on ergodic bijections we have seen so far.

under Shannon orbit equivalence (and this is the only invariant of which we know). As
a consequence, two transformations with different entropies can neither be Shannon orbit
equivalent nor ϕ-integrably orbit equivalent for any ϕ greater than log.

Historically, the question of preservation of entropy in quantitative orbit equivalence
was asked in the more general setting of group actions. We do not give any definition in this
setting, as the paper is only about probability measure-preserving bijections S, which can
be seen as Z-actions via (n, x) ∈ Z × X �→ Snx. Austin [Aus16] showed that integrable
orbit equivalence between actions of infinite finitely generated amenable groups preserves
entropy. Kerr and Li [KL21, KL24] then generalized this result, replacing integrable orbit
equivalence by Shannon orbit equivalence, and going beyond the amenable case using
sofic entropy (see Figure 1).

1.1. The universal odometer and a theorem of Kerr and Li [KL24]. In [CJLMT23],
the statement about ϕ-integrable orbit equivalence in the sublinear case is the following.
This gives a result on Shannon orbit equivalence since this is implied by ϕ-integrable orbit
equivalence for ϕ greater than log.

THEOREM. (Carderi et al [CJLMT23]) Let ϕ : R+ → R+ be a sublinear function. Let
S be an ergodic probability measure-preserving transformation and assume that Sn is
ergodic for some n ≥ 2. Then, there is another ergodic probability measure-preserving
transformation T such that S and T are ϕ-integrably orbit equivalent but not flip-conjugate.

COROLLARY. (Carderi et al [CJLMT23]) Let S be an ergodic probability measure-
preserving transformation and assume that Sn is ergodic for some n ≥ 2. Then, there is
another ergodic probability measure-preserving transformation T such that S and T are
Shannon orbit equivalent but not flip-conjugate.

The proof is constructive and the resulting transformation T is built so that T n is not
ergodic. It is natural to wonder whether this statement holds for systems T without ergodic
non-trivial powers. A well-known example of such a system is the universal odometer.

Question 1.1. Which systems are Shannon orbit equivalent to the universal odometer?

A first answer is given by Kerr and Li.

THEOREM. (Kerr and Li [KL24]) Every odometer is Shannon orbit equivalent to the
universal odometer.
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FIGURE 2. In this example, (Rn) denotes the nested sequence of Rokhlin towers defining an odometer. Dividing
R1 in two sub-towers and stacking them, this gives the next tower R2. From R2, R3 is defined by dividing in

three sub-towers and stacking them.

Odometers are exactly probability measure-preserving bijections admitting a nested
sequence of partitions of the space, each of them being a Rokhlin tower, and increasing to
the σ -algebra A, see Figure 2 (we refer the reader to the end of §3.1 for concrete examples
with adding machines). Kerr and Li use this combinatorial specificity of these bijections
to build an orbit equivalence between them.

1.2. Rank-one systems. The aim of the paper is to extend Kerr and Li’s result to rank-one
bijections. These are more general transformations admitting a nested sequence of Rokhlin
towers increasing to the σ -algebra A, but the towers do not necessarily partition the space.
This means that from a tower to the next one, we need to add some parts of the space which
are not covered by the previous tower, called spacers, so that the measure of the subset
covered by the nth tower tends to 1 as n goes to +∞. As illustrated in Figure 3, to get the
next tower, the current one is subdivided in sub-towers which are stacked with optional
spacers between them. The number of sub-towers is called the cutting parameter and the
number of consecutive spacers between these sub-towers are the spacing parameters (see
Definition 3.2). For example, an odometer admits a cutting-and-stacking construction with
spacing parameters equal to zero at each step.

Rank-one systems all have entropy zero. They include systems with a discrete spectrum
[Jun76], also called compact systems. Such systems are not weakly mixing and are
completely classified up to conjugacy by their point spectrum [HVN42]. Examples include
odometers and irrational rotations.

The family of rank-one systems is much richer than its subclass of discrete spectrum
systems. Indeed, the latter are not weakly mixing, whereas there exist strongly mixing
systems of rank one and also rank-one systems which are weakly mixing but not strongly
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FIGURE 3. In this example, there are four spacers and the cutting parameter is three.

mixing (Chacon’s map was the first example of such a system and opened the study of
rank-one systems). Rank-one systems can have irrational eigenvalues (that is, of the form
exp (2iπθ) with irrational numbers θ ), which is the case of irrational rotations, whereas
odometers only have rational eigenvalues. The reader may refer to the complete survey of
Ferenczi [Fer97] about rank-one systems and, more generally, systems of finite rank.

The combinatorial structure of a general rank-one system does not differ too much from
the structure of an odometer but the systems can have completely different properties; thus
this class may extend the result of Kerr and Li and provide interesting flexibility results
about Shannon orbit equivalence.

1.3. A first extension of Kerr and Li’s theorem. The construction of an orbit equivalence
between the universal odometer S and any rank-one system T is a natural generalization of
Kerr and Li’s method for the universal odometer and any odometer (see Remark 5.18). The
difficulty is to quantify the cocycles.

At the beginning of our work, we first proved that the Shannon orbit equivalence
established by Kerr and Li in [KL24] is actually a ϕ-integrable orbit equivalence for any
ϕ : R+ → R+ with ϕ(t) = o(t1/3). We then generalized this to rank-one systems called
BSP, for ‘bounded-spacing-parameter’, see Definition 3.5. This notion of BSP systems
was already introduced by Gao and Ziegler in [GZ19], using the symbolic definition of
rank-one systems (in this paper, we will only consider the cutting-and-stacking definition of
rank-one systems, which is often more appropriate for constructions in a measure-theoretic
setting).

THEOREM A. Every BSP rank-one system is ϕ-integrably orbit equivalent to the universal
odometer for any ϕ : R+ → R+ satisfying ϕ(t) =

t→+∞ o(t1/3).

Therefore, ϕ-integrable orbit equivalence, for a ϕ as in the above theorem, and Shannon
orbit equivalence do not preserve weak mixing since Chacon’s map is a BSP rank-one
system.

Now the goal is to get a result for systems of rank one outside the class of BSP systems.
For this purpose, we find a more general framework with the notion of flexible classes,
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and a general statement (Theorem B) implying Theorem A and other flexibility results
(Theorems C, E and F). Theorem D is a refinement of Theorem C.

1.4. A modified strategy. We first have to understand why the quantification of the
cocycles is more difficult to determine for general rank-one systems than for odometers (or
even for BSP systems in Theorem A). In [KL24], the quantification of the cocycles relies
on a series whose terms vanish to zero as the cutting parameters get increasingly larger.
The key is then to get quickly increasing cutting parameters for the series to converge.
To do so, it suffices to skip steps in the cutting-and-stacking process, that is, from the
nth Rokhlin tower, we can directly build the (n + k)th Rokhlin for k so big that the new
cutting parameter is large enough. In other words, we can recursively choose the cutting
parameters so that they increase quickly enough.

When the rank-one system is not an odometer, we need an asymptotic control on the
spacing parameters (recall that they are zero for an odometer) for the cocycles to be
well quantified. When skipping steps in the cutting-and-stacking method, the spacing
parameters may increase too quickly, preventing us from quantifying the cocycles. As we
will see in Lemma 3.6, we do not have this problem with BSP rank-one systems.

When the rank-one system is not BSP, skipping steps in the cutting-and-stacking
construction is not relevant as it may improperly change the spacing parameters. In §5.3
(see Lemma 5.9), we will notice that the construction of Kerr and Li enables us to build
the universal odometer S while we are building the rank-one system T, focusing only on the
combinatorics behind the systems, whereas for Kerr and Li, T and its cutting-and-stacking
settings are fixed and S is built from these data. This new strategy will enable us to have a
result for systems of rank one outside the class of BSP systems, with the notion of flexible
class.

1.5. Flexible classes. A flexible class (see Definition 3.7) is basically a class of rank-one
systems satisfying a common property (e.g. the set of strongly mixing rank-one systems),
with the following two requirements. We first ask for a sufficient condition, given by
a set FC , on the first n cutting and spacing parameters (for all integers n ≥ 0) for the
underlying rank-one system to be in this class. Second, given a sequence of n cutting and
spacing parameters in FC (they will be the first n parameters of a cutting-and-stacking
construction), we require that it can be completed in a sequence of n + 1 parameters in FC ,
with infinitely many choices for the (n + 1)th cutting parameters, and with the appropriate
asymptotic control on the (n + 1)th spacing parameters.

The idea is to inductively choose the parameters so that the cutting parameters increase
quickly enough, with the appropriate asymptotics on the spacing parameters, and the
underlying rank-one system has the desired property, namely the system is in the flexible
class that we consider.

The general statement on flexible classes is the following.

THEOREM B. (See Theorem 3.9) Let ϕ : R+ → R+ be a map satisfying ϕ(t) =
t→+∞

o(t1/3). If C is a flexible class, then there exists T in C which is ϕ-integrably orbit equivalent
to the universal odometer.

https://doi.org/10.1017/etds.2024.118 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.118


Rank-one systems, flexible classes and Shannon orbit equivalence 7

A very interesting phenomenon is when a rank-one system T is flexible, meaning that
{T } is a flexible class. This first means that given the parameters of a cutting-and-stacking
construction of T, it is possible to change the (n + 1)th parameters so that they have the
desired asymptotic control, and to inductively do so for every n so that the underlying
rank-one system is again T. We do not know if every rank-one system is flexible. Second,
Theorem B is an existence result and when a flexible class is a singleton {T }, this statement
provides a concrete example of a rank-one system which is ϕ-integrably orbit equivalent to
the universal odometer.

The following proposition gives examples of flexible classes.

PROPOSITION 1.2. (See Proposition 3.8) (1) Every BSP rank-one system is flexible.
(2) For every non-empty open subset V of R, the set {Rθ | θ ∈ V ∩ (R \ Q)} is a flexible

class.
(3) For every irrational number θ , the class of rank-one systems which have e2iπθ as an

eigenvalue is flexible.
(4) The class of strongly mixing rank-one systems is flexible.

Proving that a BSP system is flexible is not difficult and we rely on the fact that bounded
spacing parameters already have the desired asymptotics even though we skip steps in
the cutting-and-stacking process for the cutting parameters to increase quickly enough
(see §4.1). We use a construction by Drillick et al [DEJ+23] to prove Proposition 1.2 for
irrational rotations (see §4.2). We also consider a construction by Danilenko and Vieprik
[DV23] for the rank-one systems with a given eigenvalue (see §4.3). Finally, Ornstein
[Orn72] gives the first example of strongly mixing rank-one systems and the fact that
these systems form a flexible class follows from his construction (see §4.4).

Combined with Proposition 1.2, Theorem B provides four flexibility results. The first
one is Theorem A stated above, which is a generalization of Kerr and Li’s theorem.
The second one is another result with almost explicit examples of systems which are
ϕ-integrably orbit equivalent to the universal odometer.

THEOREM C. Let ϕ : R+ → R+ be a map satisfying ϕ(t) =
t→+∞ o(t1/3). The set of

irrational numbers θ whose associated irrational rotation is ϕ-integrably orbit equivalent
to the universal odometer is dense in R.

The point spectrum of Rθ is exactly the circle subgroup generated by exp (2iπθ) and the
eigenvalues of the universal odometer are rational, so Theorem C implies that there exist
two Shannon orbit equivalent systems (more specifically, ϕ-integrably orbit equivalent
with ϕ(t) =

t→+∞ o(t1/3)), with non-trivial point spectra and such that 1 is the only common

eigenvalue.
The way we prove Theorem B will enable us to get the following refinement, its proof

is written at the end of the paper.

THEOREM D. For every map ϕ : R+ → R+ satisfying ϕ(t) =
t→+∞ o(t1/3), and for every

non-empty open subset V of R, the set of irrational numbers θ ∈ V whose associated irra-
tional rotation is ϕ-integrably orbit equivalent to the universal odometer is uncountable.

https://doi.org/10.1017/etds.2024.118 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.118


8 C. Correia

Question 1.3. Let us consider the set of irrational numbers θ whose associated irrational
rotation is ϕ-integrably orbit equivalent to the universal odometer. Is this set conull, with
respect to the Lebesgue measure, equal to the set of irrational numbers?

Finally, we get the following corollaries, providing implicit examples.

THEOREM E. For every map ϕ : R+ → R+ satisfying ϕ(t) =
t→+∞ o(t1/3) and for every

irrational number θ , there exists a rank-one system which has e2iπθ as an eigenvalue and
which is ϕ-integrably orbit equivalent to the universal odometer.

THEOREM F. For every map ϕ : R+ → R+ satisfying ϕ(t) =
t→+∞ o(t1/3), there exists a

strongly mixing rank-one system which is ϕ-integrably orbit equivalent to the universal
odometer.

As exp (2iπθ) is an eigenvalue of the irrational rotation of angle θ , and as we do not
know if Theorem C holds for every irrational number θ , Theorem E then completes this
statement with a weaker result for the remaining θ .

Theorem F implies that ϕ-integrable orbit equivalence, with ϕ(t) =
t→+∞ o(t1/3), and

Shannon orbit equivalence do not preserve strong mixing. This is also a consequence of the
result from [CJLMT23]. Indeed, if S is strongly mixing, then all its non-trivial powers are
ergodic and the statements give some T with a non-trivial power which is not ergodic, so T
is not strongly mixing. Here, Theorem F gives an example starting from a very non-strongly
mixing system S (the universal odometer). Finally, note that strongly mixing systems are
not BSP. This is a consequence of [GZ19, Theorem 1.3]: BSP rank-one systems are not
topologically mixing, therefore they are not measure-theoretically strongly mixing.

1.6. Further comments. As they both preserve entropy, we may wonder whether there
is a connection between Shannon orbit equivalence (or, more generally, ϕ-integrable
orbit equivalence for ϕ greater than log) and even Kakutani equivalence. Two ergodic
probability measure-preserving bijections S and T, respectively acting on (X, μ) and
(Y , ν), are evenly Kakutani equivalent if there exist measurable subsets A ⊆ X and B ⊆ Y

with equal measure, that is, μ(A) = ν(B), such that the induced maps SA and TB are
conjugate. Even Kakutani equivalence is an equivalence relation, contrarily to Shannon
orbit equivalence and ϕ-integrable orbit equivalence a priori (except for linear maps ϕ,
by Belinskaya’s theorem). The theory of Ornstein, Rudolph and Weiss [ORW82] gives
a complete classification up to even Kakutani equivalence among loosely Bernoulli (LB)
systems and entropy is a complete invariant. Moreover, the class of LB systems is closed by
even Kakutani equivalence, meaning that if S is LB and equivalent to T, then T is also LB.

Rank-one systems are zero-entropy and LB, and by Theorems A, C, E and F, some of
them are Shannon orbit equivalent to the universal odometer.

Question 1.4. Does even Kakutani equivalence imply Shannon orbit equivalence or
ϕ-integrable orbit equivalence for some ϕ?
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In a forthcoming paper, we will provide a new construction of orbit equivalence
to prove that the converse is false: for every ε > 0, there exists a non-LB system
which is (x �→ x(1/2)−ε)-integrably orbit equivalent to the dyadic odometer. So
(x �→ x(1/2)−ε)-integrable orbit equivalence and Shannon orbit equivalence do not imply
even Kakutani equivalence.

1.7. Outline of the paper. After a few preliminaries in §2, rank-one systems are defined
in §3 using the cutting-and-stacking method. We also define the central notion of flexible
classes of rank-one transformations. In §4, we prove Proposition 1.2 (Proposition 3.8 in §3),
that is, we show that the classes mentioned in Theorem B (Theorem 3.9 in §3) are flexible.
It remains to show that every flexible class admits an element which is ϕ-integrably
orbit equivalent to the universal odometer (Theorem 3.9). In §5, we will describe the
construction of Kerr and Li, generalized to rank-one systems, and establish that this is an
orbit equivalence with some important properties preparing for the proof of Theorem 3.9.
Theorems A, C, E and F directly follow from Proposition 3.8 and Theorem 3.9. We prove
Theorem D at the end of the paper.

2. Preliminaries
2.1. Basics of ergodic theory. The probability space (X, A, μ) is assumed to be
standard and atomless. Such a space is isomorphic to ([0, 1], B([0, 1]), Leb), that is, there
exists a bimeasurable bijection � : X → [0, 1] (defined almost everywhere) such that
�	μ = Leb, where �	μ is defined by �	μ(A) = μ(�−1(A)) for every measurable set A.
We consider maps T : X → X acting on this space and which are bijective, bimeasurable
and probability measure-preserving (p.m.p.), meaning that μ(T −1(A)) = μ(A) for all
measurable sets A ⊆ X, and the set of these transformations is denoted by Aut(X, A, μ),
or simply Aut(X, μ), two such maps being identified if they coincide on a measurable
set of full measure. In this paper, elements of Aut(X, μ) are called transformations or
(dynamical) systems.

A measurable set A ⊆ X is T-invariant if μ(T −1(A)
A) = 0, where 
 denotes the
symmetric difference. A transformation T ∈ Aut(X, μ) is said to be ergodic if every
T-invariant set is of measure 0 or 1. If T is ergodic, then T is aperiodic, that is, T n(x) 	= x

for almost every x ∈ X and for every n ∈ Z \ {0}, or equivalently the T-orbit of x, denoted
by OrbT (x) � {T n(x) | n ∈ Z}, is infinite for almost every x ∈ X.

Here, T is weakly mixing if

1
n

n∑
k=0

|μ(A ∩ T −n(B)) − μ(A)μ(B)| →
n→+∞ 0

for every measurable sets A, B. Additionally, T is strongly mixing if

|μ(A ∩ T −n(B)) − μ(A)μ(B)| →
n→+∞ 0

for every measurable set A, B. It is not difficult to prove that strong mixing implies weak
mixing and that the latter implies ergodicity.
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The notions of weak mixing and ergodicity can be translated in terms of eigenvalues.
Denoting by L2(X, A, μ) the space of complex-valued and square-integrable functions
defined on X, a complex number λ is an eigenvalue of T if there exists f ∈ L2(X, A, μ) \
{0} such that f ◦ T = λf almost everywhere (f is then called an eigenfunction). An
eigenvalue λ is automatically an element of the unit circle T � {z ∈ C | |z| = 1}. The
point spectrum of T is then the set of all its eigenvalues. Notice that λ = 1 is always an
eigenvalue since the constant functions are in its eigenspace. Finally, T is ergodic if and
only if the constant functions are the only eigenfunctions with eigenvalue one, in other
words, the eigenspace of λ = 1 is the line of constant functions (we say that it is a simple
eigenvalue). If T is ergodic, it is weakly mixing if and only if the only eigenvalue of T is 1.
For a complete survey on spectral theory for dynamical systems, the reader may refer to
[VO16].

All the properties that we have introduced are preserved under conjugacy. Two trans-
formations S ∈ Aut(X, μ) and T ∈ Aut(Y , ν) are conjugate if there exists a bimeasurable
bijection � : X → Y such that �	μ = ν and � ◦ S = T ◦ � almost everywhere. Some
classes of transformations have been classified up to conjugacy, the two examples to
keep in mind are the following. By Ornstein [Orn70], entropy is a total invariant of
conjugacy among Bernoulli shifts, and Ornstein and Weiss [OW87] generalized this result
for Bernoulli shifts of amenable groups. For more details about entropy, see [Dow11] for
non-necessarily invertible transformations T : X → X, and [KL17] more generally for
actions of amenable groups. Finally, Halmos and von Neumann [HVN42] showed that two
systems with discrete spectra are conjugate if and only if they have equal point spectra (a
system has a discrete spectrum if the span of all its eigenfunctions is dense in L2(X, A, μ)).

2.2. Quantitative orbit equivalence. The conjugacy problem in full generality is very
complicated (see [FRW11]). We now give the formal definition of orbit equivalence, which
is a weakening of the conjugacy problem.

Definition 2.1. Two aperiodic transformations S ∈ Aut(X, μ) and T ∈ Aut(Y , ν) are orbit
equivalent if there exist a bimeasurable bijection � : X → Y satisfying �	μ = ν, such
that OrbS(x) = Orb�−1T �(x) for almost every x ∈ X. The map � is called an orbit
equivalence between S and T.

We can then define the cocycles associated to this orbit equivalence. These are
measurable functions cS : X → Z and cT : Y → Z defined almost everywhere by

Sx = �−1T cS(x)�(x) and Ty = �ScT (y)�−1(y)

(cS(x) and cT (y) are uniquely defined by aperiodicity).

Given a function ϕ : R+ → R+, a measurable function f : X → Z is said to be
ϕ-integrable if ∫

X

ϕ(|f (x)|) dμ < +∞.

For example, integrability is exactly ϕ-integrability when ϕ is non-zero and linear. Then,
a weaker quantification on cocycles is the notion of ϕ-integrability for a sublinear map
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ϕ, meaning that limt→+∞ ϕ(t)/t = 0. Two transformations in Aut(X, μ) are said to be
ϕ-integrably orbit equivalent if there exists an orbit equivalence between them whose
associated cocycles are ϕ-integrable. Another form of quantitative orbit equivalence is
Shannon orbit equivalence. We say that a measurable function f : X → Z is Shannon if
the associated partition {f −1(n) | n ∈ Z} of X has finite entropy. Two transformations in
Aut(X, μ) are Shannon orbit equivalent if there exists an orbit equivalence between them
whose associated cocycles are Shannon.

3. Rank-one systems
3.1. The cutting-and-stacking method. Before the definition of a rank-one system
(Definition 3.2), and for the definition of flexible classes (Definition 3.7), we need to define
sequences of integers which will provide the combinatorial data of a rank-one system,
namely the cutting and spacing parameters.

Definition 3.1. By a cutting and spacing parameter, we mean a tuple of the form

(q, (σ.,0, . . . , σ.,q))

with an integer q ≥ 2 (the cutting parameter) and non-negative integers σ.,0, . . . , σ.,q (the
spacing parameters), and we denote by P the set of all cutting and spacing parameters. We
also define the set of finite sequences of cutting and spacing parameters:

P∗ �
⋃
n∈N

Pn.

Given a sequence of cutting and spacing parameters p = (qk , (σk,0, . . . , σk,qk
))k≥0 ∈ PN

and an integer n ≥ 0, the tuple (qn, (σn,0, . . . , σn,qn)) in P is the nth cutting and spacing
parameter of p, and the tuple (qk , (σk,0, . . . , σk,qk

))0≤k≤n is the projection of p on Pn+1

(it gives the first n + 1 cutting and spacing parameters). From p, we also define three
sequences:
• (hn)n≥0 the height sequence of p, inductively defined by{

h0 = 1,
hn+1 = qnhn + σn,

where hn is called the height of the nth tower;
• (σn)n≥0, with σn �

∑qn

i=0 σn,i (the number of new spacers at step n);
• (Zn)n≥0, with Zn � max {σj ,i | 0 ≤ j ≤ n, 0 ≤ i ≤ qj },
and it is also possible to consider the finite sequences (hk)0≤k≤n+1, (σk)0≤k≤n and
(Zk)0≤k≤n associated to a finite sequence of cutting and spacing parameters in Pn+1.

The terminology ‘cutting’, ‘spacing’, ‘tower’, ‘height’, etc., is justified by Definition 3.2
and Figure 4. There are many definitions of rank-one systems (see [Fer97] for a complete
survey and various facts in this section). In this paper, the goal is to use the combinatorial
structure given by the cutting-and-stacking method (see Figure 4).
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12 C. Correia

FIGURE 4. An example of cutting-and-stacking construction with hn = 5, qn = 3, σn,0 = 1, σn,1 = 2, σn,2 = 0,
σn,3 = 1. We then have hn+1 = 19.

Definition 3.2. A transformation T ∈ Aut(X, μ) is of rank one if there exist:
(1) a sequence of cutting and spacing parameters p = (qn, (σn,0, . . . , σn,qn))n≥0 ∈ PN

satisfying

+∞∑
n=0

σn

hn+1
< +∞, (F)

where (hn) and (σn) are the sequences associated to p, as described in Definition 3.1;
(2) measurable subsets of X, denoted by Bn (for every n ≥ 0), Bn,i (for every n ≥ 0

and 0 ≤ i ≤ qn − 1) and �n,i,j (for every n ≥ 0, 0 ≤ i ≤ qn and 1 ≤ j ≤ σn,i ; if
σn,i = 0, then there are no �n,i,j ) such that for all n ≥ 0:
(a) Bn, . . . , T hn−1(Bn) are pairwise disjoint;
(b) (Bn,0, Bn,1, . . . , Bn,qn−1) is a partition of Bn;

(c) T hn(Bn,i ) =
{

�n,i+1,1 if σn,i > 0,

Bn,i+1 if σn,i = 0 and i < qn − 1;

(d) if σn,i > 0, then T (�n,i,j ) =
{

�n,i,j+1 if j < σn,i ,

Bn,i if j = σn,i and i ≤ qn − 1;

(e) Bn+1 =
{

�n,0,1 if σn,0 > 0,

Bn,1 if σn,0 = 0,

and if the Rokhlin towers Rn � (T k(Bn))0≤k≤hn−1 are increasing to the σ -algebra A
meaning that the σ -algebra generated by {T k(Bn) | n ∈ N, 0 ≤ k ≤ hn − 1} is A up to
null sets (since A is standard, this also means that {T k(Bn) | n ∈ N, 0 ≤ k ≤ hn − 1}
separates the points). Note that R0 is the tower with only one level B0. The sets �n,i,j are
called the spacers. In this paper, we will usually write:
• Xn � Bn 
 · · · 
 T hn−1(Bn) as the subset covered by the nth tower Rn;
• εn � μ((Xn)

c), where (Xn)
c denotes the complement of the subset Xn of X.
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Since Xn is increasing and Rn increases to the atomless σ -algebra A, we have
μ(Xn) →

n→+∞ 1. In other words εn tends to 0.

Before giving examples, the following lemmas give some easy properties on these
systems to understand their combinatorial structure and the hypotheses required in the
definition.

LEMMA 3.3. Let (hn) and (σn) be the sequences associated to (qn, (σn,0, . . . , σn,qn))n ∈
PN (see Definition 3.1). The following assertions are equivalent:
(1) the series

∑
(σn/hn+1) converges (condition (F) in Definition 3.2);

(2) the series
∑

(σn/q0 . . . qn) converges;
(3) there exists a constant M0 ≤ 1 such that hn+1 ∼

n→+∞ (q0 . . . qn/M0),

and if one of these equivalent assertions is true, then
∑

n≥0 (σn/q0 . . . qn) = (1/M0) − 1.

Proof of Lemma 3.3. If the series
∑

(σn/q0 . . . qn) converges, so does the series∑
(σn/hn+1) since hn+1 is greater or equal to q0 . . . qn. Now assume that the series∑
(σn/hn+1) converges. Notice that we have

σn

hn+1
= hn+1 − qnhn

hn+1
= 1 − qn

hn

hn+1

and since the series is convergent, the product
∏

qn(hn/hn+1) converges to some M0 > 0,
that is, q0 . . . qn/hn+1 → M0. The constant M0 is less than or equal to 1 since we have
hn+1 ≥ qnhn for every n ≥ 0. Finally, let us assume q0 . . . qn/hn+1 → M0. Notice that
we have

σn

q0 . . . qn

= hn+1 − qnhn

q0 . . . qn

= hn+1

q0 . . . qn

− hn

q0 . . . qn−1
,

so by telescoping consecutive terms, we get
∑

n≥0 (σn/q0 . . . qn) = limn→∞(hn+1/

q0 . . . qn) − h0 = (1/M0) − 1 and we are done for the equivalence between the three
assumptions.

LEMMA 3.4. Let T : X → X be a bimeasurable bijection. Assume that T preserves a
non-zero measure μ and it admits a sequence of Rokhlin towers as in Definition 3.2. The
following hold:
(1) the levels T k(Bn) of the nth Rokhlin tower Rn have μ-measure μ(B0)/q0 . . . qn−1;
(2) μ is finite if and only if condition (F) is satisfied. Furthermore, if μ is a probability

measure (this implies that T is a rank-one system), then μ(B0) = M0 and hn+1 ≤
(q0 . . . qn/M0), where M0 is given by Lemma 3.3.

Proof of Lemma 3.4. For a fixed n, the levels of Rn have the same measure by
T-invariance of the measure μ. Moreover, the first level Bn is a disjoint union of qn levels
Bn,0, . . . , Bn,qn−1 of Rn+1. Then, it is clear by induction that a level of Rn has measure
μ(B0)/q0 . . . qn−1. Since the sequence (Xn)n≥0 is increasing to X, and Xn+1 is obtained
from Xn by adding σn spacers, which are levels of Rn+1, we get
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14 C. Correia

μ(X) = μ(X0) +
∑
n≥0

μ(Xn+1\Xn) = μ(B0) +
∑
n≥0

μ(B0)σn

q0 . . . qn

, (1)

so μ(B0) is non-zero, and μ(X) is finite if and only if the sum
∑

n≥0 (σn/q0 . . . qn)

is finite. Finally, let us assume that μ is a probability measure. This implies∑
n≥0 (σn/q0 . . . qn) = (1/M0) − 1 and, using equation (1), we get μ(B0) = M0.

The measurable set Xn is the disjoint union of hn levels of Rn, so the inequality
hn ≤ (q0 . . . qn−1/M1) follows from the fact that μ is a probability measure.

It is possible to build a finite measure-preserving transformation T of rank one with a
given combinatorial setting (qn, (σn,0, . . . , σn,qn))n≥0 ∈ PN satisfying the hypothesis (F).
For instance, it suffices to build (Xn) as an increasing sequence of intervals of R+, with
Bn,i and �n,i,j being subintervals of equal length and disjoint (for a fixed n), each on
which T is defined as an affine map, and with B0 = [0, M0]. The convergence of the series∑

(σn/hn+1) and Lemma 3.3 ensure that X �
⋃

Xn is equal to [0, 1] (up to a null set),
so the Lebesgue measure on [0, 1] is a probability measure preserved by T. Notice that if
the series is divergent, we can set B0 = [0, 1] and this defines T on the set of positive real
numbers endowed with the Lebesgue measure, so this is an infinite measure-preserving
transformation.

Therefore, for every (qn, (σn,0, . . . , σn,qn))n≥0 ∈ PN satisfying condition (F), there
exists a rank-one system having a cutting-and-stacking construction with these cutting and
spacing parameters, this fact will be used in this paper since it enables us to only take into
account the combinatorics behind the systems.

The hypothesis on the Rokhlin towers Rn aims not only to have εn → 0 but also to
define two isomorphic systems when they admit cutting-and-stacking constructions with
the same cutting and spacing parameters. Moreover, if T admits such a construction with
Rokhlin towers increasing to a sub-σ -algebra B of A, then T, seen as an element of
Aut(X, A, μ), is not necessarily a rank-one system but admits a rank-one system (T on
the sub-σ -algebra B) as a factor.

Two different families of cutting and spacing parameters do not necessarily define
non-isomorphic systems. Indeed, in a construction of a rank-one system with parameters
qn and σn,i , one can decide to only consider a subsequence Rnk

of Rokhlin towers. For
example, the new cutting parameters will be qnk

qnk+1 . . . qnk+1−1 for k ≥ 0.
The rank-one systems form a class of ergodic and zero entropy systems. The easiest

examples of rank-one systems are the irrational rotations

Rθ : z ∈ T �→ e2iπθ z ∈ T

for every irrational number θ , where T is the unit circle endowed with its Haar measure.
These systems are not weakly mixing. Moreover, they have discrete spectrum and the point
spectrum of Rθ is {einθ | n ∈ Z}, so by the Halmos–von Neumann theorem [HVN42], Rθ

and Rθ ′ are isomorphic if and only if θ = θ ′ mod Z or θ = −θ ′ mod Z.
The odometers are rank one. These are exactly the rank-one systems without spacers

(that is, σn,i = 0), so the Rokhlin towers are partitions of the space. Such a sys-
tem is isomorphic to the adding machine S in the space

∏
n≥0 {0, 1, . . . , qn − 1},
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namely the addition by (1, 0, 0, 0, . . .) with carry over to the right, defined for every
x ∈∏n≥0 {0, 1, . . . , qn − 1} by

Sx =
{

(0, . . . , 0, xi + 1, xi+1, . . .) if i � min {j ≥ 0 | xj 	= qj − 1} is finite,

(0, 0, 0, . . .) if x = (q0 − 1, q1 − 1, q2 − 1, . . .),

and it preserves the product of uniform probability measures on each finite set
{0, 1, . . . , qn − 1}. Denote the cylinders of length k by

[x0, . . . , xk−1]k �
{
y ∈

∏
n≥0

{0, 1, . . . , qn − 1} | y0 = x0, . . . , yk−1 = xk−1

}
.

If S is the odometer on the space
∏

n≥0 {0, 1, . . . , qn − 1}, we can also set a partially
defined map

ζn : X \ [q0 − 1, . . . , qn−1 − 1]n → X \ [0, . . . , 0]n

which is the addition by

(0, . . . , 0︸ ︷︷ ︸
n−1 times

, 1, 0, 0, . . .)

(so S and ζ1 coincide on X \ [q0 − 1]1). Then, we have

Bn = [0, . . . , 0︸ ︷︷ ︸
n times

]n,

Bn,i = [0, . . . , 0︸ ︷︷ ︸
n times

, i]n+1

and Bn,i = ζ i
n+1(Bn,0) for every 0 ≤ i ≤ qn − 1, so it provides a scale in Bn. Note that it

is possible to recover the odometer S from these partially defined maps ζn (see Figure 5).
In §5.1, the strategy will be to build S from partially defined maps ζn.

In the class of odometers, the number of occurrences of every prime factors in the
set {qn | n ≥ 0} form a total invariant of conjugacy. As for irrational rotations, it is
a consequence of the Halmos–von Neumann theorem since odometers have a discrete
spectrum and their eigenvalues are given by these occurrences. In particular, odometers
have eigenvalues non-equal to 1 and are not weakly mixing; moreover, odometers and
irrational rotations are not isomorphic. Notice that the Halmos–von Neumann theorem
implies that the conjugacy classes among systems with a discrete spectrum coincide with
the flip-conjugacy classes since the point spectrum of a system is a subgroup of T. If every
prime number has infinite multiplicity in the set {qn | n ≥ 0}, then the odometer is said to
be universal. An odometer is dyadic if 2 is the only prime factor.

Chacon’s map is the first example of weakly mixing system which is not strongly
mixing [Cha69] and was the starting point for the notion of rank-one systems. It is
a rank-one transformation defined with cutting and spacing parameters qn = 3, σn,0 =
σn,1 = σn,3 = 0, σn,2 = 1.
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16 C. Correia

FIGURE 5. Example of odometer with q0 = 3, q1 = 2, q2 = 3.

3.2. Flexible classes. Now we introduce classes of rank-one systems to which the main
result of this paper applies. First, let us consider cutting-and-stacking constructions whose
spacing parameters have controlled asymptotics. Recall that PN is the set of sequences
of cutting and spacing parameters. As introduced in Definition 3.1, (hn), (σn) and (Zn)

denote the sequences associated to a sequence in PN: hn is the height of the nth tower, σn

the number of new spacers at step n and Zn is the maximum number of spacers between
two consecutive towers, over the first n steps.

Definition 3.5. A construction by cutting and stacking with cutting and spacing parameters
(qn, (σn,0, . . . , σn,qn))n≥0 ∈ PN is said to be CSP (controlled-spacing-parameter) if
there exists a constant C > 0 such that Zn ≤ Chn for all n. It is furthermore BSP
(bounded-spacing-parameter) if Zn ≤ C and σn,0 = σn,qn = 0 for all n. A rank-one system
T is BSP if it admits a BSP cutting-and-stacking construction.

Odometers and Chacon’s map are examples of BSP rank-one systems. Moreover, BSP
implies CSP. The interest in the BSP property is its stability after skipping steps in the
cutting-and-stacking process, as stated in the following lemma.

LEMMA 3.6. Given a BSP cutting-and-stacking construction, any subsequence of its
Rokhlin towers still provides a BSP construction with the same constant C.

Proof of Lemma 3.6. Let qn and σn,i be the cutting and spacing parameters of the BSP
construction, C the bound for the spacing parameters σn,i , Rn the associated towers and
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FIGURE 6. Illustration of the proof of Lemma 3.6, spacing parameters from Rn to Rn+2 with qn = qn+1 = 2
(the coloured levels are the base and the roof of the towers).

Rnk
a subsequence. Let k be an integer and assume nk+1 = nk + 2. Denote by q ′

nk
and

σ ′
nk ,i the new cutting and spacing parameters from Rnk

to Rnk+1 . It is easy to show that
q ′
nk

= qnk
qnk+1, σ ′

nk ,0 = σ ′
nk ,q ′

nk

= 0 and for every 1 ≤ j ≤ qnk+1, σ ′
nk ,(j−1)qnk

+i is equal

to σnk ,i if 1 ≤ i ≤ qnk
− 1 and σnk+1,j if i = qnk

(see Figure 6). Thus, the non-zero spacing
parameters from Rnk

to Rnk+1 are of the form σnk ,i or σnk+1,i and they are all bounded
above by C. For nk+1 bigger than nk + 2, the result is now clear by induction.

If the parameters σn,qn are non-zero, then skipping steps in the cutting-and-stacking
process will cause an accumulation of spacers above the last columns and the new spacing
parameters will not be bounded if the subsequence is properly chosen so that the jumps
nk+1 − nk increase quickly enough. We have the same problem for σn,0 (accumulation of
spacers at the bottom of the first columns), and hence the conditions σn,0 = σn,qn = 0 in
the definition of BSP.

Lemma 3.6 has no reason to hold for CSP construction that are not BSP. Indeed, the
spacing parameters from Rnk

to Rnk+1 have to be compared with hnk
, the height of

Rnk
. The comparison is easily obtained for the spacing parameters σnk ,i , 0 ≤ i ≤ qnk

,
but for the other spacing parameters, we only know that they are bounded above by
Chnk+1, Chnk+2, . . . , Chnk+1−1.

In the following, we will see other important CSP examples by considering classes
containing ‘nice’ cutting-and-stacking constructions, meaning that we will be able to
properly choose the parameters to have the desired quantification of the cocycles for the
orbit equivalence built in §5.1. By definition, every flexible class C will be associated to
some subset FC of P∗, which can be considered as sufficient conditions that the cutting
and spacing parameters have to satisfy at each step for the underlying transformation to
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18 C. Correia

belong to C. Recall that P∗ denotes the set of all finite sequences of cutting and stacking
parameters.

Definition 3.7. A class C of rank-one systems is said to be flexible if there exists a subset
FC of P∗ satisfying the following properties:
(1) there exists a constant C > 0 such that for all (qn, (σn,0, . . . , σn,qn))n≥0 ∈ PN

satisfying condition (F) in Definition 3.2, if FC contains every projection
(qk , (σk,0, . . . , σk,qk

))0≤k≤n ∈ Pn+1 for n ≥ 0, then these parameters define a CSP
construction (with the constant C) and the underlying rank-one transformation
is in C;

(2) there exists a cutting and spacing parameter (q0, (σ0,0 . . . , σ0,q0)) in FC with q0 ≥ 3;
(3) there is a constant C′ > 0 such that for all n ≥ 1, if (qk , (σk,0, . . . , σk,qk

))0≤k≤n−1 is
in FC , then there are infinitely many integers qn such that (qk , (σk,0, . . . , σk,qk

))0≤k≤n

is in FC for some σn,0, . . . , σn,qn satisfying the inequality

σn ≤ C′qnhn−1,

where (hk)0≤k≤n+1 and (σk)0≤k≤n denote the finite sequences associated to the finite
sequence (qk , (σk,0, . . . , σk,qk

))0≤k≤n of cutting and stacking parameters.
A rank-one system T is flexible if {T } is a flexible class.

The third point of the definition aims to recursively choose the cutting parameters (and
we want them to increase quickly enough) with an asymptotic control on (σn)n, while
the first point guarantees that it is possible to do so for the underlying system to be
in the class C. The second point is minor, but it is required for the initialization of the
recursive construction of an odometer orbit equivalent to an element of our flexible class
(see Lemma 5.10 and Remark 5.11). It also ensures that FC is not an empty set.

Notice that if a construction satisfies Zn ≤ Chn−1 for all n, then it is in particular CSP
and we get σn ≤ C(qn + 1)hn−1 ≤ 2Cqnhn−1 as in the third point of Definition 3.7.

We now give examples of flexible classes. The proof is given in §4.

PROPOSITION 3.8.
(1) Every BSP rank-one system is flexible.
(2) For every non-empty open subset V of R, the set {Rθ | θ ∈ V ∩ (R \ Q)} is a flexible

class.
(3) For every irrational number θ , the class of rank-one systems which have e2iπθ as an

eigenvalue is flexible.
(4) The class of strongly mixing rank-one systems is flexible.

Theorems A, C, E and F follow from Proposition 3.8 and the following theorem which
is the main result.

THEOREM 3.9. Let ϕ : R+ → R+ be a map satisfying ϕ(t) =
t→+∞ o(t1/3). If C is a flexible

class, then there exists T in C which is ϕ-integrably orbit equivalent to the universal
odometer.
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4. Proof of Proposition 3.8
In this section, we prove the four statements in Proposition 3.8.

4.1. BSP systems. Let T be a BSP rank-one system, C � {T } and qn, σn,i the parameters
of a BSP construction of T, with a constant C > 0. For every n ≥ 0 and j ≥ 1, let
σ

(n,n+j)

0 , . . . , σ
(n,n+j)
qn...qn+j−1 be the spacing parameters from Rn to Rn+j , assuming that

the steps for Rn+1, . . . , Rn+j−1 are skipped during the construction (we then have
σ

(n,n+1)
i = σn,i and also σ

(n,n+j)
i = 0 for i equal to 0 and qn . . . qn+j−1 by Lemma 3.6).

The new cutting parameters are q(n,n+j) � qn . . . qn+j−1 and are large enough with huge
jumps j. Now, define

FC �{(q(nk ,nk+1), (σ
(nk ,nk+1)
0 , . . . , σ

(nk ,nk+1)

(q(nk ,nk+1))
))0≤k≤m | m ≥ 0,

0 = n0 < n1 < · · · < nm+1}.
Using Lemma 3.6, the new spacing parameters σ

(nk ,nk+1)
j are bounded by C and we get∑

1≤j≤q(nk ,nk+1)

σ
(nk ,nk+1)
j ≤ Cq(nk ,nk+1).

The set of parameters FC thus witnesses that {T } is flexible.

4.2. Irrational rotations. We now consider a construction from [DEJ+23]. For every
irrational number θ , Drillick et al give an explicit cutting-and-stacking construction of a
transformation T which is the irrational rotation of angle θ when the construction yields a
finite measure-preserving system.

4.2.1. The construction in [DEJ+23]. Let θ be an irrational number and [q−1; q0,
q1, . . .] its continued fraction expansion, with q−1 � �θ� and positive integers q0, q1, . . ..
Let us assume that there is no integer n such that qk = 1 for every k ≥ n. We consider the
sequence (hn)n≥0 defined by h−1 � 0, h0 � 1 and hk+1 � qkhk + hk−1 for every k ≥ 0
(the integer hk is the denominator of the kth convergent of the irrational number θ ). Finally,
for every k ≥ 0, we set σk,i = 0 for every i ∈ {0, 1, . . . , qk − 1}, and σk,qk

= hk−1. Then,
the sequence of cutting and stacking parameters (qk , (σk,0, . . . , σk,qk

))k≥0 provides a
rank-one system. This system is the irrational rotation of angle θ if and only if condition (F)
is satisfied, and this last condition holds if and only if the series

∑
k≥0 (1/qkqk+1)

converges (see [DEJ+23, Theorems 3.1 and 5.1]).

Remark 4.1. Equivalently, we can define rank-one systems with cutting parameters
potentially equal to 1, provided that there are infinitely many cutting parameters greater
than or equal to 2, but our construction of orbit equivalence is not well defined with this
weaker assumption. Therefore, in the proof of Proposition 3.8 for irrational rotations, one
of the main goals is to avoid cutting parameters equal to 1.

Remark 4.2. It is proven in [DEJ+23] that the set of irrational numbers θ such that the
associated series

∑
k≥0(1/qkqk+1) converges has measure zero.
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4.2.2. Proof of Proposition 3.8 for these systems. Let V be a non-empty open subset of
R and

C � {Rθ | θ ∈ V ∩ (R \ Q)}.
We now prove that C is a flexible class.

We first use the following basic fact from the theory of continued fractions: if A denotes
the set of sequences (qi)i≥−1 of integers such that q0, q1, . . . are positive, and if A is
equipped with the induced product topology, then the map

(qi)i≥−1 ∈ A �→ [q−1; q0, q1, . . .] ∈ R \ Q
is a homeomorphism (see [EW11, Lemma 3.4] for instance). We can then fix integers
n0 ≥ 0 and Q−1, Q0, . . . , Qn0 (where Q0, . . . , Qn0 are positive) such that Q0 . . . Qn0

is greater than or equal to 3 and the following holds: for every irrational number θ , if the
first coefficients of its continued fraction expansion are Q−1, Q0, . . . , Qn0 , then θ is in V .

We write Q � (Q0, . . . , Qn0) and we consider the set F̃(Q) of finite sequences
(q̃k , (σ̃k,0, . . . , σ̃k,q̃k

))0≤k≤n such that n ≥ n0 and for all k ∈ {0, . . . , n},
q̃k = Qk if k ≤ n0,
q̃k ≥ 2 if k > n0,

and

σ̃k,i = 0 for i ∈ {0, . . . , q̃k − 1},
σ̃k,q̃k

= h̃k−1

(where (h̃k)0≤k≤n is the associated height sequence and h̃−1 � 0). The finite sequences
of F̃(Q) may not be finite sequences of cutting and stacking parameters in the sense
of Definition 3.1, since the integers Q0, . . . , Qn0 may be equal to 1. Moreover, even
if the integers Q0, . . . , Qn0 were greater than or equal to 2, we could not prove that
C is a flexible class with FC = F̃(Q), since the first cutting parameters q̃1, . . . , q̃n0

cannot be chosen large enough. Notice that, although we may have q̃k = 1 for some
k ∈ {0, 1, . . . , n0}, a finite sequence (q̃k , (σ̃k,0, . . . , σ̃k,qk

))0≤k≤n can still define the
first (n + 1) steps of a cutting-and-stacking construction, and we associate to it another
finite sequence (qk , (σk,0, . . . , σk,qk

))0≤k≤n−n0 corresponding to the cutting-and-stacking
construction obtained from the previous one by skipping the steps 1, 2, . . . , n0. We get
h0 = h̃0 = 1, q0 = Q0 . . . Qn0 ≥ 3 and for all k ∈ {1, . . . , n − n0},

qk = q̃n0+k ≥ 2,
hk = h̃n0+k ,
σk,i = σ̃n0+k,i = 0 for i ∈ {0, . . . , qk − 1},
σk,qk

= σ̃n0+k,q̃n0+k
= h̃n0+k−1 = hk−1 if k ≥ 2.

For k = 1, we have σ1,q1 = h̃n0 , where h̃n0 is not equal to h0. Setting C = C′ � h̃n0

(this constant only depends on Q0, . . . , Qn0 ), we have Z1 ≤ Ch1 and σ1 ≤ C′h0. We
immediately get the inequalities Zk ≤ Chk and σk ≤ C′hk−1 for k ∈ {2, . . . , n − n0}.
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Let F(Q) be the set of finite sequences (qk , (σk,0, . . . , σk,qk
))0≤k≤n−n0 obtained from

finite sequences (q̃k , (σ̃k,0, . . . , σ̃k,qk
))0≤k≤n ∈ F̃(Q). It is now easy to check that C is a

flexible class, with the set of parameters FC � F(Q) and the constants C and C′.

4.3. Systems with a given eigenvalue. Let θ be an irrational number and C the class
of rank-one systems which has λ � e2iπθ as an eigenvalue. In [DV23], Danilenko and
Vieprik present an explicit cutting-and-stacking construction of a system in C. The
parameters are chosen in the following way (see [DV23, proof of Theorem 4.1]).

4.3.1. The construction of Danilenko and Vieprik. For every n ≥ 1, we fix a number
jn ∈ {1, . . . , n} such that δn � |1 − λjn | is less than 2π/n. Fix n ≥ 1, assume that
(qk , (σk,0, . . . , σk,qk

))0≤k≤n−1 has already been constructed with an auxiliary condition

hn >
n4

δn2
. (2)

Danilenko and Vieprik show the existence of a sequence (�
(n)
m )m≥1 of positive integers less

than or equal to 2π/δn2 , such that for every m ≥ 1,

|1 − λmhn+(�
(n)
1 +···+�

(n)
m )j

n2 | <
2π

n2 . (3)

Next, let qn be an integer large enough so that the auxiliary condition (2) holds at the next
step, namely

hn+1 � qnhn + (�
(n)
1 + · · · + �

(n)
qn−1)jn2 >

(n + 1)4

δ(n+1)2

(in [DV23], qn is chosen as the smallest integer satisfying the property, but it is not needed,
so there are infinitely many choices). Finally, the spacing parameters at this step are defined
by σn,0 = σn,qn = 0 and σn,m = �

(n)
m jn2 for 1 ≤ m ≤ qn − 1.

With these parameters satisfying conditions (2) and (3), λ is an eigenvalue of the
underlying rank-one system (see [DV23, proof of Theorem 4.1] for details).

4.3.2. Proof of Proposition 3.8 for these systems. Let us consider the same construction
as above, but with the following auxiliary condition:

hn > max
(

n4

δn2
,
(n + 1)4

δ(n+1)2

)
, (4)

which is stronger than the previous auxiliary condition (2). Note that the real numbers δi

have been fixed before setting the parameters.
The subset FC of P∗ is defined to be the set of finite sequences (qk , (σk,0, . . . ,

σk,qk
))0≤k≤n constructed in a recursive way. Any cutting and spacing parameter

(q0, (σ0,0, . . . , σq0,0)) is in FC , and if (qk , (σk,0, . . . , σk,qk
))0≤k≤n−1 is in FC , then so

is (qk , (σk,0, . . . , σk,qk
))0≤k≤n for every (qn, σn,0, . . . , σn,qn) that we can obtain at the

next step, as described above, but with the stronger auxiliary condition (4).
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Let p � (qn, (σn,0, . . . , σn,qn))n≥0 be a sequence of cutting and spacing parameters.
If all its projections are in FC , then p provides a CSP construction with C = 2π . Indeed,
we have σn,m = �

(n)
m jn2 ≤ 2πn2/δn2 < 2πhn. As mentioned above, conditions (2) and (3)

imply that the sequence p provides rank-one systems which have λ as an eigenvalue.
Finally, if (qk , (σk,0, . . . , σk,qk

))0≤k≤n−1 is a finite sequence in FC , we can choose a
large enough integer qn so that the following holds at the next step:

hn+1 > max
(

(n + 1)4

δ(n+1)2
,
(n + 2)4

δ(n+2)2

)

(in particular, the new auxiliary condition (4) is satisfied). We use the same spacing
parameters as before, namely σn,m = �

(n)
m jn2 . Using jn2 ≤ n2 and �

(n)
m ≤ (2π/δn2), this

gives

σn = (�
(n)
1 + · · · + �

(n)
qn−1)jn2 ≤ qn

2πn2

δn2
≤ qnhn−1,

so the third point of Definition 3.7 is satisfied for C′ = 1.

4.4. Strongly mixing systems. Let C be the class of strongly mixing rank-one systems.
We consider the construction of Ornstein in [Orn72]. The property the parameters have to
satisfy at each step is given by the following lemma (in [Orn72, Lemma 3.2]), proven with
a probabilistic method.

LEMMA 4.3. Let N and K be positive integers and ε > 0, α > 0. Then, there exist integers
m > N and a1, . . . , am such that:
• |∑j+k

i=j ai | ≤ K for all 1 ≤ j ≤ j + k ≤ m;

• denoting by H(�, k) the number of j such that
∑j+k

i=j ai = �, for 1 ≤ j ≤ j + k ≤ m,
then H(�, k) < α((m − k)/K) for every k < (1 − ε)m.

The set of parameters FC is defined in a recursive way, as in §4.3: any cutting
and spacing parameter (q0, (σ0,0, . . . , σq0,0)) is in FC , and from a finite sequence
of parameters (qk , (σk,0, . . . , σk,qk

))0≤k≤n−1 in FC , (qk , (σk,0, . . . , σk,qk
))0≤k≤n is also

in FC if the new parameters can be written as qn = m and σn,i = ai + hn−1, where
m, a1, . . . , am are integers whose existence is granted by Lemma 4.3 with N > 10n,
K = hn−1, ε = 10n−3 and α = 5/4. There are infinitely many possibilities for qn as N
can be arbitrarily large. It is shown in [Orn72] that cutting-and-stacking constructions
with these parameters give strongly mixing systems, and it is clear that they are CSP with
C = 2 and the third point of Definition 3.7 is satisfied for C′ = 2.

5. From flexible classes to the universal odometer
The goal of this section is to prove Theorem 3.9, namely that for every ϕ : R+ → R+
satisfying ϕ(x) = o(t1/3), any flexible class contains a rank-one system that is ϕ-integrably
orbit equivalent to the universal odometer.
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5.1. The construction.

5.1.1. Overview of the construction. We first present a natural adaptation to the case of
the rank-one system of Kerr and Li’s construction of an explicit orbit equivalence between
the universal odometer and any other odometers. We will then see that the quantification
of the cocycles becomes more complicated due to the presence of non-zero spacing
parameters.

Let T ∈ Aut(X, μ) be a rank-one system and consider a cutting-and-stacking con-
struction of this transformation with the same notation qn, σn,i , σn, hn, Rn, εn, Xn as in
Definition 3.2. From the sequence of Rokhlin towers Rn, new towers R′

n will be built
as Rokhlin towers for a new system S. These towers R′

n will have no spacers, that is,
σ ′

n,i = 0, so they will be partitions of X. The construction will ensure that R′
n increases

to the σ -algebra A using the fact that it is the case for Rn, so S will be an odometer. For
the odometer S to be universal, we fix a sequence of prime numbers (pn)n≥0 such that
every prime number appears infinitely many times, and every cutting parameter q ′

n will be
a multiple of pn.

We will recursively define S on subsets increasing to X up to a null set. More precisely,
if the nth tower R′

n has been built and its base and its height are denoted by B ′
n and h′

n,
then S is provisionally defined on all the levels of the tower except the highest one and
maps the ith level to the (i + 1)th one. So, R′

n is exactly (B ′
n, S(B ′

n), . . . , Sh′
n−1(B ′

n)) and
S is defined on X \ Sh′

n−1(B ′
n). To refine S, that is, to define it on a greater set, we have to

build the next tower R′
n+1 and define S as for R′

n. To do so and according to Definition
3.2, we have to determine a subdivision of the base B ′

n into q ′
n subsets B ′

n,0, . . . , B ′
n,q ′

n−1.
We find a function ζn+1 mapping bimeasurably each B ′

n,i to B ′
n,i+1 for 0 ≤ i ≤ q ′

n − 2.
On the subset Dn+1 �

⊔
0≤i≤q ′

n−2 Sh′
n−1(B ′

n,i ) of the roof Sh′
n−1(Bn) of R′

n, S will

coincide with ζn+1S
−h′

n and will be defined on X \ Sh′
n+1(B ′

n+1) = D1 
 · · · 
 Dn+1,
where B ′

n+1 = B ′
n,0 is the base of the new Rokhlin tower Rn+1 for S. To sum up, S

is successively defined by the finite approximations obtained from the maps ζn. Up to
conjugacy, ζn is exactly the addition by (0, . . . , 0︸ ︷︷ ︸

n−1 times

, 1, 0, 0, . . .) with carry over to the right

(as defined in §3.1), restricted to [0, . . . , 0]n−1 \ [0, . . . , 0, q ′
n−1 − 1]n.

The construction of the maps ζn is by induction on n ≥ 0. At step n, we will actually
define

ζn+1 : B ′
n,0 
 · · · 
 B ′

n,q ′
n−2 → B ′

n,1 
 · · · 
 B ′
n,q ′

n−1.

To build ζn+1, a second induction on a parameter m ≥ n is required. Actually, B ′
n,i will be

the disjoint union of the B ′
n,i (m) for m ≥ n, and this inner recursion consists in choosing m

bricks to define B ′
n,i (m). By definition, the m bricks will be the m levels (that is, the levels

of Rm) explicitly chosen to constitute B ′
n,i (m). Using powers of T, m bricks of B ′

n,i are
mapped to those of B ′

n,i+1 (there will be as many in Bn,i as in B ′
n,i+1) and this gives ζn+1

whose orbits are included in those of T, implying immediately that the orbits of S satisfy
the same property. The reverse inclusion between the orbits will be more difficult to prove
and will be due to the choice of the bricks (see Remark 5.1 after the construction).
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5.1.2. The construction. Here, T is a rank-one system in Aut(X, μ). We fix one of its
cutting-and-stacking construction whose parameters are denoted as in Definition 3.2. Let
(pn)n≥0 be a sequence of prime numbers such that every prime number appears infinitely
many times.

In the following, we will assume that, given the cutting parameters of T, some positive
integers q ′

n and tn,m that we will introduce are well defined. In §5.3 (see Lemma 5.10), we
will give conditions on the parameters of T for these quantities (and so the construction)
to be well defined.

Step n = 1. We first build R′
1 and ζ1 by an induction over m ≥ 1. We could denote by R′

0
the trivial tower (X) with its base B ′

0 � X. At the end of step n = 1, S is not yet defined
on the roof of the tower R′

1, that is, on its highest level, which is a Rokhlin tower of S.
• m = 1: let q ′

0 > 0 be the largest multiple of p0 such that q ′
0 ≤ q0 − 1. For every

0 ≤ i ≤ q ′
0 − 1, we define

B ′
0,i (1) � T i(B1)

and

ζ1(1) :
⊔

0≤i≤q ′
0−2

B ′
0,i (1) →

⊔
0≤i≤q ′

0−2

B ′
0,i+1(1)

coinciding with T on its domain (hence, every subset B ′
0,i (1) is composed of a unique

1-brick T i(B1)).

Remark 7.1. At this step, we simply have to assume q0 > p0 for the integer q ′
0 to

be non-zero. However, for the well definition of other quantities at other steps, the
conditions on the cutting parameters of T get increasingly more technical, which is
the reason why we first assume that the parameters of T are chosen so that the positive
quantities are well defined and we will then state the conditions in Lemma 5.10 (as
mentioned before the beginning of the construction).

• m > 1: assume that the subsets B ′
0,i (M) have been built for every 1 ≤ M ≤ m − 1 and

0 ≤ i ≤ q ′
0 − 1. Let

W1,m � X \
⊔

1≤M≤m−1

⊔
0≤i≤q ′

0−1

B ′
0,i (M)

be the remaining piece of X at the end of the (m − 1)th step (we could also define
W1,1 � X).

Remark 7.2. Notice that m-levels are either contained in W1,m or disjoint from it since
X \ W1,m is composed of M-levels for 1 ≤ M ≤ m − 1 and the Rokhlin towers are
nested. This will more generally hold true for Wn,m with n ≥ 2.

Let r1,m be the number of integers j ∈ �0, hm − 1� such that T j (Bm) ⊆ W1,m,
denoted by

0 ≤ j
(1,m)
1 < j

(1,m)
2 < · · · < j(1,m)

r1,m
< hm.
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Let t1,m be the positive integer (we assume that we can choose the cutting parameters
of T for this integer to be positive, see Lemma 5.10) such that q ′

0t1,m is the largest
multiple of q ′

0 such that q ′
0t1,m < r1,m. The first q ′

0t1,m m-levels contained in W1,m
are now used as m-bricks; they are split in q ′

0 groups of t1,m m-bricks of the subsets
B ′

0,i in the following way and the same will be done at steps n > 1 (the fact that the
inequality q ′

0t1,m < r1,m is strict and the way we make the q ′
0 groups will guarantee

an easy control of the cocycles, see Lemma 5.4 used for Lemmas 5.16 and 5.19). For
every 0 ≤ i ≤ q ′

0 − 1, we define

B ′
0,i (m) �

⊔
0≤t≤t1,m−1

T
(j

(1,m)

i+1+tq′
0
)
(Bm)

and ζ1(m) coinciding with T
(j

(1,m)

i+2+tq′
0
)−(j

(1,m)

i+1+tq′
0
)

on T
(j

(1,m)

i+1+tq′
0
)
(Bm) for every 0 ≤ i ≤

q ′
0 − 2 and 0 ≤ t ≤ t1,m − 1, so that each brick T

(j
(1,m)

i+1+tq′
0
)
(Bm) is mapped on another

T
(j

(1,m)

i+2+tq′
0
)
(Bm). Thus, ζ1(m) maps each B ′

0,i (m) on B ′
0,i+1(m) and this gives

ζ1(m) :
⊔

0≤i≤q ′
0−2

B ′
0,i (m) →

⊔
0≤i≤q ′

0−2

B ′
0,i+1(m).

End of step n = 1. For every 0 ≤ i ≤ q ′
0 − 1, we define

B ′
0,i �

⊔
m≥1

B ′
0,i (m)

(the set of its m-bricks for all m ≥ 1), B ′
1 � B ′

0,0 and

ζ1 :
⊔

0≤i≤q ′
0−2

B ′
0,i →

⊔
0≤i≤q ′

0−2

B ′
0,i+1

coinciding with the maps ζ1(m) on their respective domain (see Figure 7).
The universal odometer S we want to build is partially defined on X. More precisely,

we define it on the domain D1 �
⊔

0≤i≤q ′
0−2 B ′

0,i of ζ1 so that it coincides with ζ1. This

gives the first Rokhlin tower R′
1 � (B ′

0,0, . . . , B ′
0,q ′

1−1) = (B ′
1, S(B ′

1), . . . , Sq ′
0−1(B ′

1)).

The next step will provide us with a refinement R′
2 of the tower R′

1, allowing us to extend
partially S on the highest level of the R′

1.

Step n > 1. Assume that steps 1, . . . , n − 1 have been achieved. There are nested
towers R′

1, . . . , R′
n−1. The kth tower R′

k has h′
k � q ′

0 . . . q ′
k−1 levels and its base B ′

k

is partitioned in q ′
k levels B ′

k,0, . . . , B ′
k,q ′

k−1. These levels belong to R′
k+1, whose base is

B ′
k+1 � B ′

k,0, with ζk+1 mapping B ′
k,i to B ′

k,i+1. The map S is defined on D1 
 · · · 
 Dn−1

using the maps ζ1, . . . , ζn−1, where D1 
 · · · 
 Dn−1 corresponds to the union of all the
levels of R′

n−1 except its roof.
The map S is not yet defined on the roof of R′

n−1. By partitioning B ′
n−1 in subsets

B ′
n−1,0, . . . , B ′

n−1,q ′
n−1−1, we will define R′

n which refines R′
n−1 and a function ζn
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FIGURE 7. First step of the construction (that is, n = 1). In §5.4, we will define sets En,m for every pair of integers
(n, m) satisfying m ≥ n ≥ 1. The set E1,1 (respectively E1,2; E1,3) is the union of the red areas (respectively red

and blue areas; red, blue and green areas).

mapping B ′
n−1,i to B ′

n−1,i+1. The extension of S will be defined on all the levels of R′
n,

except its roof (which is contained in the one of R′
n−1). We will construct the subsets

B ′
n−1,i as was done for the subsets B ′

0,i , except that we only use the ‘material’ in B ′
n−1 to

form the m-bricks of each B ′
n−1,i . To do so, notice that the base B ′

n−1 is exactly B ′
n−2,0

(the first subset in the subdivision of B ′
n−2) which is the disjoint union of subsets of

the form B ′
n−2,0(m) for m ≥ n − 1. Moreover, for all n − 1 ≤ M ≤ m, every m-level is

contained in an M-level, then we will pick the new m-bricks in B ′
n−2,0(n), . . . , B ′

n−2,0(m).
This motivates the definition of each set Wn,m (the set of the remaining material to form
m-bricks with an incremented integer m). We now discuss separately the following cases.
• m = n: set

Wn,n � B ′
n−2,0(n − 1) 
 B ′

n−2,0(n) (5)

and let rn,n be the number of integers j ∈ �0, hn − 1� such that T j (Bn) ⊆ Wn,n (note
that we could have defined r1,1 = q0), denoted by
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0 ≤ j
(n,n)
1 < j

(n,n)
2 < · · · < j(n,n)

rn,n
< hn.

Let q ′
n−1 be the largest multiple (we assume that we can choose the cutting parameters

of T for this integer to be positive, see Lemma 5.10) of pn−1 such that q ′
n−1 < rn,n.

We then define for every 0 ≤ i ≤ q ′
n−1 − 1,

B ′
n−1,i (n) � T (j

(n,n)
i+1 )(Bn),

meaning that among the n-levels in Wn,n, the n-bricks at step (n, n) are exactly the first
q ′
n−1 ones (and set tn,n = 1 for consistency later on). Let

ζn(n) :
⊔

0≤i≤q ′
n−1−2

B ′
n−1,i (n) →

⊔
0≤i≤q ′

n−1−2

B ′
n−1,i+1(n)

be the map coinciding with T (j
(n,n)
i+2 )−(j

(n,n)
i+1 ) on each B ′

n−1,i (n), so that B ′
n−1,i (n) is

mapped to B ′
n−1,i+1(n).

• m > n: set

Wn,m �
( ⊔

n−1≤M≤m

B ′
n−2,0(M)

)
\
( ⊔

n≤M≤m−1

⊔
0≤i≤q ′

n−1−1

B ′
n−1,i (M)

)
(6)

and let rn,m be the number of integers j ∈ �0, hm − 1� such that T j (Bm) ⊆ Wn,m,
denoted by

0 ≤ j
(n,m)
1 < j

(n,m)
2 < · · · < j(n,m)

rn,m
< hm.

Let tn,m be the positive integer (we assume that we can choose the cutting parameters
of T for this integer to be positive, see Lemma 5.10) such that q ′

n−1tn,m is the largest
multiple of q ′

n−1 such that q ′
n−1tn,m < rn,m. The first q ′

n−1tn,m m-levels contained in
Wn,m are now used as m-bricks at step (n, m); they are split in q ′

n−1 groups of tn,m
m-bricks of the subsets B ′

n−1,i in the following way. For every 0 ≤ i ≤ q ′
n−1 − 1, we

define

B ′
n−1,i (m) �

⊔
0≤t≤tn,m−1

T
(j

(n,m)

i+1+tq′
n−1

)

(Bm)

and ζn(m) coinciding with T
(j

(n,m)

i+2+tq′
n−1

)−(j
(n,m)

i+1+tq′
n−1

)

on T
(j

(n,m)

i+1+tq′
n−1

)

(Bm) for every

0 ≤ i ≤ q ′
n−1 − 2, 0 ≤ t ≤ tn,m − 1, so that each m-brick T

(j
(n,m)

i+1+tq′
n−1

)

(Bm) is mapped

on another T
(j

(n,m)

i+2+tq′
n−1

)

(Bm). Thus, ζn(m) maps each B ′
n−1,i (m) on B ′

n−1,i+1(m) and
this gives

ζn(m) :
⊔

0≤i≤q ′
n−1−2

B ′
n−1,i (m) →

⊔
0≤i≤q ′

n−1−2

B ′
n−1,i+1(m).

End of step n. We define for every 0 ≤ i ≤ q ′
n−1 − 1,

B ′
n−1,i �

⊔
m≥n

B ′
n−1,i (m)
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FIGURE 8. From the first step (illustrated in Figure 7) to the second one. In B ′
1, we inductively build

B ′
1,i (2), B ′

1,i (2), B ′
1,i (3), . . . for every 0 ≤ i ≤ q ′

1 − 1 (in this example, we have q ′
1 = 2). Each set B ′

1,i (2) is
composed of a unique 2-level in B ′

0,0(1) 
 B ′
0,0(2) (that is, in the pale red and pale blue areas). Then each set

B ′
1,i (3) is composed of 3-levels in B ′

0,0(1) 
 B ′
0,0(2) 
 B ′

0,0(3) (that is, in the pale red, pale blue and pale green
areas) and so on. The structure that we build in B ′

1 = B ′
0,0 can be translated in B ′

0,1 and B ′
0,2 using the map ζ1. In

§5.4, we will define sets En,m for every pair of integers (n, m) satisfying m ≥ n ≥ 1. The set E2,1 (respectively
E2,2) is the union of the areas hatched in blue (respectively in blue or green).

(the set of its m-bricks for m ≥ n), B ′
n = B ′

n−1,0 and

ζn :
⊔

0≤i≤q ′
n−1−2

B ′
n−1,i →

⊔
0≤i≤q ′

n−1−2

B ′
n−1,i+1

coinciding with the maps ζn(m) on their respective domain (see Figure 8 for step n = 2,
after the first step illustrated in Figure 7).

As the base B ′
n−1 of R′

n−1 is partitioned in B ′
n−1,0 
 · · · 
 B ′

n−1,q ′
n−1−1, its highest level

Sh′
n−1−1(B ′

n−1) is partitioned in Sh′
n−1−1(B ′

n−1,0) 
 · · · 
 Sh′
n−1−1(B ′

n−1,q ′
n−1−1). The map

S is extended in the following way. On

Dn � Sh′
n−1−1(B ′

n−1,0) 
 · · · 
 Sh′
n−1−1(B ′

n−1,q ′
n−1−2),

it coincides with ζnS
−(h′

n−1−1). So S maps Sh′
n−1−1(B ′

n−1,i ) on B ′
n−1,i+1. This gives a

Rokhlin tower R′
n for S, nested in the previous one, of base B ′

n � B ′
n−1,0 and height

h′
n � q ′

0 . . . q ′
n−1. Now S is defined on (D1 
 · · · 
 Dn−1) 
 Dn. The set Dn consists in

the levels of Rn, except the highest one, which are contained in the highest level of R′
n−1.

Remark 5.1. Notice that the inclusion of the S-orbits in the T-orbits is easy since S is
defined from maps ζn(m) which are ‘piecewise powers of T’.

The reverse inclusion will follow from the fact that we have tn,n = 1 for every n ≥ 1
(at step (n, n), we form groups of only one n-level). Indeed, uniqueness implies that these
chosen blocks are linked by ζn(n) and hence clearly by S (in contrast, an m-level, for
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m > n, of B ′
n−1,i is mapped by ζn(m) to only one of the tn,m m-levels of B ′

n−1,i+1, and not
to the other). Thus, ensuring that the unique n-brick of each B ′

n−1,i is a large part of it that
enables the system S to capture most of the T-orbits.

5.2. First properties of this construction. Recall that we consider a cutting-and-stacking
construction of T with the same notation as in Definition 3.2 (qn, σn,i , Rn, Xn, εn, . . .),
and the sequences (hn), (σn) and (Zn) associated to the cutting and spacing parameters,
and the notation q ′

n, R′
n, . . . refer to the construction of S.

We state some important properties preparing for further results in §5.4. Many of
them enable us to only take into account the combinatorics behind a cutting-and-stacking
construction. We assume that all the ‘largest multiples’ (for every n < m, the largest
multiple q ′

n−1 of pn−1 such that q ′
n−1 < rn,n, and the largest multiple q ′

n−1tn,m of q ′
n−1

such that q ′
n−1tn,m < rn,m) are non-zero. In §5.3 (see Lemma 5.10), we will see how to

choose the parameters for the construction to be well defined.

LEMMA 5.2. Every tower R′
n is a partition of X.

Proof of Lemma 5.2. Let n ≥ 1. The levels of R′
n are pairwise disjoint by the definition

of (Wn,m)m≥n. It remains to show that R′
n covers the whole space. Recall that Xn denotes

the subset covered by the tower Rn, and εn the measure of its complement.
The result holds for n = 1 since μ(W1,m) →

m→+∞ 0. Indeed, W1,m+1 ∩ Xm is the union

of the m-levels which are not chosen at step (1, m). By the definition of t1,m, there are at
most q ′

0. So we have W1,m+1 ≤ εm + q ′
0μ(Bm) → 0.

For n > 1, it suffices to show that the levels B ′
n−1,0, . . . , B ′

n−1,q ′
n−1−1 of R′

n form a

partition of the base B ′
n−1 of R′

n−1. We have to show that the measure of

W̃n,m � B ′
n−1 \

( ⊔
n≤M≤m−1

⊔
0≤i≤q ′

n−1−1

B ′
n−1,i (M)

)

tends to 0 as m → +∞. However, this set W̃n,m is the disjoint union of
⊔

M≥m+1
B ′

n−2,0(M) and Wn,m. It is clear that

μ

( ⊔
M≥m+1

B ′
n−2,0(M)

)
→

m→+∞ 0

since μ is a finite measure. The set Wn,m is obtained from Wn,m−1 by adding B ′
n−2,0(m) and

removing q ′
n−1tn,m−1 (m − 1)-levels. Thus, we have μ(Wn,m) →

m→+∞ 0 by the definition

of (tn,m)m≥n. Hence, we have μ(W̃n,m) →
m→+∞ 0 and we are done.

As a consequence, if (R′
n)n increases to the σ -algebra A (this will be proved in

Corollary 5.14), then S is a rank-one system without spacer, so this is an odometer.

LEMMA 5.3. Let n ≥ 1. On the base B ′
n of the nth S-Rokhlin tower R′

n, S is defined as
follows. For every 0 ≤ i ≤ h′

n − 1, we have

Si = ζ
i0
1 . . . ζ

in−1
n on B ′

n
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with i0 ∈ �0, q ′
0 − 1�, . . . , in−1 ∈ �0, q ′

n−1 − 1� such that

i =
n−1∑
�=0

q ′
0 · · · q ′

�−1i� =
n−1∑
�=0

h′
�i�.

Proof of Lemma 5.3. By induction over n ≥ 1. It is clear for n = 1 since S coincides
with ζ1 on the levels of R′

1 except its roof. Assume that the result holds for n ≥ 1. The
tower R′

n is divided in q ′
n subcolumns whose levels are exactly those of R′

n+1, and the
inth subcolumn (0 ≤ in ≤ h′

n − 1) is the S-Rokhlin tower of height h′
n and base B ′

n,in . Let
0 ≤ i ≤ h′

n+1 − 1. By the equality B ′
n+1 = B ′

n,0 and by the definition of S from ζn+1 (at

the end of step n + 1 of the construction), Si = Sj ζ
in
n+1 on B ′

n+1 for non-negative integers
in and j such that i = inh

′
n + j and j < h′

n. The set ζ
in
n+1(B

′
n,0) is equal to B ′

n,in , so this is
a subset of B ′

n; hence the result by the induction hypothesis.

Therefore, the subset Dn defined in the construction can be written as follows:

Dn = ζ
q ′

0−1
1 . . . ζ

q ′
n−2−1

n−1

( ⊔
0≤in≤q ′

n−1−2

B ′
n−1,in

)

= ζ
q ′

0−1
1 . . . ζ

q ′
n−2−1

n−1

( ⊔
0≤in≤q ′

n−1−2

ζ in
n (B ′

n−1,0)

) (7)

and S coincides with ζnζ
−(q ′

n−2−1)

n−1 . . . ζ
−(q ′

0−1)

1 on Dn.
By the cocycle of ζn(m), we mean the integer-valued map defined on the domain of

ζn(m) and which maps x to the unique integer k satisfying ζn(m)x = T kx.

LEMMA 5.4. The cocycle of ζn(m) is positive and bounded above by hm−1 + Zm−1.

Proof of Lemma 5.4. By definition, for fixed integers 0 ≤ i ≤ q ′
n−1 − 2 and 0 ≤ t ≤

tn,m − 1, the cocycle on B � T
(j

(n,m)

i+1+tq′
n−1

)

(Bm) takes the value 
j � j
(n,m)

i+2+tq ′
n−1

−
j

(n,m)

i+1+tq ′
n−1

. Let us recall that the integers

0 ≤ j
(n,m)
1 < j

(n,m)
2 < · · · < j(n,m)

rn,m
< hm

are the sets of indices j ∈ �0, hm − 1� such that T j (Bm) ⊆ Wn,m. Thus, 
j is obviously
positive. Let us fix an (m − 1)-level B	 which is not chosen at step (n, m − 1), so it is
contained in Wn,m. If m is equal to n, we can choose B	 = B ′

n−2,0(n − 1). For m > n, the
existence of B	 is granted by the fact that we have q ′

n−1tn,m−1 < rn,m−1. We write it as
B	 = T k0(Bm−1), where k0 is an integer in �0, hm−1 − 1�.

By definition, 
j is the least positive integer j such that T j (B) is in Wn,m. Moreover,
the m-levels of B	 are in Wn,m. Therefore, the consecutive m-levels T (B), . . . , T 
j−1(B)

are not in B	.
First case. In the tower Rm, assume that the m-levels T (B), . . . , T 
j−1(B) are

before T k0(Bm−1,0), that is, before the first m-level of B	. Therefore, the enumeration
B, . . . , T 
j (B) is included in the enumeration
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�m−1,0,1, . . . , �m−1,0,σm−1,0 , Bm−1,0, . . . , T k0(Bm−1,0),

implying that 
j ≤ σm−1,0 + k0 ≤ Zm−1 + hm−1.
Second case. Now assume that T (B), . . . , T 
j−1(B) are after T k0(Bm−1,qm−1−1), that

is, after the last m-level of B	. Therefore, the enumeration B, . . . , T 
j (B) is included in
the enumeration

T k0(Bm−1,qm−1−1), . . . , T hm−1−1(Bm−1,qm−1−1), �m−1,qm−1,1, . . . , �m−1,qm−1,σm−1,qm−1
,

and we get 
j ≤ (hm−1 − k0 − 1) + σm−1,qm−1 ≤ hm−1 + Zm−1.
Third case. Finally, if T (B), . . . , T 
j−1(B) are between T k0(Bm−1,i ) and

T k0(Bm−1,i+1) for some 0 ≤ i ≤ qm−1 − 2, that is, between two consecutive m-levels
of B	, then the enumeration B, . . . , T 
j (B) is included in the enumeration

T k0(Bm−1,i ), . . . , T hm−1−1(Bm−1,i ), �m−1,i,1, . . . , �m−1,i,σm−1,i ,

Bm−1,i+1, . . . , T k0(Bm−1,i+1),

which gives 
j ≤ (hm−1 − k0 − 1) + σm−1,i + (k0 + 1) ≤ hm−1 + Zm−1.

LEMMA 5.5. An m-brick at step n is included in an M-brick at step n − 1 for some
n − 1 ≤ M ≤ m.

Proof of Lemma 5.5. This follows directly from the definition of Wn,m in the construction
(see §5.1). Indeed, the ‘(M)’ in ‘B ′

n−2,0(M)’ means that we only consider the M-bricks, at
step n − 1, composing B ′

n−2,0.

We now present a combinatorial description of the construction.

LEMMA 5.6. The quantities rn,m, qn, q ′
n, tn,m, σn satisfy the following recurrence relation:

t0,1 � 0;
for m ≥ 2, t0,m � σm−1;

for m = n ≥ 1,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rn,n = qn−1 + tn−1,n,

q ′
n−1 =

⌊
rn,n − 1
pn−1

⌋
pn−1,

tn,n = 1;

for m > n ≥ 1,

⎧⎪⎨
⎪⎩

rn,m = qm−1(rn,m−1 − q ′
n−1tn,m−1) + tn−1,m,

tn,m =
⌊

rn,m − 1
q ′
n−1

⌋
.

During the construction, some integers have been defined for consistency (r1,1 � q0,
tn,n � 1). Note that in this lemma, we also define the integers tn,m for n = 0. This enables
us to extend the relations

rn,n = qn−1 + tn−1,n and rn,m = qm−1(rn,m−1 − q ′
n−1tn,m−1) + tn−1,m

for n = 1.
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Proof of Lemma 5.6. Case n = 1. For m = 1, the r1,1 1-levels potentially chosen to be
1-bricks are exactly the levels of R1, so we have r1,1 = q0 + t0,1 since t0,1 � 0. We choose
q ′

0 of them, where q ′
0 is the largest multiple of p0 such that q ′

0 < r1,1, so q ′
0 is equal to

�(r1,1 − 1)/p0�p0. Finally, q ′
0 is obviously equal to q ′

0t1,1 since t1,1 � 1. For m > 1, there
are rn,m m-levels in W1,m: some of them are in the r1,m−1 − q ′

0t1,m−1 (m − 1)-levels which
are not chosen at step (1, m − 1) and the other are the spacers from Rm−1 to Rm. So, we
have

r1,m = qm−1(r1,m−1 − q ′
0t1,m−1) + σm−1

and we set t0,m � σm−1. We choose q ′
0t1,m of them as m-bricks, where q ′

0t1,m is the largest
multiple of q ′

0 such that q ′
0t1,m < r1,m, that is, t1,m � �(r1,m − 1)/q ′

0�.
Case n > 1. For m = n, there are rn,n n-levels in Wn,n = B ′

n−2,0(n − 1) 
 B ′
n−2,0(n).

First, since we have tn−1,n−1 = 1, the set B ′
n−2,0(n − 1) is an (n − 1)-brick at step n − 1

and it contains qn−1 n-levels. Second, B ′
n−2,0(n) is the union of tn−1,n n-bricks. Hence,

we have rn,n = qn−1 + tn−1,n. By definition, q ′
n−1 is equal to �(rn,n − 1)/pn−1�pn−1 and

obviously to q ′
n−1tn,n with tn,n � 1. For m > n, there are rn,m m-levels in Wn,m. This set

is composed of( ⊔
n−1≤M≤m−1

B ′
n−2,0(M)

)
\
( ⊔

n≤M≤m−1

⊔
0≤i≤q ′

n−1−1

B ′
n−1,i (M)

)

and

B ′
n−2,0(m).

The first one is the union of the rn,m−1 − q ′
n−1tn,m−1 (m − 1)-levels which are not chosen

at step (n, m − 1), and the second one is built at step (n − 1, m) from its tn−1,m m-bricks.
So, we have

rn,m = qm−1(rn,m−1 − q ′
n−1tn,m−1) + tn−1,m.

We choose q ′
n−1tn,m of these m-levels as m-bricks at this step, where q ′

n−1tn,m is the largest
multiple of q ′

n−1 such that q ′
n−1tn,m < rn,m, that is, tn,m � �(rn,m − 1)/q ′

n−1�.

It will be more convenient to use the following slight modification of Lemma 5.6:

t0,1 = 0;

for m ≥ 2, t0,m = σm−1;

for m = n ≥ 1,

⎧⎪⎪⎨
⎪⎪⎩

rn,n = qn−1 + tn−1,n,

q ′
n−1 ≤ rn,n − 1,

tn,n = 1;

(8)

for m > n ≥ 1,

⎧⎪⎨
⎪⎩

rn,m ≤ qm−1q
′
n−1 + tn−1,m,

tn,m ≤ rn,m − 1
q ′
n−1

.
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This is a consequence of the inequalities �x� ≤ x and rn,m−1 − q ′
n−1tn,m−1 ≤ q ′

n−1 (by
the definition of tn,m−1).

As the strategy will be to recursively choose large enough cutting parameters qn for T,
we would like to understand the asymptotic behaviour of q ′

n as qn increases. Then, the goal
is to find bounds for q ′

n/qn.

LEMMA 5.7. For every n ≥ 0, we have

q ′
n ≥ qn − (1 + pn).

Proof of Lemma 5.7. Using the equalities q ′
n = �rn+1,n+1 − 1/pn�pn and rn+1,n+1 =

qn + tn,n+1 in Lemma 5.6, where the integer tn,n+1 is non-negative, we get

q ′
n ≥

(
rn+1,n+1 − 1

pn

− 1
)

pn ≥ qn − 1 − pn

and we are done.

We have found a lower bound for q ′
n/qn (up to some additional term −(1 + pn)). Let us

find an upper bound.

LEMMA 5.8. For every n ≥ 1, we have

q ′
n ≤ 3qn + σn

q ′
0 . . . q ′

n−1
.

With an asymptotic control on σn, using flexible classes, we will be able to get q ′
n ≤ 4qn

(see Lemma 5.12).

Proof of Lemma 5.8. By induction over i ∈ �0, n − 1� (with n ≥ 1) and using equation
(8), we show that

q ′
n ≤ qn

(
2 +

i∑
j=1

j∏
k=1

1
q ′
n−k

)
+ tn−1−i,n+1

i+1∏
k=1

1
q ′
n−k

.

For i = 0, we have q ′
n < rn+1,n+1 = qn + tn,n+1 and

tn,n+1 ≤ rn,n+1 − 1
q ′
n−1

≤ 1
q ′
n−1

(qnq
′
n−1 + tn−1,n+1) = qn + tn−1,n+1

q ′
n−1

,

so we get q ′
n ≤ 2qn + (tn−1,n+1/q

′
n−1). For 0 ≤ i ≤ n − 2, we have

tn−1−i,n+1 ≤ rn−1−i,n+1 − 1
q ′
n−2−i

≤ 1
q ′
n−2−i

(qnq
′
n−2−i + tn−2−i,n+1) = qn + tn−2−i,n+1

q ′
n−2−i

.
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If the result holds true for i, we get

q ′
n ≤ qn

(
2 +

i∑
j=1

j∏
k=1

1
q ′
n−k

)
+
(

qn + tn−2−i,n+1

q ′
n−2−i

) i+1∏
k=1

1
q ′
n−k

= qn

(
2 +

i+1∑
j=1

j∏
k=1

1
q ′
n−k

)
+ tn−1−(i+1),n

i+2∏
k=1

1
q ′
n−k

,

so the result is also true for i + 1.
Taking i = n − 1, this gives the lemma since q ′

� ≥ 2 for every integer � ≥ 1.

5.3. Towards flexible classes. We now explain why flexible classes fit in this construc-
tion.

First, a condition for the construction to be well defined needs an inductive choice of
the cutting parameters (qn)n≥0 of T (see Lemma 5.9). Second, a control on the spacing
parameters will imply useful asymptotic controls for the quantification of the cocycles
(see Lemma 5.12). Note that in the proof of Theorem 3.9 (see §5.5), we will need other
estimates to quantify the cocycles. It will be possible, again using the definition of a flexible
class, to inductively build large enough cutting parameters to have these estimates.

If the parameters are chosen according to a set FC ⊆ P∗ associated to a flexible class
C, the underlying rank-one system has the desired property, that is, it is in C, and is orbit
equivalent to the universal odometer, with some quantification guaranteed by the control of
the spacing parameters and by the fact that the cutting parameters qn have been recursively
chosen and large enough.

LEMMA 5.9. Let T be a rank-one system with cutting and spacing parameters

(qn, (σn,0, . . . , σn,qn))n≥0

such that the construction in §5.1 is well defined. Then, for every n ∈ N, q ′
n only depends

on (qk , (σk,0, . . . , σk,qk
))0≤k≤n.

Proof of Lemma 5.9. This directly follows from Lemma 5.6.

Then, the main novelty in this paper is to build the rank-one system T while
we are building the universal odometer S. Once (q ′

0, . . . , q ′
n) has been built from

(qk , (σk,0, . . . , σk,qk
))0≤k≤n, we are free to choose (qn+1, (σn+1,0, . . . , σn+1,qn+1)) for the

definition of q ′
n+1. The recursive definition of the cutting parameters is one of the main

ideas behind the definition of a flexible class, and it allows to find cutting parameters
satisfying some assumptions, for example, the assumptions of the following lemma.

LEMMA 5.10. Assume that for every n ∈ N,

qn > max (pn, q ′
0, . . . , q ′

n−1). (9)

Then, the construction is well defined, that is, all the ‘largest multiples’ are non-zero
(that is, the largest multiple q ′

n−1 of pn−1 such that q ′
n−1 < rn,n, and the largest multiple

q ′
n−1tn,m of q ′

n−1 such that q ′
n−1tn,m < rn,m).
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Remark 5.11. Without loss of generality, we can assume that p0 is equal to 2. Therefore,
the assumption of Lemma 5.10 for n = 0 requires that q0 is greater than 2, which explains
the second item of Definition 3.7.

Proof of Lemma 5.10. First, let us prove this result at step n = 1 of the outer recursion.
At step m = 1 of the inner recursion, q0 is greater than p0, so q ′

0 (the largest multiple
of p0 such that q ′

0 ≤ q0 − 1) is positive. For a step m > 1, notice that there exists an
(m − 1)-level which is not chosen at the previous step (as we have r1,m−1 (m − 1)-levels
in W1,m−1 and we choose q ′

0t1,m−1 of them, with q ′
0t1,m−1 < r1,m−1) so its qm−1 m-levels

are in W1,m and this gives r1,m ≥ qm−1. Therefore, we have r1,m > q ′
0 and t1,m is non-zero.

Now consider a step n > 1 of the outer recursion. For m = n, B ′
n−2,0(n − 1) is an

(n − 1)-level in Wn,n, so we have rn,n ≥ qn−1 > pn−1, and hence the positivity of q ′
n−1.

For m > n, we have rn,m ≥ qm−1 (same argument as for n = 1), this implies rn,m > q ′
n−1

and tn,m is positive.

The next lemma refines the estimate given by Lemma 5.8, with assumptions which will
be satisfied in the context of flexible classes.

LEMMA 5.12. Let (qn, (σn,0, . . . , σn,qn))n≥0 be the parameters of a CSP construction of
T with associated constant C > 0. Assume that there exists a constant C ′ > 0 such that

for all n ≥ 1, σn ≤ C′qnhn−1 and qn − (1 + pn) ≥ C′hn

(for instance, if the third point of Definition 3.7 holds and if, given (qk , (σ0,k , . . . ,
σqk ,k))0≤k≤n−1, qn is chosen large enough). Then, we get the following bound:

for all n ∈ N,
q ′
n

qn

≤ 4.

Proof of Lemma 5.12. For n = 0, this is a consequence of the inequality q ′
0 ≤ q0 − 1. Now

let us prove the result for n ≥ 1. Using Lemma 5.8, it suffices to get

for all n ≥ 1,
σn

q ′
0 . . . q ′

n−1
≤ qn.

However, we have

σn ≤ C′qnhn−1 ≤ qn(qn−1 − (1 + pn−1)),

and the right-hand side is bounded above by qnq
′
n−1 (by Lemma 5.7), so the result follows

from the inequality q ′
n−1 ≤ q ′

0 . . . q ′
n−1.

5.4. Equality of the orbits, universal odometer and quantitative control of the cocycles.
Recall the notation for the construction of T by cutting and stacking, where (qn)n and
(σn,i )n,i are respectively the cutting and spacing parameters. The tower Rn is the nth
T-Rokhlin tower, its height is hn, it covers the subset Xn of X, εn is the measure of its
complement, Zn is the maximum of the spacing parameters over the first n steps and M0

is the measure of the unique 0-level B0.
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We use similar notation q ′
n, h′

n and R′
n for S. We also set

H ′
n � h′

1 + · · · + h′
n

for all n ≥ 1, and H ′
0 � 0.

The construction is assumed to be well defined, considering a cutting-and-stacking
definition of T with parameters satisfying the criterion (9) (see Lemma 5.10). Since S
is piecewise given by powers of T, the S-orbits are included in the T-orbits. It remains to
show the reverse inclusion, to prove that (R′

n)n≥0 is increasing to the σ -algebra A and to
quantify the cocycles.

As in [KL24], we set

En,m �
h′

n−1⊔
i=0

Si

( ⊔
n≤M≤m

B ′
n−1,0(M)

)
=

⊔
0≤i0≤q ′

0−1
...

0≤in−1≤q ′
n−1−1

ζ
i0
1 . . . ζ

in−1
n

( ⊔
n≤M≤m

B ′
n−1,0(M)

)

and

Kn �
⊔

0<i≤hn−1
T i−1(Bn)
T i(Bn)⊆En,n

T i(Bn).

Since B ′
n−1,0 is exactly the base B ′

n of R′
n, the subsets Si(B ′

n−1,0), for 0 ≤ i ≤ h′
n − 1, are

exactly the levels of R′
n which is a partition of X. So the motivation behind the definition of

En,m is first to approximate B ′
n−1,0 by its M-bricks for n ≤ M ≤ m, and then the set En,m

is actually the union of the M-bricks, for n ≤ M ≤ m, of step n of the outer recursion,
and their translates by S in the other levels in R′

n (the sets E1,1, E1,2, E1,3, E2,1 and E2,2

are illustrated in Figures 7 and 8). We get a better approximation of X as m increases and
notice that En,m is a subset of Xm since every M-brick, for n ≤ M ≤ m, is a union of
m-levels. Finally, the sets Kn, for n ≥ 1, are introduced to show that the system S captures
the T-orbits (recall Remark 5.1).

LEMMA 5.13. The following holds:

μ(Xm \ En,m) ≤

⎧⎪⎪⎨
⎪⎪⎩

H ′
n

hm

for n < m,

H ′
n−1 + pn−1h

′
n−1

hn

for n = m.

Proof of Lemma 5.13. We prove the inclusions

En,m ⊂ En−1,m ⊂ · · · ⊂ E2,m ⊂ E1,m ⊂ Xm,

and we bound the measures of Xm \ E1,m and each set Ek,m \ Ek−1,m. The result follows
from the decomposition

Xm \ En,m = (Xm \ E1,m) 

⊔

2≤k≤n

(Ek−1,m \ Ek,m) (10)

and σ -additivity of μ.
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The set E1,m is composed of m-levels, so it is contained in Xm. If m = 1, then Xm \ E1,m

is the disjoint union of r1,1 − q ′
0 1-levels (see step (1, 1) of the construction). If m > 1,

then Xm \ E1,m is the disjoint union of r1,m − q ′
0t1,m m-levels (see step (1, m) of the

construction). By definition of q ′
0 (if m = 1) or t1,m (if m > 1), we thus have

μ(Xm \ E1,m) ≤

⎧⎪⎪⎨
⎪⎪⎩

p0

hm

if m = 1,

h′
1

hm

if m > 1

(recall that h′
1 = q ′

0).
Let k ∈ �2, n�. The function ζk has been built to map each M-brick (M ≥ k) at step k

to another. However, such a brick is contained in an M ′-brick (k − 1 ≤ M ′ ≤ M) from the
previous step k − 1 (see Lemma 5.5). We then have

⊔
0≤ik−1≤q ′

k−1−1

ζ
ik−1
k

( ⊔
k≤M≤m

B ′
k−1,0(M)

)
⊆

⊔
k−1≤M≤m

B ′
k−2,0(M).

Applying ζ
i0
1 . . . ζ

ik−2
k−1 and considering the union over i0, . . . , ik−2, we get the inclusion

Ek,m ⊆ Ek−1,m and the equality

Ek−1,m \ Ek,m

=
⊔

0≤i0≤q ′
0−1

...
0≤ik−2≤q ′

k−2−1

ζ
i0
1 . . . ζ

ik−2
k−1

⎛
⎜⎜⎜⎜⎜⎝
( ⊔

k−1≤M≤m

B ′
k−2,0(M)

)
\
( ⊔

k≤M≤m

⊔
0≤ik−1≤q ′

k−1−1

B ′
k−1,ik (M)

)
︸ ︷︷ ︸

=: [∗]

⎞
⎟⎟⎟⎟⎟⎠.

So the measure of Ek−1,m \ Ek,m is q ′
0 . . . q ′

k−2μ([∗]) = h′
k−1μ([∗]) by T-invariance. The

set [∗] is obtained from Wk,m (see equations (5) and (6)) by removing the m-bricks that
have been chosen at step (k, m). If m = k, then [∗] is the disjoint union of rk,k − q ′

k−1
m-levels (see step (k, k) of the construction). If m > k, then [∗] is the disjoint union of
rk,m − q ′

k−1tk,m m-levels (see step (k, m) of the construction). By definition of q ′
k−1 (if

m = k) or tk,m (if m > k), we thus have

μ([∗]) ≤

⎧⎪⎪⎨
⎪⎪⎩

pk−1

hm

if m = k,

q ′
k−1

hm

if m > k,

and

μ(Ek−1,m \ Ek,m) ≤

⎧⎪⎪⎨
⎪⎪⎩

h′
k−1pk−1

hm

if m = k,

h′
k

hm

if m > k.
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Using equation (10) and σ -additivity of μ, we get the following inequalities. If m > n,
we get

μ(Xm \ En,m) = μ(Xm \ E1,m) +
∑

2≤k≤n

μ(Ek−1,m \ Ek,m) ≤
∑

1≤k≤n

h′
k

hm

= H ′
n

hm

.

If m = n, we get

μ(Xm \ En,m) = (μ(Xm \ E1,m) +
∑

2≤k≤m−1

μ(Ek−1,m \ Ek,m)) + μ(En−1,n \ En,n)

≤
∑

1≤k≤m−1

h′
k

hm

+ pn−1h
′
n−1

hn

= H ′
n−1

hn

+ pn−1h
′
n−1

hm

and we are done.

The quantity H ′
n−1 + pn−1h

′
n−1 only depends on q ′

1, . . . , q ′
n−2 which only depend on

(qi , (σi,j )0≤j≤qi
)0≤i≤n−2 (see Lemma 5.9), and hn is larger than q1 . . . qn−1/M0 with

qn−1 appearing at step n − 1. Then, the strategy will be to recursively choose the cutting
parameters qn−1 so that

H ′
n−1 + pn−1h

′
n−1

hn

→
n→+∞ 0. (11)

As μ(Xn) →
n→+∞ 1, this gives μ(En,n) →

n→+∞ 1 by Lemma 5.13.

COROLLARY 5.14. If μ(En,n) →
n→+∞ 1, then S is the universal odometer.

Proof of Corollary 5.14. By the definition of q ′
n at step (n, n) and by choice of the

sequence (pn), every prime number appears infinitely many times as a prime factor among
the integers q ′

0, q ′
1, q ′

2, . . . . If S is an odometer, then it is clearly universal. It remains to
show that (R′

n)n∈N increases to the σ -algebra A. Then, S is a rank-one system with zero
spacing parameters by Lemma 5.2, so this is an odometer.

Consider a subsequence (nk)k≥0 such that the series
∑

k≥0 μ((Enk ,nk
)c) is convergent.

By the Borel–Cantelli lemma, the set X0 �
⋃

j≥0
⋂

k≥j Enk ,nk
is of full measure. Let

x, y ∈ X0. Assume that they belong to the same level of R′
n for every n larger that some

threshold N0. The goal is to show that x and y are equal, so that (R′
n)n∈N separates the

points of a set of full measure and hence it increases to A.
By the definition of X0, there exists an infinite subset I of N, bounded below by

N0, such that En,n contains x and y for every n ∈ I . Let us fix an integer n ∈ I . By
the definition of En,n, x is in some Si(B ′

n−1,0(n)) and y in some Sj (B ′
n−1,0(n)), for

0 ≤ i, j ≤ q ′
0 . . . q ′

n−1 − 1. However, x and y are in the same level of R′
n; furthermore,

Si(B ′
n−1,0(n)) is included in the level Si(B ′

n) and Sj (B ′
n−1,0(n)) in the level Sj (B ′

n), so
we have i = j . Moreover, since we have tn,n = 1, all the sets Sk(B ′

n−1,0(n)) are n-levels,
that is, levels of the nth T-Rokhlin tower Rn, so x and y are in the same n-level. This holds
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for every n ∈ I , so for infinitely many n. Moreover, (Rn)n∈N separates the points up to a
null set, since T is rank-one; hence the result.

LEMMA 5.15. For every n ∈ N, we have

μ(Kn) ≥ μ(Xn) − μ(Bn) − 2μ(Xn \ En,n).

Moreover, μ(Kn) →
n→+∞ 1 if μ(En,n) →

n→+∞ 1.

Proof of Lemma 5.15. The set Kn is equal to (En,n \ Bn) \ T (Xn \ En,n), so we get

μ(Kn) ≥ μ(En,n \ Bn) − μ(T (Xn \ En,n))

≥ μ(En,n) − μ(Bn) − μ(Xn \ En,n)

= μ(Xn) − μ(Bn) − 2μ(Xn \ En,n).

The second result follows from the fact that μ(Xn) →
n→+∞ 1 and μ(Bn) →

n→+∞ 0.

LEMMA 5.16. For every x ∈ Kn, there exists k ∈ Z such that

|k| ≤ 4(hn−1 + Zn−1)(h
′
n−1)

2

and T −1x = Skx.

Proof of Lemma 5.16. Let x ∈ Kn. By the definition of Kn, the points x and T −1x are in
En,n and there exists 1 ≤ i ≤ hn − 1 such that x ∈ T i(Bn). Writing En,n as

En,n =
⊔

0≤i≤h′
n−1−1

0≤in−1≤q ′
n−1−1

Siζ
in−1
n (B ′

n−1,0(n)) =
⊔

0≤i≤h′
n−1−1

0≤in−1≤q ′
n−1−1

Si(B ′
n−1,in−1

(n)),

it is clear that there exist 0 ≤ k0, k1 ≤ h′
n−1 − 1 such that y � S−k0x and z � S−k1T −1x

are in
⊔

0≤in−1≤q ′
n−1−1 B ′

n−1,in−1
(n).

We first show that we can write y = ζ
k2
n z for some k2, using the fact that ζn connects

the n-bricks of step (n, n) of the construction (since tn,n = 1). Second, ζn can be written
as a power of S and the equality y = Sk3z holds for some k3 that we will be able to bound
by Lemma 5.4. Finally, the result follows from the bound for each integer k0, k1, k3.

Step 1: Finding k2 such that y = ζ
k2
n z. Using Lemma 5.3, we can write

x = ζ
i0
1 . . . ζ

in−2
n−1 y and T −1x = ζ

j0
1 . . . ζ

jn−2
n−1 z

for some integers 0 ≤ i0, j0 ≤ q ′
0 − 1, . . . , 0 ≤ in−2, jn−2 ≤ q ′

n−2 − 1, and there exist
0 ≤ in−1, jn−1 ≤ q ′

n−1 − 1 such that

y ∈ B ′
n−1,in−1

(n) and z ∈ B ′
n−1,jn−1

(n).

More precisely, by Lemma 5.5, and the fact that y and z are in n-bricks at step (n, n), we
have

x = ζ1(M1)
i0 . . . ζn−1(Mn−1)

in−2y and T −1x = ζ1(L1)
j0 . . . ζn−1(Ln−1)

jn−2z
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with k ≤ Lk , Mk ≤ n for every 1 ≤ k ≤ n − 1. By construction, T and the maps ζk(m), for
1 ≤ k ≤ n − 1 and k ≤ m ≤ n, satisfy the following property: for every n-level T k(Bn),
with 0 ≤ k ≤ hn − 1, contained in the domain of the map, if it is mapped to another n-level
T k+�(Bn), with 0 ≤ k + � ≤ hn − 1, then the application coincides with T � on T k(Bn).
In other words, it consists in going up or down |�| floors in the tower Rn, without going
above its roof or below its base. Therefore, from B ′

n−1,in−1
(n) to B ′

n−1,jn−1
(n), the map

S̃ � (ζ1(L1)
j0 . . . ζn−1(Ln−1)

jn−2)−1T −1ζ1(M1)
i0 . . . ζn−1(Mn−1)

in−2

consists in successively going up or down in the tower, so this is a power of T given
by the difference between the floor of B ′

n−1,in−1
(n) and that of B ′

n−1,jn−1
(n). The map

ζ
jn−1−in−1
n also satisfies this property, and thus ζ

jn−1−in−1
n and S̃ coincide on B ′

n−1,in−1
(n)

and y = ζ
k2
n z with k2 � jn−1 − in−1.

Step 2: Finding k3 such that y = Sk3z. Using Lemma 5.3 and the equality ζ i
n(B

′
n) =

B ′
n−1,i , we have Sh′

n−1(jn−1−in−1)y = z, we set k3 � h′
n−1(jn−1 − in−1) and it remains to

find a bound for jn−1 − in−1. We need to get more information on the power of T, denoted
by T �, which coincides with S̃ on B ′

n−1,in−1
(n). By Lemma 5.4 and the definition of S̃, we

get

|�| ≤ (hn−1 + Zn−1)(i0 + · · · + in−2) + 1 + (hn−1 + Zn−1)(j0 + · · · + jn−2)

≤ 2(hn−1 + Zn−1)(q
′
0 + · · · + q ′

n−2) + 1

≤ 3(hn−1 + Zn−1)(q
′
0 + · · · + q ′

n−2),

where ‘+1’ comes from ‘T −1’ in the expression of S̃ and has been bounded by
(hn−1 + Zn−1)(q

′
0 + · · · + q ′

n−2). The sum q ′
0 + · · · + q ′

n−2 is less than the product
q ′

0 . . . q ′
n−2 = h′

n−1, which gives

|�| ≤ 3(hn−1 + Zn−1)h
′
n−1.

Since ζn has a positive cocycle (by Lemma 5.4), the equality ζ
(jn−1−in−1)
n = T � implies

|�| ≥ |jn−1 − in−1|. Therefore, we find the bound

|k3| ≤ 3(hn−1 + Zn−1)(h
′
n−1)

2.

Step 3: Bounding the integer k such that T −1x = Skx. By the definition of k0, k1 and
k3, T −1x is equal to Skx with k � k1 − k3 − k0 which is thus bounded as follows:

|k| ≤ |k0| + |k1| + |k3|
≤ 2(h′

n−1 − 1) + 3(hn−1 + Zn−1)(h
′
n−1)

2

≤ 4(hn−1 + Zn−1)(h
′
n−1)

2,

and hence the result.

COROLLARY 5.17. If μ(En,n) →
n→+∞ 1, then T and S have the same orbits.
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Proof of Corollary 5.17. It is clear that the S-orbits are contained in the T-orbits.
By Lemma 5.15,

⋃
n∈N Kn is of full measure, so the reverse inclusion follows from

Lemma 5.16.

Remark 5.18. Corollary 5.17 holds for every rank-one system T. Indeed, skipping steps in
the cutting-and-stacking process of T recursively increases the cutting parameters qn, it
enables us to get criteria (9) and (11) (the first one implies that the construction in §5.1 is
well defined, the second one that μ(En,n) → 1).

However, the quantification of the cocycles will not necessarily hold for all the rank-one
systems, since we will need to control the quantities Zn depending on the spacing
parameters (see §5.5).

Note that by Dye’s theorem, it was already known that every rank-one system is orbit
equivalent to the universal odometer, but the proof of this theorem does not provide an
explicit orbit equivalence, and thus prevents us from quantifying the cocycles.

Now the goal is to control the cocycle cS . The equalities in equation (7) in §5.2 and the
decomposition of Bn−1,i in bricks motivate the following definition:

for all m ≥ n ≥ 1, Dn(m) � ζ
q ′

0−1
1 . . . ζ

q ′
n−2−1

n−1

( ⊔
0≤in≤q ′

n−1−2

B ′
n−1,in (m)

)

= ζ
q ′

0−1
1 . . . ζ

q ′
n−2−1

n−1

( ⊔
0≤in≤q ′

n−1−2

ζ in
n (m)(B ′

n−1,0)

)
. (12)

It is the union of all the translates of the m-bricks at step (n, m) composing Dn. Note

that S coincides with ζn(m)ζ
−(q ′

n−2−1)

n−1 . . . ζ
−(q ′

0−1)

1 on Dn(m) (since it coincides with

ζnζ
−(q ′

n−2−1)

n−1 . . . ζ
−(q ′

0−1)

1 and ζn coincides with ζn(m) on the m-bricks at step n). The
partition of Dn into such subsets Dn(m), for m ≥ n, gives a fine control of the cocycle cS .

LEMMA 5.19. For 1 ≤ n < m, Dn(m) is contained in Xm \ En,m−1 and we have

μ(Dn(m)) ≤

⎧⎪⎪⎨
⎪⎪⎩

εm−1 − εm + H ′
n

hm−1
if m > n + 1,

εm−1 − εm + H ′
n−1 + pn−1h

′
n−1

hn

if m = n + 1.

For all n ≥ 1, we have

μ(Dn(n)) ≤ q ′
n−1

hn

.

Moreover, for every x ∈ Dn(m),

|cS(x)| ≤ (hm−1 + Zm−1)h
′
n−1.

Proof of Lemma 5.19. For 1 ≤ n < m, Dn(m) is composed of translates of the m-bricks
used at step (n, m), so it is disjoint from the translates of the M-bricks used at step (n, M)

for n ≤ M ≤ m − 1; hence the inclusion Dn,m ⊆ Xm \ En,m−1. The bound for μ(Dn(m))
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follows from the decomposition Xm \ En,m−1 = (Xm \ Xm−1) 
 (Xm−1 \ En,m−1) and
Lemma 5.13.

For n ≥ 1, by the definition of Dn(n) and the ζi-invariance of the measure, we get

μ(Dn(n)) = (q ′
n−1 − 1)μ(B ′

n−1,0(n)) ≤ q ′
n−1μ(B ′

n−1,0(n));

hence the result, since B ′
n−1,0(n) is an n-level, so it has measure less than 1/hn.

For the cocycle cS , we first decompose Dn(m) in the following way:

Dn(m) =
⊔
�

ζ
q ′

0−1
1 . . . ζ

q ′
n−2−1

n−1 (β�))︸ ︷︷ ︸
=:D�

,

where (β�)� is the family of m-bricks, at step (n, m), which constitute the subset⊔
0≤in≤q ′

n−1−2 B ′
n−1,in (m). For a fixed �, by Lemma 5.5, there exist 1 ≤ L1 ≤ m, . . .,

n − 1 ≤ Ln−1 ≤ m such that

D� = ζ
q ′

0−1
1 (L1) . . . ζ

q ′
n−2−1

n−1 (Ln−1)(β�)

and, on this subset, S coincides with ζn(m)ζ
−(q ′

n−2−1)

n−1 (Ln−1) . . . ζ
−(q ′

0−1)

1 (L1). Then,
using Lemma 5.4, we get

|(cS)|D� | ≤ (hm−1 + Zm−1)((q
′
0 − 1) + · · · + (q ′

n−2 − 1) + 1)

≤ (hm−1 + Zm−1)q
′
0 . . . q ′

n−2

= (hm−1 + Zm−1)h
′
n−1,

and hence the result.

5.5. Proof of Theorem 3.9. Let T be a rank-one system whose parameters satisfy criteria
(9) and (11). The first one ensures that the construction is well defined (Lemma 5.10), the
second one implies μ(En,n) → 1 (Lemma 5.13), so we have an orbit equivalence between
T and S (Lemma 5.17). We can then define the cocycles cT , cS : X → Z by

for all x ∈ X, T x = ScT (x)x and Sx = T cS(x)x.

In Lemmas 5.16 and 5.19, we obtained bounds for the cocycles on precise subsets covering
X: (Kn)n for cT , (Dn(m))n,m for cS . This will provide a bound for the ϕ-integral of
each cocycle. However, first, we need to change ϕ via the following lemma inspired by
[CJLMT23, Lemma 2.12]. Without loss of generality, ϕ has the properties given by the
lemma and this will simplify the bound for each ϕ-integral.

LEMMA 5.20. Let 0 < α ≤ 1 and ϕ : R+ → R+ satisfying ϕ(t) = o(tα). Then, there
exists � : R+ → R+ with the following properties:
• � is increasing;
• � is subadditive: for all t , s ∈ R+, �(t + s) ≤ �(t) + �(s);
• �(t) = o(tα);
• ϕ(t) = O(�(t)).
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Proof of Lemma 5.20. Set

θ : R∗+ → R+

t �→ min
(

1, sup
s≥t

ϕ(s) + 1
s

)
and

� : R+ → R+

t �→
∫ t

0
θ(s) ds.

The map θ is positive-valued and non-increasing, so � is an increasing and subadditive
function satisfying �(t) ≥ tθ(t) for every t ∈ R+. The assumption ϕ(t) = o(tα) implies
that θ(t) = sups≥t (ϕ(s) + 1)/s for t > 0 large enough, so we have

�(t) ≥ tθ(t) ≥ t sup
s≥t

ϕ(s) + 1
s

≥ ϕ(t).

Finally, for a fixed ε > 0, there exists t0 > 0 such that ϕ(s) ≤ εsα for every s ≥ t0. For
every t ≥ t0, this gives

sup
s≥t

ϕ(s) + 1
s

≤ sup
s≥t

(
ε

s1−α
+ 1

s

)
= ε

t1−α
+ 1

t

and for every t ≥ t0, we have∫ t

t0

θ(s) ds ≤
∫ t

t0

(
ε

s1−α
+ 1

s

)
ds = ε

α
tα + ln t − ε

α
tα0 − ln t0,

and hence �(t) = o(tα).

LEMMA 5.21. Assume that criteria (9) (in Lemma 5.10) and (11) (after Lemma 5.13) are
satisfied. Let ϕ : R+ → R+ be an increasing and subadditive map. Then, setting


(n) � (1 + 2(H ′
n + pnh

′
n))(h

′
n)

2
(

ϕ(h3
n+1)

hn+1
+ ϕ(Zn+1h

2
n+1)

hn+1

)
,


ε(n) � εn+1(h
′
n)

2(ϕ(h3
n+1) + ϕ(Zn+1h

2
n+1)),

we have the following bound:∫
X

ϕ(|cT (x)|) dμ ≤ ϕ(4(h0 + Z0)(h
′
0)

2) + 4
+∞∑
n=0


(n) + 4
+∞∑
n=0


ε(n). (13)

Proof of Lemma 5.21. Motivated by Lemma 5.16, we will rather quantify the cocycle cT −1

defined on X (up to a null set) by

T −1x = Sc
T −1 (x)x.

It is equivalent to quantifying cT since we have

for all x ∈ X, cT −1(x) = −cT (T −1x)

and μ is T-invariant.
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Let (K ′
n)n>0 be the partition of X inductively defined by{

K ′
1 � K1,

for all n > 0, K ′
n+1 � Kn+1 \ (K1 ∪ · · · ∪ Kn).

The subsets K ′
n are pairwise disjoint and cover the whole space since we have

K ′
1 ∪ · · · ∪ K ′

n = K1 ∪ · · · ∪ Kn

and μ(Kn) → 1 (using Lemma 5.15). By the fact that Kn is included in Xn, and by
Lemmas 5.15 and 5.13, we have

μ(K ′
n+1) ≤ μ(X \ Kn)

= μ(X \ Xn) + μ(Xn \ Kn)

≤ εn + μ(Bn) + 2μ(Xn \ En,n)

≤ εn + 1 + 2(H ′
n−1 + pn−1h

′
n−1)

hn

.

Since K ′
n+1 is contained in Kn+1, Lemma 5.16 implies

for all x ∈ K ′
n+1, |cT −1(x)| ≤ 4(hn + Zn)(h

′
n)

2.

We then get∫
X

ϕ(|cT (x)|) dμ =
∫

X

ϕ(|cT −1(x)|) dμ

=
+∞∑
n=0

∫
K ′

n+1

ϕ(|cT −1(x)|) dμ

≤
+∞∑
n=0

μ(K ′
n+1)ϕ(4(hn + Zn)(h

′
n)

2)

≤ ϕ(4(h0 + Z0)(h
′
0)

2)

+
+∞∑
n=1

(
εn + 1 + 2(H ′

n−1 + pn−1h
′
n−1)

hn

)
ϕ(4(hn + Zn)(h

′
n)

2).

Now we use the assumptions on ϕ to simplify the previous bound. We have h′
n =

h′
n−1q

′
n−1 ≤ h′

n−1hn (by construction, we have q ′
n−1 ≤ rn,n ≤ hn). By monotonicity and

subadditivity, this yields

ϕ(4(hn + Zn)(h
′
n)

2) ≤ ϕ(4(hn + Zn)(h
′
n−1hn)

2)

≤ 4(h′
n−1)

2(ϕ(h3
n) + ϕ(Znh

2
n))

and we get the bound (13).

LEMMA 5.22. Assume that criteria (9) (in Lemma 5.10) and (11) (after Lemma 5.13) are
satisfied and that the following holds:

for all n ≥ 0,
q ′
n

qn

≤ 4
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(this is an assumption that we will be able to get by Lemma 5.12, using flexible classes).
Let ϕ : R+ → R+ be an increasing and subadditive map. Then, setting

�1(n) � 4h′
n

(
ϕ(h2

n+1)

hn+1
+ ϕ(Zn+1hn+1)

hn+1

)
,

�2(n) � (H ′
n + pnh

′
n)h

′
n

(
ϕ(hn+1)

hn+1
+ ϕ(Zn+1)

hn+1

)
,

�3(n, m) � H ′
nh

′
n−1

(
ϕ(hm)

hm

+ ϕ(Zm)

hm

)
,

�ε(n, m) � εmh′
n(ϕ(hm) + ϕ(Zm)),

we have the following bound:∫
X

ϕ(|cS |) dμ ≤ μ(D1(1))ϕ((h0 + Z0)h
′
0)

+
∑
n≥0

�1(n) +
∑
n≥0

�2(n) +
∑
n≥1

∑
m≥n+1

�3(n, m)

+
∑
n≥0

∑
m≥n+1

�ε(n, m). (14)

Proof of Lemma 5.22. By Lemma 5.19, for each subset Dn(m), we found a bound for the
cocycle cS on it, we then get∫

X

ϕ(|cS |) dμ =
∑

m≥n≥1

∫
Dn(m)

ϕ(|cS |) dμ

≤
∑

m≥n≥1

μ(Dn(m))ϕ((hm−1 + Zm−1)h
′
n−1)

≤ μ(D1(1))ϕ((h0 + Z0)h
′
0)

+
∑
n≥2

γ1(n) +
∑
n≥1

γ2(n) +
∑
n≥1

∑
m≥n+2

γ3(n, m),

where

γ1(n) � μ(Dn(n))ϕ((hn−1 + Zn−1)h
′
n−1),

γ2(n) � μ(Dn(n + 1))ϕ((hn + Zn)h
′
n−1),

γ3(n, m) � μ(Dn(m))ϕ((hm−1 + Zm−1)h
′
n−1).

Lemma 5.19 also yields a bound for the measure of each set Dn(m), which implies

γ1(n) ≤ q ′
n−1

hn

ϕ((hn−1 + Zn−1)h
′
n−1),

γ2(n) ≤
(

εn + H ′
n−1 + pn−1h

′
n−1

hn

)
ϕ((hn + Zn)h

′
n−1),

γ3(n, m) ≤
(

εm−1 + H ′
n

hm−1

)
ϕ((hm−1 + Zm−1)h

′
n−1).
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For all n ≥ 2, note that we have

ϕ((hn−1 + Zn−1)h
′
n−1) ≤ ϕ((hn−1 + Zn−1)h

′
n−2hn−1)

≤ h′
n−2(ϕ(h2

n−1) + ϕ(Zn−1hn−1))

and

q ′
n−1

hn

≤ q ′
n−1

hn−1qn−1
≤ 4

hn−1
,

so wet get

γ1(n) ≤ 4h′
n−2

(
ϕ(h2

n−1)

hn−1
+ ϕ(Zn−1hn−1)

hn−1

)
= �1(n − 2).

For γ2(n) and γ3(n, m), note that we have

for all n≥1, for all m≥n+1, ϕ((hm−1 +Zm−1)h
′
n−1)≤h′

n−1(ϕ(hm−1)+ϕ(Zm−1)),

so we get

γ2(n) ≤
(

εn + H ′
n−1 + pn−1h

′
n−1

hn

)
h′

n−1(ϕ(hn) + ϕ(Zn))

= εnh
′
n−1(ϕ(hn) + ϕ(Zn)) + (H ′

n−1 + pn−1h
′
n−1)h

′
n−1

(
ϕ(hn)

hn

+ ϕ(Zn)

hn

)
= �ε(n − 1, n) + �2(n − 1)

and

γ3(n, m) ≤ (εm−1 + H ′
n

hm−1
)h′

n−1(ϕ(hm−1) + ϕ(Zm−1))

= εm−1h
′
n−1(ϕ(hm−1) + ϕ(Zm−1)) + H ′

nh
′
n−1

(
ϕ(hm−1)

hm−1
+ ϕ(Zm−1)

hm−1

)
= �ε(n − 1, m − 1) + �3(n, m − 1)

.

The bound (14) now follows immediately.

Proof of Theorem 3.9. Let C be a flexible class and ϕ : R+ → R+ a map satisfying
ϕ(t) =

t→+∞ o(t1/3). If � : R+ → R+ is another map satisfying ϕ(t) = O(�(t)), then

�-integrability implies ϕ-integrability. Therefore, without loss of generality, we assume
that ϕ satisfies the assumptions of Lemma 5.20, that is, ϕ is increasing and subadditive.

Using the definition of a flexible class, we will build T with large enough and inductively
chosen cutting parameters qn. Let FC be an associated set of parameters, and fix the
associated constants C and C′ given in Definition 3.7. First, choose any cutting and spacing
parameter (q0, (σ0,0, . . . , σ0,q0)) in FC such that q0 ≥ 3. Without loss of generality, we
assume p0 = 2 and we get q0 > p0, as required in the assumption of Lemma 5.10 for
n = 0. For a fixed n ≥ 1, assume that (qk , (σk,0, . . . , σk,qk

))0≤k≤n−1 has already been
determined in FC , this immediately gives q ′

0, . . . , q ′
n−1 (see Lemma 5.9). The goal is

https://doi.org/10.1017/etds.2024.118 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.118


Rank-one systems, flexible classes and Shannon orbit equivalence 47

to find the next parameters with qn large enough. Consider κn > 0 such that for every
t ≥ hnκn, the following hold:

κn > max (pn, q ′
0, . . . , q ′

n−1); (15)

H ′
n + pnh

′
n

t
≤ 1

n
. (16)

The assumption ϕ(t) = o(t1/3) also implies the following inequations for a large
enough κn:

(1 + 2(H ′
n + pnh

′
n))(h

′
n)

2
(

ϕ(t3)

t
+ ϕ(Ct3)

t

)
≤ 1

2n
; (17)

(h′
n)

2(ϕ(t3) + ϕ(Ct3)) ≤ t

2nq0 . . . qn−1
; (18)

4h′
n

(
ϕ(t2)

t
+ ϕ(Ct2)

t

)
≤ 1

2n
; (19)

(H ′
n + pnh

′
n)h

′
n

(
ϕ(t)

t
+ ϕ(Ct)

t

)
≤ 1

2n+1 ; (20)

for all 1 ≤ � ≤ n, H ′
�h

′
�−1

(
ϕ(t)

t
+ ϕ(Ct)

t

)
≤ 1

2n+2 ; (21)

for all 0 ≤ � ≤ n, h′
�(ϕ(t) + ϕ(Ct)) ≤ t

2nq0 . . . qn−1
, (22)

for every t ≥ hnκn. With inequations (17), (18), (19), (20), (21) and (22), we will
respectively find bounds for the quantities 
(n), 
ε(n), �1(n), �2(n), �3(n, m) and
�ε(n, m) (see Lemmas 5.21 and 5.22).

We then set a new cutting parameter qn ≥ κn large enough with associated spacing
parameters σn,0, . . . , σn,qn so that (qk , (σk,0, . . . , σk,qk

))0≤k≤n ∈ FC , σn ≤ C′qnhn−1 and
the following additional assumptions are satisfied:

qn − (1 + pn) ≥ C′hn (23)

and

for all 0 ≤ k ≤ n − 1, qn ≥ C′2n−kqk . (24)

Let (hn), (σn) and (Zn) be the sequences associated to p � (qn, (σn,0, . . . ,
σn,qn))n≥0 ∈ PN (as described in Definition 3.1), (h′

n) the height sequence of the cutting
sequence (q ′

n)n≥0 for the universal odometer that we build. We first check that the
underlying system is finite measure preserving, that is, condition (F) in Definition 3.2
is satisfied. However, we have

σn

hn+1
≤ C′qnhn−1

qnqn−1hn−1
= C′

qn−1
,
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so the summability easily follows from inequality (24). The underlying system preserves
a probability measure, so it is rank-one. Moreover it belongs to C by the definition of a
flexible class.

Inequality (15) ensures that criterion (9) holds and that the construction in §5.1 is well
defined (see Lemma 5.10). Using hn+1 ≥ hnqn, the limit in equation (11) is a consequence
of inequality (16) and implies μ(En,n) → 1. Inequality (23) implies

for all n ∈ N,
q ′
n

qn

≤ 4

(see Lemma 5.12).
Then, Lemmas 5.21 and 5.22 imply that the bounds in equation (13) for the ϕ-integral

of cT and equation (14) for the ϕ-integral of cS hold. It remains to prove that these bounds
are finite, namely that the series∑

n≥0


(n),
∑
n≥0


ε(n),
∑
n≥0

�1(n),
∑
n≥0

�2(n),

∑
n≥1

∑
m≥n+1

�3(n, m) and
∑
n≥0

∑
m≥n+1

�ε(n, m)

converge.
Using the monotonicity of ϕ and the inequalities Zn+1 ≤ Chn+1 and (17) for t = hn+1

(which is greater or equal to hnκn), we get 
(n) ≤ (1/2n), so the series
∑

n≥0 
(n)

converges. It is also straightforward to see that the series
∑

n≥0 �1(n) and
∑

n≥0 �2(n) are
convergent, using inequalities (19) and (20). Inequality (21) implies �3(n, m) ≤ (1/2m+1),
so we get ∑

m≥n+1

�3(n, m) ≤ 1
2n+1

for every n ≥ 0, and the series
∑

n≥1
∑

m≥n+1 �3(n, m) converges.
For the other series

∑
n≥0 
ε(n) and

∑
n≥0

∑
m≥n+1 �ε(n, m), we have to control the

sequence (εn) (recall that εn � μ((Xn)
c)). Denote by M0 the measure of B0 (the unique

level of the T-Rokhlin tower R0). For every n ≥ 1, we have

εn =
∑
k≥n

M0

q0 . . . qk

σk ≤
∑
k≥n

M0C
′hk−1

q0 . . . qk−1
≤
∑
k≥n

C′

qk−1
≤ 1

qn−1

∑
k≥n

1
2k−n

≤ 2
qn−1

,

using Lemma 3.4 and inequation (24).
Given n ≥ 0, inequation (22) and Lemma 3.4 imply

(h′
n)

2(ϕ(h3
n+1) + ϕ(Zn+1h

2
n+1)) ≤ hn+1

2nq0 . . . qn−1
≤ qn

2nM0
.

Combining this with the inequality εn+1 ≤ 2/qn, we then get


ε(n) = εn+1(h
′
n)

2(ϕ(h3
n+1) + ϕ(Zn+1h

2
n+1)) ≤ 1

2n−1M0
,

so the series
∑

n≥0 
ε(n) converges.
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For fixed integers n ≥ 0 and m ≥ n + 1, inequation (22) and Lemma 3.4 imply

h′
n(ϕ(hm) + ϕ(Zm)) ≤ hm

2m−1q0 . . . qm−2
≤ qm−1

2m−1M0
.

Combining this with the inequality εm ≤ 2/qm−1, we then get

�ε(n, m) = εmh′
n(ϕ(hm) + ϕ(Zm)) ≤ 1

2m−2M0
.

This gives ∑
m≥n+1

�ε(n, m) ≤ 1
2n−2M0

for every n ≥ 0, so the series
∑

n≥0
∑

m≥n+1 �ε(n, m) converges.
Therefore, the cocycles cT and cS are ϕ-integrable as wanted, which concludes the

proof.

Remark 5.23. For ϕ-integrability of cS , we only need to control quantities of the form
ϕ(u2)/u and ϕ(u)/u (ϕ(u3)/u does not appear). Therefore, Theorem 3.9 can be stated with
a stronger quantification on the cocycle cS , namely ψ-integrability with ψ(t) = o(t1/2) (it
suffices to replace t1/3 by t1/2 in inequation (22)).

We are now able to prove Theorem D.

Proof of Theorem D. Let ϕ : R+ → R+ be a map satisfying ϕ(t) =
t→+∞ o(t1/3). By

Lemma 5.20, we may and do assume that ϕ is increasing and subadditive.
Given a flexible class C, an associated set of parameters FC and constants C and C′,

the last proof shows that we can choose the parameters in the following way. First, we
choose any cutting and spacing parameter (q0, (σ0,0, . . . , σ0,q0)) in FC , with q0 ≥ 3. Then,
if pn � (qk , (σk,0, . . . , σ0,qk

))0≤k≤n−1 has been set, there exists a constant depending
on ϕ, FC , C, C′ and pn, denoted by Kϕ(FC , C, C′, pn), such that conditions (15), (16),
(17), (18), (19), (20), (21), (22), (23) and (24) hold for every qn ≥ Kϕ(FC , C, C′, pn),
and it remains to find such an integer qn and spacing parameters σn,0, . . . , σn,qn such that
pn+1 � (qk , (σk,0, . . . , σ0,qk

))0≤k≤n is in FC and the inequality σn ≤ C′qnhn−1 holds.
Let Q � (Q−1, . . . , Qn0) be a sequence of integers, where n0, Q0, . . . , Qn0 are

positive and Q0 . . . Qn0 ≥ 3, and let us consider the set of parameters F(Q) built in
§4.2, and the associated constants CQ and C′

Q. In this case, the spacing parameters σk,i at
step k are equal to 0 or hk−1, so they are determined by the previous cutting parameters.
Moreover, the first cutting parameter q0 is equal to Q0 . . . Qn0 . Therefore, for every finite
sequence pn � (qk , (σk,0, . . . , σ0,qk

))0≤k≤n−1 in F(Q), we write Kϕ(Q, q1, . . . , qn−1)

instead of Kϕ(F(Q), CQ, C′
Q, pn).

Recall that A denotes the set of sequences (qi)i≥−1 of integers such that q0, q1, . . .

are positive. To every sequence ε = (εi)i≥0 ∈ {0, 1}N, we associate a sequence q(ε) ∈ A

inductively defined by

q(ε)0 = q0,

for all i ≥ 0, q(ε)i+1 = Kϕ(Q, q(ε)1, . . . , q(ε)i) + εi .
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Every sequence ε = (εi)i≥0 ∈ {0, 1}N provides a sequence of parameters in F(Q), whose
cutting parameters are q(ε)0, q(ε)1, . . . , and which gives rise to the irrational rotation of
angle θ(ε) � [Q−1, . . . , Qn0 , q(ε)1, q(ε)2, . . .].

Let us now consider a non-empty open subset V of R and a finite sequence Q so that
θ(ε) is in V for every ε ∈ {0, 1}N. We get that the set of irrational numbers θ in V such that
the irrational rotation of angle θ is ϕ-integrably orbit equivalent to the universal odometer
contains the set {q(ε) | ε ∈ {0, 1}N}, so it is uncountable using the facts that the map
ε ∈ {0, 1}N �→ q(ε) ∈ A is injective and the continued fraction expansion is unique for
every irrational number.
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