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LARGE-SCALE BEHAVIOR OF A PARTICLE SYSTEM WITH
MEAN-FIELD INTERACTION: TRAVELING WAVE SOLUTIONS
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Abstract

We use probabilistic methods to study properties of mean-field models, which arise as
large-scale limits of certain particle systems with mean-field interaction. The underlying
particle system is such that n particles move forward on the real line. Specifically, each
particle ‘jumps forward’ at some time points, with the instantaneous rate of jumps given
by a decreasing function of the particle’s location quantile within the overall distribu-
tion of particle locations. A mean-field model describes the evolution of the particles’
distribution when n is large. It is essentially a solution to an integro-differential equation
within a certain class. Our main results concern the existence and uniqueness of—and
attraction to—mean-field models which are traveling waves, under general conditions
on the jump-rate function and the jump-size distribution.
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1. Introduction

In this paper we use probabilistic methods to study properties of mean-field models, which
describe large-scale behavior of certain particle systems with mean-field interaction. A mean-
field model is essentially a solution to an integro-differential equation within a certain class.
Our focus is on the existence and uniqueness of—and attraction to—mean-field models which
are traveling waves.

1.1. A particle system giving rise to the mean-field model

The basic particle system which gives rise to our mean-field model is as follows. (This
system—or, rather, a special case of it—was first introduced and studied in [6, 7].) There
are n particles, moving in the positive direction (‘right’) on the real axis R. Each particle
moves in jumps, as follows. For each particle there is an independent Poisson process of rate
μ> 0. At the time points of this Poisson process the particle jumps to the right with prob-
ability ηn(ν), where ν is its quantile in the current empirical distribution of the particles’
locations; that is, ν = �/n when the particle location is �th from the left. With complemen-
tary probability 1 − ηn(ν) the particle does not jump. To have the model well-defined, assume
that quantile-ties between co-located particles are broken uniformly at random. Assume that,
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for each n, ηn(ν), 0 ≤ ν ≤ 1, is non-increasing, and that, as n → ∞, it uniformly converges to
a continuous, strictly decreasing function η(ν), 0 ≤ ν ≤ 1, with η(0) = 1, η(1) = 0. The jump
sizes, when a particle does jump, are given by independent and identically distributed (i.i.d.)
non-negative random variables with cumulative distribution function J(y), y ≥ 0; we denote by
J̄(y) = 1 − J(y) the complementary cumulative distribution function. In this paper we assume
that for some integer �≥ 2, the jump size distribution has finite �th moment, and we define

m(k) .=
∫ ∞

0
ykdJ(y)<∞, k = 1, 2, . . . , �. (1.1)

So, m(1) <∞ is the mean jump size.
Let f n(x, t) be the (random) empirical distribution of the particle locations at time t; that is,

f n(x, t) is the fraction of particles located in (−∞, x] at time t. As n → ∞, it is very intuitive
that f n(x, t) converges (in an appropriate sense, under appropriate conditions) to a deterministic
function f (x, t) such that f (·, t) is a distribution function for each t, and the following equation
holds:

∂

∂t
f (x, t) = −μ

∫ x

−∞
dyf (y, t)η( f (y, t))J̄(x − y), (1.2)

where dy means the differential in y.
At this point let us describe only the intuition for (1.2). For each t, the distribution f (·, t)

approximates the distribution of particles f n(·, t) when n is large. Since particles move right,
f (x, t) is non-increasing in t for each x. So (∂/∂t)f (x, t) ≤ 0, and its value should be equal
to the right-hand side of (1.2), which gives the instantaneous rate (scaled by 1/n and taken
with a minus sign) at which particles jump over the point x at time t. We will call a function
f (x, t) satisfying (1.2) a mean-field model. The formal meaning of (1.2) and the definition of a
mean-field model will be given later.

It is also intuitively clear (and easy to make formal, as we do later) that, for any mean-
field model, the speed at which the mean

∫
xdx f (x, t) of the distribution f (·, t) moves right

must be equal to v = m(1)μ
∫ 1

0 η(ν)dν. Suppose a mean-field model f (x, t) that is a traveling
wave exists, namely, f (x, t) = φ(x − vt) for some distribution function φ(·) which we will call
a traveling wave shape. By substituting into (1.2), we see that any traveling wave shape φ must
satisfy the equation

vφ′(x) =μ

∫ x

−∞
φ′(y)η(φ(y))J̄(x − y)dy. (1.3)

We will make this statement formal later.

1.2. Motivation for the particle system

The original motivation for the particle system described above is an idealized model
[6, 7] of distributed parallel simulation. The n particles represent n components, or sites, of
one large system. Each site is being simulated by a separate computer (processor). The sites
are interdependent, so their simulations cannot run independently. A particle location at a given
real time represents the ‘local simulation time’ of the corresponding site, which is the time in
the simulated system up to which the simulation of this site is valid. After a site’s independent
simulation runs for some real time, the site tries to update its state and advance its local time.
However, this local time advance is not always possible, because the site’s evolution depends
on a number of other sites, whose local times may be lagging behind; if the site’s local time
cannot be advanced, it will ‘go back’ and start simulation again from the current local time.
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In general, a site’s local time advance is more likely to occur if it is ‘further behind’ the local
times of other sites. The model in [6, 7] specifically assumes the following: each particle gets
‘urges’ to jump forward (advance local time) as an independent Poisson process of rate μ;
when a particle does get a jump urge, it actually jumps only if K other particles, K ≥ 1, chosen
uniformly at random, are currently ahead of it. If ν is the quantile of the particle location, then
the probability of the particle jump, ηn(ν), is such that ηn(ν) → η(ν) = (1 − ν)K as n → ∞. It
is also assumed in [6, 7] that the jump size distribution J(·) is exponential. The paper [6] fur-
ther assumes that the system’s initial state is such that the locations of the n particles are drawn
independently from a given distribution. We will comment on these additional assumptions in
detail later, in Section 3.3.

1.3. Prior results on the particle system and its mean-field model

The papers [6, 7] address two different issues related to the particle system and solutions of
(1.2):

• Limit transition from f n(x, t) to a mean-field model f(x, t), as n → ∞.
In [6] it is proved, under certain additional assumptions, that, as n → ∞, the random
process f n(x, t) indeed converges to a deterministic process f (x, t) satisfying (1.2).

• Convergence of a mean-field model f(x, t) to a traveling wave solution, as t → ∞. In [7]
the following is proved, under certain additional assumptions. If a traveling wave shape
φ, i.e. a solution to (1.3), exists, then it is unique (up to a shift) and, as t → ∞, a mean-
field model f (x, t) converges to the traveling wave solution, that is, f (· + vt, t) → φ(·).
The question of the existence of a traveling wave shape φ is left open in [7], except
for the case of an exponential distribution J(·) and η(ν) = (1 − ν)K , when (1.3) is easily
explicitly solvable.

A detailed discussion of the results of [6, 7] is given in Section 3.3, which also discusses
other related work.

1.4. Main results of this paper

We study the properties of mean-field models, specifically the existence and uniqueness
of, and convergence to, traveling wave shapes. The convergence to a traveling wave shape is
important, because if it holds, it means that the particles’ locations ‘remain close to each other’
(as they move right) regardless of the number of particles, in the sense that the distribution
of the particles’ locations stays close to a certain shape, which moves right at the constant
speed v.

Our main results are the following:

• We prove (in Theorem 3.1) the existence of a traveling wave shape φ, for general jump
size distribution J(·) and general (strictly decreasing continuous) η(·). Moreover, as a
distribution, φ has finite (�− 1)th moment,

∫
y |y|�−1dφ(y)<∞, for the �≥ 2 in (1.1).

• Under the additional condition that J(·) has positive density (bounded away from 0 on
compact sets), we show (in Theorem 3.2) the uniqueness (up to a shift) of the traveling
wave shape φ and convergence to it, f (· + vt, t) → φ(·), for any mean-field model.

• As the main tool for analysis, we introduce and study the properties of traveling wave
shapes within ‘finite frames’. The existence of a traveling wave shape is then proved by
letting the frame size go to infinity. These results may be of independent interest.
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We emphasize that the results of this paper concern properties of formally defined mean-
field models. The question of whether/when the convergence to a mean-field model holds is
a separate issue, partially addressed in [6], as pointed out above in Section 1.3; it will be
discussed in more detail in Section 3.3.1.

1.5. Overview of the technical approach and key challenges

Our approach to proving the existence of a traveling wave shape (Theorem 3.1) is as fol-
lows. A traveling wave shape φ can be characterized as a fixed point of an operator A, which
maps a probability distribution φ (describing a distribution of particle locations) into the sta-
tionary distribution Aφ of a single particle, evolving within the ‘environment’ given by φ.
(This is done in Section 4.) Specifically, the particle jumps right as described in our moti-
vating particle system, except its current location quantile is that within the distribution φ;
between jumps the particle moves left at the constant speed v. Since φ is a fixed point, it is
natural to try to obtain its existence using in some way the Brouwer fixed point theorem. In our
case this cannot be done directly, because the space of proper distributions on the real line in
non-compact.

To address this challenge, we introduce and study traveling wave shapes within ‘finite
frames’—they are fixed points of finite-frame versions of the operator A, and play a key role
in our analysis. (This is done in Section 5.) A finite-frame version A(w;B) of the operator A
maps a distribution γ , concentrated on the compact segment (finite frame) [−B, B], into the
stationary distribution A(w;B)γ of a single particle, which evolves within the environment given
by γ , and whose movement is restricted to [−B, B] as follows: the particle cannot ‘jump over
B′; between jumps it moves left at the constant speed w, but cannot move to the left of −B. We
show that operator A(w;B)γ is continuous in γ , as well as in the parameters B and w. Given the
compactness of a finite frame, the existence of fixed points of A(w;B)—finite-frame traveling
wave shapes—follows. We further show that a finite-frame traveling wave shape is unique and
depends continuously on the parameters B and w; showing the uniqueness (Lemma 5.3(i)) is
the most involved part here.

We then let B → ∞ along some sequence, and for each B we choose w = w(B) such that the
corresponding finite-frame traveling wave shape γB has its median exactly at 0. The rest of the
proof of the existence of a traveling wave shape (in Section 6.1) shows that the family of distri-
butions {γB} is tight, and any subsequential limit φ must be a traveling wave shape. Proving the
tightness is the key technical part of the paper. It involves, first, showing (Lemma 6.1) that, nec-
essarily, w → v as B → ∞; if not, the particle process would have inherent positive or negative
drift, and the proof obtains a contradiction with the fact that the median of γB stays at 0. Finally,
Lemma 6.2 shows the tightness of {γB} itself; if not, the proof considers the single-particle pro-
cess under a space as well as a space/time rescaling and shows that, for large B, these rescaled
processes would have a strictly negative steady-state drift of a quadratic Lyapunov function—a
contradiction. The use of a quadratic Lyapunov function here requires that the jump size dis-
tribution has finite second moment; this is where the finite-second-moment assumption is used
in the existence proof.

1.6. Outline of the rest of the paper

Section 2 gives some basic notation used throughout the paper. In Section 3 we formally
define mean-field models, state our main results, and discuss previous related work. The results
in Section 4 characterize a traveling wave shape as a fixed point of an operator A; here we also
obtain the finiteness of moments of Aφ. In Section 5 we introduce and study traveling wave
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shapes within finite frames. Section 6 contains the proofs of our main results, Theorems 3.1
and 3.2. The discussion in Section 7 includes a generalization of our main results; possible
relaxation of assumptions; and a conjecture about the limit of the stationary distributions of
the particle system, as the number of particles n → ∞.

2. Basic notation

The sets of real and non-negative real numbers are denoted by R and R+, respectively.
As a measurable space, R is endowed with the Borel σ -algebra B(R). Convergence to a set,
x → S ⊆R, means infy∈S |x − y| → 0. For x ∈R, 
x� is the largest integer not greater than x.
For a condition/event A, I{A} = 1 if A holds, and I{A} = 0 otherwise.

For functions h(x) of a real x, h(x+) and h(x−) are the right and left limits; (d/dx)h(x) =
h′(x) is the derivative; (d+/dx)h(x) and (d−/dx)h(x) are the right and left derivatives;

d+
�

dx
h(x) = lim inf

y↓x

h(y) − h(x)

y − x
,

d+
u

dx
h(x) = lim sup

y↓x

h(y) − h(x)

y − x

are the lower and upper right derivative numbers; ‖h‖ = supx |h(x)| is the sup-norm, and
u→ is

the corresponding uniform convergence; ‖h‖1 = ∫
x |h(x)|dx is the L1-norm, and

L1→ is the corre-

sponding convergence; h
u.o.c.→ g means convergence that is uniform on compact sets; we denote

by θc, c ∈R, the shift operator θch(x) = h(x − c); h(x) is called c-Lipschitz if it is Lipschitz
with constant c ≥ 0. The notation dxh(x, t) for a multivariate function means the differential in
the variable x.

We say that a function g(x) of a real x is RCLL if it is right-continuous with left limits. The

domain of g(x) will be clear from the context; usually, x ∈R. For RCLL functions,
J1→ denotes

Skorokhod (J1) convergence (cf. [5]).
For non-decreasing RCLL functions, h

w→ γ denotes weak convergence, namely, conver-
gence at every point of continuity of γ . The symbol

w→ is also used more generally, to denote
weak convergence of measures.

A non-decreasing RCLL function γ = (γ (x), x ∈R) is a probability distribution function
if limx↓−∞ γ (x) ≥ 0 and limx↑∞ γ (x) ≤ 1; a probability distribution function γ is proper if
limx↓−∞ γ (x) = 0 and limx↑∞ γ (x) = 1; thus, an improper γ may have atoms at −∞ and/or ∞.
We use the terms probability distribution function, distribution function, and distribution inter-
changeably. Unless explicitly stated otherwise, a distribution means a proper distribution. The
inverse (νth quantile) of a (proper or improper) distribution γ is γ−1(ν)

.= inf{y | γ (y) ≥ ν},
ν ∈ [0, 1]; γ−1(ν) = ∞ when the set under inf is empty. We use a usual stochastic order (domi-
nance) relation between probability distributions on R: g � γ if and only if g(x) ≥ γ (x), x ∈R;
we refer to this as γ dominating g. For a distribution γ and a function h, we write γ h

.=∫
R

h(y)dγ (y),∫ ∞

x−
h(y)dγ (y)

.=
∫

[x,∞]
h(y)dγ (y),

∫ ∞

x+
h(y)dγ (y)

.=
∫

(x,∞]
h(y)dγ (y).

When Gk,G are operators mapping a function of x ∈R into another function of x ∈
R, the convergence Gkh → Gh, or lim Gkh = Gh, always means uniform convergence
‖Gkh − Gh‖ → 0.
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Suppose we have a Markov process taking values in R, with Pt(x,H), t ≥ 0, x ∈R, H ∈
B(R), being its transition function. As an operator, Pt is given by Pth(x)

.= ∫
y Pt(x, dy)h(y);

I = P0 is the identity operator. The (infinitesimal) generator G of the process is

Gh
.= lim

t↓0
(1/t)[Pt − I]h.

A function h is within the domain of the generator G if Gh is well-defined.
We will also use the following non-standard notation throughout the paper. For a probability

distribution function γ , a strictly decreasing continuous function η(ν), 0 ≤ ν ≤ 1, and y ∈R, we
define

η̄(y, γ )
.=

{
η(γ (y)) when γ (·) is continuous at the point y,

(ν2 − ν1)−1
∫ ν2
ν1
η(ν)dν otherwise,

where ν2 = γ (y), ν1 = γ (y−).

Convergence in probability is denoted by
P−→, and ‘w.p.1’ means with probability 1.

3. Mean-field model of a large-scale system

3.1. Mean-field model definition

Let η(ν), 0 ≤ ν ≤ 1, be a continuous, strictly decreasing function, with η(0) = 1, η(1) = 0.
Let J(y), y ≥ 0, be the cumulative distribution function of a probability distribution, concen-
trated on R+ and satisfying (1.1) for some integer �≥ 2; let J̄(y) = 1 − J(y). We now introduce
the following definition.

Definition 3.1. A function f (x, t), x ∈R, t ∈R+,will be called a mean-field model if it satisfies
the following conditions:

(a) For any t, as a function of x, f (x, t) is a probability distribution function; that is f (·, t) is
non-decreasing and RCLL, with limx→−∞ f (x, t) = 0 and limx→∞ f (x, t) = 1.

(b) For any x, f (x, t) is non-increasing and c-Lipschitz in t, with constant c independent
of x.

(c) For any x, for any t where the partial derivative (∂/∂t)f (x, t) exists (which is almost all t
with respect to Lebesgue measure, by the Lipschitz property), the equation

∂

∂t
f (x, t) = −μ

∫ x

−∞
dyf (y, t)η̄(y, f (·, t))J̄(x − y), (3.1)

holds.

Equation (3.1) is a more general form of (1.2), allowing f (x, t) to be RCLL in x, rather than
continuous. If f (·, t) is continuous at y, then η̄(y, f (·, t)) = η( f (y, t)); if f (·, t) has a jump at y
then η̄(y, f (·, t)) is η(ν) averaged over ν ∈ [f (y−, t), f (y, t)].

Note that the following holds for any mean-field model f (x, t). Let

v
.=μm(1)

∫ 1

0
η(ν)dν.

Then for any τ ≤ t, ∫ ∞

−∞
[f (x, τ ) − f (x, t)]dx = v(t − τ ). (3.2)
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Indeed, if we denote by h(x, t) the right-hand side of (3.1), we obtain

‖h(·, t)‖1 =
∫ ∞

−∞
dx μ

∫ x

−∞
dyf (y, t)η̄(y, f (·, t))J̄(x − y)

=
∫ ∞

−∞
dx μ

∫ f (x,t)

0
dν η(ν)J̄(x − f −1(ν, t))

=μ

∫ 1

0
η(ν)dν

∫ ∞

f −1(ν,t)
dx J̄(x − f −1(ν, t))

=μ

∫ 1

0
η(ν)dν

∫ ∞

0
J̄(ξ )dξ =μm(1)

∫ 1

0
η(ν)dν = v,

where f −1(ν, t) is the inverse of f (y, t) with respect to y. For any x, since f (x, t) is Lipschitz—
and then absolutely continuous—in t, we have

f (x, τ ) − f (x, t) =
∫ t

τ

[−h(x, ξ )]dξ .

Then ∫ ∞

−∞
[f (x, τ ) − f (x, t)]dx =

∫ ∞

−∞

∫ t

τ

[−h(x, ξ )]dξdx

=
∫ t

τ

∫ ∞

−∞
[−h(x, ξ )]dxdξ =

∫ t

τ

‖h(·, ξ )‖1dξ = v(t − τ ).

The equality (‘conservation law’) (3.2) implies in particular that, if the mean of the distribution
f (·, τ ),

f̄ (τ )
.=

∫ ∞

−∞
xdx f (x, τ ),

is well-defined and finite (i.e.,
∫ ∞
−∞ |x|dx f (x, τ )<∞), then f̄ (t) is finite for all t ≥ τ , and

f̄ (t) − f̄ (τ ) = v(t − τ ).

In other words, if f̄ (τ ) is finite, then f̄ (t) is finite for all t ≥ τ , and it moves right at the constant
speed v.

Definition 3.2. Suppose a mean-field model f(x, t) which is a traveling wave exists; namely,
f (x, t) = φ(x − vt) for some probability distribution function φ(·). Such a function φ will be
called a traveling wave shape.

Note that by (3.2) the speed of a traveling wave can only be v. It is straightforward to see
that a function φ is a traveling wave shape if and only if it is a Lipschitz continuous distribution
function, satisfying (1.3) at any x where φ′(x) exists (which is almost any x). Furthermore, from
the form of (1.3) we see that, in fact, φ satisfies (1.3) for each x, and the derivative φ′(x) is
continuous.

Note that if φ(x) is a traveling wave shape, then so is φ(x − c) for any constant real shift c.
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3.2. Main results

The following is the main result of this paper. It proves the existence of a traveling wave
shape φ, under the general assumptions of our model. It also shows that φ has a finite (�− 1)th
moment.

Theorem 3.1. Assume (1.1). Then the following hold:

(i) There exists a traveling wave shape φ(·).
(ii) Any traveling wave shape φ(·) is such that, for the integer �≥ 2 in the condition (1.1),∫ ∞

0
|y|�−1dφ(y)<∞. (3.3)

We also obtain the following uniqueness and convergence result. It is proved by combining
Theorem 3.1 with the results of [7].

Theorem 3.2. Assume, in addition, that the jump size distribution is such that

J(·) has density J′(y)> 0, bounded away from 0 on compact subsets of R+. (3.4)

Then the following hold:

(i) The traveling wave shape φ(·) is unique, up to a shift φ(· − c).

(ii) If a mean-field model f(x, t) is such that the initial mean f̄ (0) is well-defined and finite,
then the convergence to the unique traveling wave shape φ takes place,

f (· + vt, t)
L1→ φ(·) and f (· + vt, t)

u→ φ(·), (3.5)

where φ is uniquely centered by the condition
∫

y ydφ(y) = f̄ (0).

Note that to have a ‘clean’ convergence to the traveling wave shape φ, as in (3.5), some
additional conditions on the distribution J(·) are required. For example, if f (·, 0) is concentrated
on a lattice {ck, k is integer}, and the distribution J(·) is arithmetic, concentrated on {ck, k =
1, 2, . . .}, then the convergence (3.5) is impossible, even though a traveling wave shape φ does
exist (by Theorem 3.1) and might be unique.

Most of the rest of the paper is devoted to the proof of Theorem 3.2. The proof constructs a
traveling wave shape φ as a limit of traveling wave shapes within finite frames. The finite-frame
traveling wave shapes and their analysis may be of independent interest.

Before proceeding with the proofs, we observe that, without loss of generality, we can
assume that

μ= 1, m(1) = 1. (3.6)

Indeed, any mean-field model can be reduced to the corresponding model satisfying (3.6), by
time and space rescaling. So, in all the proofs we do assume (3.6), in which case

v=
∫ 1

0
η(ξ )dξ,

(3.1) becomes
∂

∂t
f (x, t) = −

∫ x

−∞
dyf (y, t)η( f (y, t))J̄(x − y), (3.7)
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and (1.3) becomes

vφ′(x) =
∫ x

−∞
φ′(y)η(φ(y))J̄(x − y)dy. (3.8)

3.3. Previous work

3.3.1. Detailed discussion of [6]. As mentioned earlier, the paper [6] proves that, as n → ∞,
the random process f n(x, t) converges to a mean-field model f (x, t), under the additional
assumptions that we now discuss.

The first additional assumption is on the form of the jump probability functions ηn(·) in
the pre-limit particle system. The paper considers the specific particle system in which, when a
particle gets a jump urge, it actually jumps only if K other particles, K ≥ 1, chosen uniformly at
random, are ahead of it. In this case ηn(ν) → η(ν) = (1 − ν)K (see Section 1.2). The important
part of this assumption about ηn(ν) is that the decision as to whether or not the particle jumps
depends only on the locations of a set of other particles chosen uniformly at random, and the
cardinality of that random set is bounded above by some K. Consequently, the jump probability
assumption in [6] can be generalized, for example, as follows: a particle that gets an urge to
jump chooses K other particles uniformly at random, and its decision to jump or not depends
only on k/K, where k is the number of chosen particles that are behind this particle. Under
this more general assumption on ηn(ν), the results of [6] still apply, as long as ηn(·) uniformly
converges to some strictly decreasing continuous function η(·), with η(0) = 1 and η(1) = 0.
Now, suppose we a priori fix some arbitrary strictly decreasing continuous function η(ν), with
η(0) = 1 and η(1) = 0. Fix an integer K ≥ 1. Consider the following jump probability rule
(which uniquely determines the corresponding jump probability function η(K)

n (·)): a particle
which gets an urge to jump chooses K other particles uniformly at random and actually jumps
with (random) probability η(k/K), where k ≥ 0 is the (random) number of chosen particles that
happen to be behind our particle. It is easy to see that, as n → ∞,

η(K)
n (ν) → η(K)(ν)

.=
K∑

k=0

K!
k!(K − k)!ν

k(1 − ν)K−kη(k/K).

The results of [6] apply to such a system, with its mean-field limit f (x, t) having η(K)(·) in place
of η(·). Note that, if K is large (but fixed!), η(K)(·) can arbitrarily closely approximate η(·). To
summarize, the results of [6] do not apply to show the convergence to a mean-field model with
any a priori fixed jump probability function η(·). (Recall that in this paper we define a mean-
field model formally, for any such function η(ν).) However, there always exists a function
η(K)(·), arbitrarily close to η(·), such that the results of [6] apply to show the convergence to a
mean-field model with η(K)(·) in place of η(·).

The second additional assumption in [6] is that, for any n, the system’s initial state is such
that the locations of the n particles are drawn independently from a given absolutely continuous
distribution f (·, 0) with finite second moment.

Finally, [6] assumes that the jump size distribution J(·) is exponential. The results of [6]
easily generalize to an arbitrary absolutely continuous distribution J(·).

3.3.2. Detailed discussion of [7]. The paper [7] considers a formally defined mean-field model
(in the terminology of this paper), under the additional assumptions that J(·) is exponential,
J(y) = 1 − e−y, and η(ν) = (1 − ν)K .
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The main result of [7] is basically as follows. Consider two mean-field models, f1(x, t) and
f2(x, t), with well-defined, equal means, f̄1(t) = f̄2(t) = f̄1(0) + vt = f̄2(0) + vt. Then the deriva-
tive of the L1-distance is negative, (d/dt)‖f1(·, t) − f2(·, t)‖1 < 0, and is bounded away from
0 as long as ‖f1(·, t) − f2(·, t)‖1 is bounded away from 0. This, in turn, leads to the second
result: if a traveling wave shape φ exists, then it is unique (up to a shift) and the conver-
gence (3.5) to the traveling wave shape holds. These results, along with their proofs, extend
to the more general case of arbitrary continuous strictly decreasing η(ν) and distribution J(·)
satisfying (3.4).

As far as the existence of a traveling wave shape is concerned, in [7] it is demonstrated
only for the special case of exponential J(·) and η(ν) = (1 − ν)K , in which case (3.8) can be
explicitly solved as follows. The derivation is not given in [7], so, for completeness, we give it
here.

In the case J(y) = 1 − e−y, (3.8) becomes an ordinary differential equation. Indeed,
we have

vφ′(x) =
∫ x

−∞
φ′(y)η(φ(y))e−(x−y)dy,

vφ′(x)ex =
∫ x

−∞
φ′(y)η(φ(y))eydy,

v[φ′′(x) + φ′(x)] = φ′(x)η(φ(x)). (3.9)

Under the further assumption that η(ν) = (1 − ν)K , (3.9) is easy to solve explicitly. In this case
v = 1/(K + 1). Define α(x) = 1 − φ(x). Then

v
[−α′′(x) − α′(x)

] = −α′(x)η(1 − α(x)) = −α′(x)(α(x))K = −
[
(α(x))K+1

]′
K + 1

,

− α′′(x) − α′(x) = −[
(α(x))K+1]′,

− α′(x) − α(x) = −(α(x))K+1 + c1.

Recalling that 1 − α(x) is a probability distribution function, we see that c1 = 0 must
hold, so

−α′(x) − α(x) = −(α(x))K+1,

− (log α(x))′

1 − (α(x))K
= 1,

1

K

[
log

[
(α(x))−K − 1

]]′ = 1.

Solving for α(x), we finally obtain

φ(x) = 1 − [
1 + eK(x−c)]−1/K

, (3.10)

where the real number c is a (shift) parameter.

3.3.3. Other related work. Subsequently to [6, 7], there has been a line of work generally
focused on modeling mean-field interaction between elements (particles) of a large system;
cf. [1, 10–15]. The models and results in this line of work differ from those of this paper in
that they consider different particle jump rules and/or different asymptotic regimes. But the
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general common feature is that they study systems with mean-field (‘global’) interactions,
when each particle’s instantaneous behavior depends on the current distribution of the states
of all the particles, as opposed to ‘local’ interactions, when a particle’s instantaneous behavior
depends only on the current states of its ‘neighbors’. This naturally leads to the corresponding
mean-field models describing the behavior of large-scale systems.

In particular, the paper [1] considers a related particle system with the jump probability
depending not on a particle quantile within the empirical distribution f n(·, t), but rather on the
particle displacement with respect to the empirical distribution mean. For this system, under
some technical assumptions, the paper proves the convergence of f n(x, t) to the corresponding
mean-field model f (x, t) (which is different from ours). This parallels the main result of [6]
for our particle system. The paper also shows the existence of traveling wave shapes for that
mean-field model, but only for the special case when the jump size distribution is exponential.

Further references and discussion of related work can be found in e.g. [1, 14].

4. Characterization of a traveling wave shape

Consider the following operator A, mapping a proper probability distribution ψ(·) on R into
another distribution Aψ(·). Consider one particle, whose location X(t) evolves as follows. The
particle moves left at the constant speed v and sometimes jumps right, with i.i.d. jump sizes
given by the distribution J(·). The particle gets urges to jump as a Poisson process of rate 1,
and actually jumps with probability η̄(X(t), ψ), depending on the current particle location X(t)
and distribution the ψ . (Since the set of discontinuity points of ψ is at most countable, w.p.1
the process X(·) will never jump from points of discontinuity of ψ . So, equivalently, we can
say that the jump probability is η(ψ(X(t))).) The distribution Aψ is defined as the stationary
distribution of the process X(·). The following lemma shows that this stationary distribution
exists and is unique.

Lemma 4.1. Consider the single-particle movement process X(·) defined just above. This pro-
cess is positive recurrent, and therefore has unique stationary distribution. Moreover, in steady
state

E|X(t)|�−1 <∞, (4.1)

for the �≥ 2 from the condition (1.1).

Proof. The distribution ψ is proper. Then, when X(t)< 0 with large absolute value, the
process drift is positive, close to 1 − v; when X(t) is large positive, the process drift is negative,
close to −v. The formal proof of positive recurrence is a straightforward application of the fluid
limit technique [2, 3, 16, 17]. Indeed, it is easy to see that any compact subset of R is petite;
see the definition in e.g. [2, 3]. (For a compact set, consider an interval [−C,C] containing
it. Then the sampling distribution can be chosen as, for example, the uniform distribution in
[0, 3C/v]. Here we use the fact that in the interval [0, 3C/v], with probability 1 − e−3C/v ,
the particle does not have an urge to jump and will simply move left at the constant speed v,
covering the distance 3C and in particular the entire interval [−2C,−C].) Furthermore, if we
consider a sequence of processes X(r)(·) with |X(r)(0)| = r and r → ∞, and with X(r)(0)/r →
x(0) ∈ {−1, 1}, then in our case it is easy to see that

X(r)(rt)/r
u.o.c.−→ x(t) w.p.1, (4.2)

where x(·) is the deterministic Lipschitz function such that x′(t) = 1 − v > 0 when x(t)< 0,
x′(t) = −v < 0 when x(t)> 0, and therefore x(t) stays at 0 after it ‘hits’ 0. This implies positive
recurrence.
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Moreover, since the jump size distribution has finite �th moment, �≥ 2, using the results
of [4], we obtain (4.1). Since, formally, our model is not within the framework of [4], we
provide some details here. In our model the process X(·), with values in R, corresponds to
the queue length process Q(·) in [4], with values of Q(t) being finite-dimensional vectors with
non-negative integer components. In our case the process state norm is |X(t)|. The property
(4.2), in particular, implies the existence of T > 0 such that

1

r
|X(r)(rT)| P−→ 0. (4.3)

For our model, the analogue of Proposition 5.1 in [4] has the following form. There exists
T > 0 such that

lim
r→∞

1

r�
E|X(r)(rT)|� = 0, (4.4)

where X(r)(·) is a sequence of processes defined above in this proof. Given that we have (4.3),
to prove (4.4) it suffices to show that the family of random variables

1

r�
|X(r)(rT)|�

is uniformly integrable. Denote by Ui, i = 1, 2, . . . , the sequence of i.i.d. random variables,
where Ui is equal in distribution to a jump size; we have EU�

i <∞ by (1.1). Then the value of
|X(r)(rT)| is stochastically dominated by

r + vrT +
�(rT)∑
i=1

Ui,

where �(t) is Poisson process with constant rate 1. We see that, to show the uniform
integrability of |X(r)(rT)|�/r�, it suffices to show that the family

Z(t) =
[∑�(t)

s=1 Ui
]�

t�

is uniformly integrable for any positive increasing sequence t ↑ ∞; this is true because Z(t) ≥ 0

and, as t → ∞, we have both Z(t)
P−→ [EU1]� and EZ(t) → [EU1]�. This proves (4.4). Since

we have (4.4), which is the analogue of Proposition 5.1 in [4], the rest of the proof of Theorem
5.5 (and then Theorem 4.1(i)) in [4] applies as is. This, for our model, proves (4.1). �

From now on in the paper, when we consider a distribution φ and the corresponding distri-
bution Aφ, we will denote by X(·) the corresponding single-particle movement process which
defines Aφ.

Lemma 4.2. Consider any distribution φ and the corresponding process X(·) defining Aφ.
Then the distribution Aφ is 1/v-Lipschitz.

Proof. Recall that γ = Aφ is nothing else but the stationary distribution of the single-
particle movement process X(·) corresponding to φ. Consider the stationary regime of this
process. Consider any x and any �> 0. For any fixed initial position X(0) of the particle and
any t> 0, the expected total time in [0, t] that the particle spends in the interval (x, x +�] is
bounded above by

(t + 1)�/v,
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where (t + 1) is the expected number of time intervals between jumps the particle will have in
[0, t], and �/v is the maximum time the particle can possibly spend in (x, x +�] during each
of those time intervals. Therefore, considering the stationary regime of the process,

γ (x +�) − γ (x) ≤ [t + 1]�/v

t
.

This is true for any t> 0, which implies γ (x +�) − γ (x) ≤�/v, i.e. the 1/v-Lipschitz
continuity of γ (·). �
Lemma 4.3. A probability distribution function φ(·) is a traveling wave shape if φ = Aφ.

It can be shown that the converse is also true, and therefore a probability distribution func-
tion φ(·) is a traveling wave shape if and only if φ = Aφ. We do not need the ‘only if’ part for
the proof of our main results.

Proof of Lemma 4.3. Suppose φ = Aφ. Then, by Lemma 4.2, φ is Lipschitz. Consider any
point x where the proper derivative φ′(x) exists. We need to show that (3.8) holds. Consider
the single-particle movement process X(·) defining Aφ. In the stationary regime, the average
rate at which the particle crosses the point x from right to left (‘leaves’ (x,∞), to be precise)
is vφ′(x); indeed, it is easy to see that the expected number of such crossings in the interval
[t, t +�t] is equal, up to addition of o(�t) terms, to the probability that at time t the particle
is in (x, x + w�t] and it does not jump in [t, t +�t]—the latter probability itself is equal to
γ̂ ′(x)w�t + o(�t). The average rate, in the stationary regime, at which the particle crosses
from left to right (‘enters’ (x,∞), to be precise) is the right-hand side of (3.8); indeed, such
crossings may occur only when the particle jumps, and the right-hand side of (3.8) is the steady-
state probability that an urge to jump results in a jump over the point x. These right-to-left and
left-to-right crossing rates must be equal, thus proving (3.8). �

5. Traveling wave shapes within a finite frame

Let parameters w ∈ (0,∞) and BL, BR ∈ (0,∞) be fixed. We will now define the operator
A(w;BL,BR) for a ‘finite-frame’ system; this operator is an analogue of the operator A for the
original system. Fixed points of the operator A(w;BL,BR) will in turn define traveling wave shapes
within a finite frame.

5.1. Definition and properties of the operator A(w;BL,BR)

Consider a probability distribution function γ = γ (·) on R, which is actually concentrated
on the interval (‘finite frame’) [−BL, BR]; that is, γ (−BL−) = 0, γ (BR) = 1. Consider a single
particle, whose location X(t) evolves within the interval [−BL, BR] as follows. The particle
continuously moves left and sometimes makes jumps right. Between jumps, the particle moves
left at the constant speed w, unless/until it reaches the left boundary −BL, in which case the
particle stops at −BL and stays there until the next jump—this is the ‘regulation’ at the left
boundary. The particle gets urges to jump as a Poisson process of rate 1, and actually jumps
with probability η̄(X(t), γ ), depending on the current particle location X(t) and distribution γ .
(Here we cannot replace η̄(X(t), γ ) with η(γ (X(t))), because the process X(·) may spend non-
zero time at the left boundary −BL, where γ (·) may have a discontinuity.) The jump sizes are
i.i.d., given by the distribution J(·); however, if a jump were to take the particle to the right of
BR, the particle lands at BR instead—this is the ‘regulation’ at the right boundary. Then, the
distribution A(w;BL,BR)γ is defined as the stationary distribution of the process X(·). It is easy to
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see that the process X(·) is positive Harris recurrent: the times when the particle hits −BL are
renewal points and the mean inter-renewal times are clearly finite. Therefore, X(·) indeed has
unique stationary distribution. Clearly, A(w;BL,BR)γ is also concentrated on [−BL, BR].

Lemma 5.1. If γ̂ = A(w;BL,BR)γ , then γ̂ satisfies the following conditions:

γ̂ (·) is 1/w − Lipschitz in [−BL, BR]; (5.1)

γ̂ (−BL−) = 0< γ̂ (−BL), γ̂ (BR) = 1; (5.2)

almost all points −BL < x< BR (with respect to Lebesgue measure) are regular, in that a
proper derivative γ̂ ′(x) exists, and at each regular point

wγ̂ ′(x) = ζ̂ (x)
.=

∫ x

−BL−
dγ̂ (y)η̄(y; γ )J̄(x − y); (5.3)

the function ζ̂ (x) is RCLL in [−BL, BR], and ζ̂ (x−) ≥ ζ̂ (x), (5.4)

and

w
d+

dx
γ̂ (x) = ζ̂ (x), ∀x ∈ [−BL, BR), w

d−

dx
γ̂ (x) = ζ̂ (x−), ∀x ∈ (−BL, BR]. (5.5)

Proof. Recall that γ̂ is nothing else but the stationary distribution of the location process
X(·) of a single particle, corresponding to γ . Consider the stationary regime of this process.
Then the 1/w-Lipschitz property of γ̂ in (−BL, BR] is proved in exactly same way as in the
proof of Lemma 4.2, with w replacing v. Given that γ̂ is right-continuous, it is 1/w-Lipschitz in
[−BL, BR] as well. The properties (5.2) are obvious from the structure of the particle movement
process X(·): clearly, in steady state the process spends zero time exactly at the right boundary
point BR and a non-zero fraction of time at the left boundary point −BL.

Since γ̂ (·) is Lipschitz in (−BL, BR], it is absolutely continuous, and then almost all points
−BL < x< BR are regular (that is, the proper derivative γ̂ ′(x) exists). Consider any regular
point −BL < x< BR. To prove (5.3), essentially the same argument as in the proof of Lemma 4
applies. Indeed, in the stationary regime, the average rate at which the particle crosses the point
x from right to left (‘leaves’ (x, BR], to be precise) is wγ̂ ′(x) (by the same argument as in the
proof of Lemma 4.3). The average rate, in the stationary regime, at which the particle crosses
from left to right (‘enters’ (x, BR], to be precise) is ζ̂ (x); indeed, such crossings may occur only
when the particle jumps, and ζ̂ (x) is the steady-state probability that an urge to jump results
in a jump over the point x. These right-to-left and left-to-right crossing rates must be equal,
which gives (5.3).

The property (5.4) easily follows from a direct analysis of the expression for ζ̂ (x), using the
facts that J̄(·) is non-increasing and RCLL, and that the measure given by γ̂ has exactly one
atom at −BL and is absolutely continuous in (−BL, BR]. We omit details. Finally, (5.5) follows
from (5.4) and (5.3). �

Let �(w; BL, BR) denote the set of distribution functions γ concentrated on the inter-
val [−BL, BR], BL, BR > 0, which are 1/w-Lipschitz on [−BL, BR]; here w> 0, BL > 0, and
BR > 0 are parameters ‘attached to’ γ . We define � = ∪w,BL,BR>0�(w; BL, BR). In particular,
γ ∈ � implies that γ (BR−) = γ (BR) = 1 and γ (BL−) = 0 ≤ γ (BL). So, γ may have a single

atom, at −BL. We endow � with the following natural topology: the convergence γ (k) �→ γ is
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defined as w(k) → w, B(k)
L → BL, B(k)

R → BR, and γ (k)(y) → γ (y) for all y ∈ (−BL, BR). In par-

ticular, γ (k) �→ γ implies γ (k) J1→ γ . In the special case when w(k) ≡ w, B(k)
L ≡ BL, B(k)

R ≡ BR,

convergence γ (k) �→ γ is equivalent to γ (k) u→ γ .

Lemma 5.2. The map A(w;BL,BR)γ , with (w; BL, BR) being the parameters of γ , is continuous
in γ ∈ � (in the �-topology).

Proof. As γ (k) �→ γ , denote the corresponding single-particle processes by Xk(·) and X(·).
Clearly, the sequence A(w(k);B(k)

L ,B(k)
R )γ (k) is tight. Consider any subsequential limit of it, γ̂ , along

a subsequence of k. Consider each of the processes Xk(·) and X(·) on a finite time interval
[0, T]. These processes can be naturally coupled so that the following property holds w.p.1
along the chosen subsequence: if either (a) X(0) = −BL and Xk(0) = −B(k)

L for all k, or (b)
Xk(0) → X(0)>−BL, then

(Xk(t), 0 ≤ t ≤ T)
J1→ (X(t), 0 ≤ t ≤ T).

Given this kind of continuity, it is straightforward to see that the limit γ̂ (·) of the stationary
distributions of Xk(·) must be the stationary distribution A(w;BL,BR)γ of X(·). �

5.2. Definition and properties of finite-frame traveling wave shapes

Denote by T (w; BL, BR) the set of those distributions γ which are fixed points of A(w;BL,BR),
i.e. which satisfy γ = A(w;BL,BR)γ . Any γ ∈ T (w; BL, BR) we will call a traveling wave shape
for the finite frame [−BL, BR] and speed w. If such a traveling wave shape γ exists and is
unique, i.e. the cardinality of T (w; BL, BR) is 1, we will slightly abuse notation by writing
γ = T (w; BL, BR).

Lemma 5.3. Let w, BL, BR > 0 be fixed. Then the following hold:

(i) γ = T (w; BL, BR) exists and is unique.

(ii) γ = T (w; BL, BR) if and only if it satisfies the following conditions:

γ (·) is 1/w − Lipschitz in [−BL, BR]; (5.6)

γ (−BL−) = 0< γ (−BL), γ (BR) = 1; (5.7)

almost all points −BL < x< BR (with respect to Lebesgue measure) are regular, in that
a proper derivative γ ′(x) exists, and at each regular point

wγ ′(x) = ζ (x)
.=

∫ x

−BL−
dγ (y)η̄(y; γ )J̄(x − y); (5.8)

the function ζ (x) is RCLL in [−BL, BR], and ζ (x−) ≥ ζ (x), (5.9)

and

w
d+

dx
γ (x) = ζ (x), ∀x ∈ [−BL, BR), w

d−

dx
γ (x) = ζ (x−), ∀x ∈ (−BL, BR]; (5.10)

inf
[−BL,BR]

ζ (x)> 0. (5.11)
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Proof of Lemma 5.3. The proof consists of the following three claims. �
Claim 1. γ ∈ T (w; BL, BR) exists.

Claim 2. If γ ∈ T (w; BL, BR), then it satisfies the conditions (5.6)–(5.11).

Claim 3. A distribution γ concentrated on [−BL, BR] and satisfying (5.6)–(5.11) is unique.

Proof of Claim 1. The existence follows from the Brouwer fixed point theorem.
(Cf. [8, Theorem XVI.5.1] for its more general form—Kakutani’s theorem.) Indeed, by
Lemma 5.2, for a fixed set of positive parameters w, BL, BR, A(w;BL,BR)γ continuously (in the
uniform convergence topology) maps �(w; BL, BR) into itself. The set �(w; BL, BR) is convex
and compact. Therefore, a fixed point γ = A(w;BL,BR)γ exists. �

Proof of Claim 2. The properties (5.6)–(5.10) follow from Lemma 5.1 and the properties
(5.1)–(5.5).

Next, observe that γ (x) must be strictly increasing in [−BL, BR]. If not, we could find an
interval [y1, y2] ⊂ [−BL, BR) such that y1 < y2, γ (y2) = γ (y1) (and then (d+/dx)γ (y1) = 0),
and γ (x)< γ (y1) for x< y1; but, by (5.10) and (5.8), (d+/dx)γ (y1) = ζ (y1)/w> 0, a contra-
diction.

Let us now prove (5.11). First, from (5.8) and the fact that γ (x) is strictly increasing in
[−BL, BR], observe that lim infx↑BR ζ (x)> 0. Therefore, if inf[−BL,BR] ζ (x) = 0 were to hold,
we would have a point y ∈ [−BL, BR) such that ζ (y) = 0. (Here we use (5.9).) But γ (x)
is strictly increasing in a neighborhood of y, which, again by (5.8), implies ζ (y)> 0. This
completes the proof of (5.11) and of Claim 2. �

Proof of Claim 3. First, note that any γ satisfying (5.6)–(5.11) is such that the following
holds: the inverse γ−1(ν) for ν ∈ (0, 1] is continuous and Lipschitz, and is strictly increasing in
[γ (−BL), 1]. Moreover, the mapping ν = γ (x) gives a one-to-one correspondence between reg-
ular points of γ in [−BL, BR] and regular points of γ−1 in [γ (−BR), 1], with the derivatives at
corresponding regular points satisfying (d/dν)γ−1(ν) = 1/γ ′(x). Furthermore, the latter rela-
tion holds for the right derivative for any x ∈ [−BL, BR) and corresponding ν = γ (x), and for
the left derivative for any x ∈ (−BL, BR].

The proof of uniqueness is by contradiction. Suppose γ1 and γ2 are two different distribu-
tions satisfying the conditions (5.6)–(5.11). Let us define αi(x)

.= w(d+/dx)γi(x), i = 1, 2; then,
by the first equation in (5.10), αi(x) = ζi(x).

Suppose, for example, that γ1(y)> γ2(y) for at least one y ≥ 0. Then let us call

h = max
ν

[
γ−1

2 (ν) − γ−1
1 (ν)

]
> 0

the ‘horizontal distance’ between γ1 and γ2. It is well-defined, by the properties of γ1
and γ2. Let ν∗ be the minimum ν at which the horizontal distance is attained. Clearly,
0< ν∗ < 1. Let y1 = γ−1

1 (ν∗)< y2 = γ−1
2 (ν∗). Then we must have (d+/dx)γ1(y1) ≤

(d+/dx)γ2(y2) or, equivalently, α1(y1) ≤ α2(y2). Given the choice of ν∗, y1 − γ−1
1 (ν) ≤ y2 −

γ−1
2 (ν) for all ν ∈ [0, 1], and then ζ1(y1) ≥ ζ2(y2). Since αi(yi) = ζi(yi), we must have

α1(y1) = α2(y2) = ζ1(y1) = ζ2(y2).

Note that if, for example, J̄(y)< 1 for all y> 0, then we immediately obtain a contradiction,
because in this case ζ1(y1)> ζ2(y2). The case of general jump size distribution J requires some
more details, which are as follows.
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We must have that J̄(y2−) = 1, i.e. the jump size is at least y2. Indeed, by the choice
of ν∗, y1 − γ−1

1 (ν)< y2 − γ−1
2 (ν) for all ν < ν∗. Also, recall that both inverse functions

γ−1
i (ν) are continuous. This means that as we increase ν in the interval [0, ν∗), the interval[
y1 − γ−1

1 (ν), y2 − γ−1
2 (ν)

]
continuously changes (‘moves left’) from [y1 + BL, y2 + BL] to

(in the limit!) [0, 0], while remaining of non-zero length. If at least one of points y ∈ [0, y2)
were a point of decrease of J̄, we would have J̄

(
y1 − γ−1

1 (ν)
)
> J̄

(
y2 − γ−1

2 (ν)
)

on a subset of
[0, ν∗) having non-zero Lebesgue measure, which would imply ζ1(y1)> ζ2(y2), contradicting
the definition of ν∗.

Consider now

ν∗ = max
{
ν̄ ≥ ν∗|γ−1

2 (ν) − γ−1
1 (ν) = h, ∀ν ∈ [ν∗, ν̄]

}
.

We must have ν∗ < 1. Let y∗
i = γ−1

i (ν∗). It is easy to see that y∗
2 = max

{
y ≥ y2|J̄(y−) = 1

}
,

i.e. y∗
2 must be exactly the smallest point of decrease of J̄. Indeed, J̄ cannot have a point of

decrease ν̂ ∈ [ν∗, ν∗). If such a point ν̂ existed, then using an argument analogous to that we
used just above to show that J̄(y2−) = 1, we would obtain that γ−1

1 (ν) − γ−1
2 (ν) would be

strictly increasing in a small interval immediately to the right of the point ν̂, which would
contradict the definition of the horizontal distance h. On the other hand, if y∗

2 were not a point
of decrease of J̄, i.e. J̄(ν̂) = 1 for some ŷ> y∗

2, then, again using essentially the same argu-
ment, we would obtain that γ−1

1 (ν) − γ−1
2 (ν) would have to remain constant in a small interval

immediately to the right of the point ν∗, which would contradict the definition of ν∗.
Finally, if y∗

2 is a point of decrease of J̄, then, using essentially the same argument

once again, we obtain that γ−1
1 (ν) − γ−1

2 (ν) must be strictly increasing in a small interval
immediately to the right of the point ν∗, which contradicts the definition of the horizontal
distance h. �

The proof of Lemma 5.3 is complete.

Lemma 5.4. (Continuity, monotonicity, and shift properties.)

(i) γ = T (w; BL, BR), as an element of �, is continuous in (w; BL, BR).

(ii) γ = T (w; BL, BR), as a probability distribution, is monotone (in the sense of �) in
each of the parameters w, BL, and BR, given that the other two parameters are fixed.
Specifically, γ is monotone non-increasing in w and BL, and monotone non-decreasing
in BR.

(iii) Suppose BL and BR are fixed. If w ↑ ∞ [resp., w ↓ 0], then γ = T (w; BL, BR), as a prob-
ability distribution, weakly converges to the Dirac distribution concentrated at −BL

[resp., at BR]. Consequently, for any fixed BL, BR, any fixed y ∈ (−BL, BR), and any
fixed ν ∈ (0, 1), there exists w> 0 such that γ−1(ν) = y. In other words, by changing w
we can always move a given quantile of γ to any point within (−BL, BR).

(iv) For any fixed parameters w, BL, and BR, and any c ∈R, γ = T (w; BL, BR) implies θcγ =
T (w; BL − c, BR + c). In other words, a shift of the finite frame by c results in the same
shift of the corresponding traveling wave shape.

Proof. (i) The continuity follows immediately from the continuity of the operator A(w;BL,BR)

on � (Lemma 5.2) and the uniqueness of γ = T (w; BL, BR) (Lemma 5.3(i)).
(ii) The monotonicity is proved by contradiction, using the horizontal distance, in almost

exactly the same way as in the proof of uniqueness (Claim 3) in Lemma 5.3.
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(iii) The case w ↑ ∞ is obvious, because γ is 1/w-Lipschitz in [BL, BR] and
γ (BR) = 1. Suppose w ↓ 0. Then γ = T (w; BL, BR) is monotone non-increasing in w. It suffices
to show that, for each y< BR, lim γ (y) = 0. Indeed, fix y< BR and any y1 ∈ (y, BR). Clearly,
lim γ (y1)< ν1 < 1. Fix small ε > 0, so that y< y1 − ε < y1. Then, uniformly in all sufficiently
small w> 0, the corresponding particle process X(·) is such that when it is to the left of the
point y1, it will jump with rate at least η(ν1), while it moves left at the small speed w; this in
turn easily implies that the steady-state probability of the particle being to the left of y1 − ε

vanishes.
(iv) This is obvious from the definition of a finite-frame traveling wave shape. �

6. Proofs of the main results, Theorems 3.1 and 3.2

6.1. Proof of Theorem 3.1(i): existence

The high-level outline of the proof is as follows. We obtain a traveling wave shape φ as a
limit of finite-frame traveling wave shapes γB, as B → ∞, for the finite frame [−B, B] and with
the speed wB chosen so that the median of γB is at 0. The first step, Lemma 6.1, shows that, nec-
essarily, wB → v. The next step is to show, in Lemma 6.2, that the family of distributions {γB}
is tight. The proof of Lemma 6.2 involves considering the single-particle movement processes
XB(·) corresponding to γB, and their space-/time-rescaled versions X(C)(·) = XB(C·)/C, with
C = C(B) → ∞ as B → ∞. (The supplementary Lemma 6.4, used in the proof of Lemma 6.2,
is given in Section 6.3.) After the tightness of {γB} is established, Lemma 6.3 completes the
proof of Theorem 3.1(i) by demonstrating that any subsequential limit φ of γB must be a trav-
eling wave shape. At the beginning of the proofs of Lemmas 6.1, 6.2, and 6.4 we give intuition
and outlines specifically for those proofs.

We now proceed with the formal proof. Let us consider the finite-frame system with BL =
BR = B, i.e. within the frame [−B, B]. Let B ↑ ∞ along some fixed sequence. For each B,
we will choose the speed wB such that the corresponding γ , which we denote by γB, has its
median exactly at 0, i.e. γB(0) = 1/2 or, equivalently, γ−1

B (1/2) = 0. (It does not have to be the
median; we could fix any ν0 ∈ (0, 1) and choose the speed wB such that γ−1

B (ν0) = 0.) Such wB

and γB exist by Lemma 5.4(iii), and 0<wB <∞. The corresponding single-particle movement
process X(·) we will denote by XB(·).
Lemma 6.1. Necessarily, limB→∞ wB = v.

Proof. The proof is by contradiction. The basic intuition is as follows. Suppose, for exam-
ple, that lim supB→∞ wB > v. Then there exists a constant w∞ > v such that wB >w∞ > v

along some subsequence of B. Then we show that the distributions γB would have to stay tight
around the left end −B of the frame. This is, informally speaking, due to the fact that, if in
steady state XB(·) were to stay away from −B most of the time, then its average drift would
be bounded above by v− w∞ < 0, while it must be 0 for any B. But if γB stays tight around
−B, then as B → ∞, the median of γB cannot stay at 0, which contradicts the γB definition.
The contradiction in the case lim infB→∞ wB < v is obtained similarly—we would have the
distributions γB staying tight around the right end B of the frame.

We proceed with the formal proof. Suppose wB does not converge to v. Consider, first,
the case lim supB→∞ wB > v. Then we can choose a constant w∞ > v and a subsequence of
B along which wB >w∞ > v. For all large B, consider γ up

B = T (w∞; B, B) corresponding to
the speed w∞; also consider the corresponding single-particle process Xup

B (·). By monotonic-
ity in w (Lemma 5.4(ii)), γB � γ up

B for all large B. By monotonicity in the right end of the
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frame (Lemma 5.4(ii)) and the shift property (Lemma 5.4(iv)), we observe that the distribu-
tion θBγ

up
B (i.e., the distribution γ up

B shifted right by B, and therefore concentrated on [0, 2B])
will be monotone non-decreasing (in the sense of �) in B. Then θBγ

up
B must uniformly con-

verge, θBγ
up
B

u→ γ∞, to some distribution γ∞ concentrated on [0,∞), and the function γ∞ is
1/w∞-Lipschitz on [0,∞). (This follows from the fact that all functions θBγ

up
B are uniformly

1/w∞-Lipschitz in [0,∞).) Moreover,

γ∞(0)> 0. (6.1)

Indeed the particle process Xup
B (·) is such that the steady-state average drift of the particle is

bounded above by −(
1 − γ

up
B (−B)

)
w∞ + v; if (6.1) did not hold, then, as B → ∞, this upper

bound would converge to −(
1 − γ∞(0)

)
w∞ + v= −w∞ + v < 0, which is impossible.

To obtain a contradiction, it remains to show that the distribution γ∞ is proper, i.e.
limy→∞ γ∞(y) = 1. Indeed, this will imply that the median of γ up

B , and then of γB as well,
will eventually become less than 0, which contradicts the definition of γB.

Let us show that the distribution γ∞ is proper. Suppose not; that is, limy→∞ γ∞(y) =
ν∗∞ < 1. Let ν∗ = η−1(w∞).

The case ν∗∞ > ν∗ is impossible. Indeed, in this case, pick a small ε > 0 and any fixed
H > 0 such that γ∞(H)> ν∗ + ε. Then, uniformly in all large B, when the particle process
Xup

B (·) + B (‘living’ in [0, 2B]) is to the right of H, the particle jumps right at most at the
rate η(ν∗ + ε)<w∞. We also have the following: when the process Xup

B (·) + B ‘jumps over
the point H′, we have that uniformly in all B and on the jump starting point in [0, H], the
distribution of the ‘overshoot-over-H′ distance V is uniformly stochastically bounded above
by some proper distribution with finite mean. (This is obvious if the jump size distribution J(·)
has finite support. Otherwise, P{V > y} ≤ J̄(y)/J̄(H).) Using these properties, we can construct
a proper stochastic upper bound, uniform in B, on the stationary distribution of Xup

B (·) + B,
which is θBγ

up
B . This contradicts the fact that the distribution γ∞ is not proper.

Consider the case ν∗∞ ≤ ν∗. Consider the particle process X∞(·), taking values in R+ =
[0,∞), that is defined in exactly the same way as the process defining the (finite-frame) oper-
ator value A(w;BL,BR)γ , except that X∞(·) corresponds to the speed w∞ and distribution γ∞ on
R+ = [0,∞) (which is not necessarily proper); the lower boundary is 0 (at which regulation
does occur); and there is no upper boundary (and no regulation from above—no forward jump
is ever ‘truncated’). The process X∞(·) is regenerative, with regenerations occurring when the
particle hits 0. Given that for any finite y ≥ 0, η(γ∞(y))>w∞, the process cannot possibly be
positive recurrent. (Indeed, even if the rate of jumps is constant at w∞, i.e. lower than it actu-
ally is, the process X∞(·) models the workload of a queue where the workload is depleted at
the constant rate w∞ and new workload arrives as a random process with average rate exactly
w∞. Therefore, X∞(·) is stochastically bounded below by a non-positive recurrent process.)
Consider two sub-cases: (a) X∞(·) is transient (which is certainly the case if ν∗∞ < ν∗, but log-
ically also possible if ν∗∞ = ν∗), and (b) X∞(·) is null-recurrent (which is possible only when
ν∗∞ = ν∗).

Observe that the processes Xup
B (·) + B for all B and the process X∞(·), all starting at 0, can be

naturally coupled so that, as B → ∞, the trajectory of Xup
B (·) + B converges (in the Skorokhod

topology) to that of X∞(·) w.p.1.
Sub-case (a): If X∞(·) is transient, then for some fixed δ > 0 and any H > 0, for all suffi-

ciently large B, the probability that Xup
B (·) + B will up-cross level H in a regeneration cycle is

at least δ. This implies that the mean duration of the regeneration cycle of Xup
B (·) + B has to go

to ∞ as B → ∞ (because the time to return to 0 from a point y ≥ H is at least H/(w∞/2)). This
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implies that the steady-state probability θBγ
up
B (0) of Xup

B (·) + B being at 0 will vanish. Indeed,
the mean time the process spends at 0 within one regeneration cycle is uniformly bounded
above by an exponential random variable with mean 1/v (because the rate at which the particle
jumps forward when it sits at the left boundary point is at least

∫ 1
0 η(ν)dν = v). But vanishing

θBγ
up
B (0) would mean γ∞(0) = 0, which contradicts (6.1).

Sub-case (b): If X∞(·) is null-recurrent, then the regeneration cycle of X∞(·) is finite w.p.1,
and has infinite mean. Recall the natural coupling of Xup

B (·) + B and X∞(·). Given this coupling,
for any fixed H > 0, on the event that X∞(·) does not up-cross H in a regeneration cycle,
the regeneration cycle length of Xup

B (·) + B converges to that of X∞(·) almost surely. Using
Fatou’s lemma, we see that, as B → ∞, lim inf of the mean regeneration cycle duration of
Xup

B (·) + B is at least that of X∞(·), which is infinity. This, again, leads to vanishing θBγ
up
B (0)

and a contradiction with (6.1).
This completes the proof that lim supB→∞ wB > v is impossible.
The contradiction to lim infB→∞ wB < v is obtained similarly. In this case, we can construct

lower bounds on γB. The condition (6.1) is replaced by the condition that the steady-state rate
of the particle hitting the right boundary B converges down to a positive number. Regeneration
time points are when the particle hits the right boundary B. We omit details. �
Lemma 6.2. The family of distributions {γB} is tight.

Proof. The proof is by contradiction. Its basic outline is as follows. If {γB} is not tight,
we can find a subsequence of B, and a corresponding sequence of scaling factors C = C(B) ↑
∞, such that the rescaled distributions ψ(C)(y) = γB(Cy) are such that, say, some ν-quantile
(ν > 1/2) of ψ(C) remains at the point 1. Each ψ(C) is a finite-frame traveling wave shape;
its frame is [−B/C, B/C], the corresponding single-particle process is X(C)(t) = XB(Ct)/C,
and the speed is still wB. We show that the family of distributions {ψ(C)} is tight. This is
done by considering a quadratic Lyapunov function for X(C)(t) and its steady-state drift, and
showing that E|X(C)(∞)| remains uniformly bounded. Given the tightness of the sequence
{ψ(C)}, we consider a subsequence of it that converges to some proper distribution ψ(∞). Using
Lemma 6.4 we show that ψ(∞) must be concentrated on at most two atoms, z1 ≤ 0 and z2 ≥ 0.
The case of one atom, z1 = z2, is impossible because it leads to a contradiction with the ν-
quantile (ν > 1/2) of ψ(C) remaining at the point 1. Then we must have either z1 < 0 or z2 > 0.
In this case we again use a quadratic Lyapunov function for X(C)(t) to show that, for large C, its
steady-state drift would be negative; roughly, this is because the probability of X(C)(∞) ≥ z2
is about 1 − ν and the probability of X(C)(∞) ≤ z1, and the drift of the quadratic Lyapunov
function is strictly negative when X(C)(∞) ≥ z2 > 0 and non-positive when X(C)(∞) ≤ z1 ≤ 0.

We proceed with the formal proof by contradiction. Suppose {γB} is not tight.
Then there exists fixed ν > 1/2 and a subsequence B ↑ ∞ along which C = C(B) =
max

{
γ−1

B (ν),−γ−1
B (1 − ν)

} ↑ ∞. Without loss of generality, we can choose ν sufficiently
close to 1 so that

η(1 − ν)> v > η(ν). (6.2)

Note that, for each B, either γ−1
B (ν) = C or γ−1

B (1 − ν) = −C; also, γB(C) − γB(−C) ≥
ν − (1 − ν) = 2ν − 1.

For each B (with the corresponding C), consider the particle process with space compressed
by C and time sped up by C, i.e. the process X(C)(t) = XB(Ct)/C. For each B, the process lives
within the frame [−C0,C0], where C0 = B/C. It is possible that C0 → ∞ as B → ∞. Denote
byψ(C)(y) = γB(Cy) the corresponding scaled distribution. From now on in this proof, when we
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say ‘for a given B′ or ‘for a given C′ we mean ‘for a given pair (B, C) of B and C, corresponding
to each other’.

Note that, for each C, either ψ−1
(C)(ν) = 1 or ψ−1

(C)(1 − ν) = −1; also, ψ(C)(1) −ψ(C)(−1) ≥
2ν − 1.

Let us prove that
the family of distributions {γC} is tight. (6.3)

This is trivially true if C0 remains bounded as B → ∞. Therefore, it suffices to prove (6.3) for
a subsequence of B such that C0 = B/C → ∞. Let us consider such a subsequence.

Let g(y) = y2/2. Denote by Pt
(C)(y,H) the transition function of the process X(C)(t).

According to our definitions, for any fixed C, ψ(C)Pt
(C)g =ψ(C)g for all t ≥ 0; here we view

the transition function Pt
(C) and the distribution ψ(C) as operators (see Section 2).

Note that ψ(C) = T (wB; C0,C0), and that X(C)(·) is the corresponding (finite-frame) particle
process. Denote by X̂(C)(·) a single-particle process, corresponding (like X(C)(·)) to the distribu-
tion functionψ(C) and speed wB, but different from X(C)(·) in that it evolves in (−∞,∞), i.e. no
regulation keeping the process within the finite frame [−C0,C0] is applied. The particle con-
tinues to move left at speed wB even when it is at or to the left of −C0, in which case its jump
rate remains the same as it would be at the point −C0, namely η̄(−C0, ψ(C)). The particle also
can ‘jump over’ the point C0; when it is at or to the right of C0, it moves left at speed wB and
its jump rate is as it would be at the point C0, namely η̄(C0, ψ(C)) = η(ψ(C)(C0)) = η(1) = 0.
Denote by P̂t

(C)(y,H) the transition function of the process X̂(C)(t). We claim that, for any
sufficiently large fixed C, uniformly in y ∈ [−C0,C0],[

Pt
(C)g

]
(y) − [

P̂t
(C)g

]
(y) ≤ o(t), (6.4)

where o(t) is a positive function (which may depend on C) such that o(t)/t → 0 as t → 0. The
proof of (6.4) is given in Section 6.2.

It is easy to check directly that, uniformly in y ∈ [−C0,C0],

lim
t↓0

1

t

[
P̂t

(C) − I
]
g(y) = Ĝ(C)g(y)

.= −wBg′(y) + Cη(ψ(C)(y))
∫ ∞

0
dJ(Cξ )[g(y + ξ ) − g(y)],

and we have

Ĝ(C)g(y) = −wBy + Cη(ψ(C)(y))
∫ ∞

0
dJ(ζ )

[
yζ/C + (ζ/C)2/2

]
= −wBy + η(ψ(C)(y))

[
y + (1/2)m(2)/C

]
,

and then
Ĝ(C)g(y) ≤ y(−wB + η(ψ(C)(y))) + m(2)/(2C). (6.5)

Note that, by our construction and (6.2), for all sufficiently large C (recall that wB → v), we
have, for some fixed ε > 0,

−wB + η(ψC(y)) ≥ ε, y ≤ −1, and − wB + η(ψC(y)) ≤ −ε, y ≥ 1. (6.6)

From (6.4) we can see that, informally speaking, the operator Ĝ(C) is an upper bound on the
generator G(C) of the process X(C)(·), when these operators are applied to the function g. This
observation is only informal, because the function g is not even within the domain of G(C).
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Formally, using (6.4) and the fact that the distribution ψ(C) is concentrated on [−C0,C0], we
can write

0 = lim
t↓0

1

t
ψ(C)

[
Pt

(C) − I
]
g ≤ lim

t↓0

1

t
ψ(C)

[
P̂t

(C) − I
]
g =ψ(C)Ĝ(C)g (6.7)

and observe that
ψ(C)Ĝ(C)g ≤ −εψ(C)h1 + C2,

where h1(y)
.= |y|I(|y| ≥ 1), and C2 does not depend on (sufficiently large) C. We obtain that,

uniformly in large C,
ψ(C)h1 ≤ C2/ε.

This implies the tightness of {ψ(C)}, thus completing the proof of the claim (6.3).

Given the tightness of {ψ(C)}, consider a subsequence of C along whichψ(C)
w→ψ(∞), where

ψ(∞) is a proper distribution, not necessarily continuous. Recall that wB → v. Then we can
apply Lemma 6.4. We obtain that the entire distribution ψ(∞) must be concentrated either
(a) at a single point z ∈ [−1, 1], or (b) on a segment [z1, z2] of non-zero length, where z1 =
min{y | ψ(∞)(y) = νv}, z2 = sup{y | ψ(∞)(y) = νv}, νv .= η−1(v).

The case (a) is impossible, because the property that either ψ−1
(C)(ν) = 1 orψ−1

(C)(1 − ν) = −1
cannot hold for all large C.

Let us show that the case (b) is also impossible. Suppose it holds. Then z1 ≤ 0 ≤ z2, because
otherwise the median of ψ(C) could not stay at 0 for all C. We also know that (since ψ(∞)(y) =
νv ∈ [z1, z2)) the distribution ψ(∞) consists of two atoms at z1 and z2, with positive weights νv
and 1 − νv , respectively. So, either z1 < 0 or z2 > 0. Consider, for concreteness, the case z2 > 0.
(The treatment of the case z1 < 0 is analogous.) Fix small ε > 0 and, for each C, consider the
points

z1,ε = z1,ε(C)
.=ψ−1

(C)(νv − ε), z2,ε = z2,ε(C)
.=ψ−1

(C)(νv + ε).

Given the form of the limiting distribution ψ(∞), as C → ∞, we have

z1,ε → z1, z2,ε → z2.

Let ε1 = η(νv − ε) − η(νv + ε). Obviously, ε1 ↓ 0 as ε ↓ 0.
For any fixed ε (and corresponding ε1), and arbitrarily small δ > 0, the following holds for

all sufficiently large C:

Ĝ(C)g(y) ≤ y(−wB + η(ψ(C)(y))) + δ ( from (6.5)). (6.8)

We will now estimate ψ(C)Ĝ(C)g by considering intervals (−∞, z1,ε], (z1,ε, z2,ε], (z2,ε,∞),
and using the following: the ψ(C)-measures of those intervals, estimates of values of −wB +
η(ψ(C)(y)) over those intervals, and estimates of |z1,ε − z1| and |z2,ε − z2|. The values and
estimates listed just above are

|z1,ε − z1|< δ, |z2,ε − z2|< δ,

−wB + η(ψ(C)(y))> ε1, y ≤ z1,ε,

−wB + η(ψ(C)(y))< ε1, y ≥ z2,ε,

| − wB + η(ψ(C)(y))| ≤ ε1, z1,ε ≤ y ≤ z2,ε,

ψ(C)(z1,ε) = νv − ε, ψ(C)(z2,ε) −ψ(C)(z1,ε) = 2ε, 1 −ψ(C)(z2,ε) = 1 − νv − ε.
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Then, from (6.8),

ψ(C)Ĝ(C)g ≤ (νv − ε)(z1 + δ)ε1 + 2ε[max{|z1|, z2} + 2δ]ε1 + (1 − νv + ε)(z2 − δ)(−ε1) + δ

≤ (νv − ε)δε1 + 2ε[max{|z1|, z2} + 2δ]ε1 + (1 − νv + ε)(z2 − δ)(−ε1) + δ,

where the last inequality is because z1 ≤ 0. If we pick sufficiently small ε > 0 (with the cor-
responding, also small, ε1 > 0), and then choose sufficiently small δ, then the right-hand side
in the last display is negative. This implies ψ(C)Ĝ(C)g< 0, which is a contradiction with (6.7).
Therefore, the case (b) is impossible.

Thus, the assumption that the family of distributions {γB} is not tight leads to a contradic-
tion. This completes the proof of the lemma. �

The following lemma completes the proof of Theorem 3.1(i).

Lemma 6.3. Consider a subsequence of B. (We know that wB → v.) Then there exists a further
subsequence along which γB converges to a proper distribution φ on (−∞,∞), which is a
traveling wave shape with the median at 0, φ(0) = 1/2.

Proof. Using the tightness of {γB}, we can find a further subsequence of B along which
γB

w→ φ; but, since the functions γB are uniformly Lipschitz in (−B,∞), we conclude that the
function φ is 1/v-Lipschitz, and then γB

u→ φ. Also, clearly φ(0) = 1/2.
If Pt

B(y,H) is the transition function of the process XB(·), then it is easy to see that, for each y

and t ≥ 0, Pt
B(y, ·) w→ Pt∞(y, ·), where Pt∞(y, ·) is the transition function of the particle process

X∞(·), corresponding to the distribution φ and speed v. Moreover, Pt∞(y, ·) is continuous in
y, i.e. the process X∞(·) is Feller continuous. Then (see, e.g., [9]) the limit φ of the stationary
distributions γB of XB(·) is the stationary distribution of the limiting process X∞(·). This means
that φ is in fact the fixed point φ = Aφ, and therefore, by Lemma 4, φ is a traveling wave
shape. �

6.2. Proof of (6.4)

To prove (6.4) we first show that, for a small t, the contribution into the expectations[
Pt

(C)g
]
(y) and

[
P̂t

(C)g
]
(y) of the events involving two or more particle jump urges in [0, t]

is o(t). Indeed, consider for example
[
P̂t

(C)g
]
(y), which is equal to

E
[
(X̂(C)(t))

2/2|X̂(C)(0) = y
]
.

We need to show that

E
[
(X̂(C)(t))

2|X̂(C)(0) = y; two or more jump urges in [0, t]
] ≤ o(t), (6.9)

for a fixed C. Let Ui, i = 1, 2, . . ., be an i.i.d. sequence of random variables with the distribu-
tion J(·) (of a jump size); let�t be a Poisson random variable, independent from the sequence,
with mean t; let �̃t =�tI{�t ≥ 2}. Note that E�̃t = t − te−t = o(t), and E�̃2

t = t + t2 − te−t =
o(t). Define

Z =
[

�t∑
i=1

Ui

]
I{�t ≥ 2} =

�̃t∑
i=1

Ui,

and note that

EZ ≤EU1E�̃t = o(t), EZ2 = [
E�̃2

t −E�̃t
]
(EU1)2 +E�̃tEU2

1 = o(t).
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Finally, for bounded values of t, t ∈ [0, a],

E
[
(X̂(C)(t))

2|X̂(C)(0) = y; two or more jump urges in [0, t]
]

≤E

[
C0 + wBa +

�t∑
i=1

Ui

]2

I{�t ≥ 2}

≤ C11EI{�t ≥ 2} + C12EZ + C13EZ2 = o(t),

where the constants C11,C12,C13 do not depend on y ∈ [−C0,C0]. This proves (6.9).
We continue with the proof of (6.4). Consider the particle located at y ∈ [−C0,C0] at time

0. In the interval [0, t] we couple X(C)(·) and X̂(C)(·) in the natural way so that, if the particle
has at most one jump urge in this interval, then the particle jump times and corresponding jump
sizes coincide. Then, if the particle (starting at y) has no jumps in [0, t], X2

(C)(t) ≤ X̂2
(C)(t) holds.

Consider now the case when the particle has exactly one jump in [0, t], at some time s. Note
that X(C)(s) �= X̂(C)(s), specifically X(C)(s)> X̂(C)(s), is only possible if the particle ‘hits’ the
point −C0 in [0, s]. Also note that, if the latter happens, 0 ≤� .= X(C)(s) − X̂(C)(s) ≤ twB, and
then, using the relation g(y + δ) − g(y) = yδ + δ2/2, we can write

E
[
g
(
X(C)(s+)

) − g
(
X̂(C)(s+)

)]
I
{
X(C)(s+)> X̂(C)(s+)

}
≤�

∫ 2C0

0
dJ(x)(x − C0) +�J̄(2C0) + o(t). (6.10)

The integral in (6.10) is the upper bound on the expectation of the linear term of the dif-
ference g

(
X(C)(s+)

) − g
(
X̂(C)(s+)

)
(the ‘yδ’) for the jump sizes x ∈ [0, 2C0]; for such jump

sizes, necessarily, X(C)(s+)> X̂(C)(s+). The �J̄(2C0) is the upper bound on the expected
linear term of the difference g

(
X(C)(s+)

) − g
(
X̂(C)(s+)

)
for jump sizes x> 2C0; in this case

X(C)(s+) = C0 ≥ X̂(C)(s+), and we can use the same bound as for jump sizes x ≤ C0. We can
write

(6.10) ≤ −�
∫ C0

0
dJ(x)(C0 − x) +�

∫ 2C0

C0

dJ(x)(x − C0) +�J̄(2C0) + o(t)

= [−C5 + C6]�+ o(t),

where

C5 = C0J(C0) −
∫ C0

0
dJ(x)x,

C6 =
∫ 2C0

C0

dJ(x)x − C0[J(2C0) − J(C0)] + J̄(2C0).

Note that for all sufficiently large C0, C5 >C6 holds, and then, for all sufficiently large C0,

E
[
g
(
X(C)(s+)

) − g
(
X̂(C)(s+)

)]
I
{
X(C)(s+) ≥ X̂(C)(s+)

} ≤ o(t). (6.11)

Observe also that, if X(C)(s+) ≥ X̂(C)(s+), which is right after the single jump, then

g(X(C)(u)) − g(X̂(C)(u)) can only decrease in the interval [s+, t], (6.12)

because there are no jumps in it. From (6.11) and (6.12), for all sufficiently large C0,

E
[
g
(
X(C)(t)

) − g
(
X̂(C)(t)

)]
I
{
X(C)(s+) ≥ X̂(C)(s+)

} ≤ o(t). (6.13)
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Furthermore, if X̂(C)(s+)>C0, and then necessarily X(C)(s+) = C0, we have

g
(
X(C)(s+)

)
< g

(
X̂(C)(s+)

)
and then also

g
(
X(C)(t)

)
< g

(
X̂(C)(t)

)
,

because, recall, we only consider small t. Thus,[
g
(
X(C)(t)

) − g(X̂(C)(t))
]
I
{
X(C)(s+)< X̂(C)(s+)

} ≤ 0 for small t. (6.14)

Combining (6.13) and (6.14), we finally obtain (6.4). �

6.3. Supplementary fact: Lemma 6.4

The following supplementary fact, Lemma 6.4, is used in the proof of Lemma 6.2. It is used
at the point where we assume that C = C(B) → ∞ as B → ∞, and the scaled distributions
ψ(C)(y) = γB(Cy) are such that ψ(C)

w→ψ(∞), where ψ(∞) is a proper distribution; it is also
known that the speed wB converges, wB → w∞ (in fact, w∞ = v). Lemma 6.4 basically says
that as C → ∞, the (fluid-scaled) process X(C)(t) = (1/C)XB(Ct), whose stationary distribution
isψ(C), in the limit becomes (informally speaking) a deterministic (fluid-limit) process X(∞)(t),
whose stationary distribution is ψ(∞). The process X(∞)(t) is such that (informally speaking)

d

dt
X(∞)(t) = η

(
ψ(∞)(X(∞)(t))

) − w∞.

As a result, the distribution ψ(∞) must be concentrated on those points y where (informally
speaking) η(ψ(∞)(y)) = w∞.

Lemma 6.4. Consider a subsequence of B → ∞ and a function C = C(B) such that C ≤ B,
C → ∞, and B/C → C∗

0 ≤ ∞. Assume that wB → w∞ for some constant w∞ ∈ (0, 1). Define

ψ(C)(y)
.= γB(Cy), and assume that ψ(C)

w→ψ(∞), where ψ(∞) is a proper distribution, not
necessarily continuous. (It is concentrated on a finite interval

[−C∗
0,C∗

0

]
if C∗

0 <∞ or on
the entirety of R otherwise.) For the chosen subsequence of B and the corresponding values
C, consider the sequence of processes X(C)(t)

.= (1/C)XB(Ct), t ≥ 0, with converging initial
states X(C)(0) → y0 ∈R.

(
If C∗

0 <∞, then this necessarily means y0 ∈ [−C∗
0,C∗

0

]
.
)

Then the
following hold:

(i) The sequence of processes can be constructed on a common probability space so that,
w.p.1, any further subsequence of B has a still further subsequence of B along which
X(C)(t) → X(∞)(t), where X(∞)(t) is a deterministic Lipschitz continuous trajectory, such
that X(∞)(0) = y0 and for all t ≥ 0,

d+
�

dt
X(∞)(t) ≥ η(ψ(∞)

(
X(∞)(t)

)) − w∞ if X(∞)(t)<C∗
0, (6.15)

d+
u

dt
X(∞)(t) ≤ η(ψ(∞)

(
X(∞)(t)−

)) − w∞ if X(∞)(t)>−C∗
0. (6.16)

(ii) Any limiting trajectory X(∞)(·) in (i) is such that X(∞)(t) → [
qlow, qup

]
, where

qlow = sup{y | η(ψ(∞)(y))>w∞}, qup = inf{y | η(ψ(∞)(y))<w∞}.
Moreover, this convergence is uniform in y0 and all such X(∞)(·), as long as y0 is
restricted to a compact subset of R.
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(iii) The distribution ψ(∞) is concentrated on the segment
[
qlow, qup

]
. Consequently, if

qlow < qup (and then ψ(∞)(y) = η−1(w∞) for y ∈ (
qlow, qup

)
), the distribution ψ(∞) has

exactly two atoms, at the points qlow and qup, with masses η−1(w∞) and 1 − η−1(w∞),
respectively.

We remark that Lemma 6.4(i) easily implies a stronger property: w.p.1, X(C)(·) u.o.c.→ X(∞)(·),
where X(∞) is the unique Lipschitz trajectory such that X(∞)(0) = y0 and for almost all t with
respect to Lebesgue measure,

X′
(∞)(t) ∈ [

η(ψ(X(∞)(t))) − w∞, η
(
ψ

(
X(∞)(t)−

)) − w∞
]
.

We do not need this stronger property in the present paper.

Proof of Lemma 6.4. The proof uses a fairly standard fluid-limit-type argument. When C is
large, the process X(C)(·) becomes ‘almost deterministic’. Indeed, when C is large, and then the
distribution ψ(C) is close to a proper distribution ψ(∞), the process makes right jumps at the
rate O(C), with the jump sizes being O(1/C); as a result, in the vicinity of time t the process
trajectory is almost deterministic, with the derivative being close to η(ψ(∞)

(
X(C)(t)

)
) − w∞.

All properties stated in the lemma stem from this basic behavior.
We proceed with the formal proof. Consider the following natural common probability

space construction for the particle processes XB, for all B. A unit-rate Poisson process �(t),
t ≥ 0, drives the particle urges to jump. An i.i.d. sequence Z1, Z2, . . . of random variables with
distribution J(·) determines the sequence of particle jump sizes, when it does jump. An i.i.d.
sequence �1, �2, . . . of random variables uniformly distributed in [0, 1] determines whether
or not the particle actually jumps when it gets the ith urge to jump; specifically, if a particle gets
the ith urge to jump at time t, when its location is y = XB(t), it actually jumps if �i ≤ η̄(y, γB).
This construction ensures that, for each B, the process XB is (up to stochastic equivalence) as
defined.

The driving sequences satisfy the functional strong law of large numbers (FSLLN)
properties: as B → ∞ (and the corresponding C = C(B) → ∞), w.p.1,(

1

C
�(Ct), t ≥ 0

)
u.o.c.→ (t, t ≥ 0), (6.17)

⎛
⎝ 1

C


Cs�∑
i=1

Zi, s ≥ 0

⎞
⎠ u.o.c.→ (s, s ≥ 0), (6.18)

⎛
⎝ 1

C


Cs�∑
i=1

I{�i ≤ ξ}, 0 ≤ ξ ≤ 1, s ≥ 0

⎞
⎠ u.o.c.→ (ξs, 0 ≤ ξ ≤ 1, s ≥ 0). (6.19)

(i) We have X(C)(t) = X(C)(0) + X↑
(C)(t) − X↓

(C)(t), where X↑
(C)(t) accounts for the forward

(right) jumps in [0, t] and X↓
(C)(t) accounts for the total distance traveled by the particle

backwards (left) in [0, t] (at a speed which may be either wB or 0). Both X↑
(C) and X↓

(C) are

non-decreasing; X↓
(C) is wB-Lipschitz; given the FSLLN properties (6.17)–(6.19), we observe

that the sequence of processes X↑
(C) is asymptotically Lipschitz, meaning, w.p.1, for any

0 ≤ t1 ≤ t2 <∞,

lim sup
C→∞

[
X↑

(C)(t2) − X↑
(C)(t1)

]
≤ t2 − t1.
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This implies that, w.p.1., any subsequence of trajectories X(C)(·) has a further subsequence
along which

X(C)(·) u.o.c.→ X(∞)(·),
where X(∞)(t) is (1 + w∞)-Lipschitz, and X(∞)(0) = y0. It remains to show that a limit trajec-
tory X(∞)(·) satisfies (6.15)–(6.16). This easily follows from (6.17)–(6.19). Consider (6.15),
for example. If X(∞)(t) = y, then for an arbitrarily small ε > 0 there exists δ > 0 such that for
all t′ ∈ (t − δ, t + δ) and all sufficiently large C we have

ψ(C)
(
X(C)(t

′)
)
<ψ(∞)(y) + ε

and then

η̄
(
X(C)(t

′), ψ(C)
)
>η

(
ψ(∞)(y) + ε

)
.

In other words, when t′ is close to t and C is sufficiently large, the probability of the particle
of X(C) jumping when it gets an urge is bounded below by η(ψ(∞)(X(∞)(t)) + ε). Application
of (6.17)–(6.19) easily gives (6.15). We omit further details. The property (6.16) is shown
similarly.

(ii) This follows from (i).
(iii) This follows easily from (ii). Indeed, (ii) implies that for any compact set K ∈R there

exists T > 0 such that, for all sufficiently large C, with uniformly high probability, if X(C)(0) ∈
K then X(C)(T) is close to

[
qlow, qup

]
. Therefore, the stationary distribution of X(C)(·), i.e.ψ(∞),

must in the limit concentrate on
[
qlow, qup

]
. �

6.4. Proof of Theorem 3.1(ii): finite moments

The distribution φ is proper and φ = Aφ. Then (3.3) follows from Lemma 4.1, (4.1). �

6.5. Proof of Theorem 3.2

If the assumption (3.4) holds, the mean-field model f (x, t) is within the assumptions of that
in [7]. (Actually, in [7] it is assumed that J(y) = 1 − e−y and η(ν) = (1 − ν)K , K ≥ 1. However,
all proofs in [7] hold as is under the more general assumption (3.4) on J(·), and for arbitrary
continuous strictly decreasing η(·).) Theorem 1 of [7] states that if a traveling wave shape
φ with well-defined finite mean exists, then the statements (i) and (ii) of our Theorem 3.2
hold. (Note that the uniform convergence in (3.5) follows from the L1-convergence, because
φ(·) is continuous and non-decreasing, and each f (· + vt, t) is non-decreasing.) But, by our
Theorem 3.1, such a traveling wave shape does exist, which completes the proof. �

7. Discussion

7.1. A generalization: more general jump process

Our main results (along with proofs) easily extend, for example, to the following system.
There are n particles, moving in jumps in the positive direction. Each particle can make two
types of jumps. Jumps of type 1 are those in our original model: they are driven by an inde-
pendent Poisson process of rate μ≥ 0, the jump probabilities are given by a non-increasing
function ηn(·) uniformly converging to a strictly decreasing continuous function η(ν), and the
jump sizes are independent with distribution J(·). Suppose that, in addition, each particle can
make jumps of type 2: they are driven by an independent Poisson process of rate μ2 ≥ 0,
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at which points the particle jumps right w.p.1, and the jump sizes are independent with dis-
tribution J2(y), y ≥ 0; we define J̄2(y) = 1 − J2(y). Assume that (1.1) holds for J(·), and the
analogous assumption holds for J2(·) as well, for the same integer �≥ 2 as in (1.1):

m(k)
2

.=
∫ ∞

0
ykdJ2(y)<∞, k = 1, 2, . . . , �. (7.1)

So, m(1)
2 <∞ is the mean type-2 jump size.

This generalization may be useful for modeling situations when each particle may change
its state either independently (type 2 jumps) or depending on the locations of other particles
(type 1 jumps).

The corresponding mean-field model is still given by Definition 3.1, except that (3.1)
generalizes to

∂

∂t
f (x, t) = −μ

∫ x

−∞
dyf (y, t)η̄(y, f (·, t))J̄(x − y) −μ2

∫ x

−∞
dyf (y, t)J̄2(x − y). (7.2)

The speed v generalizes to

v
.=μm(1)

∫ 1

0
η(ξ )dξ +μ2m(1)

2 ,

for which the ‘conservation law’ (3.2) holds. Therefore, just as in the original model, if the
initial mean f̄ (0) is well-defined and finite, then it moves right at the constant speed v: f̄ (t) =
f̄ (0) + vt.

A traveling wave shape is given by Definition 3.2 and is easily shown to satisfy a more
general form of (1.3),

vφ′(x) =μ

∫ x

−∞
φ′(y)η(φ(y))J̄(x − y)dy +μ2

∫ x

−∞
φ′(y)J̄2(x − y)dy, (7.3)

for each x; the derivative φ′(x) is continuous.
For this more general mean-field model, Theorem 3.1 (with the condition (1.1) comple-

mented by (7.1)) and Theorem 3.2 (with the condition (3.4) complemented by the analogous
condition on J2(·)) hold as they are. The proofs are same, up to straightforward adjustments.

The key feature that the more general model shares with the original one—and which makes
the same analysis work—is that jumps of a particle depend only on its location quantile. (This,
in particular, implies that the speed of the mean f̄ (t), and then of a traveling wave φ(x − vt), is
known in advance and equal to v.) As long as this key feature is preserved for other mean-field
models, we believe that our main results and analysis have a good chance of extending to such
other models as well.

7.2. The condition (3.4) on the jump size distribution

The condition (3.4) is used in [7] to prove that the L1-distance between any two mean-
field models (with equal mean) is strictly decreasing as long as these mean-field models are
different. (Actually, the results in [7] are specifically for the exponential J(·), but as far as the
decreasing L1-distance is concerned, only the condition (3.4) on J(·) is used.) The decreasing
L1-distance result of [7] is then used in the proof of our Theorem 3.2.

It is likely that the analysis in [7] can be generalized to establish the decreasing L1-distance
property under a much relaxed condition (3.4). If so, our Theorem 3.2 holds under a relaxed
condition (3.4) as well.
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7.3. A conjecture about the limit of stationary distribution

Consider the stochastic particle system with n particles (not the corresponding mean-field
model, which is the focus of this paper). Recall that by f n(·, t) we denote its random state (the
empirical distribution of particle locations) at time t. Denote by f n∗ (·, t) the function f n(·, t),
recentered so that its median is at 0. Assume (1.1) and (3.4). It is not hard to see (using the
fluid limit technique, for example) that, for any fixed n, the process f n∗ (·, t) is stochastically
stable (positive Harris recurrent), and therefore has unique stationary distribution. (We do not
give the details of the stability proof—which are not hard—because analysis of the stochastic
particle system with finite n is not the subject of this paper.) By our Theorems 3.1 and 3.2, there
exists a unique (up to a shift) traveling wave shape φ(·). Then, the results of [6] (convergence of
f n(·, t) to a mean-field model f (·, t), as n → ∞) and our Theorem 3.2 (convergence of a mean-
field model f (·, t) to the traveling wave, as t → ∞) strongly suggest the following conjecture
about the limit of stationary distributions of f n∗ (·, t).

Conjecture 7.1. Assume (1.1) and (3.4). Let f n∗ (·,∞) be a random value of f n∗ (·, t) in the sta-
tionary regime. Let φ(·) be the unique traveling wave shape, centered to have the median at 0.
Then, as n → ∞, f n∗ (·,∞) concentrates at φ(·); that is,

‖f n∗ (·,∞) − φ(·)‖ P→ 0.

As natural as it is, this conjecture (which is also supported by the simulation experiments
in [7]) does not directly follow from the results of [6] and our Theorem 3.2. Establishing
Conjecture 7.1 is a subject for future work.
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