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1 Introduction

In the first half of the twentieth century, the study of earth’s climate was known as

“climatology” and was mainly a descriptive endeavor. Pioneering work of the

nineteenth century had developed systems for classifying regional climates as

well as explanations for broad variations in climate around the globe (Weart

2023). By the mid twentieth century, however, the work of climatologists consisted

chiefly in compiling data about weather conditions in regions of interest and

deriving statistics, often with an eye to applications in agriculture and engineering

(Weart 2023). Climatology was more akin to geography than to physics.

In contrast, climate science today takes as its object of study a complex

dynamical system, earth’s climate system, encompassing the atmosphere, oceans,

land surface, ice sheets, and even aspects of the biosphere. It seeks to understand

the detailed workings of this dynamical system – howmyriad physical, chemical,

and biological processes jointly produce patterns of observed climate conditions

and their changes over time – and to predict how the system will respond to

interventions, such as increases or decreases in atmospheric greenhouse gas

concentrations. In doing so, it makes extensive use of physical theory and

computational modeling, alongside massive volumes of data from global

observing networks.

This shift in practice was precipitated to a significant extent by the advent of

digital computing. Starting in the 1950s, with the help of the computer, scien-

tists were for the first time able to use fluid dynamical equations to simulate the

atmosphere’s general circulation, which distributes heat and moisture around

the globe (see Phillips 1956). In the decades that followed, these general

circulation models were expanded to include representations of many other

processes that influence earth’s near-surface climate: the transport of heat by

ocean currents, the formation of clouds and precipitation, the evaporation of

moisture from the land surface, the melting of reflective polar ice, and more.

These global climate models became a central tool of climate research.

Much of this research has been directed at understanding changes in climate –

changes in the statistical distribution of local, regional, or global weather

conditions when considered over long time periods, such as several decades

or longer. In the 1970s, understanding how and why past ice ages occurred was

amajor focus of investigation. More recently, anthropogenic climate change has

dominated climate science’s research agenda and has spurred dramatic growth

and development of climate science as a field. For several decades, climate

scientists have been intensely investigating not only the extent and causes of

ongoing changes in global and regional climate but also more fundamental

questions about the physical processes and feedbacks involved in such changes.

1Climate Science
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Understanding of the climate system and of climate change has advanced

markedly as a result.

This progress is well documented in the periodic assessment reports of

the U.N. Intergovernmental Panel on Climate Change (IPCC), an evolving

body of thousands of volunteer scientific experts from around the world.

Every 5–7 years since 1990, the IPCC has reviewed the latest research related

to climate change and assessed its implications for a range of important ques-

tions, including questions about the extent and causes of ongoing climate

change, the way climate might further change in the future, impacts of these

changes on humans and the environment, and options for adapting to or

mitigating climate change (see, e.g., IPCC 2023). Answers to many of these

questions have grown increasingly clear over time, undergirding international

policy agreements like the Kyoto Protocol and the Paris Agreement.

Climate science has also proven to be a rich site for philosophical analysis. In

fact, it is fair to say that over the last decade a new subfield of philosophy of

science has emerged: the philosophy of climate science. Work in this area has

tended to focus on issues in the methodology and epistemology of climate

modeling (e.g., Parker 2006; Lenhard and Winsberg 2010; Lloyd 2015;

Dethier 2022; Kawamleh 2022), but increasingly a broad range of topics is

being addressed – from the conceptual foundations of climate science (e.g.,

Werndl 2016; Katzav and Parker 2018), to the roles of non-epistemic values in

climate science (e.g., Biddle and Winsberg 2010; Lloyd and Oreskes 2018;

Pulkkinen et al. 2022; Elabbar 2023), to expert judgment in climate science

(e.g., Thompson et al. 2016; Jebeile and Crucifix 2020; Lam and Majszak

2022), to methods of paleoclimate research (e.g., Vezér 2017; Wilson and

Boudinot 2022; Watkins 2024), just to name a few.1

This Element is a contribution to the philosophy of climate science. It aims to

advance the epistemology of climate science by examining how climate scien-

tists have arrived at answers to three key questions about climate change:

➢ How much is earth’s climate warming?

➢ What is causing this warming?

➢ What will climate be like in the future?

Resources from philosophy of science will be employed to analyze both the

methods that climate scientists use in addressing these questions and the infer-

ences that they make from the evidence collected. Along the way, the analysis

will draw upon, and contribute to, broader philosophical discussions regarding

1 Overviews of issues in philosophy of climate science include: Frigg et al. (2015a, 2015b), Parker
(2018), Lloyd and Winsberg (2018), Winsberg (2018a), and Bradley et al. (2020).
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data modeling and measurement, evidence, robustness analysis, explanation,

and model evaluation.

The Element is divided into three main sections, each focused on one of the

three key questions. These are followed by a brief concluding section that draws

out some general features of the epistemology of climate science suggested by

the analysis and then offers some reflections on future directions. The sections

can be read independently but are best read in order.

How much is earth’s climate warming? Section 2 examines how climate

scientists infer long-term changes in global temperature from local thermometer

data. It characterizes global temperature datasets as data models and argues that

estimates of global temperature change derived from those datasets can be

considered measurement outcomes. Jonah Schupbach’s (2018) explanatory

account of robustness analysis is employed to demonstrate the epistemic sig-

nificance of the robustness of these temperature change estimates to variations

in methods, data, and research teams. Finally, it is argued that, even from the

perspective of a demanding account of evidence like Deborah Mayo’s (1996,

2018) error-statistical account, there is good evidence that earth’s climate has

warmed significantly since the late nineteenth century.

What is causing this warming? Section 3 turns to climate scientists’ efforts to

explain recent warming. After identifying several obstacles to explanation in

climate science, it highlights the use of computational models as bookkeeping

devices – as presciently envisioned by atmospheric scientist Ed Lorenz (1970) –

to make progress in the face of these obstacles. It also considers how headline

conclusions about the causes of recent warming are reached by the IPCC and

how philosophical theories of evidence might be applied in this context.

A central thesis of this section is that computational modeling has played

a crucial role in moving climate science beyond qualitative speculation about

the causes of climate phenomena. Nevertheless, there are significant explana-

tory pitfalls to watch out for.

What will climate be like in the future? Section 4 discusses the use of

ensembles of climate models to investigate, and to help gauge uncertainty

about, future changes in climate. Inspired by practice in this context, it articu-

lates a form of robustness analysis underwritten by jury theorem reasoning,

which is distinct from Schupbach’s explanatory variety. It then explains why

climate science is beginning to move away from the practice of “model democ-

racy” (Knutti 2010), where each state-of-the-art climate model’s projection is

given equal weight, and suggests that new methods for weighting projections

align with a fitness-for-purpose perspective on model evaluation. It closes with

an overview of recent discussions of the management of inductive risk in

climate science.
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2 Measuring Global Temperature Change

How much is earth’s climate changing? Answering this question is far from

simple, even when attention is limited to changes in a single, indicative climate

variable: earth’s average near-surface temperature, hereafter global tempera-

ture. There is no global thermometer from which scientists can simply read off

the global temperature whenever desired. Instead, variations in global tempera-

ture are estimated by synthesizing a host of local temperature measurements

that are distributed unevenly around the globe and that must be adjusted to

account for jumps and trends that reflect non-climatic changes, such as

replacing an instrument at an observing station or moving an instrument away

from encroaching buildings or vegetation.2 Nevertheless, climate scientists

have reached some firm conclusions about global temperature change. The

IPCC considers it “certain” that global temperature has increased since the

late nineteenth century (Hartmann et al. 2013). In fact, analyses consistently

find that average global temperature over the last decade was about 1°C warmer

than in the late nineteenth century (see Gulev et al. 2021, Table 2.4).

This section examines how these analyses of global temperature change are

produced and argues that they constitute good evidence of a significantly

warming world, especially when considered in conjunction with other observa-

tions of the climate system. Section 2.1 gives an overview of the key steps

involved in standard approaches to producing global temperature datasets and

characterizes these datasets as data models. Section 2.2 calls attention to the

robustness of estimates of global temperature change derived from these data-

sets and argues that these estimates can be considered measurement outcomes.

Section 2.3 examines in more detail the evidential significance of this robust-

ness. Finally, Section 2.4 argues that there is good evidence that earth’s climate

has warmed significantly since the late nineteenth century.

2.1 Making Data Global

To estimate changes in global temperature, researchers typically start with

local thermometer readings made at weather stations on land and on ships

and buoys at sea. Land stations report near-surface air temperature, while

ocean data indicate the temperature of sea water collected near the surface.

Nowadays, observations are made daily at thousands of locations around the

globe. Going back in time, and especially prior to the mid twentieth century,

2 For periods prior to the late nineteenth century, when networks of weather observing stations
reached a critical mass, the task is even more difficult; for these periods, estimates of global
temperature change are derived from patterns in tree rings, ice cores, and other proxy indicators
for temperature.
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observing networks become significantly sparser. Nevertheless, altogether

an enormous amount of temperature data is available – around a billion

individual surface observations made since the late nineteenth century.

Obtaining these data, however, is only the first step; these many local

observations need to be transformed somehow into information about global

temperature. As Paul Edwards (2010) puts it, climate researchers need to

make data global.

Because land and sea data are subject to different sources of error, they are

processed separately. The basic steps of the processing nevertheless are similar.

First, there is quality control. Observations that are judged to be obviously

erroneous are discarded. The remaining data undergo a process of correction

known as homogenization, which aims to remove jumps and trends in data that

result from changes in observing instruments or methods (e.g., using a different

sort of bucket for collecting sea water), or changes in the siting of an instrument

(e.g., moving it from one side of a station to the other), or changes in the

surrounding land use (e.g., a rural observing site becoming an urban one over

time). Given the huge number of observations to be processed, quality control

and homogenization are largely automated.

Next, data are converted from absolute temperatures to temperature anomal-

ies. An anomaly is just a deviation from a reference value, such as the average

temperature at the observing station or ocean region in question during

a specified thirty-year period. By subtracting such a reference value from

each temperature value for the location, a time series of absolute temperatures

for the location (24.4°C, 24.6°C, 24.1°C, . . .) becomes a time series of anomal-

ies (+0.1°C, +0.3°C, –0.2°C, . . .). The shift to anomalies is made for a number

of reasons. In many land regions, the spatial correlation among temperature

anomalies is found to be stronger than the correlation among absolute temper-

atures (Hansen and Lebedeff 1987). This makes anomalies a better choice when

it comes to filling in large gaps between observing stations – gaps that some-

times span hundreds of kilometers or more. In addition, anomalies are less

affected by systematic error; deviations from a local reference temperature will

be the same even if a thermometer always reads 1°C too cold or too hot.3

Typically, both land and ocean data will also be regularized in space and time.

Each observation will be associated with a particular time period – a specific day

or month – and a particular area on a spatial grid, for example, a 2°latitude × 2°

longitude box. Average anomalies for a given grid box during a particular time

period will be calculated as a function of the data available for locations within

3 For more discussion of the use of anomalies and ambiguity in the meaning of “surface air
temperature” see https://data.giss.nasa.gov/gistemp/faq/abs_temp.html, accessed December 5,
2023. See also Thorne et al. (2021).
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that grid box during that time period. Different research teams handle empty

grid boxes differently, with some simply reporting that no data are available and

others attempting to fill in gaps by spatial interpolation. Regularizing has

a number of benefits. Gridding data helps to ensure that global averages aren’t

unduly influenced by areas where the density of observations is greater, and it

puts the data into a convenient format for comparison with output from climate

simulations. Temporal averaging smooths over short-term variability that isn’t

relevant for most climate research.

Global datasets are produced by conjoining these gridded land and sea

datasets. Such datasets are often referred to as data products by climate scien-

tists, to signal that their production involves substantial processing of data. In

philosophers’ terminology, they are data models. While the importance of data

modeling in science was emphasized by Patrick Suppes (1962) decades ago, the

practice of data modeling was largely neglected by philosophers until very

recently. Today, there is increasing attention to the rich and varied practices of

data modeling in science, as well as increasing emphasis on the representational

function of data models: “Data models are ways of ordering data that are

evaluated, manipulated and modified with the explicit goal of representing

a phenomenon” (Leonelli 2019, p. 22; see also Harris 2003; van Fraassen

2008; Bokulich 2018; Bokulich and Parker 2021). A related but broader char-

acterization will be adopted here: A data model is a representation of one or

more aspects of the world, which is produced by processing data and/or other

data models, in order to facilitate the achievement of scientific aims.

Data models can take the form of datasets, but they can take other forms too:

graphs, charts, equations, and more. For example, Figure 1 is a data model that

represents variation in global temperature since 1880. It was produced from

a gridded global temperature dataset – GISTEMPv4 – by averaging regularized

temperature anomalies from around the globe over each calendar year (squares)

and applying a smoothing technique to make the longer-term trends easier to see

(thicker line). Uncertainty ranges for the annual temperature anomaly estimates

are shown as well (shading) (Lenssen et al. 2019). A major motivation for

undertaking the hard work of producing gridded global temperature datasets is

to be able to produce figures like Figure 1, which make it easier to see how

global temperature has changed over time.

According to the characterization of data models adopted here, data models

are both representations and intended to facilitate particular scientific aims. This

suggests at least two perspectives that might be adopted when evaluating data

models. On the first, a data model is of higher quality the closer it comes to

representing targeted features of the world with perfect accuracy and at ultra-

fine resolution. In effect, this view says that a data model is better the closer it

6 Philosophy of Science
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comes to mirroring a selected part of the world. A second approach focuses

instead on the data model’s suitability for one or more purposes. It asks whether

the data model represents relevant aspects of the world sufficiently well, where

what counts as relevant and sufficient depends on the purposes of interest, and it

considers in addition whether nonrepresentational features of the data model –

its format, portability, metadata, and so on – will facilitate or impede its use for

those purposes. These considerations together inform a judgment about the data

model’s adequacy or fitness for the purpose at hand (Bokulich and Parker 2021).

While each of these views of data model quality has something to recommend

it, there are reasons to prefer the second, fitness-for-purpose view. It can

accommodate not only cases in which the data modeler’s aim is purely repre-

sentational but also cases in which a data model is constructed as a means to

achieving other scientific aims, for example, to develop an explanation, answer

a particular question, test a theory, communicate results, and so on. For the latter

cases, the mirror view seems to miss the mark since, not infrequently, having

a data model that closely approximates an ideal representation (i.e., one with

extremely high fidelity and fine resolution) is neither necessary nor sufficient for

successfully achieving a particular aim. Something far from the ideal might

suffice, and nonrepresentational features such as format, manipulability, sim-

plicity, etc. can be relevant. Of course, the fitness-for-purpose view does not

deny that high-fidelity representation is usually desirable; it merely denies that

more closely approximating an ideal representation is always more desirable

and that representational fidelity is all that ever matters. If the goal is

Figure 1 Estimates of global mean surface temperature variations from NASA

GISS GISTEMPv4. (Source: NASA Goddard Institute for Space Studies,

https://data.giss.nasa.gov/gistemp/graphs_v4/).
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communicating findings or identifying patterns, for example, then the format of

the data model might be especially important: Most people will get a better

sense of how global temperature has warmed since the late nineteenth century

by viewing Figure 1 than by examining a spreadsheet that contains the same

annual temperature anomaly values and uncertainty ranges as a long list of

numbers.

Clearly a data model that is adequate or fit for one purpose might fail to be so

for another. Consider the dataset just mentioned: A spreadsheet providing an

estimated global temperature anomaly, along with its 95 percent uncertainty

interval, for each year since 1880, calculated from GISTEMPv4.4 Because the

uncertainty intervals for different years often overlap significantly (as is easily

seen in Figure 1), a researcher taking this dataset at face value cannot use it for

the purpose of (P1) confidently ordering the years between 1880 and 2020 from

hottest to coldest. On the other hand, the dataset might well be adequate for the

purpose of (P2) determining whether 2015 was hotter than 2000, since the

uncertainty intervals for these two years do not come close to overlapping

(see Figure 1). However, before concluding that the dataset is adequate for P2
a researcher needs to consider how it was produced, including such things as:

the spatial coverage of the underlying thermometer data for 2000 and 2015; how

sources of error were corrected for (or not); how any spatial gaps were filled in;

what assumptions were made when calculating uncertainty intervals; and so on.

If, in light of this investigation, the researcher is convinced that major sources of

error have been addressed and that uncertainties are unlikely to have been

substantially underestimated, then she might conclude that the dataset is

adequate for P2 and that 2015 was hotter.

2.2 Data Models and Measurement

The standard approach to estimating changes in global temperature is the one

outlined in the last section. But there are other approaches as well. For instance,

some estimates of global temperature change are obtained via a process known as

data assimilation, in which observational data and computer simulations are used

together to estimate conditions. Data assimilation was first used in geophysics as

a means of obtaining initial conditions for weather forecasting models. The basic

idea is to take predictions from a simulation model as a first-guess estimate of

weather conditions at time t and then adjust those estimated conditions in light of

observations collected around time t, from thermometers, barometers, satellite-

based radiometers, and so on. Because the simulation model predicts conditions

for every model grid point, this method leaves no spatial gaps and, unlike simple

4 Dataset available at https://data.giss.nasa.gov/gistemp/graphs_v4/, accessed October 31, 2023.
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spatial interpolation, it employs not only observations collected around time t but

also (implicitly) observations collected at earlier times, since the latter inform the

initial conditions for the prediction that serves as the first guess.

There are several types of data assimilation method in use, which differ in how

they perform the updating of the first-guess estimate. Some methods blend the

forecast and observations for time t, giving some weight to each. Others itera-

tively search for an alternative forecast from the simulation model that better fits

the available observations for t or for a window of time around t. In the context of

weather prediction, the results of data assimilation serve as the initial conditions

for the next forecast cycle and are known as an analysis for the forecast initial-

ization time. In support of climate research, data assimilation is performed

retrospectively: A past period, usually several decades or longer, is divided into

a series of short windows (hours), and data assimilation is performed for each

window using the same forecast model, generating a coherent time series of

analyses of past conditions, which are known as reanalyses or reanalysis datasets.

These reanalysis datasets are used for many purposes in climate research, includ-

ing estimating changes in global temperature over time. For example, the

ECMWF results shown in Figure 2 were calculated from the ERA-5 reanalysis,

which provides hourly analyses of atmospheric conditions going back to 1940.5

Figure 2 Time series of global surface temperature anomalies

from several sources. (Source: Berkeley Earth, https://berkeleyearth.org/

global-temperature-report-for-2023/. Reprinted with permission.).

5 See https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 for more details.
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In fact, the curves in Figure 2 reflect three significantly different approaches

to estimating global temperature change. The HADCRUT5, GISTEMP, and

NOAA results were obtained by transforming local thermometer data into

estimates of global temperature as discussed in Section 2.1, with variations in

the range of data used, the corrections and homogenization algorithms

employed, and the way gaps were treated. The ECMWF results were gener-

ated via reanalysis, as just explained. A third approach is represented by the

Berkeley Earth results, whose production involved both a much more expan-

sive set of thermometer data than was initially employed by HADCRUT5,

GISTEMP, etc., and a quite different, geostatistical (“kriging”) methodology

for processing and synthesizing those data (Rohde et al. 2013). Yet despite

these varied approaches, they all yield similar global temperature anomaly

curves, with estimated uncertainties that are small compared to the tempera-

ture changes that they show over the period (see also Lenssen et al. 2019,

Fig. 13). Put differently, the results shown in Figure 2 indicate that today’s

global temperature anomaly estimates exhibit a significant degree of robust-

ness: Quite similar values are obtained from multiple investigations despite

variations in researchers, underlying data, and methodologies.

Such robustness is a hallmark of successful measurement, according to

contemporary philosophical accounts. For instance, Eran Tal (2012, 2017)

articulates a robustness criterion that, when met, provides evidence of meas-

urement accuracy under any of several understandings of accuracy. In essence,

this robustness criterion requires (i) that discrepancies among outcomes from

a sufficiently diverse set of procedures for estimating a quantity are statistic-

ally consistent with one another, given their respective uncertainties, and (ii)

that those outcomes and uncertainties are derived in each case using an

appropriate model of the measurement process, that is, one whose assump-

tions cohere well enough with what is known about the nature of the quantity

under investigation and the particular realization of the procedure by which it

was estimated. These criteria are reflected in Tal’s characterization of meas-

urement: To measure a physical quantity is to make coherent and consistent

inferences from instrument indications to the value of a parameter in a model

of the measurement process. The inferred value is the measurement outcome

and should be accompanied by an indication of its associated uncertainty;

measuring thus produces a representation of some aspect of the system under

measurement.6

6 van Fraassen (2008) articulates a view of measurement in which coherence and consistency play
similar roles. His account too could be employed for the analysis that follows here, reaching
similar conclusions.
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The efforts of climate researchers to estimate global temperature anomalies

fit Tal’s picture rather well. Each of the three approaches (standard, reanalysis,

and Berkeley Earth) involves inferring global temperature anomalies from

instrument indications, where the inference is guided by a model of the meas-

urement process. Consider first the standard and Berkeley Earth approaches.

Here, the basic model of the measurement process is relatively simple: It

assumes that thermometer indications can provide information about local

temperature changes, which can be aggregated to estimate global changes.

Complications arise as researchers choose which stations and readings to

include in the analysis and try to account for the ways the actual measurement

process deviates from the idealized basic model: to correct for interfering

factors, to fill in gaps, and so on. The different groups make somewhat different

choices, in part because there is uncertainty about which choices are best, but at

least rough coherence with background knowledge is required. As illustrated in

Figure 2, global temperature anomaly estimates produced in these different

ways usually fall within each other’s 95 percent uncertainty intervals or come

close to doing so. In recent years, the methods for generating such uncertainty

intervals have become substantially more thorough and rigorous, for example,

by representing sources of uncertainty statistically and combining them via

a formal uncertainty model (see e.g., Lenssen et al. 2019; Morice et al. 2021), as

discussed further in Section 2.4.

What about efforts to derive global temperature anomaly estimates from

reanalyses like ERA-5, where the reanalysis results consist of simulation

output? Here, the model of the measurement process is substantially more

complex: It includes assumptions not just about the indications of observing

instruments like thermometers, barometers and radiometers, but also about the

reliability of a weather forecasting model and about how to find better

forecasts via an assimilation algorithm (Parker 2017). Some of these assump-

tions are known to be simplified and idealized in ways that are difficult to

correct for in a principled way. In part because of this, it is more difficult to

provide well-motivated uncertainty estimates for reanalysis results, and

uncertainty information is sometimes not provided at all. Yet, in many

cases, global temperature anomalies derived from reanalyses do agree closely

with estimates produced via other methods. A reasonable conclusion is that

investigations of global temperature change via reanalysis are at least attempts

at measurement. Moreover, in principle, estimates of quantities produced via

data assimilation methods, or involving simulation in other substantive roles,

can be measurement outcomes; there is no in principle reason that a process

embedding simulation couldn’t satisfy Tal’s robustness criterion for successful

measurement (see also Parker 2021).
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Such a conclusion – that even reanalysis results consisting of simulation

output could be measurement outcomes – is less radical than it might initially

seem.Metrologists already recognize that computer simulation can play various

roles in measurement practices, and even a brief survey of contemporary

science reveals a spectrum of “measuring” and “observing” practices that

embed theoretical calculation and modeling to various degrees. Focusing just

on meteorology and climate science one finds: Estimates of temperature and

pressure from thermometer and barometer readings, involving no calculation;

estimates of relative humidity involving simple theoretical calculation fromwet

bulb and dry bulb thermometer readings; estimates of storm motion using radar,

where the observing system embeds theoretical Doppler effect calculations; and

atmospheric temperature profiles derived from satellite-based radiometer data,

which requires not only transforming from one physical variable to another but

also solving an inverse problem. Data assimilation and reanalysis might occupy

the far end of the spectrum of practices aimed at measuring quantities of

interest, but they have nearby neighbors.

Reflecting on Tal’s account ofmeasurement, we find a close connection between

measurement and data modeling. A measurement outcome just is a data model in

the sense articulated earlier: It is a representation of one or more aspects of the

world, which is produced by processing data and/or other data models (themselves

derived from instrument indications), in order to facilitate the achievement of some

scientific aim – in this case, to accurately estimate the value of a quantity.With this

in mind, we can also characterize somewhat differently one approach to evaluating

the adequacy-for-purpose of datamodels produced formeasurement purposes: The

evaluation involves, in part, systematically scrutinizing a model of a measurement

process. What are its assumptions? Are they well-motivated? How does the actual

measuring process deviate from this idealized model? How have these deviations

been accounted for? And so on. Answers to these questions can warrant greater

confidence that the data model generated via the measurement process is adequate

(or not) for the purpose of interest.

2.3 The Significance of Robustness

Tal’s robustness criterion for successful measurement requires sufficient diver-

sity among the procedures used to estimate quantity values. He does not say

what counts as sufficiently diverse, though. Presumably, simply repeating the

same measurement procedure is insufficient, and presumably the more diverse

the procedures the better. Yet even characterizing what counts asmore diverse is

not so straightforward. Philosophers as well as scientists have disagreed about

this in broader discussions of the evidential value of robust results in science.
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Oftentimes, some notion of independence is invoked, but there is disagreement

over how that notion should be understood as well and, in some cases of

robustness, a focus on independence of any sort seems misplaced or inapt.

Recently, Jonah Schupbach (2018) has attempted to remedy the situation by

offering an explanatory account of robustness, which is meant to apply gener-

ally. He argues that results from multiple investigations enhance support for

a hypothesis H that explains those results when some of the results rule out

alternatives to H that would otherwise be left standing. To see the basic idea,

imagine a simple case where there is agreement among a set of results (r1 . . . rm),

which could be explained by hypothesis H or by either of two competing

hypotheses,H’ andH’’. On Schupbach’s account, a new result, rn, adds relevant

diversity to the set of agreeing results, and enhances support forH, when it helps

to rule out one of those competing explanations of agreement among (r1 . . . rm).

For example, perhaps only H and H’’, but not H’, can explain (r1 . . . rn). While

Schupbach’s account does not tell us what counts as sufficiently diverse estima-

tion procedures, such that we can claim to successfully measure a quantity, it

does help us to evaluate whether a result from an additional procedure enhances

(or provides incremental) support for a hypothesis, whether the hypothesis is

about the value of a quantity or something else.

We can use Schupbach’s account to see that the agreement among global

temperature analyses like those shown in Figure 2 is evidentially significant.

Suppose a scientific hypothesis that interests us is (H1C) average global

temperature in the year 2020 was more than 1.0°C warmer than average global

temperature during the period 1880–1899. Each of the standard analyses in

Figure 2 (HADCRUT5, GISTEMP, and NOAA) gives a result that accords with

H1C. One possible explanation for this agreement among the standard analyses

is that H1C is true, and each of the standard analyses proceeded in a way

that accurately (enough) estimated the change in temperature. But there are

other possible explanations too. For example, some climate contrarians have

proposed hypotheses like:

(H’) Agreement among warming estimates from standard analyses stems
from a shared reliance on land-based thermometer data that are biased by
urban heat island effects, poor station siting and other problems; the actual
warming is much less.

Another possible explanation is:

(H’’) The agreement among warming estimates from standard analyses stems
from shared biases in homogenization efforts, such as a tendency to correct
for spurious cooling more often than spurious warming; the actual warming is
much less.
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And a particularly cynical explanation is:

(H’’’) The agreement among warming estimates reflects deliberate, coordinated
manipulation of the thermometer data by climate researchers in order to advance
a shared environmental policy agenda; the actual warming is much less.

So now we have three alternative explanations of the agreement among warm-

ing estimates, according to which H1C is false.

Each of these alternative explanations becomesmuch less plausible, however, in

light of additional investigations that indicate a similar rise in global temperature.

The Berkeley Earth project is particularly significant in this regard. It was initiated

by individualswho shared contrarian concerns about the accuracy of other analyses

and sought to produce an independent analysis of global temperature change. As

noted earlier, they adopted a quite different approach to homogenization. The fact

that they nevertheless obtained results very similar to those from HADCRUT5,

GISTEMP, etc. renders much less plausible both H’’ (homogenization bias) and

H’’’ (deliberate manipulation). The Berkeley Earth group also carefully investi-

gated several potential sources of error identified by contrarians – including those

cited inH’ (biased thermometer data) – but found that theymade little difference to

results. For example, rates of global temperature change estimated using data from

better-located stations – for example, away from buildings and concrete surfaces

that can be artificial heat sources – did not differ in a statistically significant way

from rates estimated using data from poorly-located stations (Muller et al. 2013).

An unusual reanalysis study also helps to rule out H’ (biased thermometer

data). The 20th Century Reanalysis (20CR) project produced a reanalysis

dataset without using any thermometer data from land-based stations; only

surface pressure observations, monthly mean sea surface temperature data,

and information about some atmospheric constituents (e.g., reflective particles

from volcanic eruptions, which can have a cooling effect) were assimilated. Yet

the evolution of global temperature over land according to 20CR – inferred with

the help of theoretical equations relating local temperatures to other physical

quantities – was also quite similar to that found in results produced via the

standard thermometer-based methodology. (This analysis is not shown in

Figure 2, which focuses on combined land/ocean temperature.) The paper

announcing the result was titled, “Independent confirmation of global land

warming without the use of station temperatures” (Compo et al. 2013).7

Schupbach (2018) adopts a Bayesian perspective to demonstrate formally the

evidential value of results that discriminate among competing explanations of

7 Global temperature variations estimated from independent satellite-based instruments – available
for recent decades – also closely track thermometer-based estimates (see, e.g., Susskind et al.
2019).
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other results. On a standard Bayesian view, an agent assigns to a hypothesis

H a probability, p(H), representing their degree of belief that H is true.

Likewise, they assign probabilities to all of H’s competitors, H’, H’’, etc.,

with the total probability assigned to H and its competitors summing to 1.

When the agent receives new evidence, e, they update their degree of belief

in each hypothesis in accordance with Bayes’ Theorem: p(H|e) = p(e|H)*

p(H)/p(e). If this updating results in an increase in the probability assigned

to H, that is, if p(H|e) > p(H), then e is said to confirm or support

H. Schupbach shows that a new result, e = rn, which is very likely under

explanatory hypothesis H but very unlikely under some of its rivals, can do

just that; it will provide support for H, as probability that had previously

been assigned to the now-eliminated competitors is redistributed among the

remaining explanatory hypotheses, including H (see Schupbach 2018,

Section 3.2 and Appendix, for details). Applying his analysis here, results

from Berkeley Earth and 20CR, by ruling out competitors to H1C, would

increase the probability of, and thus provide some support for, H1C.

Non-Bayesian philosophical theories of evidence that eschew assigning

probabilities to hypotheses also would find value in the Berkeley Earth and

20CR results. For instance, on Julian Reiss’s (2015) Eliminativist Hypothetico-

Contextual (EHC) account, data provide direct support for H if they display

a pattern that we are entitled to expect if H is true, and they provide indirect

support for H if they display a pattern that is incompatible with what we are

entitled to expect if rivals to H are true or if alternative (undermining) accounts

ofH’s support – accounts that deny or cast doubt on that support – are true. From

the perspective of Reiss’s account, results from Berkeley Earth and 20CR

provide both direct and indirect support for H1C. Alternatively, adopting

Deborah Mayo’s (1996, 2018) error-statistical framework, the Berkeley Earth

and 20CR studies can be understood as part of a broader effort to severely test

H1C, that is, to carry out a set of investigations that very probably will succeed in

revealing H1C to be false, just in case it is false; the Berkeley Earth and 20CR

studies probe particular reasons for thinking that other temperature analyses

might erroneously indicate the truth of H1C.

Note that a similar evidential payoff accrues if the discussion is framed instead

in terms of the adequacy-for-purpose of theHADCRUT5,GISTEMP, andNOAA

datamodels. Consider the hypothesis that (H*) these datamodels are adequate for

the purpose of (P) discerning whether global temperature in 2020 was more than

1°C warmer than during 1880–1899. There are rivals toH* that parallel those for

H1C, namely, that the HADCRUT5, GISTEMP, and NOAA data models reflect

similarly biased data, or similarly biased homogenization, or outright manipula-

tion. Results from Berkeley Earth and 20CR clearly help to eliminate these
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possible reasons to doubtH* too. This points to another way in which researchers

can gain confidence in the adequacy-for-purpose of a data model; in addition to

directly scrutinizing the details of how it was produced, that is, the assumptions of

the model of the measurement process, they can obtain indirect evidence of a data

model’s adequacy-for-purpose when results from other investigations rule out

one or more reasons for doubting or questioning its adequacy. A demonstration of

robustness can sometimes do exactly that.

2.4 Good Evidence of Warming

What ultimately interests climate scientists, however, is not whether there is

some evidence or support for the hypothesis that earth’s climate is warming

significantly, but whether there is good or strong evidence of this.8 The different

philosophical perspectives on evidence outlined above will cash out this idea of

good or strong evidence somewhat differently. For a Bayesian, the strength of

some evidence for a hypothesis H is often characterized in a comparative way,

using the Bayes Factor; it equals the probability of the evidence assuming that

H is true divided by its probability assuming that a rival is true. Reiss’s (2015)

EHC framework calls for assigning H one of several levels of warrant, ranging

from weak warrant to proof, depending on the extent to which (i) H has direct

support and (ii) alternative accounts ofH’s direct and indirect support have been

eliminated. On Mayo’s (1996, 2018) error-statistical account, we have good

evidence for a hypothesis H if H passes a set of tests that very probably would

have revealedH to be false, if (and only if) it is false. The more probable it is that

the testing would have revealedH to be false, the more severe the testing and the

stronger the evidence. Despite some deep differences, on all of these accounts,

data available to climate scientists – which extend far beyond thermometer

data – constitute good evidence that earth’s climate has warmed significantly

since the late nineteenth century.

For an illustration, let’s consider H1C from the perspective of the error-

statistical account, which sets a demanding standard for good evidence. We

need to assess whether H1C is well probed – whether it has passed a set of tests

that very probably would have uncovered its falsity, just in case it is false. The

primary tests come via the standard and Berkeley Earth analyses. Well-

motivated measurement models underlie these analyses, according to which

global temperature anomalies can be estimated by aggregating local thermom-

eter data, after correcting for known sources of error, accounting for the uneven

distribution of thermometer locations, and so on. Accompanying uncertainty

8 Here and below, “significant” warming means warming that makes a practical difference, not
merely warming that can be detected statistically.
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analyses indicate that, if actual warming between 1880–1899 and 2020 were

1°C or less, then these methods would very probably deliver estimates of

warming much smaller than they actually do. (In Figure 2, the warming looks

to be about 1.3°C.) H1C passes these relatively probing tests with flying colors.

But this assessment takes at face value both the models of the measurement

process underlying the standard and Berkeley Earth analyses and the associ-

ated uncertainty models. In practice, these models are idealized in various

ways, and they omit some sources of error and uncertainty. We should

consider whether these omissions and idealizations threaten the face-value

findings regarding H1C. For the most part, there is good reason to think that

they do not.

First, consider omissions and idealizations of the measurement models

underlying standard analyses. These models fail to account for some recognized

(or potential) sources of systematic error in the measurement process. But the

impacts of the most worrisome of these – related to heat island effects, instru-

ment siting, and homogenization methods – have been well probed by Berkeley

Earth investigations and found to not make a significant difference. Worries

about thermometer data and its homogenization are further allayed by 20CR,

which was produced via reanalysis and without the use of any land-based

thermometer data, yet showed warming similar to thermometer-based estimates

of warming over land. The impacts of some other recognized (or potential)

sources of error, for example, in early ocean temperature data, and of some

idealizations in the assumptions of the measurement models, stand in need of

further investigation.9 Nevertheless, even under pessimistic assumptions about

their magnitude, it is implausible that their impact will be large enough to

threaten H1C. Moreover, remaining biases in some global temperature analyses,

like that due to limited coverage of the rapidly warming Arctic, contribute

to the underestimation of global warming (see Cowtan and Way 2014).

Second, consider omissions and idealizations of the models used to quantify

uncertainties associated with global temperature anomaly estimates. These

uncertainty models typically assume that the model of the measurement process

employed in the study is correct; they sample and propagate uncertainties

associated with measurement model inputs (e.g., thermometer readings) and

parameters (e.g., in homogenization methods), but uncertainty about how to

construct the measurement model in the first place (i.e., structural model

uncertainty) is not addressed. Some methods have other limitations as well,

for example, in how/whether they address spatiotemporal correlations in

9 See, e.g., Kennedy et al. (2019). They remark: “No part of the SST [sea surface temperature]
record is simple to understand or without some little mystery of its own” (p.7721).
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uncertainties. Thus, some caution is needed when interpreting these uncertainty

estimates. That said, it is reassuring that global temperature anomalies esti-

mated using quite different methods (standard, reanalysis, Berkeley Earth,

20CR) usually fall within – or nearly within – the uncertainty intervals produced

in other analyses; this suggests that uncertainties are not dramatically under-

estimated. But suppose they are dramatically underestimated. Even if the actual

uncertainties are twice as large, the conclusion that there has been significant

warming between 1880–1899 and 2020 – warming of, say, at least 0.7°C –

would still be well warranted.10

Moreover, while the global temperature analyses that have been the focus of

this section are important evidence that significant warming has occurred, they are

far from the only evidence. Indications of a warming world can be seen through-

out the climate system, in glacier retreat, sea ice loss, sea level rise, changes in

animal migration, and more (IPCC 2021; see also Winsberg 2018a, Ch.2). Data

documenting these changes also help to warrant the conclusion that earth’s

climate is warming significantly. We can make a qualitative severity argument:

Given the breadth of climate scientists’ investigations of climate system condi-

tions, and their methodologies, they very probably would have uncovered sub-

stantial evidence challenging the warming world hypothesis if it were false, but

they have not found such evidence. Instead, a wide range of findings from across

the climate system converge in indicating a significantly warming world.

3 Explaining Changes in Climate

What is causing earth’s climate to warm? By their Fifth Assessment Report

(AR5), published in 2013, the IPCC concluded that it was extremely likely

(probability ≥95 percent) that more than half of the increase in global tempera-

ture since 1950 was human caused (Bindoff et al. 2013, p. 869). In the IPCC’s

Sixth Assessment Report (AR6), appearing in 2021, human-induced warming

of the climate system is deemed “unequivocal” and, for global temperature, its

magnitude since the late nineteenth century is estimated to likely (probability

≥66 percent) be in the range 0.8–1.3°C (Eyring et al. 2021, p. 425). This is a net

anthropogenic contribution, reflecting an even larger warming contribution

from greenhouse gases (GHGs) – estimated to be 1.0–2.0°C – that is partially

offset by cooling from anthropogenic aerosols.

This section examines how climate researchers arrive at such conclusions and

highlights the important roles that computational models play in developing

10 In fact, given smaller uncertainties for global temperature anomalies for more recent periods, it
could be argued that global temperature has increased by at least 0.7°C even since the 1970s. See
Figures 1 and 2.
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quantitative explanations of climate phenomena. Section 3.1 identifies several

obstacles to developing such explanations. Section 3.2 presents Ed Lorenz’s

(1970) vision for making progress in the face of these obstacles by using

computational models as bookkeeping devices. We see this approach in action,

alongside some others, in Section 3.3, which reviews how contemporary

researchers investigate the causes of recent global warming. Section 3.4 dis-

cusses how the IPCC moves from the results of these investigations to conclu-

sions about the warming contributions of GHGs and then examines one of these

headline conclusions from the perspective of Julian Reiss’s (2015) EHC evi-

dential framework. Finally, Section 3.5 characterizes the explanatory progress

that has been made in climate science in recent decades and identifies some

explanatory pitfalls that continue to present a risk.

3.1 Obstacles to Explanation

Climate scientists seek to explain various climate phenomena, from the stability

of climates over long periods, to differences in climate from region to region, to

changes in climate over time, including the global warming discussed in

Section 2. Typically, the explanations sought are causal. That is, the aim is to

give an accurate account of how various causal factors – conditions, processes,

events – together produce the climate phenomenon of interest. Yet there are

several reasons why developing such explanations can be difficult.

Large causal menu. First, there are often many potential causal contributors

to climate phenomena. In part, this is because the climate system itself is

a complex system; it is composed of myriad interacting parts and processes.

In addition, there are several factors considered “external” to the climate system

that can influence its evolution, including but not limited to: variations in the

sun’s output; volcanic eruptions, which release large quantities of reflective

aerosols; anthropogenic emissions of GHGs and aerosols; anthropogenic

changes in properties of the land surface; and, at very long timescales, changes

in earth’s orbit and plate tectonics. Fluctuations in climatic conditions can occur

in the absence of changes in these factors too; such “internal variability” often

stems from oscillatory or chaotic phenomena in the oceans, for example, the El

Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation, the

Atlantic Multidecadal Oscillation, and others.11 The task of quantitatively

explaining a given climate phenomenon thus involves determining the extent

to which many potential causal contributors are actual contributors.

11 Their names notwithstanding, the degree to which these “oscillations” are truly oscillatory is
a matter of debate.
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Multiple actual causes. Oftentimes there are several actual contributors.

Climate phenomena of interest often result from the joint action of multiple,

partially compensating causes. Moreover, the contributions of these causal

factors often are not purely additive but at least somewhat interactive and can

involve feedback loops. When it comes to changes in climate, the task is rarely

to identify one actual cause from a large menu of potential causes – “the” cause

of a change in temperature or precipitation – but rather to understand the ways in

which various external factors, as well as internal variability, have jointly

resulted in the observed change.

Limited information about past causes and conditions. A further obstacle is

the limited availability of information about past climate conditions and about

how recognized drivers of climate change have varied in the past. Observations

of temperature, precipitation, and other climate variables from ground-based

instruments are available with quasi-global coverage only for the last century

and a half, and satellite-based observations are available only since the late

twentieth century. Key climate metrics derived from those observations, such as

ocean heat content change or stratospheric temperature trends, are likewise

available only for these recent periods. For earlier periods, researchers attempt

to glean information about conditions from indirect indicators, such as tree

rings, ice cores, and ocean sediments, but coverage and resolution are limited,

and estimates of global climatic conditions derived from them often involve

large uncertainties. Likewise, only so much is known about the quantity of

aerosols ejected by past volcanoes, past solar variability, past emissions of

GHGs and aerosols from industrial activities, and so on.

No controlled experiments. In addition, a standard scientific means of testing

causal hypotheses – namely, by conducting controlled experiments – is gener-

ally unavailable in this context. A hypothesis about the effect of rising GHG

concentrations on global surface temperature cannot be tested by conducting an

experiment in which atmospheric concentrations of these gases are increased on

one earth-like planet and kept constant on another. Not only is there just one

earth, but there is no nearby planet that is even moderately similar to earth in

relevant respects, which might serve as a rough analogue.

Incomplete and intractable theory. Finally, there is an obstacle related to

theory. Climate science is not without theory. Simple energy-balance consider-

ations allow for a rough calculation of an average global temperature. Many

causal processes in earth’s climate system – from the transport of mass and heat,

to radiative transfer, to chemical reactions – are within the domains of reliable

theories in fluid dynamics, physics, and chemistry. But not every causal process

shaping climate is well-understood theoretically. And once researchers bring

together the various relevant theoretical resources that are available, what they
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have is a large, complex set of equations that cannot be solved analytically. It

thus can be far from straightforward to use available theory to develop explan-

ations of climate phenomena.

Considering all of these factors together, we might worry that, when it comes

to identifying the cause(s) of a given climate phenomenon, climate scientists

will be able to formulate many hypotheses, but will be unable to tell which, if

any, is correct. They might be unable to empirically test their hypotheses and,

indeed, unable to even check their quantitative plausibility, given the mathem-

atical intractability of theory. This was precisely the worry expressed by

atmospheric scientist Ed Lorenz fifty years ago, in the midst of debates over

the cause(s) of past ice ages. Yet he also saw a way to make progress.

3.2 Computational Models as Bookkeeping Devices

Lorenz argued that computational models could help climate scientists to test the

quantitative plausibility of hypotheses about changes in climate. The approach

that he envisioned involved, first, constructing a mathematical model in the form

of a set of differential equations, which represented a set of causal factors

(conditions, processes) that were hypothesized to bring about a given change in

climate. Though the equations would be analytically unsolvable, the computer

could be used to numerically integrate them, that is, to estimate solutions using

numerical methods. One could then check whether the calculated change in

conditions – a cooling of global temperature, say – was close to the observed

magnitude of the change to be explained. As Lorenz explained:

“ . . . one might argue convincingly that a decrease in evaporation from the
ocean would bring about a decrease in surface salinity, which would inhibit
vertical overturning and thereby favor the formation of sea ice, which would
in turn bring about increased reflection of solar radiation, and thereby lower
atmospheric temperature. Such reasoning could be completely sound, and yet
not be particularly relevant to the problem of climatic change [i.e., to identi-
fying the causes of past ice ages], if the decrease in temperature arising from
a given decrease in evaporation should prove to be negligibly small, or if the
decreased evaporation should simultaneously initiate a second chain of
events which would favor a rise in temperature. Yet all of the essential
features of this reasoning can be incorporated into a mathematical model,
and the step-by-step numerical integration of the equations will then consti-
tute a system of bookkeeping for the ensuing temperature changes.” (Lorenz
1970, p. 327, emphasis in original)

If the hypothesis is sound, he goes on to suggest, then the model should

reproduce the change in climate under investigation (Lorenz 1970, p.328).

That is, the cumulative change in conditions calculated across the time steps

21Climate Science

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009619301
Downloaded from https://www.cambridge.org/core. IP address: 3.141.4.80, on 04 Dec 2024 at 11:28:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009619301
https://www.cambridge.org/core


of the computational model’s integration should be similar in magnitude to the

observed change.

How can these tests facilitate progress in explaining climate phenomena? If

the calculated change for a given causal hypothesis fails to even roughly match

the change under investigation, then scientists might reject the hypothesis,

narrowing the field of candidate explanations. Care is required here, though,

since a failure is not necessarily grounds for rejection. This is for the usual

Duhemian reason: The failure might have occurred not because the hypothesis

from which the prediction is derived is false, but for other reasons related to the

test procedure. For instance, perhaps the numerical methods used to integrate

the equations did not deliver accurate enough solutions. Or perhaps the equa-

tions inadequately represented some of the important causal factors and pro-

cesses hypothesized to bring about the change. But to the extent that scientists

have good reason to think that such alternative reasons for a model’s failure to

reproduce an observed change in climate are unlikely, they have grounds for

doubting the causal hypothesis under test. By contrast, if a simulation model

does reproduce the observed change, this suggests that the causal hypothesis

under test is quantitatively plausible and remains a candidate explanation of the

change. It clearly does not on its own establish that the hypothesis correctly

identifies the actual cause(s) of the observed change, since there might be other

plausible ways to account for that change.

Looking forward to the twenty-first century, Lorenz imagined a “super-

model” of the climate system, intended to represent not just the causal factors

relevant to learning the implications of a particular hypothesis, but all of the

causal factors that might conceivably have influenced past changes in climate.

Experimenting on such a model – changing the distribution of ice sheets or

adjusting the composition of the atmosphere –might reveal additional plausible

hypotheses about the causes of a past climatic change. As Lorenz puts it: “In

essence, we will have reached the day when mathematical procedures will be

instrumental in formulating hypotheses as well as testing them” (1970, p. 329).

But he also emphasizes: “As to what features did produce climatic changes, we

shall still have the privilege of arguing” (Lorenz 1970, emphasis in original).

3.3 Investigating the Causes of Recent Warming

Fifty years later, computational models of the climate system still fall short of

the super-models that Lorenz imagined, but they have developed substantially

in that direction. Successive generations of climate models have grown more

and more comprehensive in their representation of causal processes in the

climate system. They are used to test the quantitative plausibility of causal
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hypotheses in the way envisioned by Lorenz and, more generally, to simulate

how changes in different causal factors would, in various combinations, impact

climate conditions. They also sometimes serve as resources for formulating and

refining hypotheses about the causes of climate phenomena.

The most comprehensive and detailed of these climate models are known as

general circulation models (GCMs) or earth system models (ESMs). They

consist of a set of interacting sub-models, each representing processes in one

part of the climate system – atmosphere, ocean, land surface, ice sheets, and so

on. Each sub-model represents conditions on a set of grid points, where each

point is associated with a volume of atmosphere, or ocean, or land surface, etc.

For simulations to be computationally tractable, these grid points need to be

relatively widely spaced, for example, on the order of 100 km in the horizontal

for the atmosphere. For each grid point, a set of equations is specified, meant to

describe how average conditions in the associated volume (grid box) will

change over a short time period – minutes to hours – in response to causal

processes operating in the grid box and those adjacent to it. For the atmosphere,

these equations include a discretized set of core equations from fluid dynamics

and thermodynamics (“the dynamical core”) whose state variables include

temperature, pressure, and wind speed in the north–south, east–west and verti-

cal directions, as well as many additional equations (“the physics”) intended to

capture the effects of other physical processes that can influence the state

variables, such as radiation transfer and the formation of clouds and precipita-

tion. Although many of these physical processes operate at scales smaller than

the model’s grid-scale, they must be represented as a function of grid-scale

variables; this practice is known as parameterization.12 To simulate the evolu-

tion of conditions over a decade or century or longer, the modeling equations for

each grid point are solved repeatedly using numerical methods, in effect

stepping conditions forward a short time, then stepping them forward again,

and so on. Statistical properties of the simulated conditions can then be calcu-

lated to estimate the values of climate variables, such as the average and range

of temperature in a region over several decades.

The use of these models in a bookkeeping role, as envisioned by Lorenz, is

readily illustrated in research investigating the causes of recent global warming.

To test the quantitative plausibility of the hypothesis that (HNAT) increases in

global temperature since the late nineteenth century were caused mainly by

natural factors, in particular changes in solar output, volcanic activity, and

internal variability, researchers run simulations in which anthropogenic factors

12 Typically, there is not an obviously best way to parameterize a given process and different
modeling groups take somewhat different approaches. See also Section 4.1.
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are held fixed at preindustrial levels, while these natural factors are allowed to

vary in accordance with historical estimates (see “Natural causes” in Figure 3).

Since these simulations do not come remotely close to reproducing observed

warming, HNAT appears quantitatively implausible (see also Odenbaugh 2018).

By contrast, when anthropogenic factors, including GHGs and aerosols,

are also allowed to vary in accordance with historical estimates, the resulting

simulations are found to roughly track variations in global temperature (see

“Combined” in Figure 3).13 In conjunction with the findings regarding HNAT,

this indicates the quantitative plausibility of the hypothesis that (HANTH)

increases in global temperature since the late nineteenth century were caused

mainly by anthropogenic factors. A further finding is that, when only GHG

concentrations are allowed to vary in accordance with historical estimates, and

natural and other anthropogenic factors are held fixed at preindustrial levels,

simulations show warming that somewhat exceeds that which is observed,

consistent with the idea that GHG-induced warming is being partially offset

by the cooling effect of reflective anthropogenic aerosols (see “Greenhouse

gases (human)” and “Aerosols (human)” in Figure 3).

Figure 3 Global temperature change in observations compared to climate

model simulations. Shading indicates the 5–95 percent range of results across

the simulations. (Source: FAQ 3.1, Figure 1 in IPCC 2021: Chapter 3. Reprinted

with permission.)

13 The same is also true for a number of other climate variables: Simulations with natural factors
alone do not come close to accounting for the observed changes in these variables, but simula-
tions with combined natural and anthropogenic factors (roughly) do. See illustrations at NASA’s
Scientific Visualization Studio: https://svs.gsfc.nasa.gov/4908/.
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GCMs/ESMs also play important roles in more sophisticated investigations of

the causes of recent warming.14 In attribution studies, one or more climate models

are used to estimate the spatiotemporal pattern of change in a climate variable that

would emerge if a given causal factor (or set of factors) varied in accordance with

historical estimates, while others were held fixed. For each factor, this pattern will

show more change in some locations and time periods than others. Insofar as the

patterns for different causal factors are distinct, they serve as fingerprints of those

causal factors. Researchers then find the (weighted) linear combination of finger-

prints that best fits the observations and check whether the residual change can

plausibly be ascribed to internal variability, that is, to variation that occurs even in

the absence of any forcing of the climate system. If so, and if the weights assigned

to the fingerprints are close to 1, this indicates the quantitative plausibility of the

hypothesis that the observed change was caused by the specified factors.15

Estimates of the contributions of different causal factors can then be inferred

from these weights.16 These estimates are subject to significant uncertainty,

however, stemming from: uncertainty about the fingerprint patterns themselves,

due to climate model limitations; similarity between the patterns estimated for

different factors, that is, degeneracy; and the fact that the observed patterns of

change to be accounted for also have some associated uncertainty. The upshot is

that conclusions about the contributions of different causal factors cannot be

very precise. For example, drawing primarily on attribution (i.e., fingerprint)

studies, the IPCC concluded in AR5 that “greenhouse gases contributed a global

mean surface warming likely to be in the range of 0.5°C to 1.3°C over the period

1951 to 2010” (IPCC 2013, p. 17). We will examine the basis for such conclu-

sions in more detail in Section 3.4.

In addition to studies involving climatemodels, there are empirical investigations

of the causes of recent warming, which employ methods from statistics and

econometrics. A study by Folland et al. (2018) provides a nice illustration. They

showed that the monthly global temperature record for the period 1891–2015 could

be reconstructed using equations produced via cross-validation multiple regression,

taking historical variations in known natural and anthropogenic forcing factors and

modes of internal variability as the independently estimated predictors and the

14 What follows is a very simplified description of attribution studies, intended to convey their most
basic elements. For technical details, consult Bindoff et al. (2013) and references therein.

15 There are several reasons why the estimated weights might deviate from 1, even if the hypothesis
under investigation is correct. Most obviously, the model-estimated fingerprints might contain
significant errors. To the extent that the estimated weights are close to 1, this provides some
reassurance both that the causal factors have been correctly identified and that the models are
simulating the contributions of those factors reasonably well (see Parker 2010).

16 Both model-based and empirical attribution methods typically assume that contributions from
different causal factors are additive, i.e., do not exhibit interactive effects. This is thought to be
a reasonable approximation for global temperature but not in some other cases.
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1891–2015 time series of monthly global temperature anomalies as the predictand.

An example of such an equation is:

GST = –0.0595 + 0.0172*AMO + 0.0617*ENSO + 0.0441*VOLC

+ 0.0457*TSI + 0.2802*GA + 0.0219*AO

here, GST represents the global temperature for a given month, the other

variables (AMO, ENSO, VOLC, TSI, GA, and AO) represent the normalized

magnitudes of different causal factors in that month, and the coefficient on

each variable represents that factor’s global warming or cooling potency as

estimated via regression. Since the historical magnitudes of the forcing factors

and of GST are somewhat uncertain, Folland et al. generated many such

regression equations, sampling these uncertainties, and took the average of

these as the best-estimate regression equation. The time series of GST recon-

structed with that best-estimate equation showed good fit to observations.

They concluded: “ . . . the generally high reconstruction accuracy shows that

known external and internal forcing factors explain all the main variations in

[global temperature] between 1891 and 2015, allowing for our current under-

standing of their uncertainties. Accordingly, no important additional factors

are needed to explain the two main warming and three main slowdown periods

[i.e., the main variations in global temperature] during this epoch” (Folland

et al. 2018, eaao5297).

Importantly, Folland et al.’s reconstruction achieved a good fit not just for

periods of rapid global warming, but also for periods in which little or no global

warming occurred. In fact, these slowdown periods (1896–1910, 1941–1975, and

1998–2013) were the main focus of the study. Prima facie, they present a puzzle:

If GHG concentrations continued to rise rapidly, why didn’t global temperature?

Indeed, the occurrence of the most recent slowdown (or “hiatus”) from roughly

1998–2013, and the fact that many climate models projected greater warming for

the period, was claimed by climate contrarians to show that GHGs are not the

primary cause of recent global warming after all. Thus, in addition to regression

equations generated using the full 1891–2015 time series, for each slowdown

period Folland et al. produced regression equations leaving out that slowdown

period. They then used the equations that were produced leaving out the

slowdown period to predict what conditions in the slowdown period would be,

again generally with good success. Folland et al.’s analysis indicates that,

during these slowdown periods, less warming is what we should expect to find,

given the causal factors that operated during those periods. On their analysis,

during the most recent “hiatus,” anthropogenic warming continued unabated, but

a substantial portion of it was offset by cooling contributions from internal
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variability (ENSO/IPO), reduced solar irradiance (TSI), and increased volcanic

activity (VOLC) (see Folland et al. 2018, Figure 6D).

Other research investigating the recent “hiatus” employed climate models in

the bookkeeping roles described earlier. For example, one hypothesis was that

a particular mode of internal variability (namely, La Niña-like conditions in the

tropical Pacific Ocean) was a significant contributor to the slowdown in warm-

ing. Huber and Knutti (2014) investigated the expected contribution of this

factor by identifying “variability analogues” – fifteen-year segments of

unforced climate simulations in which the pattern of tropical Pacific variability

resembled that observed during the hiatus; they found that global temperatures

tended to cool by 0.06 ± 0.12°C/decade in these segments (see also Stolpe et al.

2017). This is similar in magnitude to the cooling contribution later estimated

empirically (for ENSO/IPO) by Folland et al. (2018, Figure 6C) with smaller

uncertainty bounds.17 The Pacific variability hypothesis had gained attention

a few years earlier in light of another model-based study: When Meehl et al.

(2011) examined segments of climate simulations in which GHG concentra-

tions were increasing but global temperature nevertheless exhibited warming

slowdowns, they noticed that, in these slowdown periods, a La Niña-like pattern

of variability tended to prevail, with more heat than usual being transported into

the deeper layers of the oceans. As they put it: “The model provides a plausible

depiction of processes in the climate system causing the hiatus periods, and

indicates that a hiatus period is a relatively common climate phenomenon and

may be linked to La Niña-like conditions” (Meehl et al. 2011, p. 360). Here,

simulations played a role akin to that which Lorenz envisioned for a super-

model of the climate system – they aided hypothesis formulation.

In the end, employing results from a wide range of studies, researchers were

able to demonstrate that a slowdown in warming during the recent hiatus period

was to be expected, given the causal factors understood to be present over the

period.18Moreover, the greater warming that had been projected bymany climate

models did not indicate a deep problem with the science as climate contrarians

claimed; indeed, the mismatch was readily accounted for. First, most of the model

projections – as expected –were not in phase with Pacific internal variability over

the period, which is akin to noise; those simulations that did happen to track

Pacific variability also showed less warming (Risbey et al. 2014). Second, while

17 While these magnitudes seem small, they constitute a substantial fraction of slowdown in
warming that was to be explained.

18 Interestingly, the extent of the slowdown itself was also found to be exaggerated in some
observational datasets, due to coverage bias (see Cowtan and Way 2014). If warming of the
Arctic is accelerating, datasets that do not fill in gaps in the Arctic (e.g., by spatial interpolation)
will increasingly underestimate global temperature change.
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the forward-looking projections had made reasonable assumptions about what

solar irradiance, volcanic activity and anthropogenic emissions would be like

over the period, these turned out to differ somewhat from what subsequently

actually occurred. Taking account of the actual pattern of internal variability over

the period and estimates of actual volcanic activity, emissions, and so on, the

mismatch between models and observations largely disappears (see Huber and

Knutti 2014; Schmidt et al. 2014).

3.4 Reaching Causal Conclusions

In light of these and other studies investigating the causes of recent global

warming, IPCC scientists have arrived at conclusions like the following:

MOST: It is extremely likely that more than half of the global warming

observed since 1950 was anthropogenic (IPCC 2013).

QUANT: It is likely that well-mixed GHGs contributed a warming of 1.0–

2.0°C since the late nineteenth century (Eyring et al. 2021).

This section will discuss how the IPCC arrives at conclusions like MOST and

QUANT and will show that the headline conclusion MOST accords well with an

evaluation from the perspectiveof JulianReiss’s (2015)EHCevidence framework.

The IPCC Approach to Evidence Assessment

The IPCC is currently divided into threeWorking Groups, which focus on different

aspects of the climate change issue. Working Group 1 (WG1) focuses on the

physical science basis, Working Group 2 focuses on climate change impacts and

adaptation, and Working Group 3 focuses on mitigation strategies. Within each

Working Group are chapter teams that address particular topics. Each chapter team

is tasked with examining and synthesizing published research on their assigned

topic, considering how that research bears on key questions, and reporting conclu-

sions that reflect the consensus of the chapter team. Human influence on the climate

system was the topic of Chapter 10 of the WG1 contribution to AR5 (IPCC 2013)

and Chapter 3 of the WG1 contribution to AR6 (IPCC 2021).

In developing their conclusions, IPCC chapter teams are asked to consider

both the nature of the evidence that is available – its type, amount, quality, and

consistency – and the extent to which that evidence is in agreement in

supporting particular conclusions (Mastrandrea et al. 2011). Available evidence

can be assessed as limited,medium, or robust, while agreement can be characterized

as low, medium, or high. In light of this evaluation, chapter teams can report

a qualitative level of confidence in a finding or conclusion: low, medium, high, or

very high confidence. If they judge that more can be said – in particular, that
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a probability can be assessed – then they can report that as well. The IPCC provides

calibrated language for reporting these probabilities (see Table 1). Thus, when the

IPCC chapter team reports in AR6 that it is “likely” that well-mixed GHGs

contributed a warming of 1.0–2.0°C, this indicates that they assessed there to be

a probability of at least 66 percent that the warming contribution was in that range.

The IPCC approach to evidence assessment, including its confidence and

likelihood terminology, has been praised by some commentators, but it has also

been the target of criticism. Critics have argued that it is unclear how its

likelihoods/probabilities should be interpreted, that its application by author

teams leads to incoherent shifts between frequentist and subjective probabil-

ities, and more. Some criticisms have been leveled by scientists, while others

have come from philosophers of science, in some cases with suggestions for

improvement or proposals for coherent interpretation (recent contributions

include, e.g., Rehg and Staley 2017; Harris 2021; Dethier 2023a; see also

Adler and Hirsch Hadorn 2014). Issues related to the IPCC’s use of these

likelihoods – and other concerns with the IPCC’s approach to evidence assess-

ment – will be bracketed here, though they are worthy of attention and discus-

sion. The aim here is simply to introduce the IPCC approach to evidence

evaluation and to illustrate its application. Ultimately, the approach is

a practice-based attempt at solving a very difficult problem: Trying to ensure

that dozens of chapter teams, tackling widely different topics, assess large

bodies of evidence in a reasonable way and communicate differential evidential

support for conclusions in a manner that is consistent across different parts of

the report and is understandable for its readers.

Table 1 Calibrated likelihood language adopted by
the IPCC. See Mastrandrea et al. (2011).

Term Probability range

Virtually certain 99−100%
Extremely likely 95−100%
Very likely 90−100%
Likely 66−100%
More likely than not >50−100%
About as likely as not 33−66%
Unlikely 0−33%
Very unlikely 0−10%
Extremely unlikely 0−5%
Exceptionally unlikely 0−1%
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Reaching Conclusions about Human Influence

IPCC chapters typically provide a summary of relevant evidence and findings

from previous assessments and then focus their discussion on new studies pro-

duced since the last assessment. Figure 4 summarizes new evidence considered in

AR6 when assessing the contributions of different causal factors to global warm-

ing since the late nineteenth century. Here, the primary evidence consists of results

from three attribution studies, two of which employed multi-model average

fingerprints (Gillett et al. 2021; Ribes et al. 2021) and one of which took a more

empirical approach (Haustein et al. 2017). Results produced using an alternative

radiative-forcing-based approach, discussed in Chapter 7 of the same IPCC report,

are also shown. Likewise, results from thirteen GCMs/ESMs are shown, to give

a sense of the range of contributions indicated by individual models. (Results from

Figure 4Assessed contributions to observed warming and underlying evidence.

Plain shaded band shows the estimated 5–95 percent range of observed

warming. Other shaded bands show IPCC expert assessed likely ranges of

temperature change in global surface air temperature (GSAT), 2010–2019

relative to 1850–1900, attributable to different causal factors. Vertical bars

show 5–95 percent uncertainty ranges produced in four different analyses, with

their best estimates of contributions represented by crosses (+). Other symbols

show the simulated responses from each of the climate models indicated.

(Source: Figure 3.8 in IPCC 2021: Chapter 3. Reprinted with permission.)
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such GCMs/ESMs are combined to determine the multi-model average finger-

prints used in the two model-based attribution studies.)

Whether the available evidence regarding human influence on global tempera-

ture should be considered limited, medium, or robust is not stated in AR6, but

similar evidence from earlier studies was already deemed robust in AR5.19 The

AR6 chapter team did note the agreement among the primary lines of evidence

shown in Figure 4: “In spite of their different methodologies and input datasets,

the three attribution approaches yield very similar results, with the anthropogenic

attributable warming range encompassing observed warming, and the natural

attributable warming being close to zero” (Eyring et al. 2021, p. 440). They

further note: “Estimates based on physical understanding of forcing and ECS

[Equilibrium Climate Sensitivity] made by Chapter 7 are close to estimates from

attribution studies, despite being the products of a different approach. This

agreement enhances confidence in the magnitude and causes of attributable

surface temperature warming” (Eyring et al. 2021, pp. 440–441).

Though these lines of evidence are in good agreement, it is not obvious how they

should be combined to reach overall conclusions about the contributions of differ-

ent causal factors. Here, the IPCC took a simple and conservative approach. They

derived “assessed” contributions for different causal factors – shown by the wide

shaded bars in Figure 4 – by finding the smallest range (with a precision of 0.1˚C)

that spanned all three of the attribution studies’ 5–95 percent uncertainty ranges for

a given factor. For greenhouse gases, for example, this range is 1.0–2.0°C. These

covering ranges, which are broader than each of the 5–95 percent uncertainty

ranges estimated in the individual studies, are then assessed by the IPCC to be only

likely (i.e., probability ≥66 percent) to include the actual contribution, given

sources of uncertainty not adequately accounted for in the individual studies.

This downgrading of likelihood – from what might have been taken to be a very

likely (probability ≥90 percent) range to only a likely range – also constitutes an

informal means of taking account of results from other studies, like the Chapter 7

estimates, as well as earlier studies.20 In this way, the IPCC arrived at conclusions

like QUANT.

19 The chapter on attribution in AR5 included a table that concisely presented both the evidence
underlying each key conclusion as well as the chapter team’s assessment of that evidence in
terms of the recommended IPCC approach (i.e., evidence is limited, medium, or robust and
exhibits low, medium, or high agreement). AR6 did not include such a table. Such information
tends to be omitted when evidence is considered clearly sufficient to reach confident conclusions,
perhaps to avoid making reports even longer; the WG1 contribution to AR6 exceeded 2,400
densely written pages!

20 Why the Chapter 7 results did not factor directly into the determination of the assessed ranges is
unclear. Regardless, Figure 4 makes plain that including the Chapter 7 estimates when deriving
covering ranges would make almost no difference to the findings.
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A very similar process of analysis had taken place in AR5. Assessed contri-

butions for different causal factors were obtained via covering ranges derived

from the 5–95 percent ranges from two attribution studies employing multi-

model fingerprints, and then these covering ranges were deemed likely (see

Bindoff et al. 2013). As was later the case in AR6 (see Figure 4), the anthropo-

genic warming contribution in AR5 was found to be similar in magnitude to the

observed warming, though in AR5 the period of analysis was shorter, from 1950

onwards. The headline AR5 conclusion MOSTwas justified as follows: “Both

optimal detection [i.e., fingerprint studies] and time series studies agree in

robust detection of anthropogenic influence that is substantially more than

half of the observed warming” (Bindoff et al. 2013, Table 10.1). Outside of

the IPCC process, NASA climate scientist Gavin Schmidt showed that, if the

IPCC’s assessed likely range is assumed to constitute the middle 66 percent of

a Normal uncertainty distribution, then the probability that anthropogenic

factors were responsible for less than half of the observed warming is <0.02 per-

cent (Schmidt 2013). Using the IPCC’s calibrated terminology, it might have

been deemed virtually certain, not just extremely likely, that human activities are

responsible for more than half the warming.

There are several noteworthy features of the IPCC’s process of arriving at

conclusions about the contributions of different causal factors to recent warm-

ing. First, no attempt is made to formally aggregate the many individual pieces

of evidence that are available; these include not just the latest attribution results,

such as those shown in Figure 4, but also results available in previous assess-

ment cycles as well. Such an aggregation would be very difficult to perform, in

part because of complex interdependencies among the data and models used in

the studies. Instead, insofar as the latest results are broadly consistent with

previous ones, a simple, pragmatic approach that focuses on the latest results is

taken. Second, the analysis prioritizes estimates obtained using multi-model

average fingerprints, rather than estimates obtained from individual models.

Multi-model averages often outperform individual models when simulations of

past climate are compared to observations; averaging can help to wash out some

of the errors of individual models.21 Third, there is a downgrading of likelihood

in order to account for remaining sources of uncertainty; the covering 5–

95 percent uncertainty ranges are considered only likely. All three of the features

just identified – lack of formal aggregation of evidence, a focus on findings

undergirded by results from multiple climate models, and downgrading by one

21 There are, however, theoretical concerns that the average fingerprint (and, more generally, the
average of a set of results from different models) might not be physically consistent, i.e.,
consistent with underlying physical laws.
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likelihood category to account for remaining uncertainties – are common in the

context of IPCC assessments, not just when the focus is on attribution.

Applying Philosophical Theories of Evidence

The IPCC approach to evidence evaluation is not built upon any particular

theory of evidence; as suggested earlier, it is a practice-based approach meant to

facilitate a specific scientific assessment process. Nevertheless, if we attempt to

relate the IPCC approach to existing theories, it is perhaps best characterized as

an informal and imprecise Bayesian approach. There is often an updating of

a prior level of confidence in (or probability of) a given conclusion – as reported

in the previous IPCC assessment report – in light of new findings, though this is

not done via an explicit calculation using Bayes’ Theorem. The approach is

imprecise in that it employs qualitative levels of confidence (e.g., very high,

high, medium, low, etc.) and/or imprecise probability ranges (as shown in

Table 1) rather than precise probabilities. Some researchers have in fact charac-

terized related inference practices in climate science as “informal Bayesian”

ones (see Schmidt and Sherwood 2015; Sherwood et al. 2020).

A different theory of evidence that is readily applicable here is Julian Reiss’s

(2015) Eliminativist Hypothetico-Contextualist (EHC) account, introduced

briefly in Section 2. On this account, data provide direct support for H if they

display a pattern that we are entitled to expect if H is true, and they provide

indirect support forH if they display a pattern that is incompatible with what we

are entitled to expect if rivals to H are true or if alternative (undermining)

accounts of H’s support – accounts that deny or cast doubt on that support – are

true (Reiss 2015, p.348). As shown in Table 2, grades of overall warrant for

H are then determined by the extent to which H has direct support as well as

Table 2 Reiss’s Grades of Warrant. A relevant alternative is, roughly, one
deemed a genuine possibility in the context at hand. A salient alternative is one

that has some direct support. After Reiss (2015, Table 1).

Grade Name
Requires direct support for H plus indirect
support that . . .

1 Proof eliminates all relevant alternative accounts
2 Strong warrant eliminates all salient alternative accounts and

some that are nonsalient
3 Moderate warrant eliminates most alternatives, including some

that are salient
4 Weak warrant eliminates some alternative accounts
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indirect support that eliminates relevant alternatives, where these alternatives

can be rivals to H or alternative (undermining) accounts of H’s support (e.g.,

that the method used to produce data supporting H was biased). Depending on

the extent to which such alternatives are eliminated, hypotheses are assigned

a grade of weak warrant, moderate warrant, strong warrant, or proof.

Let’s consider, from the perspective of Reiss’s account, the hypothesis embed-

ded in MOST, that is, (HMOST) more than half of the global warming observed

since 1950 was anthropogenic. Direct support for HMOST is found in global

temperature data that display patterns that fit reasonably well with the predictions

of both simulations and regression-based equations in which anthropogenic

warming is dominant (as discussed in Section 3.3).22 Gridded temperature data-

sets also exhibit spatiotemporal patterns that are expected if anthropogenic

warming is dominant, as revealed in fingerprint studies. The same patterns in

data provide indirect support for HMOST as well, insofar as they are incompatible

with what is expected due to changes in solar irradiance, internal variability, and

so on. As the IPCC put it in AR5: “There is strong evidence that excludes solar

forcing, volcanoes and internal variability as the strongest drivers of warming

since 1950” (Bindoff et al. 2013, p. 871). For at least a decade now, the consensus

position within climate science has been that all rivals to HMOST – hypotheses

attributing the majority of recent warming to causal factors other than increas-

ing greenhouse gas concentrations – have been eliminated. Doubts about this

support forHMOST, stemming from the fact that climate models and attribution

methodologies involve various simplifications and idealizations, are to

a significant extent allayed by the fact that findings are robust to a range of

changes in models, methodologies, and statistical assumptions (see Bindoff

et al. 2013; Eyring et al. 2021; also Parker 2010 and Lloyd 2015). In Reiss’s

terminology, then, the level of warrant for HMOST appears to be that of at least

strong warrant and perhaps even (fallible and empirical) proof. This accords

well with the IPCC’s assessment that HMOST is extremely likely, that is, has

≥95 percent probability of being correct.

Yet not everyone agrees thatHMOST is so well warranted. Dissenters include not

only climate contrarians but also some scientists and philosophers who are

unconvinced that all relevant alternatives have been eliminated. For instance,

some contend that recent warming could be caused by variations in the level of

galactic cosmic rays reaching earth, which aremodulated by solar activity and can

22 Projections of global temperature from earlier generations of climate models have also been
found to track observed changes reasonably well – these are out-of-sample tests of their
predictions – though the comparison is complicated by the fact that actual forcings over
a projection period always differ somewhat from those assumed when making the projections
(see, e.g., Hausfather 2017).
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affect cloud formation. Climate models do not standardly take account of vari-

ations in galactic cosmic rays, nor of the mechanisms by which they might affect

cloud formation, so the evidence cited earlier from modeling studies does not

speak directly to this alternative hypothesis. Nevertheless, laboratory and obser-

vational studies appear to eliminate it, and the IPCC reports with high confidence

that the contribution of cosmic rays to warming over the period 1750–2019 is

“negligible” (Forster et al. 2021, p. 958).

This sort of challenge regarding the evidence for HMOST has also been leveled

by philosopher Joel Katzav (2013). He argues that climate researchers have not

convincingly ruled out some alternatives toHMOST according towhich GHGs are

responsible for somewhat less than half of the observed warming, with internal

variability and other factors making a larger contribution than is usually claimed.

This concern is underwritten in part by the fact that attribution studies tend to rely

on simulation-based best-guess estimates of internal variability; a more thorough

investigation of the plausible magnitude of internal variability is required, he

argues, before HMOST will be well warranted. Katzav’s analysis here employs

Mayo’s (1996, 2018) error-statistical account, discussed in Section 2. His position

is essentially that, from the perspective of Mayo’s account, there is not yet good

evidence for HMOST, because HMOST is not sufficiently well probed; not

enough has been done to rule out some alternatives to it. He does concede,

however, that there might be good evidence for the weaker hypothesis that

some of the post-1950 warming is anthropogenic; this is a conclusion that was

deemed virtually certain in AR5 (Bindoff et al. 2013) and “unequivocal” in

AR6 (Eyring et al. 2021, p. 506).

Perhaps research conducted more recently, including that discussed in

Section 3.3, is enough to convince some earlier critics that there is now at

least strong warrant (in Reiss’s sense) for HMOST. If not, are holdouts simply

unreasonable or not arguing in good faith? Not necessarily, according to Reiss.

His theory is a pragmatist one. He contends that the decision to reject an

alternative hypothesis involves a judgment that the evidence is sufficient and

that, for various contextual reasons, including differences in value commit-

ments, parties might reasonably disagree in their judgments. Differences in

value commitments, for instance, might underwrite different judgments of

how bad it would be to erroneously reject an alternative hypothesis, and thus

lead to different views on when evidence is sufficient. As he puts it: “Support

and logic by themselves do not compel a decision one way or another” (2015,

p. 354).

Holdouts might also think it likely that there are causal factors contributing

significantly to recent warming that simply haven’t been identified yet, given

the complexity of the climate system. But while it is not unreasonable to think
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that some small contributors have not yet been identified, for it to turn out that

most warming since the late nineteenth century is due to some currently

unrecognized factor, with greenhouse gases playing only a small role,

a wealth of existing evidence regarding how GHGs and other factors affect

global temperature, including not only results from climate models but also

evidence drawn from empirical analyses like Folland et al. (2018) and from

analyses of paleoclimatic data, would all have to turn out to be significantly

misleading. These varied lines of evidence indicate a best estimate for GHG

warming that is not merely half of observed warming but larger than observed

warming, as illustrated in Figures 3 and 4; HMOST is already a conservative

conclusion. It is worth noting, too, that great deal of effort has been made, not

just by climate scientists but by climate contrarians as well, to identify other

causal factors that are plausibly responsible for the bulk of recent warming, with

little success. Given this, one might think that HMOST obtains some support via

what Richard Dawid and coauthors (2015) call “nonempirical confirmation” or

the “no-alternatives argument”: Despite a sustained and genuine effort to find

a viable alternative to HMOST according to which the majority of recent warm-

ing is due to some factor other than GHGs, none has been found, though many

have been proposed.

Finally, it is worth remembering that IPCC headline conclusions about

anthropogenic contributions to recent warming, like headline conclusions

about the occurrence of the warming itself (see Section 2), are undergirded by

a broad set of findings that go beyond observed changes in near-surface

temperatures. As the IPCC puts it: “Large-scale indicators of climate change

in the atmosphere, ocean, cryosphere and at the land surface show clear

responses to human influence consistent with those expected based on model

simulations and physical understanding” (Eyring et al. 2021, p. 425; see also

Fn.13 above). In other words, there is direct support in Reiss’s sense for

substantial human influence on climate not just in what is observed regarding

surface temperature change, but also in observed patterns of change in many

other climate system properties. It is in light of this totality of evidence that the

IPCC now attaches no probabilistic qualifier to the conclusion that human

influence has warmed the climate system to some extent since preindustrial

times; that such influence has occurred is deemed “an established fact” (Arias

et al. 2021, p. 41).

3.5 Progress and Pitfalls in Explanation

Over the last fifty years, explanatory practice in climate science has moved

well beyond qualitative speculation about the causes of climate phenomena.

36 Philosophy of Science

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009619301
Downloaded from https://www.cambridge.org/core. IP address: 3.141.4.80, on 04 Dec 2024 at 11:28:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009619301
https://www.cambridge.org/core


Using climate models as bookkeeping devices, and employing empirical

analysis methods too, it is now possible for climate researchers to test the

quantitative plausibility of various causal hypotheses and, more generally, to

estimate quantitatively the contributions of different causal factors to a given

climate phenomenon. As we have seen when it comes to explaining recent

global warming, climate scientists can do more than just point to an enhanced

greenhouse effect as a qualitative global warming mechanism; they can esti-

mate how much the greenhouse effect has been enhanced by increased con-

centrations of carbon dioxide and other GHGs and how much various other

factors have contributed to recent warming. And they can do so in more than

a back-of-the-envelope way; their analyses attend to the spatiotemporal pat-

terns of change that result from complex causal interactions in the climate

system.

At the same time, quantitative explanations in climate science remain

strikingly imprecise. The IPCC considers it extremely likely that at least

half of post-1950 warming – not that, say, 89 percent of it – is anthropogenic.

Very precise claims are precluded by the various obstacles to explanation

presented in Section 3.1. Researchers only have so much information about

the temperature fluctuations, methane emissions, solar variations, volcanic

emissions, and so on of the past. And state-of-the-art climate models give

somewhat different estimates of the response of the climate system to such

drivers, owing to differences in the way the models represent various climate

system processes; these differences in representation are a consequence of

both incomplete theory and limited computer power. The upshot is that

quantitative estimates of causal contributions to climate phenomena often

have significant uncertainties, and so confident conclusions about those con-

tributions must remain imprecise.

The obstacles to explanation identified in Section 3.1 also increase the risk

of some serious explanatory pitfalls. One pitfall consists in explaining away

challenges to existing understanding. Given a large causal menu of potential

explainers, as well as significant uncertainties associated with the contribu-

tions of these different causal factors, a wide range of phenomena can be given

post-hoc explanations that are at least roughly consistent with existing under-

standing. Phenomenon X might be explained with the help of one subset of

modeling results and relatively extreme but not wholly implausible assump-

tions about the past intensity of particular forcings; but if not-X had occurred

instead, then it might have been similarly possible to account for it in terms of

a different subset of modeling results and still somewhat plausible assump-

tions about forcings. The worry is that, if genuine challenges to existing

understanding arise – akin to Kuhnian anomalies – they will be explained
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away, rather than recognized as such. The risk of explaining away seems

exacerbated by the fact that climate change is such a politically charged

subject. When climate contrarians insist that phenomenon X undermines

key conclusions about climate change, there is pressure on climate scientists

to show that, in fact, it is possible to account for X without any substantive

revision to existing understanding.

A closely related pitfall is a hasty explanation. Here the problem is too

quickly assuming that a quantitatively plausible explanation of a phenomenon

is the actual explanation. Arguably, this pitfall occurred in research into the

recent “hiatus.” Some researchers saw Pacific internal variability and changes in

external forcing as competing explanations of the hiatus. One high-profile

simulation study found that, if surface temperatures in a small part of the

modeled Pacific Ocean were required to match those observed during the hiatus

period, then global temperatures in the simulations tracked observations in an

impressive way (see Kosaka and Xie 2013). The study’s conclusion was that

Pacific variability was therefore the actual cause of the hiatus – a conclusion that

other researchers promptly called out as too hasty. Moderate confidence that the

hiatus resulted from a combination of Pacific variability and changes in external

forcing, with each playing a substantial but difficult-to-precisely-quantify role,

emerged gradually in light of a large body of research, both model-based and

empirical.

The hiatus episode thus illustrates another noteworthy feature of explanatory

practice in contemporary climate science: Very often, explanations are devel-

oped in a gradual and piecemeal way, drawing on results from multiple models

and other methods of analysis as well. By contrast, general philosophical

discussions of models and explanations often seem to assume that explanations

are to be constructed using, or even delivered by, a single model – often

a relatively simple mathematical model. A central puzzle is then how such

a model can explain despite incorporating idealizations, fictions, and so on

(for a survey of views, see Jebeile and Kennedy 2015 or Bokulich 2017).

Explanatory practice in climate science illustrates that, at least in some sciences,

what occurs is not this simple form of model explanation, but rather a more

complex and messy process of explaining with the help of models. When it

comes to explanatory practice in these sciences, the question of how “false”

models can provide explanatory information remains, but it is just one import-

ant question alongside a number of others – about how results from various

studies are synthesized, used to rule out alternative explanations, used to bound

uncertainties, and so on. These other questions merit more attention from

philosophers of science.
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4 Projecting Future Climate Change

What will climate be like in the future? This question is particularly challenging

to answer. In part, this because which climate conditions will materialize in the

future depends on human choices made between now and then, which will

determine whether anthropogenic GHG emissions continue to rise rapidly or are

substantially curbed. This obstacle to prediction is partly overcome in practice

by making predictions conditional on assumptions about future atmospheric

GHG concentrations; these conditional predictions are known as projections.

Yet even projections have substantial uncertainty. This might seem unsur-

prising, given that the weather typically cannot be forecasted accurately much

beyond a week. But weather and climate prediction differ in a crucial respect:

While weather prediction seeks to predict the atmosphere’s future trajectory

based on conditions today – it seeks to predict the order in which weather

conditions will unfold – climate prediction aims to predict the statistical

distribution of weather conditions that would occur in a locale when considered

over a long time period, such as several decades (see Smith 2002). The chaotic

nature of the atmosphere entails that trajectories can be hard to predict beyond

the near future, because small errors in initial conditions can grow rapidly over

time, but chaos is not necessarily a problem for climate prediction. In many

cases, projections of future climate conditions are uncertain primarily because

of modeling uncertainty, that is, uncertainty about how to adequately model,

within the constraints of available computing power, the many causal processes,

including feedbacks, that operate in the climate system and that will shape its

response to additional GHG forcing.

This uncertainty is reflected in the conclusions that climate scientists

reach about future climate change. When such conclusions are quantitative,

they remain imprecise, just as we saw with conclusions about human

contributions to recent warming in Section 3. For example, in their Fifth

Assessment Report (AR5), the IPCC concluded that, for the moderately high

emission scenario known as RCP6.0, global temperature during 2081–2100

would likely (probability ≥66 percent) be between 1.4 and 3.1°C warmer

than during 1986–2005 (Collins et al. 2013). Similarly, in their Sixth

Assessment Report (AR6), the IPCC found: “Compared to the recent past

(1995–2014), GSAT [Global Surface Air Temperature] averaged over the

period 2081–2100 is very likely to be higher by 0.2°C–1.0°C in the low-

emissions scenario SSP1-1.9 and by 2.4°C–4.8°C in the high-emissions

scenario SSP5-8.5” (Lee et al. 2021, p. 555).

This section examines how climate scientists arrive at such conclusions

about future climate conditions. Section 4.1 discusses the use of ensembles

39Climate Science

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009619301
Downloaded from https://www.cambridge.org/core. IP address: 3.141.4.80, on 04 Dec 2024 at 11:28:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009619301
https://www.cambridge.org/core


of climate models to make projections and introduces the IPCC’s default

approach to inferring conclusions about future climate from those projec-

tions. Section 4.2 considers the epistemic significance of robustness in

projections from the latest generation of models, while Section 4.3 discusses

the significance of robustness across generations of models. Section 4.4

explains why and how climate science is beginning to move away from

the default approach’s “model democracy,” where each climate model is

given equal weight in the analysis. Section 4.5 briefly introduces an alterna-

tive approach to characterizing future climate change that does not rely on

ensemble results. Finally, Section 4.6 considers the management of inductive

risk in investigations of future climate change.

4.1 Ensembles and Their Interpretation

Paradigmatic climate variables, like global temperature, are shaped by causal

processes unfolding not just in earth’s atmosphere, but also in its oceans, on the

land surface, in its ice sheets, and more. The relevant processes are numerous,

interactive, nonlinear, and operate on a range of spatial and temporal scales.

How best to model such a complex system depends in part on one’s aims. For

some purposes, it is fine, or even advantageous, to use highly simplified models

that abstract away from most of the details. Energy-balance models, for

instance, represent the climate system as a single point (or a small set of points)

that is receiving radiation from the sun and emitting radiation back to space;

nevertheless, they are useful for some purposes and have the advantage of being

very computationally efficient. For many questions about the future that climate

scientists seek to answer, however, such as questions about regional climate

change, such simple models are clearly inadequate. Instead, climate scientists

employ the complex GCMs and ESMs introduced in Section 3, which represent

a wide range of causal processes and their interactions within a three-

dimensional climate system.

There are a few dozen state-of-the-art GCMs/ESMs in use at modeling

centers around the world today. Though they differ some in their details, these

models are all of the same broad type: They are all informed by the same basic

theoretical resources, and they all take a reductive approach to modeling the

climate system, that is, one that aims to simulate the emergence of system-level

properties from smaller-scale causal processes and components. Their differ-

ences reflect alternative choices in model development from within a shared

modeling paradigm (see also Lloyd 2015). Typically, these differences are to be

found in the range of causal processes represented, the way that sub-grid

processes are parameterized, the numerical methods used to solve equations,
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the spacing of grid points, and/or the geometry of spatial grids. These differ-

ences stem from variations in modeling groups’ expertise, interests, computa-

tional and personnel resources, and other factors.

GCMs/ESMs are a key resource in the study of future climate change. They

are used both individually and collectively – as an ensemble – to explore what

climate would be like under different greenhouse gas emission scenarios. Most

notably, in support of the assessments of the IPCC, most major modeling groups

around the world participate in periodic coupled model intercomparison pro-

jects (CMIPs) (see, e.g., Eyring et al. 2016). In these CMIPs, modeling groups

use their latest GCMs/ESMs to perform a specified set of simulations, including

simulations of past periods and of future periods under particular GHG emission

scenarios, and then deposit results from these simulations in a shared database.

In the last few IPCC assessment cycles, results from the latest CMIP, and

published research analyzing them, have served as the foundation for the

IPCC’s efforts to draw conclusions about future climate change.

How to interpret sets of projections from climate model ensembles has been

the subject of extensive debate. An epistemically conservative option is to

understand the results to indicate possibilities for the future that cannot be

ruled out, given today’s understanding (Katzav 2014; Betz 2015; Katzav et al.

2021). Thus, if CMIP models project global mean temperature changes ranging

from 1.4 to 3.1°C for a particular scenario, then warming in the range of 1.4–

3.1°C under that scenario cannot be ruled out; the ensemble indicates a “non-

discountable envelope” (Stainforth et al. 2007) of global temperature change for

the scenario. Whether warming outside the envelope is also possible is a further,

separate matter. Another option is to interpret the collection of modeling results

as a sample from a distribution of results, which stands in some relation to

a probability distribution over future climate states, that is, a distribution

indicating which climate conditions are more/less likely under the scenario.

Various methods for producing such probability distributions have been devel-

oped and applied, involving different underlying assumptions about the ensem-

ble of models (see Parker 2018 for examples and discussion).

Both types of interpretation have faced criticism. Probabilistic interpretations

are criticized for resting on assumptions about the ensemble that either are

known to be false – for example, that the ensemble is a random draw from

a space of plausible models – or are such that it is uncertain whether they hold.

The worry is that the probability distributions generated via these methods have

a false precision and might be significantly misleading (Parker and Risbey

2015; Katzav et al. 2021). Possibilistic interpretations, however, are seen as

relatively unhelpful to decision makers (Frame et al. 2007) and as understating
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what is known about future climate change (Risbey 2007; see Dethier 2023b for

a broad critique of possibilistic interpretations).

The IPCC has taken a pragmatic approach in its recent assessment reports.

For a given climate variable and a given scenario, the default approach has been

to fit a Normal distribution to the set of changes projected by the latest CMIP

ensemble, but then to interpret the central 5–95 percent of that distribution to

indicate only a likely range, that is, a range into which the probability of the

actual change falling is at least 66 percent (see Table 1 in Section 3.4). It was by

applying this default approach in AR5 that the IPCC arrived at one of the

conclusions reported above: For the moderate emission scenario known as

RCP6.0, global mean temperature during 2081–2100 would likely be between

1.4 and 3.1°C warmer than during 1986–2005 (Collins et al. 2013).

The IPCC’s default approach could be questioned in a number of respects

(see Harris 2021, Ch.2; Winsberg 2018a, Ch.7). For instance, why fit a Normal

distribution, as opposed to some other, to the results? Why downgrade only one

likelihood category (from very likely to likely) rather than two (from very likely

to more likely than not)? That said, it does have some attractive features. It

occupies an epistemically intermediate position between possibilistic and (pre-

cise) probabilistic interpretations; imprecise probabilities, in the form of likely

ranges, have the potential to avoid both false precision and substantially under-

stating what is known. In addition, via downgrading, the default approach takes

account – albeit in a coarse-grained way – of the fact that CMIP models, and

ensembles of such models, have limitations that will introduce some error in

their projections. Nevertheless, Section 4.4 will discuss a recent exception to the

default approach and reasons to think that increasingly the default approach will

be superseded.

4.2 Robustness Revisited

In addition to the ranges for global temperature change that have been the focus

of discussion above, IPCC Working Group 1 (WG1) provides geographical

maps of projected changes. In recent assessment reports, such maps typically

show, for a grid of points at earth’s surface, the average of the CMIP-projected

changes for a given climate variable (like summer mean precipitation) as well as

an indication of the extent to which the ensemble members agreed on the sign of

the change and, in some cases, the extent to they agreed that the change would

be significant in magnitude. A “significant” change here is one that exceeds

a specified threshold of internal variability, the variability in climate conditions

that occurs even in the absence of external forcing of the climate system.
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In AR6, a robust signal of change in a variable at a grid point was reported only

if both of the following conditions were met: At least 80 percent of the CMIP6

models agreed on the sign of the change of the variable at the grid point (making it

“robust”) and at least 66 percent of the CMIP6 models agreed that the magnitude

of the change would be significant (indicating a “signal”) (Lee et al. 2021). In

Figure 5, the areas of the map that have no diagonal or crossed lines indicate grid

points where these criteria were met for projected changes in annual mean

temperature under a relatively low (SSP1-2.6) and a relatively high (SSP3-7.0)

greenhouse gas emission scenario. As the figure shows, for annual mean tem-

perature change, there are many grid points where the IPCC’s criteria are met. On

maps for many other variables, however, including variables related to precipita-

tion and humidity, robust signals of change at the grid point level are rarer.23

Figure 5 Projected multi-model average change in annual mean near-surface air

temperature (Celsius) in 2041–2060 and 2081–2100 relative to 1995–2014 for

two future scenarios (SSPs), along with information about model agreement.

The number of climate models contributing projections is shown at the upper

right of each panel. (Source: Figure 4.19 in IPCC 2021: Chapter 4. Reprinted

with permission.)

23 In some cases where projections indicate that no signal would have emerged at the grid point
level by a given future date, such a signal is already emerging on aggregate/larger spatial scales
in observations. Questions about the appropriate spatial scale(s) at which to analyze projections
will be bracketed for this discussion. The general points to be made below about robustness hold
regardless of the scale of analysis.
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IPCCWG1 does not claim that such agreement among CMIPmodels has any

particular epistemic significance; they simply show where projected changes by

the CMIP ensemble do / do not display the specified levels of agreement.

Nevertheless, in practice, such agreed-upon results often are taken to be ones

that are relatively likely to be correct or that merit high confidence (see Pirtle

et al. 2010). Is this justified?

Unsurprisingly, there is a debate here too. Wendy Parker (2011) argues that

agreed-upon results from ensembles merit high confidence only under an

assumption about climate model reliability that is often difficult to justify.

Corey Dethier (2024) counters that, in the absence of specific evidence to the

contrary, it is reasonable to assume that this reliability requirement is met, at

least for binary (yes/no) questions. This is not only because core parts of climate

models are constructed from accepted physical theory but also because, if there

are types of question on which the models are unreliable – that is, where their

answers are anti-correlated with truth – evidence of this is likely to be

uncovered during the significant vetting process that they undergo. Eric

Winsberg (2018a) carves out something of a middle ground, drawing on

Schupbach’s (2018) explanatory account of robustness analysis, discussed

earlier in Section 2. He argues that whether robust climate modeling results

lend strong support to a hypothesis depends on whether they jointly serve to rule

out enough of the relevant competing hypotheses; he emphasizes that this will

vary with the hypothesis under consideration and that results from sources other

than models also play important roles in ruling out competitors.

No attempt will be made to evaluate these different positions here, though it is

worth noting that they are not necessarily inconsistent with one another. The

aims of this section are instead: First, to show that features of practice here are

strongly suggestive of a jury theorem / wisdom of crowds perspective on CMIP

ensembles, rather than one where additional ensemble members serve to rule

out particular competing explanations; second, to explain from this jury the-

orem perspective why it makes sense that the IPCC does not attribute any

particular epistemic significance to “robust” results; and, third, to show why

nevertheless checking for strong agreement among models can in principle be

epistemically valuable. This will culminate in the articulation of a form of

robustness analysis that is distinct from Schupbach’s explanatory variety.24

It is helpful to begin with an example of a jury theorem. According to

Cordorcet’s Jury Theorem (CJT), the probability that the majority opinion on

24 Ryan O’Laughlin (2021) also appeals to practices in climate science to challenge the generality
of Schupbach’s account. He argues that Elisabeth Lloyd’s (2015) “model robustness” gives
a better account of how robustness considerations increase scientists’ confidence that climate
models adequately represent important causal processes.
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a binary question is correct exceeds 0.5, and in the limit converges to 1, as the

number of voters increases, provided that the voters are competent and vote

independently, that is, provided that they each have probability r > 0.5 of

indicating the correct answer and that the probability that one voter errs is not

higher when some other voter errs (see, e.g., Dietrich and Speakerman 2021).

Similar results can be proven when relaxing these competence and independ-

ence requirements to some extent, for example, to allow for some dependence

among votes and for variation in competence across voters. Jury theorems entail

that, under the right conditions, when amajority of voters chooses one answer to

a binary question of interest rather than the other, this can be evidence – even

quite powerful evidence – for the majority answer.

In a number of salient respects, analysis of CMIP projections aligns with the

jury theorem framework. First, and most strikingly, climate scientists them-

selves often characterize CMIP models as voters; they refer to the default

practice of giving equal weight to projections from CMIP models as “model

democracy” or “one model, one vote” (Knutti 2010; Lee et al. 2021). Second,

the questions about future climate change for which the IPCC typically per-

forms robustness analysis are binary questions about the sign and significance

of projected changes, as noted earlier. Third, robustness analysis of CMIP

projections is concerned with whether a sufficient majority of models agrees

on the sign and/or magnitude of a future climate change, without regard for

which models voted which way. Finally, climate scientists recognize depend-

ence among models as a factor that complicates their analysis and have investi-

gated its extent, for example, as indicated by correlated errors in simulations of

past climate. These investigations show that some CMIP models exhibit strong

dependence – especially when they are variants of the samemodel developed by

a single modeling group – and that consequently the effective number of climate

models/voters is often much smaller than the actual number, perhaps only on the

order of a dozen or so (see, e.g., Pennell and Reichler 2011; Masson and Knutti

2011).

Yet IPCC WG1 does not appeal to a jury theorem like the CJT to argue that

agreed-upon CMIP results are likely to be correct and, indeed, refrains from

attributing any particular epistemic significance to such results, as noted earlier.

This is readily explained, however, by the fact that average model/voter compe-

tence is expected to vary significantly with the type of questions about future

climate change being asked (i.e., which variable, timescale, scenario, region,

threshold, etc.), is significantly uncertain for many questions, and for some

types of question might be quite low (r ~ 0.5) or even absent entirely (r < 0.5).

Prime candidates for the latter are questions that ask about changes in a variable

under scenarios and/or on timescales where the change will often be close to the
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threshold that distinguishes different answers, for example, close to the internal

variability threshold that marks “significant” change. For these types of question,

which are not always easy to identify in advance, even a relatively small bias

shared by many of the CMIP models – due to a poorly represented second-order

process, for example – could be enough to push their average reliability below

0.5, that is, to render them incompetent.

It is thus unsurprising that IPCCWG1 emphasized in AR5 that confidence or

likelihood statements cannot be derived from model agreement alone, without

considering model dependence as well as factors indicative of model compe-

tence, such as relevant performance in simulating past climate change and the

degree to which the physical processes that will drive the change in the

particular variable of interest are thought to be well understood and well

represented in the models (see Collins et al. 2013, p. 1043). Performing this

sort of tailored assessment of dependence and competence/reliability, however,

is outside the IPCC’s remit, insofar as it would amount to conducting significant

new research. It would also be prohibitively time-consuming for the IPCC,

given the many models participating in CMIPs and the many variables, scen-

arios, etc., for which CMIP results are presented in IPCC reports. Moreover,

given the brevity of the observational record available for testing the models, we

can expect that substantial uncertainty about how reliable models are (when it

comes to answering particular types of question about future climate change)

will remain even after such assessment efforts. Ultimately, tailored assessment

of model dependence and reliability, of a sort that might underwrite inferences

from model agreement to conclusions about likelihood or confidence, is hard

work left for climate researchers to do outside of the IPCC process and is only

beginning to be performed (see Section 4.4.)

Even in the absence of such assessment, however, it can make sense to

investigate levels of agreement among CMIP models/voters. This is because

patterns of agreement and disagreement in voting outcomes can themselves be

powerful evidence regarding model/voter reliability. This can be illustrated

from the perspective of various accounts of evidence. Here, a Bayesian per-

spective will be adopted, where evidence favors a hypothesis over a rival to the

extent that the evidence would be more likely to occur if the hypothesis is true

than if the rival is true (see also Section 2.3). Two assumptions about models/

voters will be important to the argument. First, it is assumed that, except for

perhaps a small minority, most models/voters have similar reliability. Second it

is assumed that the ensemble of models/voters has an effective size of at least

half a dozen models/voters, that is, that the dependence among their votes on the

type of question at hand is not so great that the ensemble functions like just a few

independent models/voters.
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Keeping in mind these assumptions, consider three exhaustive hypotheses

regarding the reliability, r, of typical models/voters for binary questions of

a given type, {q}. The hypotheses concern the value of r{q}, the frequency

with which typical model/voters would answer correctly when asked binary

questions of type {q}:

Hhigh: Models/voters are highly competent for {q}, that is, r{q} ≫ 0.5.

Hmid: Models/voters have only middling reliability for {q}, that is, ~(r{q}≫

0.5 or r{q} ≪ 0.5).

Hlow: Models/voters are very unreliable for {q}, that is, r{q} ≪ 0.5.

For purposes of illustration, let’s suppose that a question is of type {q} if it asks

about the sign of the change in average summer rainfall that would occur by the

late twenty-first century at a midlatitude grid point under a moderate or high

emission scenario. Suppose that the voting outcome that we observe on some

question of type {q} – concerning one model grid point – is strong majority

agreement among ensemble members that rainfall would decrease. This will

count as some (Bayesian) evidence in favor of Hhigh and Hlow and against Hmid,

because strong majority outcomes are likely ifHhigh or Hlow is true and unlikely

ifHmid is true. Strongmajority outcomes are likely ifHhigh (Hlow) is true because

highly competent (very unreliable) voters almost always answer correctly

(incorrectly) and thus almost always agree. If, when numerous questions of

type {q} are considered, near unanimous agreement is almost always observed,

this will be strong evidence againstHmid, because such a set of outcomes is very

unlikely if Hmid is true. Conversely, slim majority outcomes are likely if Hmid is

true and are unlikely ifHhigh orHlow is true; they are evidence for Hmid. Finding

that slim majority outcomes are the norm across many questions sampled from

{q} will be strong evidence for Hmid and against both Hhigh and Hlow.
25

This evidence regarding r{q} can be quite useful if one’s goal is to identify

answers that are very likely to be correct. First, consider the case where slim

majority outcomes are found to be the norm. Continuing with our example,

suppose a large number of midlatitude grid points are checked, and at most grid

points only a slim majority of CMIP models agrees on the sign of the change in

summer rainfall. Bayesian updating on this evidence will redistribute to Hmid

nearly all of the prior probability mass that had been assigned toHhigh andHlow;

the probability assigned to Hmid will approach 1. But if Hmid is true, then it will

be unclear whether r{q} exceeds 0.5 and, even if it does, the probability that the

25 Finding that intermediate levels of agreement are the norm for {q} will fail to clearly discrimin-
ate between Hmid and Hhigh (or Hlow). And a bimodal distribution – where we almost always see
either a very strong majority or a slim majority, and rarely something in between – suggests that
what was thought to be one question type actually encompasses two (or more).
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majority answer is correct may not be very high. In this situation, the pattern of

agreement does not constitute good evidence that majority answers to questions

of type {q} are “very likely to be correct.”

Next, consider the case where near unanimous outcomes are found to be the

norm. Bayesian updating on this evidence will redistribute to Hhigh and Hlow

nearly all of the prior probability mass that had been assigned to Hmid. Whether

the updated probability for Hhigh reaches some desired threshold (say, for

acceptance of Hhigh) will depend on both how the prior probability mass was

distributed among Hhigh, Hmid, and Hlow and how high the acceptance threshold

is. Notably, in situations where uncertainty about model/voter competence is

primarily about whether Hhigh or Hmid is correct (i.e., Hlow is antecedently

deemed very unlikely), the vast majority of the redistributed probability will

go to Hhigh, and a desired threshold for acceptance of Hhigh might well be

reached.26 And then from Hhigh it will follow, by Condorcet-type reasoning,

that whichever answer receives the majority of votes is very likely to be correct.

At this point, we are in a position to articulate a form of robustness analysis

(RA) that is distinct from Schupbach’s explanatory variety and that is motivated

by uncertainty about source reliability. It is applicable in situations where the

assumptions noted at the outset are met: Most sources are expected to have

relatively similar reliability (though there is uncertainty about what that reli-

ability is) and the effective size of the source pool is not too small. In voting RA,

the analyst checks whether, when answering binary questions of a given type,

a set of sources exhibits strong majority agreement with a frequency that is

consistent with their having a desired high level of competence, r*, and incon-

sistent with their having a more middling level of reliability. The value of r*,

and the thresholds defining consistency/inconsistency, are determined by how

strongly the analyst wants to avoid concluding that sources are highly compe-

tent on binary questions of a given type – and thus that their answers are very

likely to be correct – when this is false, that is, how strongly she wants to avoid

Type I errors.27 An informal variety of voting RA can be performed by simply

checking whether sources generally exhibit nearly unanimous agreement when

answering a given type of binary question, without specifying a precise value

for r* or performing any calculations. At a minimum, finding such agreement

26 Recall Bayes’ Theorem: p(H|e) = p(e|H)/p(e)*p(H). If p(e|H)/p(e) is the same for two hypoth-
eses, then the increase in their probabilities in light of evidence e will be proportional to their
priors. Here, this condition is met, i.e., p(e|Hhigh)/p(e) = p(e|Hlow)/p(e). If the prior for Hhigh is
much larger than the prior for Hlow, its proportional increase is, in absolute terms, much larger.
For example, if p(Hhigh) = 0.48 and p(Hlow) = 0.01, then Hhigh will receive 48 times (!) more of
the probability redistributed from Hmid.

27 For example, the analyst very concerned to avoid Type I errors could choose r* such that sources
need to usually display unanimity or near unanimity.
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will allow the analyst to limit attention to questions and answers where the

behavior of the voting pool is consistent with high competence. In situations

where it is antecedently deemed very implausible that sources are very unreli-

able (i.e., where Hlow is antecedently deemed very implausible), finding such

agreement will constitute strong (Bayesian) evidence that sources are highly

competent and thus that their majority answers to questions of that type are very

likely to be correct.28

While it is theoretically promising, the extent to which voting RA can be

successfully applied in the context of climate change projection remains to be

seen. There are difficult reference class issues that need to be addressed, related

to the individuation of question types. In addition, voting RA is premised on the

two conditions specified at the outset – that most models have similar reliability

and that their votes aren’t too dependent – and it is not clear how often it will be

reasonable to assume that those conditions hold for CMIP models. Even when

they are thought to hold for a given type of question about future climate

change, epistemic progress via voting RA will depend on which patterns of

agreement actually occur in CMIP projections; at present, strong majority

agreement tends to occur for questions that climate scientists could already

confidently answer, even before the latest CMIP results were produced. Finally,

it remains to be seen how oftenHlow can be assigned a very low prior probability

for climate models and how such assignments should be determined.29 Yet,

however these matters turn out, it is worth keeping in mind, and looking for

opportunities to apply, the simple insight underlying voting RA: that sometimes

the extent of agreement among scientific models is itself evidence regarding

their reliability.

4.3 Intergenerational Robustness

It was just noted that strong majority agreement among the latest CMIP models

tends to occur for questions that climate scientists could already confidently

answer. Questions about the sign and significance of long-term changes in annual

mean temperature under scenarios involving additional large increases in green-

house gas concentrations are good examples (see Figure 5). That, in most locales,

these changes will be positive in sign and will far exceed the thresholds of internal

28 Similar considerations are leveraged by Bovens and Hartmann (2004, Ch.3) in the context of
a different argument related to voter reliability.

29 If they are determined entirely subjectively, per some Bayesian approaches, then confidence in
projections via voting RA could come too easily. Note, however, that voting RA can also be
articulated in other evidential frameworks. In an error-statistical framework (Mayo 1996, 2018),
for instance, Hlow would presumably need to be ruled out via severe testing, whether formal or
informal.
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variability that make for “significant” change is supported by a host of consider-

ations, including basic physical understanding of the climate system, theoretical

analyses, changes already observed to occur, analysis of paleoclimate data, and

results from previous generations of climate models. The same is true of the

conclusion that, under moderate and high emission scenarios, global warming

during the twenty-first century is very likely to exceed that of the twentieth

century. As emphasized by Eric Winsberg (2018a, Ch.12), many important

conclusions about future climate change are supported by diverse evidential

sources – not just results from the latest CMIP models.

This, however, raises a question: What is the added value of projections from

the latest generation of climate models? To answer this, let’s consider how later

generations of CMIP models differ from earlier ones. Most models in a later

generation will be built upon models from the previous generation, but the

newer models typically will represent some climate system processes with

higher fidelity, will include representations of some processes that were left

out of models in the previous generation, and will have fixes to some “bugs”

found in the code of previous model versions. Some of the newer models might

also have finer spatial resolution as well.

Because of these differences, the models in the newer generation are expected

to be, in general, somewhat better bookkeepers than their predecessors – they

are expected to do a better job of keeping track of the quantitative contributions

of myriad interacting causal processes that determine how climate changes (see

Section 3.2). An evaluation against past data typically reveals that newer

models do perform somewhat better, on average or for the most part, across

a range of climate variables. So, in part, the newer models add value by serving

as additional, potentially higher-quality-on-average sources of information (i.e.,

voters) regarding future climate change.

In addition, insofar as newer models have finer spatial resolution, they

present an opportunity to examine (simulated) processes and dynamics in

finer detail, which may reveal interesting or surprising features worthy of

further investigation or lead to new insights about how observed climate

phenomena come about. Among their many other uses, three-dimensional

climate models like GCMs/ESMs serve as surrogate climate systems for

research purposes. Unlike for the real climate system, where observations are

gappy in space and time, information about conditions in the simulated climate

system is complete, in the sense that the researcher can access the values

assigned to model variables at every grid point and during every time step of

the simulation. Visualizations of these data can be made and studied just like

observational data. Newer models with finer spatial resolution, and with add-

itional physical processes represented, are richer surrogate systems to study.
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Finally, insofar as some of the simplifications, omissions, and bugs of previ-

ous generations of models are addressed in the newer models, running the newer

models also provides a means of testing how much those previous limitations

mattered to the results. When a new generation of CMIP models projects

changes in climate similar to those of the previous generation, this provides

some reassurance regarding the earlier projections, by showing that those

particular shortcomings didn’t make much difference to the results. Here we

see a kind of intergenerational robustness analysis (e.g., Knutti and Sedlacek

2013; Lee et al. 2021), where the logic does fit nicely with Schupbach’s

explanatory account. When the new generation of CMIP models gives projec-

tions similar to the previous generation’s, this helps to eliminate hypotheses like

(H’) the sorts of changes projected by the previous generation were significantly

biased due to the models’ relatively simpler process representations, their

omissions, their lower spatial resolution, etc. This in turn warrants increased

confidence in the hypothesis that (H) the projected changes of the previous

generation are relatively accurate. The extent of the increase in confidence

depends on how much probability had been accorded to H’. In practice, these

increases are not quantified, but intergenerational agreement is recognized as

epistemically valuable. For example, discussing patterns of temperature and

precipitation change in results from the CMIP3 and CMIP5 ensembles, Knutti

and Sedlaček (2013) remark:

We argue that this robustness across generations of models is positive, and its
consistency with simpler models, theoretical process understanding and
observed changes provides strong support for the argument that climate
change over the twenty-first century will probably exceed that observed
over the past century, even for the RCP2.6 scenario in which global
greenhouse-gas emissions are reduced by about 90% in 2100 compared with
the present.” (p. 369).

Given the long-accumulating variety of support for some conclusions about

future climate change, if a new generation of CMIP models were found to

project changes in climate that disagreed with those conclusions, suspicion

might fall first on the new modeling results themselves. This is in fact what

happened in the case of global temperature change projections from CMIP6, the

models that informed the IPCC’s AR6, as discussed in the next section.

4.4 Beyond Model Democracy

As explained in Section 4.1, the default IPCC approach to estimating future

changes in climate has been to fit a Normal distribution to the set of changes

projected by the latest CMIP ensemble, but then to interpret the central
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5–95 percent of that distribution as only a likely range, that is, a range that has at

least 66 percent probability of including the actual change that would occur (Lee

et al. 2021, Box 4.1). This default approach involves a kind of “model democ-

racy,” insofar as each model is given equal weight in the analysis; each model’s

“vote” (i.e., estimate) regarding the changes in climate that would occur counts

equally in arriving at conclusions.

There are both scientific and political reasons for the adoption of model

democracy in climate science. Scientifically, it is difficult to quantify how

much better one state-of-the-art climate model is than another for a given

predictive task (Parker 2006; Knutti 2018). First, many CMIP models look to

be of roughly similar quality from the perspective of model construction: They

are of the same general type, attempting to represent a similar set of climate

system processes, informed by the same physical theories, and with similar

spatiotemporal resolution. Second, when it comes to model performance on

past data, it is challenging to identify the most relevant performance metrics –

indicators that a model will perform well in projecting a given future climate

variable; typically, there will be various reasonable choices that can give

somewhat different verdicts on which models are best. Adding to the chal-

lenge is the fact that reliable global-scale observations of climate conditions,

against which such performance can be evaluated, are available only for the

last century or so, which is very brief in climatological terms. Thus, in the

absence of accepted methods for quantifying the relative quality of climate

models, and given that multi-model average results often outperform individ-

ual models when compared to past observations (Gleckler et al. 2008; Eyring

et al. 2021), equal weighting has remained the default.30 Equal weighting is

also convenient politically, insofar as it means that any climate models that are

(unofficially) considered to be of lower quality – which might include the

flagship models of particular countries – are not called out as such in IPCC

analyses.

Over time, however, model democracy has come to seem increasingly

problematic. When simulating past climate, some CMIP models perform

significantly better than others in some respects, and some models exhibit

above-average performance (relative to the ensemble) on a majority of com-

monly assessed climate variables (see, e.g., Gleckler et al. 2008; Eyring et al.

2021, Section 3.8.2). In addition, there are issues of double (or triple or more)

counting of votes, given that some modeling centers contribute results from

multiple models that are minor variations on one another. Consequently,

30 Further support for this choice comes from demonstrations that incorrect weighting can easily
make conclusions more inaccurate (Weigel et al. 2010).
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between AR5 and AR6, some climate scientists began developing and apply-

ing methods for weighting projections, taking account of dependence among

models as well as model performance on metrics relevant to the projected

variable (see, e.g., Knutti et al. 2017). In addition, a new methodology for

reducing uncertainty in projections, known as “emergent constraints” (Hall

and Qu 2006; Heinze et al. 2019) was increasingly gaining traction. The

methodology of emergent constraints works by, first, identifying an observ-

able (measurable) feature of present climate that is controlled by the same

physical processes that are expected to control the future change of interest

and, second, excluding or down-weighting projections frommodels that fail to

simulate that feature of present climate in a way that is consistent with

observations.

A surprising turn of events created a high-profile opportunity for the applica-

tion of these methods and led, finally, to a very limited move away from model

democracy by the IPCC in AR6 (IPCC 2021). As CMIP6 simulations were being

completed, it became clear that many of the models had projected significantly

greater warming than expected (Voosen 2021). These “hot models” also tended to

give climate sensitivity estimates well outside the 1.5–4.5°C likely range that had

been stable for decades, just as the most comprehensive analysis to date was

reaffirming that sensitivity > 4.5°C is unlikely (Sherwood et al. 2020).31 Climate

scientists faced a dilemma. On the one hand, the temperature change projections

from the hot models were judged to be implausible, in light of theoretical

understanding, past observations, and previous generations of CMIP models.

On the other hand, the hot models, like the other CMIP6 models, had been

demonstrated to perform well overall across a familiar suite of performance

metrics (when simulating past climate) and, indeed, were considered an

improvement upon previous generations of models.

The dilemma appears to have its roots in a view of model quality that is

common in many sciences. Call it the mirror view of model quality, according

to which a model is of higher quality the closer it comes to accurately and

comprehensively representing a target system in some overall sense. (We saw

a close cousin of this view in the context of data modeling in Section 2.2.)

Typical model evaluation activities in climate science fit well with such

a view. For instance, to show how successive generations of CMIP models

have improved in quality, the IPCC highlights increases in model resolution

(i.e., level of detail of representation), comprehensiveness (i.e., range of

processes represented), and pattern correlation with observations across

31 There are various conceptions of climate sensitivity. For present purposes, it can be thought of as
the long-term change in global temperature that would occur if atmospheric carbon dioxide
concentrations were instantaneously doubled from preindustrial levels.
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a wide range of variables (i.e., general representational fidelity) (see Arias

et al. 2021, Figure TS.2). The problem is that a model that looks to be of

relatively good quality from the perspective of the mirror view – its mean or

median performance across a set of variables is quite good – can nevertheless

perform quite poorly in particular respects. Even for a single variable, poor

performance in specific time periods or regimes can be partially masked when

evaluation considers a model’s average error over a longer time period or

multiple regimes.

It appears that this partial masking of poor performance is what happened in the

case of the hot models. Given the perceived implausibility of the hot models’

temperature projections, some groups of climate researchers carried out additional

tests that aimed to probe the models’ ability to simulate, specifically, how global

temperature responds to increasing greenhouse gas concentrations. For example,

one test compared simulated and observed temperature trends for the period

1981–2017, when greenhouse gas levels, but not other climate drivers, were

changing significantly (Tokarska et al. 2020). Many of the hot models were found

to perform poorly on such tests. Using emergent constraints and other weighting

methodologies, the poor-performing models were omitted or down-weighted

when estimating future temperature changes in these studies (see Figure 6).

Figure 6 For several different emission scenarios (SSPs), unconstrained and

constrained 5–95 percent ranges of global surface air temperature (GSAT)

change by the late twenty-first century from three CMIP6 studies: Liang et al.

2020 (left bars), Ribes et al. 2021 (middle bars), and Tokarska et al. 2020 (right

bars). The unconstrained ranges differ somewhat because the studies used

different subsamples of the CMIP6 archive. (Source: Figure 4.11 Panel (a) and

Panel (b) in IPCC 2021: Chapter 4. Reprinted with permission.)
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The resulting estimates were similar to those derived from the previous generation

of CMIP models and in line with expectations (Voosen 2021).32

These studies involving down-weighting of models subsequently played an

important role in AR6. Rather than following the usual practice of model

democracy, the IPCC provided “assessed warming” ranges for each scenario

by averaging the 5–95 percent ranges from three studies that down-weighted

some of the hot models (see Figure 6) and then averaging this with the

5–95 percent range derived from a simpler model (“emulator”) run with

observationally consistent parameters (see Lee et al. 2021, Section 4.3.4 for

details). This assessed warming range for each scenario was judged very likely

(probability ≥90 percent) to include the actual change that would occur.

Examples of such ranges were given earlier in this section: “Compared to the

recent past (1995–2014), GSAT [Global Surface Air Temperature] averaged

over the period 2081–2100 is very likely to be higher by 0.2°C–1.0°C in the low-

emissions scenario SSP1-1.9 and by 2.4°C–4.8°C in the high-emissions scen-

ario SSP5-8.5” (Lee et al. 2021, p.555).

The more focused tests that climate scientists carried out in response to the

hot model projections align with an alternative perspective on model quality,

a fitness-for-purpose view (see also Section 2.2). On this view, models are

tools (Knuuttila 2011; Currie 2018), and the quality of a model is greater to

the extent that it can be used successfully for a specified purpose of interest

(Parker 2009, 2020). Evaluation of model fitness-for-purpose consequently

takes a more tailored form than evaluation under the mirror view, focusing on

those aspects of the construction and performance of a model that are most

relevant to the achievement of the purpose of interest. This is precisely

how emerging methodologies used for weighting or culling climate model

projections work. Rather than considering how a climate model performs in

some general or overall sense, these methods employ weighting criteria or

exclusion tests that are specific to a particular projected variable, often

related to the physical processes that are expected control changes in that

projected variable (Knutti et al. 2017; see also Carrier and Lenhard 2019;

Kawamleh 2022).

Climate scientists are increasingly adopting a fitness-for-purpose perspective

on model evaluation (see, e.g., Baumberger et al. 2017; IPCC 2021, Ch.1 and

Ch.10). But fitness-for-purpose evaluation involves challenges that mirror-view

evaluation does not. Rather than just one general, purpose-neutral model evalu-

ation exercise, which documents model performance across a broad suite of

32 While what causedmany CMIP6models to “run hot” continues to be investigated, it is thought to
be related to changes in the representation of cloud processes. See, e.g., Zelinka et al. (2020).
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familiar performance metrics, each predictive and explanatory purpose requires

its own tailored evaluation exercise.33 This tailored evaluation needs to consider

(among other things) which metrics of performance are most relevant to the

purpose at hand and how much weight each metric should be given; as noted

earlier, often there will be various reasonable choices that can give somewhat

different verdicts on which models are best. In light of these and other chal-

lenges, there is so far no consensus on how best to move beyond model

democracy. The IPCC accordingly continued to employ model democracy in

the AR6, except for a few variables for which multiple weighting studies had

given relatively similar results. They explained: “For other quantities [besides

changes in global surface temperature, ocean warming and sea level], such

robust methods do not yet exist to constrain the projections” (IPCC 2021,

Summary for Policymakers, p.12). Perhaps this will have changed by the time

the next IPCC assessment is completed.

4.5 Storylines and Tales

The discussion so far has focused on future changes in climate as indicated by

ensembles of global climate models. The spatial resolution of GCMs/ESMs,

however, remains rather coarse; as noted earlier, surface grid points might be

spaced 100 km in the horizontal. Such models cannot simulate small-scale

impactful weather phenomena, nor can they simulate sharp variations in condi-

tions that occur at smaller scales, for example, variations in precipitation

amounts due to orography or shorelines. They are not ideal tools for obtaining

accurate information about future changes in climate at the local and regional

scales that matter to people’s lives.

A standard way of proceeding in the face of these limitations of global

models is to “downscale” GCM/ESM results. Downscaling comes in two

main varieties. Statistical downscaling involves identifying statistical relation-

ships between a GCM/ESM’s grid point values and observed local weather

conditions in past periods and then applying those relationships to the GCM/

ESM’s grid point values for future times. Dynamical downscaling involves

running a higher-resolution regional climate model where the boundary condi-

tions for the simulation are taken from global models’ simulations of future

conditions. Both approaches can be used to produce estimates of changes in

climate conditions at finer spatial scales, but each has potential limitations as

well: Model-observation relationships that hold for past periods may fail to hold

for future ones, and conditions simulated by regional climate models may be

inconsistent with those simulated by the global models that provided the

33 I owe the language of “purpose-neutral” evaluation to Donal Khosrowi (personal communication).
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regional models’ boundary conditions. In addition, downscaled results, like

GCM/ESM results, are often communicated in the form of maps showing

average projected changes or else as probability distributions over future

conditions, which tends to focus attention on mean and median changes, rather

than low-probability high-impact changes that may be important to consider in

adaptation decision making.

In part because of limitations of the standard approaches, increasingly cli-

mate scientists are employing complementary “storyline” approaches to pro-

viding climate information at regional and local scales (Shepherd 2019; Lee

et al. 2021). Storyline approaches encompass a somewhat heterogeneous set of

activities, but they have in common that they characterize weather or climate

conditions in one possible future climate state, rather than giving a statistical

summary of the future states projected by an ensemble. Oftentimes, the possible

future state that is chosen is a relatively extreme one that is estimated to have

a low probability of occurring but would be very impactful if it were to occur. It

might be chosen by examining a set of projections from global or regional

models and selecting one that shows among the largest changes in a set of

climate variables of interest. These future conditions are typically characterized

not only using maps and quantitative data, but also via narrative descriptions. In

addition, storylines often relate projected changes to societal impacts of interest

and sometimes contextualize the changes by comparing them to past events or

conditions experienced in the locale.

Some storyline approaches focus on particular weather situations relevant to

climate adaptation and planning. For example, Hazeleger et al. (2015) envision

“tales of future weather” that are produced by running a high-resolution weather

forecasting model to simulate a familiar impactful weather event (e.g., a heavy

rainfall, a heatwave, or a hurricane) but with boundary conditions – such as sea

surface temperatures – from a future climate state. The simulated event can then

be compared to the past event already experienced, for example, the simulation

indicates that 40 percent more rainfall would have fallen, which in turn can be

translated into impacts of interest, for example, regarding the extent of the

resulting flooding. As this suggests, the “tales” approach calls for tailoring the

analysis to the particular outcomes and impacts that matter to the decision

makers or stakeholders for whom the analysis is being performed.

4.6 Uncertainty, Inductive Risk, and Values

In Section 4.2, voting RA assumed that the goal of robustness analysis was to

identify projected changes that would be very likely to occur under a given

scenario. This goal reflects a particular inductive risk orientation that is
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common in science, namely, one that prioritizes avoidance of Type I errors,

which involve accepting a hypothesis that is false. It is considered better to be

epistemically cautious – to hold off on accepting a hypothesis, in effect sus-

pending judgment, until very strong evidence is available, than to accept

a hypothesis in light of preliminary evidence in its favor. Yet suspending

judgment is not without costs. In the context of climate projection, the hypoth-

eses under consideration assert that particular changes in climate would occur

under a given scenario or will actually occur in the near term. If some of these

hypotheses are true, but there is a long delay in accepting (and reporting) them

as scientists wait for evidence to grow from moderately strong to very strong,

there could be serious negative consequences. For example, a community might

suffer costly and deadly flooding in the coming decades, because they were

unaware that precipitation events were likely to become much more intense in

their region and so did not factor this in when making infrastructure choices.

How such non-epistemic considerations do and should shape climate science

practice, including its methodologies and its standards of evidence, is increas-

ingly a topic of discussion among philosophers and climate scientists (see, e.g.,

Lloyd and Oreskes 2018; Knutson et al. 2019; Shepherd 2019; Undorf et al.

2022; Pulkkinen et al. 2022).

Eric Winsberg (2018a) has argued that there are non-epistemic values “in the

nooks and crannies” of the climate models used to project future climate

change. This is because non-epistemic values shape the selection of predictive

priorities, that is, which conditions are considered most important to accurately

predict, and thereby the course of model development and the results produced.

For example, given a modeling group’s predictive priorities at time t – which

might or might not be explicitly stated and documented – the group might work

to improve the model’s representation of process A, whereas with a different set

of priorities they would have focused their efforts on process B. Changes made

in the model’s representation of process A, in turn, will constrain some future

choices in model development. After years or even decades of model develop-

ment involving many scientists, the results produced by a given climate model

will be the net effect of myriad such choices, with themotivation for many of the

choices unknown to current modelers (Biddle and Winsberg 2010; Winsberg

2018b). The upshot is that both results from individual climate models and

estimates of uncertainty produced using ensembles of climate models are

shaped in subtle and often unrecognized ways by value-mediated choices in

model development (Winsberg 2018b; Parker and Winsberg 2018).

Winsberg (2018a, Ch. 9) emphasizes that this sort of value influence is not

one that should raise worries of “wishful thinking,” where value influence

serves to systematically bias research toward some preferred conclusion.
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Nevertheless, he and Wendy Parker argue that it may be problematic in other

respects (Parker and Winsberg 2018). In particular, it may serve to perpetuate

existing inequalities, both epistemic and practical. This is because it is not

uncommon for modeling groups to prioritize accurate prediction of conditions

in their own countries and regions, and most modeling groups are located in

rich, Northern countries. As a consequence, these countries are likely to end up

with higher-quality information about their future climate conditions and thus to

be in a relatively better position to prepare. Conversely, poorer communities

that lack modeling resources are likely to end up with lower-quality informa-

tion, involving larger uncertainties, leaving them in a relatively worse position

to prepare. To help prevent these sorts of epistemic and practical inequalities,

Julie Jebeile and Michel Crucifix (2021) propose that the development and

evaluation of climate models should be informed by a diversity of standpoints

and values (see also Leuschner 2015).

Ahmed Elabbar (2023) develops a related, justice-based argument for vary-

ing evidential standards in the context of scientific assessments like those

conducted by the IPCC. His argument begins from the contingent fact that

there is background evidential inequality: Many more studies and analyses of

present and future climate change are produced for the Global North than for the

Global South. Elabbar argues that, given this evidential inequality, maintaining

fixed high evidential standards – where very strong evidence is required before

a finding is accepted and reported – will result in an unequal distribution of

“epistemic power” in scientific assessments: A higher rate of findings will be

produced for stakeholders in evidence-rich regions than will be produced for

those in evidence-poor regions. He contends that, insofar as such inequalities of

epistemic power will disadvantage those in evidence-poor regions with respect

to fundamental interests, such as basic human rights, this is a strong reason in

favor of varying evidential standards in scientific assessments. Elabbar’s argu-

ment would allow for less stringent standards both for what counts as evidence

at all in a scientific assessment (e.g., perhaps non-peer-reviewed grey literature

can count) and for what counts as enough evidence for a finding to be reported.

A risk of significantly more intense precipitation events in some regions of

Africa, for example, might be reported even when there is only preliminary

evidence supporting that conclusion.

While Elabbar argues for varying evidential standards insofar as this facili-

tates greater equality of epistemic power in a scientific assessment, a more

radical proposal would be to adopt, more generally, lower evidential standards

for asserting the presence of a climate risk or a risk of a given magnitude. Put

differently, climate scientists could choose to prioritize the avoidance of Type II

errors, which involve a failure to report (or an underestimation of) a real climate

59Climate Science

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009619301
Downloaded from https://www.cambridge.org/core. IP address: 3.141.4.80, on 04 Dec 2024 at 11:28:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009619301
https://www.cambridge.org/core


risk/change. Although prioritizing avoidance of Type II errors is uncommon in

the sciences, it is accepted practice in some applied scientific contexts – like

medical screening – where the practical consequences of such errors are par-

ticularly bad. The question has been raised whether, given the stakes, the

investigation of future changes in climate ought to be more like medical

screening than physics in this regard (Lloyd and Oreskes 2018; Lloyd et al.

2021). Indeed, the very aims of (this part of) climate science might be recon-

ceived, like those of medical screening, to go beyond the purely epistemic to

include, for example, protecting human well-being or advancing human secur-

ity (Lee 2021; see also Adams et al. 2015). Prioritizing avoidance of Type II

errors when investigating future climate risks/changes could then be justified

insofar as it serves the aims of (this part of) climate science as a practice.

One might worry, however, that lowering evidential standards for asserting

the presence of a climate risk could compromise the broader credibility of

climate science. In fact, arguments made by Stephen John (2016) suggest that,

if climate science lowers its standards for assertion, it could be reasonable for

many people to fail to defer to climate scientists’ testimony regarding climate

change. John contends that it can be reasonable for a person to fail to defer to

expert testimony when the expert’s standard for assertion (i.e., the strength of

evidence they require before asserting p) is weaker than the person’s standard

for acceptance (i.e., the strength of evidence they require before accepting that

p). The latter may depend on the person’s values, including their political

commitments; to the extent that a person judges that the consequences of

erroneously accepting that p would be particularly bad, she may rationally

have a more demanding standard for acceptance.34 According to John, however,

the IPCC currently has a standard for assertion so demanding that almost

nobody will have an even more demanding standard for acceptance, even if

they strongly value, say, economic growth. So, although many people do fail to

defer to IPCC testimony, almost nobody is currently justified in doing so, at

least not on grounds of having a more demanding standard of acceptance (John

2016). If this argument is right, then prioritizing avoidance of Type II errors

might make it reasonable, going forward, for more people to fail to accept what

climate scientists report about future climate risks.

Yet perhaps this concern is not so serious. Headline claims of the IPCC

concerning the existence of climate change, humans’ role in it, and continued

future warming have already been reached under demanding standards of

assertion. So, skepticism about those key claims would remain unreasonable

if, going forward, climate science were to adopt methods that carried a greater

34 We saw a similar claim above by Reiss (2015); see Section 3.4.
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risk of Type I error when investigating climate risks. The more serious concern

instead seems to be the possibility of a broad, unwarranted loss of credibility for

climate science, such that more people discount or ignore even very well-

supported claims about climate change.

A less radical proposal that would also avoid concerns about loss of credibil-

ity has been offered by Elisabeth Lloyd and co-authors (2021). The IPCC

assessments tend to report conclusions that the experts judged to be likely

(≥66 percent probability) or very likely (≥90 percent probability) in light of

the available evidence. Nearby conclusions – in particular conclusions judged

more likely than not (>50 percent probability) – are not routinely reported and,

indeed, are not a standard target of assessment. Lloyd et al. suggest that

routinely providing a range of conclusions in light of the available evidence –

reporting what is more likely than not, what is likely, and what is very likely –

would be more useful, given the different information needs of decision makers

in different contexts. Lloyd et al. point to the legal context in particular, where

“more likely than not” is often the relevant standard of proof. Following Lloyd

et al.’s proposal would create more work for scientists, but it has real advan-

tages. Most notably, reporting a range of conclusions at different likelihood

levels would serve a more diverse set of inductive risk preferences and would

not require building specific non-epistemic values into climate science as

a field.

5 Conclusion

The preceding sections have examined how contemporary climate scientists

have addressed three central questions about climate change: To what extent is

earth’s climate warming? What is causing this warming? What will climate be

like in the future? In doing so, it has provided a glimpse – but only a glimpse – of

the epistemology of climate science today. Even so, some general features begin

to come into view.

The central roles of computational models.While this feature of the epistem-

ology of climate science was emphasized already in Section 1, the sections that

followed demonstrated just how central computer simulation is to the practice

of climate science today. We saw that computational models are essential

resources both for developing quantitative explanations of climate phenomena

and for projecting future climate change. They also serve as surrogate climate

systems for research purposes, providing complete gridded results that can be

analyzed like observational data to gain insights into climate phenomena. They

are even employed in some efforts to estimate changes in global temperature,

when reanalysis methods, which combine information from observations and
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simulations, are used. Much of what is learned about the climate system and

climate change is mediated by computational modeling.

Diverse lines of evidence and robustness. The importance of computational

modeling notwithstanding, conclusions in which climate scientists have high

confidence typically have multiple, diverse lines of support. The conclusion that

earth’s climate is warming significantly is supported by diverse observations of

the climate system, including thermometer data, glacial retreat, sea level rise,

and so on. The conclusion that humans are the primary cause of this warming is

supported by model-based attribution studies, empirical analyses that employ

econometric-like methods, skillful model predictions, and the consistency of

observed changes with expectations based on physical understanding. Coarse-

grained conclusions about future changes in global temperature are supported

by multiple generations of modeling results, theoretical process understanding,

changes already observed to occur, and estimates of climate sensitivity that are

themselves underwritten by diverse evidence from models, paleoclimate data,

and so on. Often, lines of evidence are also accompanied by some form of

robustness analysis that demonstrates the relative insensitivity of findings to

changes in models, methods, and assumptions.

Pragmatic solutions to difficult epistemic problems. The periodic assess-

ments of the IPCC place unusual epistemic demands on climate science.

Scientists participating in these assessments are tasked with assessing and

synthesizing a vast scientific literature and then communicating conclusions,

as well as uncertainties, in a way that will be useful to policymakers. In response

to these very difficult epistemic tasks, which moreover must be completed in

a timely manner, climate scientists have developed pragmatic approaches to

evidence synthesis and to uncertainty estimation and communication, which

balance rigor with tractability and simplicity. We saw this, for example, in the

way that a quantitative estimate of the human contribution to recent warming

was reached, via a covering range over three attribution studies, and also in the

“default approach” to estimating future warming from CMIP ensembles, with

its Normal distribution and downgrading of likelihood. Such pragmatic

methods clearly have limitations. Yet critics may be hard-pressed to find more

rigorous approaches that avoid false precision and still meet the requirements of

tractability and simplicity.

These features of the epistemology of climate science are unlikely to change

anytime soon. But ongoing discussions and developments in the field point to

other possible changes. First, as noted in Section 4, climate scientists are

currently discussing (and debating) whether the field should be less uniformly

oriented toward avoiding Type I error; perhaps future climate science will

exhibit a more context-sensitive approach to methodological choices, guided
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explicitly by consideration of the stakes of error in the context at hand. Second,

some climate scientists are advocating a fundamental change in the organization

of climate modeling; rather than maintaining several dozen GCMs/ESMs at

modeling centers around the world, they envision pooling human and computa-

tional resources to develop just a few models with very high spatial resolution

(e.g., 1–10 km). Such a change might impact the epistemology of climate

science in a host of subtle ways (and perhaps some not-so-subtle ones too).

Finally, climate scientists are currently exploring how methods of machine

learning/artificial intelligence can be fruitfully employed across the field.

Depending on their level of success, these methods could become an important

part of climate science in the future, adding another layer of richness and

complexity to its epistemology.
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