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Abstract
In a recent series of papers, Poll and Schumann have been developing a simple model for estimating fuel burn for
turbofan powered, civil transport aircraft for a given mass, Mach number and flight level and in a specified ambient
temperature profile for all phases of flight. This paper focuses upon the combination of Mach number and flight level
at which an aircraft cruises with the absolute minimum fuel burn. For a given aircraft type, the information necessary
to determine these conditions must be specified and this poses a challenge. An initial attempt to obtain these data
has been described previously by the first author. In this paper, the optimum conditions are found using a completely
different approach. Starting from first principles and using established theory, the equations governing the situation
where engine overall efficiency and airframe lift-to-drag ratio both have local maxima at the same flight condition
are developed. This special case is termed the “design optimum” condition and, for a specified aircraft mass and
a specified atmospheric temperature versus pressure profile, it gives the lowest possible fuel burn for any aircraft
and engine combination. The design optimum occurs at a particular Mach number and Reynolds number, and it is a
fixed characteristic of the aircraft. The analysis reveals the significance of Reynolds number variations, wave drag,
including its derivatives with respect to both lift coefficient and Mach number, and the atmospheric properties.
Whilst wave drag is notoriously difficult to determine accurately, it is found that solutions to the equations are
not particularly sensitive to the accuracy of this quantity. Consequently, a simple, physically realistic model can
give good results. An appropriate model is developed and a complete, approximate solution is obtained. Taking
the International Standard Atmosphere as the design atmosphere, results are presented for the 53 aircraft types
previously considered by Poll and Schumann. Relative to the design optimum conditions, when Reynolds number
is constant and wave drag is zero, compressibility alone reduces L/D by about 5%, reduces lift coefficient by about
1.5% and increases drag coefficient by about 3.5%. Reynolds number variation has little effect upon L/D, but it
reduces lift coefficient and drag coefficient by a further 7% and 8% respectively. The reduction in lift coefficient
has a significant impact on the optimum cruise flight level.

In general, an aircraft’s operating optimum will not coincide with its design optimum, but deviations are expected
to be small. Therefore, using the design optimum solution as a reference point, an improved version of the operating
optimum estimation method described by Poll and Schumann in previous work is developed. This allows the estima-
tion of the conditions for absolute minimum fuel burn for an aircraft of given mass flying thorough any atmosphere.
Updated coefficients for the 53 aircraft types are given.

Nomenclature
AR wing aspect ratio
a constant in the skin friction law – Equation (17)
a∞ speed of sound = (γ�T∞)1/2
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1072 Poll and Schumann

BPR engine nominal bypass ratio
b constant in the skin friction law – Equation (17)
bf maximum fuselage width
Cd airframe drag coefficient = D/(q∞Sref )
Cdo zero-lift drag coefficient
Cdw wave drag coefficient
CL overall lift coefficient = L/(q∞Sref )
CF mean skin friction coefficient – Equation (17)
CT aircraft total net thrust coefficient = Fn/(q∞Sref )
D total drag force
e aircraft Oswald efficiency factor – Equation (20)
FL flight level
Fn net installed thrust, summed over all engines
g acceleration due to gravity (9.80665 m/sec2 at sea level)
j1, j2, j3 constants in the wave drag model – Equations (38) and (79)
K lift dependent drag factor – Equation (18)
k1 miscellaneous lift-dependent drag factor – Equation (22)
L lift force
LCV lower calorific value of fuel (≈ 43 × 106 J/kg for kerosene)
L/D lift-to-drag ratio
l characteristic streamwise length = S1/2

ref

M∞ flight Mach number = V∞ /a∞
Mcrit critical Mach number
Mcc crest critical Mach number
MDD drag divergence Mach number
MTF aerofoil technology level factor – Equation (34)
MTOM maximum permitted take-off mass
m instantaneous total aircraft mass
mf instantaneous fuel mass
p static pressure
q∞ freestream dynamic pressure = 0.5ρ∞(V∞)2 =0.5γp∞ (M∞)2

Rac characteristic Reynolds number – Equation (4)
� gas constant for air (287.05 J/(kg K))
S distance travelled through the air
Sref aerodynamic reference wing area (Airbus definition)
s wingspan
T static temperature
t/c wing thickness-to-chord ratio in the streamwise direction
V∞ true air speed
X wave drag variable – Equation (31)
γ ratio of specific heats for air (=1.4)
δ wave drag parameter – Equation (41)
δ1 wing vortex drag factor – Equation (20)
δ2 vortex drag wing-fuselage interference factor – Equation (20)
ηo propulsion system overall efficiency – Equation (1)
η1, η2 constants in Equation (11)
ι atmospheric constant – Equation (A-7)
κ atmospheric constant – Equation (64)
�w wing quarter-chord sweep angle
μ dynamic viscosity
φ atmospheric parameter – Equation (A-5)
ρ air density = p/(�T )
τ constant coefficient – Equations (59) and (C-4)
ψ 0-7 aircraft characteristic coefficients – Equations (16), (67), (60), (66), (54), (56), (58) and (62)
ω atmospheric constant – Equation (A-5)
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Superscripts
ac whole aircraft value
M at constant Mach number
P at constant pressure or constant flight level
R at constant Reynolds number

Subscripts
avg average value
B best, or local maximum, value
DO design optimum condition
ISA in the International Standard Atmosphere
LS low speed
LRC long-range cruise
max maximum value
MRC maximum-range cruise
min minimum value
OO operational optimum condition
TP at the tropopause
∞ flight, or freestream, value

1.0 Introduction
Accurate models for the performance of civil jet transport aircraft are important elements in the deter-
mination of aviation’s impact upon the environment. The environmental science community needs
estimation methods not only for the levels of the various emissions in jet engine exhaust, but also the
altitude at which they are released and, in the case of contrail formation, the overall efficiency of the
engine. This information is needed for older aircraft so that historic databases can be analysed with
greater accuracy and also for new and projected aircraft so that future environmental impact may be
assessed.

Currently, the community relies heavily on “black box” methods such as BADA [1] and PIANO [2].
However, neither method is “open source”, they have not been subjected to independent peer review,
nor has their output been fully validated in the open literature. In addition, whilst there is a free version
of PIANO, known as PIANO-X, the full version is a commercial product and, without payment for a
full licence, the differences between PIANO-X and PIANO are not visible. BADA is administered by
EUROCONTROL. It is not freely available to the general academic community and both its use and the
publication of results is controlled via a restrictive, licencing agreement. Importantly, it is not known
whether either of these methods produce accurate results in a general atmosphere, or whether, as the
needs of environmental science become more detailed and more precise, these methods are becoming
a weak link in an important chain. Consequently, there is a need for aircraft performance methods that
are open source, fully transparent, developable, capable of independent validation and freely available
to all.

In a recent series of papers, Poll [3] and Poll and Schumann [4, 5] have constructed a simple method
model for fuel burn estimation of civil transport aircraft. This provides a fully transparent, public domain
alternative to the BADA and PIANO codes. Application of the method requires a knowledge of the Mach
number and flight level at which an aircraft with a specified mass, flying in a specified atmosphere has its
absolute minimum fuel burn rate. However, this information is not easy to obtain, and an initial attempt
is described in Poll and Schumann [5] where input files are provided for 53 aircraft types.

This paper re-examines the problem of determining absolute minimum fuel burn using a first prin-
ciples approach based upon established theory. The equations governing the optimum conditions in a
general atmosphere are derived and a complete, though approximate, solution is obtained using a simple
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wave drag model. This solution not only gives a full physical picture of the conditions at the optimum,
but it can also be used to improve the accuracy of the input files for the Poll and Schumann [4, 5] method.

2.0 Background
If the overall propulsive efficiency of the engine, ηo, is defined as

ηo = FnV∞
ṁf LCV

, (1)

where Fn is the total net, installed1 thrust, V∞ is the true airspeed, ṁf is the fuel mass flow per unit time
and LCV is the lower calorific value of the fuel, then the fuel consumption per unit distance travelled
through the air is

dmf

dS
= ṁf

V∞
= −dm

dS
=
(

Fn

D

)(
L

(ηoL/D) LCV

)
. (2)

Here m is the instantaneous total mass of the aircraft, S is the distance travelled through the air, L is the
lift and D is the drag.

In the steady state cruise, lift is equal to weight and thrust is equal to drag2. Hence,

dmf

dS
=
(

mg

(ηoL/D) LCV

)
, (3)

where g is the acceleration due to gravity. Therefore, the rate at which fuel is consumed in cruise is
governed by the single aero-thermodynamic parameter (ηoL/D). Dimensional analysis reveals that, in
general, this quantity is a function of the flight Mach number, M∞ and the flight Reynolds number, Rac.
Following Poll and Schumann [4], Reynolds number is defined as

Rac = lρ∞V∞
μ∞

= S1/2
ref

(
ρ∞a∞
μ∞

)
M∞ = S1/2

ref

(
γ p∞
μ∞a∞

)
M∞, (4)

whilst the aircraft lift, drag and thrust coefficients have their usual definitions, i.e.

CL = L

q∞Sref

, CD = D

q∞Sref

and CT = Fn

q∞Sref

where q∞ = γ

2
p∞M2

∞. (5)

Here, air is taken to be an ideal gas, l is a “typical” aircraft reference length, taken to be the square root
of the reference wing area, Sref , p∞ is the atmospheric static pressure, ρ∞ the density, a∞ the local speed
of sound, μ∞ the dynamic viscosity and γ is the ratio of specific heats.

In practise, aircraft do not cruise at a fixed altitude. Rather, to maintain safe separation in the vertical
direction, they follow isobars, i.e. they fly in such a way that the local static pressure, p∞, is held constant.
By international agreement, values of static pressure are converted into “flight levels”, which are the
altitudes, measured in feet, that the aircraft would have if it was operating in the International Standard
Atmosphere (ISA) [6] divided by 100 feet.

3.0 Conditions for optimum (ηoL/D) and the design optimum
In Poll [3] it was shown that, for an aircraft with a specified mass and Mach number in steady, straight
and level flight, there is a lift coefficient, (CL)B, at which (ηoL/D) has a local maximum, or best, value.
Furthermore, there is a particular combination of Mach number, Mo, and lift coefficient, (CL)o, at which

1An engine installed in an aircraft delivers about 97% of the thrust of the same engine in isolation.
2In general, the engine thrust line will not be parallel to the flight direction and thrust will have components in both the lift and

drag directions. However, for a civil transport aircraft the differences are very small and may be neglected without significant loss
of accuracy.

https://doi.org/10.1017/aer.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.10


The Aeronautical Journal 1075

Figure 1. The variation of overall efficiency with thrust coefficient and Mach number for a civil aircraft
turbofan engine with a nominal bypass ratio of 8. Data taken from Jenkinson et al. [7].

(ηoL/D) has an absolute maximum, or optimum, value, i.e. the fuel burn per unit distance travelled
through the air has an absolute minimum.

The conditions for optimum (ηoL/D) are determined by a balance between the gradients of ηo and
L/D with respect to both Mach number, M∞, and either flight level, or p∞, i.e. when

d(ηoL/D)= ∂(ηoL/D)

∂M∞
dM∞ + ∂(ηoL/D)

∂p∞
dp∞ = 0. (6)

In straight and level flight, thrust is equal to drag and, from the definition of lift coefficient,

M∞
CL

(
∂CL

∂M∞

)p

= −2 and
p∞
CL

(
∂CL

∂p∞

)M

= −1. (7)

Therefore, Equation (6) is satisfied when

M∞
ηo

∂ηo

∂M∞
− M∞

Cd

∂Cd

∂M∞
− 2 = 0 (8)

and
CL

Cd

∂Cd

∂CL

(
1 − CT

ηo

∂ηo

∂CT

)
− 1 = 0. (9)

As discussed in Poll and Schumann [5] and as shown in Fig. 1, at fixed M∞, engine overall efficiency,
ηo, has a local maximum value at a particular value of the thrust coefficient, CT . This maximum is
strongly dependent upon the Mach number and, provided that M∞ is greater than 0.23 may be represented
by a power law, i.e. when

3Equation (11) gives the correct value of (ηo)B when M∞ is zero. However, with the exception of the special case when η2 is
unity, the gradient of (ηo)B with respect to M∞ when M∞ is zero is infinite and this cannot be correct. To avoid this problem,
Equation (11) should only be used when M∞ is greater than about 0.2.
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Figure 2. An example of the variation of aircraft lift-to-drag ratio with drag coefficient and Mach
number when the mass is fixed.

CT

ηo

∂ηo

∂CT

= 0, (10)

(ηo)B ≈ η1(M∞)
η2 , (11)

where the coefficients η1 and η2 are constant and depend upon the engine type. It follows that(
M∞
ηo

∂ηo

∂M∞

)
B

= η2. (12)

Similarly, as shown in Fig. 2, when the mass and Mach number are fixed, the aircraft lift-to-drag ratio
has a local maximum at a particular value of the drag coefficient. However, in this case, the maximum
L/D reduces as Mach number increases.

In order to have the absolute maximum value of (ηoL/D) the airframe and engine must be “perfectly”
matched, i.e. both ηo and L/D must have local maxima at the same values of Mach number and drag (=
thrust) coefficient. However, this can only be achieved at a single condition. Hence, for specified mass and
a specified atmosphere, there is only one possible combination of Mach number and Reynolds number.
Since this condition is fixed in the design process, it is appropriate to call it the “design optimum”
condition and the corresponding flight condition is a characteristic of the airframe-engine combination.
Hence, at the design optimum, Equations (8) and (9) become(

M∞
Cd

∂Cd

∂M∞

)
DO

= η2 − 2 (13)

and (
CL

Cd

∂Cd

∂CL

)
DO

= 1. (14)
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These are completely general relations that define the design optimum value of (ηoL/D) in any specified
design atmosphere and the conditions at which it occurs.

4.0 Estimation of the drag
If Equations (13) and (14) are to be solved, it is necessary to know the relation linking the drag coeffi-
cient to the lift coefficient and Mach number, otherwise known as the aircraft’s “drag polar”. For Mach
numbers greater than 0.5, the cruise drag coefficient may be expressed in the form proposed by Shevell
[8], i.e.

Cd ≈ Cd0 + KC2
L + Cdw. (15)

The first term, Cd0, is the zero-lift drag coefficient and the standard approximation is that this is
directly proportional to the aircraft’s mean skin-friction coefficient, Cac

F . Hence,

Cd0 =ψ0Cac
F , (16)

where ψ0 depends upon the aircraft geometry. In general, Cd0 also depends upon M∞. This is because
increasing the Mach number increases surface temperature4 and modifies the surface pressure distribu-
tion. The result is that skin friction reduces and the pressure, or ‘form’, drag increases, i.e. the constant
of proportionality linking Cd0 and (Cac

F ) increases. However, for Mach numbers above 0.5, the net effect
is a cancellation making Cd0 approximately independent of Mach number, see Shevell [8] (Chapter 12).
Poll and Schumann [4] have shown that the relationship between skin friction and Reynolds number, at
a Mach number of 0.5, can be approximated by the power law

Cac
F ≈ a

(Rac)
b , (17)

where a and b are constants having values of 0.0269 and 0.14, respectively.
The second term, K , is known as the low-speed, lift-dependent drag factor, and is given by

K = 1

π .AR.eLS

. (18)

Here, AR is the wing aspect ratio, defined as

AR = s2

Sref

, (19)

where s is the wingspan and eLS is the low-speed Oswald efficiency factor.
The Oswald factor captures all the lift-dependent drag effects of which vortex drag on the wings is

the primary source. However, the tailplane and the fuselage also generate vortex drag. In addition, there
are non-vortex, lift-dependent drag contributions arising because a change in lift alters the pressure
distribution over the various components, which, in turn, alters their profile drag. Therefore, the Oswald
factor is complex and, as explained by Shevell [8], it is primarily a function of aircraft geometry and
Cd0 and is given, approximately, by

eLS ≈ 1

δ1 + δ2 + π .AR.k1

. (20)

Again following Shevell, δ1 is a constant representing the wing vortex drag and is typically about
1.03, whilst δ2 represents the interference effect between the wing and the fuselage, which may be
approximated by

δ2 ≈ 2

(
bf

s

)2

, (21)

4The usual assumption is that there is no heat transfer taking place at the surface, i.e. the surface is adiabatic.
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with bf being the fuselage maximum width and k1 is the non-vortex, lift-dependent drag factor, where,
as discussed in Poll and Schumann [5],

k1 ≈ 0.80(1 − 0.53 cos(�w))Cd0, (22)

where �w is the wing quarter-chord sweep angle. Hence,

K = 1

π .AR.eLS

≈ k1 +
(

1.03 + δ2

π .AR

)
. (23)

Finally, the third term, Cdw, is the “wave drag” coefficient. For an aerofoil at a given angle-of-attack,
as the flight speed increases from a low starting value, sonic conditions will eventually be reached at the
point on the surface where the local static pressure is lowest. Usually, this point is close to the leading
edge on the wing’s upper surface and the corresponding flight Mach number is called the “critical” value,
Mcrit . Further increases in speed result in the formation of a region of supersonic flow that is bounded
by the wing surface, a “sonic interface”5 and, if the Mach number is sufficiently high, a terminating
shockwave. Once a “supersonic zone” is established, increases in either M∞, or CL, produce an increase
in drag and the terminating shockwave moves rearwards. When this zone is confined to the front portion
of the wing, the drag increases are modest, being typically less than 10 drag counts6 – see, for example,
Torenbeek [9] (Section 4.6). Consequently, the variation is known as “drag creep”. However, when the
terminating shockwave moves onto the rear part of the wing, the rate of drag rise with increasing Mach
number, or increasing CL, becomes large and this is usually referred to as “drag rise”. Since both the
creep and rise regimes are linked to the formation and subsequent development of shockwaves, the
resulting drag increments are collectively referred to as “wave” drag.

In the current approach, since, by definition, both Cd0 and K are independent of Mach number, Cdw

captures all the additional effects due to compressibility and, once this is specified as a function of Mach
number and lift coefficient, the drag polar is complete.

As shown in detail in Appendix A, the conditions at the design optimum condition are obtained by
differentiating the drag polar and, after some manipulation, it is found that, to a very good approximation,
in a completely general atmosphere, the design optimum values for CL, Cd and L/D are given by

(CL)DO ≈
(

1 − 1

2

(
b

(
1 +

(
k1

K

))
(1 + �DO)+

(
Cdw

Cd0

)
DO

((
CL

Cd

∂Cdw

∂CL

)
DO

− 1

)))(
Cd0

K

)1/2

DO

(24)

and, using equation (15),

(Cd)DO ≈ 2

(
1 − 1

2

(
b

(
1 +

(
k1

K

))
(1 + �DO)+

(
Cdw

Cd0

)
DO

((
CL

Cdw

∂Cdw

∂CL

)
DO

− 2

)))
(Cd0)DO.

(25)

Hence, (
L

D

)
DO

≈ 1

2

(
1 − 1

2

(
Cdw

Cd0

)
DO

)(
1

KCd0

)1/2

DO

. (26)

Provided that Equation (15) is used as the definition for Cdw, these relations show how the wave drag,
the Reynolds number and the atmospheric parameters affect the values of CL, Cd and L/D when (ηoL/D)
is at its design optimum value.

5The surface formed by all the points in the flow field where the local Mach number is unity.
61 drag count is equal to a change of 0.0001 in Cd.
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5.0 Representation of the wave drag
Wave drag is a very complex phenomenon, but, under normal cruising conditions, it accounts for only
about 3% of the total, see Torenbeek [9] (Fig. 14.6). Nevertheless, its strong dependence upon Mach
number and lift coefficient means that it has an influence on the aircraft’s maximum lift-to-drag ratio
and the flight conditions at which this occurs. Accurate, simple models of wave drag are rare. However,
there is one method that captures enough of the underlying physics to provide a reasonably accurate,
qualitative and quantitative description of the process.

Based on the experimentally determined drag characteristics of early, two-dimensional, transonic
aerofoil sections, Shevell [8], but see also Shevell and Bayan [10] and Shevell [11], suggested that, whilst
“drag creep” develops when M∞ exceeds Mcrit , the onset of “drag rise” is linked to the establishment of
sonic conditions at the aerofoil “crest”. This is the point on the aerofoil’s upper surface that is parallel to
the free-stream direction and locally sonic conditions are established there when M∞ reaches the “crest
critical” Mach number, Mcc. Shevell observed that Mcc depends, primarily, upon wing geometry and the
lift coefficient, whilst the wave drag coefficient itself is governed by the ratio of M∞ to Mcc.

Shevell proposed a method for estimating Mcc from a knowledge of the mean thickness-to-chord ratio
and CL. Unfortunately, it is both complex and implicit. However, as can be seen in Ref. [8] (Fig. 12.7), for
the ranges of thickness-to-chord ratio, t/c, and lift coefficient of practical interest, Mcc may be adequately
represented by the relation

(MCC)2−D ≈ 0.88 − 0.18(CL)2−D − 0.92 (t/c) . (27)

This result applies to aerofoils with “peaky” pressure distributions, i.e. those having a very low pressure
in a narrow region on the upper surface very close to the leading edge, that were typical of the high-speed
aerofoil designs developed in the 1960s and 1970s.

An important application of Shevell’s method is the determination of the aerofoil’s drag “divergence”
Mach number, MDD. This is the value above which the drag is deemed, somewhat arbitrarily, to increase
very rapidly with increasing flight Mach number. For historical reasons, there are two definitions for MDD

in general use. The first, introduced by the Douglas Aircraft Company, is the Mach number at which,
for a fixed lift coefficient, the gradient ∂Cd/∂M∞ reaches a specified value. Depending on the aerofoil,
this may be either 0.05 or 0.1. The second is the Mach number that gives a fixed drag increase relative
to the incompressible value for the same lift coefficient, i.e. a specific increment in Cdw. According
to Raymer, [12] the Boeing Company has used this definition, with the drag increment taken to be 20
counts. Clearly, when the Mach number is close to MDD, the drag coefficient will be rising rapidly and
these three criteria will yield similar results, with Shevell’s relations suggesting that(

(MDD)20

MCC

)
2−D

≈ 1.03,

(
(MDD)0.05

MCC

)
2−D

≈ 1.02 and

(
(MDD)0.1

MCC

)
2−D

≈ 1.045. (28)

The significant point of note is that MDD and Mcc are related by a simple factor that is close to unity.
This implies that the qualitative physical argument for Mcc and Shevell’s complex, first principles, esti-
mation method is neither necessary, nor does it even need to be valid, since Mcc can just be viewed
as a simple reference Mach number for the onset of drag rise. Hence, if the divergence Mach number
is known for a given aerofoil section, it can be used to estimate the corresponding value of Mcc. This
is fortuitous, since MDD has received more attention in the open literature than Mcc. Consequently, the
modified “Shevell method” may be applied to any aerofoil whose divergence Mach number is known.

The “peaky” aerofoil sections used in the original analysis were superseded by the much improved
“supercritical” designs with higher intrinsic values of MDD and reduced sensitivity to changes in CL.
The general behaviour of more modern aerofoils is given by the well-known “Korn” equation, which
appears in many references, e.g. Torenbeek [9], Mason [13] and Boppe [14] and is

((MDD)0.1)2−D ≈ MTF − 0.10(CL)2−D − 1.00 (t/c) , (29)
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where MTF is a constant “aerofoil technology” factor. Shevell [8] suggests that, for supercritical aerofoils,
MTF falls in the range of 0.93 to 0.97, which is consistent with the average value of 0.95 quoted by Mason
[13].

Whilst the arguments behind the method are based upon 2-D aerofoil characteristics, the governing
relations may be extended to cover swept wings of infinite span by applying the standard “infinite sheared
wing” transformation. This means that streamwise aerofoil section geometry is held constant as the
sweep angle, �w, is increased, whilst allowing no variation of any geometric characteristic, or flow
property, in the direction parallel to the leading edge. Using the results from Equations (28) and (29),
the extended model becomes

MCC ≈ 0.91 − 0.10

(
CL

cos2(�w)

)
− 0.96

(
t/c

cos(�w)

)
(30)

and

X = M∞cos(�w)

MCC

, (31)

where

Cdw ≈ cos3(�w) function(X) . (32)

These expressions are exact for an isolated, infinite-swept wing, but, on a full aircraft configuration,
wave drag could also develop on the fuselage and other surfaces. However, as noted by Shevell [8] on
a “well-designed” aircraft, the wave drag will always be dominated by the contribution from the wing
and it will be assumed that all the aircraft to be considered in this study are “well designed”.

On an aircraft wing, the span is finite and, in general, the local lift, streamwise chord, aerofoil section
and twist will all vary in the spanwise direction. In addition, the fuselage influences the wing flow by
modifying both the spanwise lift distribution and the local freestream velocity. All these effects influ-
ence wave drag development. Nevertheless, since most of the wave drag will be generated by the wing,
by using the aircraft’s total lift coefficient, an “average” value for t/c and taking �w to be measured
at the mean 1/4 chord line, Equations (30), (31) and (32) can still provide the basis for a reasonable
approximation of the wave drag for a complete aircraft configuration.

High Mach number drag data for total aircraft configurations rarely appear in the open literature.
However, Obert [15] (Chapter 24) gives some useable information on the variation of drag coefficient
with Mach number at various, fixed values of lift coefficient for thirteen civil transport aircraft. It is not
always clear where these data have come from, or how accurate they are, and all are presented in very
small figures. Nevertheless, divergence Mach number data for the aircraft’s “average” aerofoil section
have been extracted by assuming that pressure related drag acts in the direction normal to the 1/4 chord
line and applying the “20 additional drag counts” definition in that plane. The results are given in Fig. 3.

In every case, MDD decreases as the total aircraft CL increases and, using a straight line fit, slope and
intercept values were obtained for each case. Averaging these gives

MDD ≈ 0.76 − 0.11

(
CL

cos2(�w)

)
(33)

and, using equation (28), it follows that, for the full aircraft configuration,

(Mcc)
ac = (MTF)

ac − 0.10

(
CL

cos2(�w)

)
≈ 0.74 − 0.10

(
CL

cos2(�w)

)
. (34)

where (MTF)ac is a constant that captures the aerofoil technology factor plus the effect of the wing
thickness-to-chord ratio and, consequently, is a characteristic of the aircraft. As indicated in Fig. 3,
the average factor of 0.74 is subject to an uncertainty of at least ±7%. However, most importantly, the
data suggest that the gradient dMCC/dCL for the full aircraft configuration is close to that for the wing
in isolation.

Finally, Shevell [8] (Fig. 12.13) gives a single, empirical curve for the approximate variation of total
aircraft Cdw with the parameter X and this is given in Fig. 4.
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Figure 3. The approximate variation of mean aerofoil, drag divergence Mach number with aircraft total
lift coefficient for a range of aircraft types. Data are taken from Obert [15]. The solid line is Equation
(33), the heavy dashed lines indicate ± 7% deviation and the light dashed lines show the trend for each
individual aircraft.

Figure 4. The variation of wave drag coefficient with the characteristic parameter X - solid line is the
original Shevell [8] curve, dotted line is Equation (36) and the dashed line is Equation (38) with j1 and
j2 being set to 0.080 and 0.875, respectively.
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For the analysis carried out in Poll and Schumann [5], Shevell’s curve was represented by the
relation

(Cdw)creep ≈ cos3(�w)
(
0.016(X − 0.75)2

)
, (35)

for X less than 0.92 and for larger values

(Cdw)rise ≈ cos3(�w)
(
0.016(X − 0.75)2 + 6.5(X − 0.92)4

)
. (36)

The form of the additional term in the drag “rise” variation was chosen to reflect the “ideal” drag rise
due solely to the presence of a normal shock wave in the flow as derived by Lock [16], i.e.

(Cdw)shock ∝ cos3(�w) (M∞ cos(�w)− constant)4. (37)

Equation (36) is included in Fig. 4 and it is a reasonable approximation to the Shevell curve for values
of X up to 1.05.

6.0 Estimation of the characteristics at the design optimum condition
Clearly, if an aircraft flies at a Mach number greater than the drag divergence Mach number of the
wing’s aerofoil sections, there will be a significant fuel penalty. Hence, in practice and mainly for rea-
sons of economy, the largest operational value is usually the long-range cruise Mach number, MLRC .
Furthermore, Poll [3] (Equation (24)) has estimated that the Mach number for absolute minimum fuel
burn, Mo, is about 3.5% lower than MLRC and that the corresponding wave drag coefficient is less than 10
drag counts. This suggests that the optimum condition is likely to occur at the top end of the drag creep
region, i.e. at a value of X that is close to unity. In this region, Equation (36) is both complex and not a
particularly good match to the gradients of Shevell’s original curve. Therefore, to simplify the analysis
and improve the accuracy, the wave drag coefficient in the region of the optimum is given by the local
approximation,

Cdw

cos3(�w)
≈ j1(X − j2)

2, (38)

where j1 and j2 are constants. By matching the value and gradient of the Shevell curve when X is unity, j1

and j2 are found to be 0.080 and 0.875 respectively. This curve is also shown in Fig. 4 and the agreement
is very good for X in the range 0.97 to 1.02.

Hence, using Equations (24) and (38), at the design condition,(
M∞
Cdw

∂Cdw

∂M∞

)
DO

= 2(1 − δDO)

(
X

X − j2

)
DO

(39)

and (
CL

Cdw

∂Cdw

∂CL

)
DO

= δDO

(
X

X − j2

)
DO

, (40)

where

δDO = 2(0.10)

cos2(�w)

(
CL

MCC

)
DO

. (41)

Using Equations (A-15) and (A-16) from Appendix A, it can be shown that the optimum values of
the lift coefficient and the wave drag coefficient are related directly, i.e.(

KC2
L

Cd0

)
DO

=
(

2(1 − δDO)+ δDO(2 − η2)

2(1 − δDO)
(
1 + (

k1
K

)
b(1 + �DO)

)+ δDO

(
2 + η2 + (

k1
K

)
b
)
) (

Cdw

Cd0

)
DO

+
(

2(1 − δDO) (1 − b(1 + �DO))+ δDO(2 − η2 − b)

2(1 − δDO)
(
1 + (

k1
K

)
b(1 + �DO)

)+ δDO

(
2 + η2 + (

k1
K

)
b
)
)

. (42)
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Since δDO depends upon (CL)DO, this is an implicit expression for (CL)DO that can only be solved by
iteration. Consequently, approximate solutions will be developed.

As shown in Appendix B, over the parameter ranges of practical interest, after some manipulation,
further approximation and curve fitting, it is found that the wave drag coefficient is well represented by

(
Cdw

Cd0

)
DO

≈
(

σ 2

j1(j2)
2

)
(Cd0)DO

cos3(�w)
≈ 16.3σ 2 (Cd0)DO

cos3(�w)
, (43)

where j1 and j2 have been taken to be 0.080 and 0.875, respectively, and

σ ≈ 0.44(2η2 + b)

(
1 −

(
2 + η2

2η2 + b

)
b(1 + �DO)

)
. (44)

This expression depends upon fixed characteristics of the aircraft and the engine, the Reynolds num-
ber at the design condition and the temperature lapse rate in the atmosphere. In addition, again to a good
approximation, it is independent of δDO. Therefore, its accuracy is largely unaffected by the uncertainty
in the values of the coefficients in Equation (34).

Combining Equations (38) and (43) gives

XDO ≈ j2

(
1 + 1

σ

(
Cdw

Cd0

)
DO

)
. (45)

This is also approximately independent of δDO, with a 10% error in (Cdw)DO changing XDO by only about
1%. The optimum Mach number is given by

MDO =
(
(MCC)DO

cos(�w)

)
XDO ≈ j2

(
1 + 1

σ

(
Cdw

Cd0

)
DO

)(
(MCC)DO

cos(�w)

)
, (46)

but, since MDO is proportional to (Mcc)DO, estimates for MDO are subject to at least the same uncertainty
as (Mcc)DO, i.e. ±7%. This is not accurate enough for practical applications. However, using public
domain sources, Poll and Schumann [5] have obtained estimates for MDO, whose maximum error is about
±4% and better than ±2% in most of the cases considered. Therefore, since more accurate values are
already available, the lack of accuracy associated with Equation (46) does not present an insurmountable
problem and MDO can be treated as an input rather than an output.

In addition, from Equations (40) and (45),(
CL

Cdw

∂Cdw

∂CL

)
DO

≈
(

1 + σ

(
Cd0

Cdw

)
DO

)
δDO. (47)

Hence, from Equations (24) and (25),

(CL)DO ≈
(

1 − 1

2

(
b

(
1 +

(
k1

K

))
(1 + �DO)+ σδDO − (1 − δDO)

(
Cdw

Cd0

)
DO

))(
Cd0

K

)1/2

DO

(48)

and

(Cd)DO ≈ 2

(
1 − 1

2

(
b

(
1 +

(
k1

K

))
(1 + �DO)+ σδDO − (2 − δDO)

(
Cdw

Cd0

)
DO

))
(Cd0)DO. (49)

Both these relations involve δDO, which is a function of (CL)DO and the coefficients in Equation (34).
However, it is easily shown that both (CL)DO and (Cd)DO are also relatively insensitive to δDO, with a
10% error resulting in a change of less than 0.5% in either quantity, whilst a 10% error in (Cdw)DO only
changes (CL)DO by about 0.25% and (Cd)DO by 0.5%. Therefore, using mid-range values and taking j1

and j2 to be 0.080 and 0.875, respectively,

(CL)DO ≈ (0.985 (1 − 0.60b(1 + �DO))± 0.010)

(
Cd0

K

)1/2

DO

, (50)
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(Cd)DO ≈ 2(1.035 (1 − 0.68b(1 + �DO)) ± 0.025 ) (Cd0)DO (51)

and (
L

D

)
DO

≈ 1

2
(0.950 (1 + 0.08b(1 + �DO)) ± 0.025 )

(
1

KCd0

)1/2

DO

. (52)

These “first-order” estimates are very simple, yet surprisingly accurate, and they reveal the fundamental
character of the solution.

Using (CL)DO from Equation (50), together with Equations (34) and (41), gives

δDO ≈ 0.266

cos2 (�w)

(
1 + 0.133

cos2 (�w)
(1 − 0.60b(1 + �DO))

(
Cd0

K

) 1
2

DO

)
×

(
(1 − 0.60b(1 + �DO))

(
Cd0

K

)1/2

DO

)
. (53)

Substituting this result into Equations (48) and (49) gives accurate estimates for (CL)DO and (Cd)DO that
depend upon known aircraft geometric parameters and engine characteristics, plus (Cd0)DO, which in
turn depends upon the, yet to be determined, Reynolds number, Rac

DO.
At this stage, the presentation can be simplified by adopting the “ψ” notation originally introduced

by Poll and Schumann [4, 5]. Therefore, at the design optimum condition,

MDO =ψ4 (54)

and, using equation (A-6) from Appendix A, the Reynolds number may be written as

Rac
DO = ψ5(

1 + 1.34
(
�T

)
DO

)( (p∞)DO

(pTP)ISA

)ιDO

, (55)

where

ψ5 =
(

S1/2
ref ψ4γ pTP

μTPaTP

)
ISA

. (56)

Whilst, from the definition of lift coefficient,

(CL)DO =ψ6

( m

MTOM

) ( (pTP)ISA

(p∞)DO

)
=ψ6

( m

MTOM

) ( ψ5(
1 + 1.34

(
�T

)
DO

)
Rac

DO

) 1
ιDO

, (57)

with

ψ6 =
(

MTOM.g

(γ /2) (pTP)ISAψ
2
4 Sref

)
. (58)

where MTOM is the aircraft’s maximum permitted take-off mass. Also following Poll and Schumann
[4] and as described in Appendix B, the variation of eLS with Cac

F may be approximated by a power law
of the form

eLS ≈ E

(Cac
F )

τ . (59)

However, in contrast to Poll and Schumann [4] and following Equation (50), the definition of ψ 2 is
changed (slightly) from the original version to read

ψ2 = (CL)DO

(1 − 0.60b(1 + �DO))

(
1

Cac
F

)( 1−τ
2 )

DO

. (60)
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Combining Equations (55), (57) and (60), the value of the mass ratio at which the design cruise
coincides with the 226.32 hPa isobar, i.e. (p∞)DO equals (pTP)ISA, is( m

MTOM

)
(pTP)ISA

≈
(

1 + b

2

(
1.34 (1 − τ)

(
�T

)
DO

− 1.20 (1 + �DO)
))
ψ7, (61)

where

ψ7 = ψ2

ψ6

(
a

ψ b
5

)( 1−τ
2 )

. (62)

This simple result, which only depends upon input parameters, determines the value of ιDO, since, when
the mass ratio exceeds this value, (p∞)DO is more than 226.32 hPa and ιDO is 0.74505. Conversely, if the
mass ratio is less than, or equal to, this value, (p∞)DO is less than 226.32 hPa and ιDO is equal to one.

The Reynolds number at the design condition is then found by combining Equations (57) and (60),
eliminating (CL)DO to give,

Rac
DO ≈ ψ5(

1 + κDO

(
1.34

(
�T

)
DO

− 0.60ιDOb(1 + �DO)
))( 1

ψ7

( m

MTOM

))ιDOκDO

, (63)

where

κDO =
(

2

2 − ιDOb(1 − τ)

)
. (64)

Therefore, for a given aircraft weight, m, the design Reynolds number depends upon fixed aircraft
characteristics and the design atmospheric parameters all of which are known.

Having obtained the Reynolds number, the skin friction coefficient is given by

(
Cac

F

)
DO

≈ (
1 + κDOb

(
1.34

(
�T

)
DO

− 0.60ιDOb(1 + �DO)
)) ( a

ψ b
5

)(
ψ7

(
MTOM

m

))ιDOκDOb

. (65)

Since the Reynolds number is being raised to a power lying in the range 0.1 to 0.15, the use of Equation
(50) to give (CL)DO introduces an error in

(
Cac

F

)
DO

of less than 0.25%. Hence, an accurate approximate
solution for (Cd0)DO is obtained by using Equations (16) and (65) and values of (Cdw)DO and δDO follow
from Equations (43) and (53). Equations (46), (48) and (49) yield estimates for MDO, (CL)DO and (Cd)DO

and, using Equations (26) and (52),(
L

D

)
DO

≈ 1

2

(
1 − 1

2

(
Cdw

Cd0

)
DO

)(
1

KCd0

)1/2

DO

≈ (1 + 0.08b(1 + �DO)) ψ3

(
1

Cac
F

)( 1+τ
2 )

DO

. (66)

Finally, using Equations (11) and (66), the design value of (ηoL/D) is given by

(ηoL/D)DO ≈ (η1(MDO)
η2)

(
L

D

)
DO

= (1 + 0.08b(1 + �DO)) ψ1

(
1

Cac
F

)( 1+τ
2 )

DO

(67)

and, hence,

(ηo)DO = ψ1

ψ3

. (68)

This completes the approximate solution for the design optimum condition.

7.0 Evaluating the characteristics at the design optimum
Although the actual design optimum conditions are known only to the aircraft manufacturer, for illus-
trative purposes, it is assumed that they correspond to operation in the ISA with the aircraft at 80% of its
maximum permitted take-off mass, MTOM. This being the case, the input parameters are MTOM, the
wing reference area, Sref , span, s, quarter chord sweep angle,�w, and whether, or not, winglets are fitted,
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Figure 5. The variation of the ψ 0 correction factor based upon data from Obert [15] with the date of
the aircraft’s first flight.

the fuselage maximum width, bf , plus the nominal engine bypass ratio, BPR, together with estimates for
the zero-lift drag parameter,ψ0 (Equation 16), MDO, and (ηoL/D)DO. As described in Poll and Schumann
[5], ψ0 is determined solely by the airframe geometry, which is relatively easy to find, whilst the most
difficult parameters to estimate are MDO and (ηoL/D)DO. However, methods for obtaining these quanti-
ties from public domain sources are described in Poll and Schumann [5], which also contains complete
data sets for 53 aircraft and engine combinations. In terms of the ψ parameters, ψ1 is obtained from
(ηoL/D)DO (Equation (67)), ψ 4 is equal to MDO (Equation (54)), ψ 5 depends upon Sref and ψ 4 (Equation
(57)),ψ6 depends upon MTOM, Sref andψ 4 (Equation (58)), i.e. they depend only upon the input param-
eters, whilst ψ2, ψ 3 and ψ 7 are outputs. Since the various quantities at the design optimum conditions
for a given aircraft only need to be computed once, in order to have accurate and self-consistent values,
Equation (42) has been used to link (CL)DO to δDO and solutions obtained by iteration.

The original data base was published some three years ago and, since that time, the values have been
reviewed, refined and improved. This has resulted in some minor amendments and extensions being
made and latest updated values are presented here.

As already noted, the calculation requires a knowledge ofψ0. In Poll and Schumann [5] this parameter
was obtained from information given Fig. 40.17 of Obert [15] and, as indicted in Fig. 1 of Ref. [5], these
values are subject to an uncertainty of more than ±10%. However, Chapter 24 of Obert [15] contains
additional information on the variation of drag with Mach number at fixed values of the lift coefficient
for 11 of the aircraft types in the PS data base. These types are marked with an “∗” in Table 1. In all,
there are 31 values for the drag coefficient at a Mach number of about 0.5 for values of CL between
0.3 and 0.5 and all lie within the expected range of validity of Equation (15). Since Equation (23) is
well established, this was used to determine K , whilst ψ0 was varied until the values for Cd given by
Equation (16) were brought into best alignment with the Obert value for each aircraft. The resulting data
set had an RMS deviation of about 1% and a maximum deviation of less than 2.5%. Ratios of the new
ψ0 to the original values were then plotted against the date of the aircraft’s first flight and the result is
given in Fig. 5.

Whilst the scatter is still about ±10 %, the data indicate that, for a given aircraft geometry, ψ0 and,
hence, (Cd0)DO, has been reducing steadily over time. Although not identified in Ref. (5), this trend
is to be expected, since improved aerodynamic design has reduced the interference effects between
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Table 1. Updated input data for a range of turbofan powered, civil transport aircraft. The “∗” indicates
that additional drag data is available in Obert [15]

ICAO MTOM (kg) Sref (m2) s (m) �w (deg) Winglets bf (m) BPR ψ 0 MDO (ηL/D)DO

A30B∗ 165,000 260.0 44.83 28.0 no 5.64 4.6 8.774 0.753 4.642
A306 170,500 260.0 44.84 28.0 no 5.64 4.9 7.804 0.753 5.003
A310 138,600 219.0 43.89 28.0 no 5.64 5.0 8.376 0.772 5.544
A313 150,000 219.0 43.89 28.0 no 5.64 5.0 8.213 0.772 5.114
A318 68,000 122.4 34.10 25.0 no 3.95 5.2 7.471 0.753 5.447
A319 73,500 122.4 34.10 25.0 no 3.95 5.6 7.701 0.753 5.564
A320∗ 73,500 122.4 34.10 25.0 no 3.95 5.6 8.395 0.753 5.440
A321 89,000 122.4 34.15 25.0 no 3.95 5.3 8.631 0.753 5.376
A332 233,000 361.6 60.30 29.7 no 5.64 5.1 6.692 0.786 7.047
A333 233,000 361.6 60.30 29.7 no 5.64 5.1 6.900 0.786 6.712
A342∗ 257,000 361.6 60.30 29.7 no 5.64 6.7 7.077 0.786 6.861
A343 257,000 361.6 60.30 29.7 no 5.64 6.7 7.384 0.786 6.600
A345 372,000 437.3 63.45 31.1 no 5.64 7.5 6.731 0.796 7.144
A346 368,000 437.3 63.45 31.1 no 5.64 7.5 7.057 0.796 7.243
A359 275,000 445.0 64.75 32.0 no 5.96 9.0 6.140 0.820 8.302
A388 569,000 845.0 79.80 30.0 no 7.14 7.9 6.132 0.820 7.638
B712 54,884 92.8 28.40 25.0 no 3.40 4.6 8.722 0.724 4.211
B732∗ 52,390 99.0 28.35 25.0 no 3.76 1.0 8.406 0.685 3.499
B733∗ 61,236 102.0 28.90 25.0 no 3.76 5.1 9.200 0.729 4.251
B734 68,039 102.5 28.90 25.0 no 3.76 5.1 8.898 0.729 4.202
B735 60,555 103.7 28.90 25.0 no 3.76 5.1 8.335 0.729 4.197
B736 65,544 124.6 34.30 25.0 no 3.76 5.4 7.425 0.758 5.138
B737 70,080 124.6 34.30 25.0 no 3.76 5.2 7.611 0.758 5.195
B738∗ 79,016 124.6 34.30 25.0 no 3.76 5.1 8.182 0.758 5.106
B739 85,139 124.6 34.32 25.0 no 3.76 5.1 7.928 0.758 5.112
B742∗ 371,900 511.0 59.64 37.5 no 6.50 4.8 7.019 0.830 5.417
B743 377,800 511.0 59.64 38.5 no 6.50 4.8 6.882 0.830 5.505
B744 396,894 547.0 64.44 37.5 no 6.50 5.0 6.688 0.830 6.170
B748 442,253 594.0 68.40 37.5 no 6.50 8.0 6.249 0.830 7.133
B752∗ 113,400 189.0 38.06 25.0 no 3.76 4.7 7.102 0.772 5.585
B753 122,470 189.0 38.06 25.0 no 3.76 4.7 7.594 0.772 5.196
B762 179,169 283.3 47.57 31.5 no 5.03 4.9 6.963 0.772 6.294
B763∗ 158,758 283.3 47.57 31.5 no 5.03 4.9 6.297 0.772 6.156
B764 204,116 283.3 51.92 31.5 no 5.03 5.1 7.202 0.772 6.360
B77L 347,450 427.8 64.80 31.6 no 6.20 7.2 6.504 0.811 7.555
B772∗ 286,900 427.8 60.93 31.6 no 6.20 7.0 6.462 0.811 6.947
B77W 351,530 427.8 64.80 31.6 no 6.20 7.1 7.159 0.811 7.755
B773 299,370 427.8 60.93 31.6 no 6.20 6.3 7.069 0.811 6.812
B788 227,930 360.0 60.12 32.2 no 5.77 9.0 6.383 0.815 8.323
B789 254,011 360.0 60.12 32.2 no 5.77 9.0 6.478 0.815 8.279
E135 20,000 51.2 20.04 22.5 no 2.25 4.8 8.018 0.704 3.429
E145 22,000 51.2 20.04 22.5 no 2.25 4.7 8.380 0.704 3.686
E170 37,200 72.7 25.30 22.5 no 3.15 5.1 8.144 0.733 4.262
E195 48,790 92.5 27.73 22.5 no 3.00 5.1 8.034 0.758 4.551
MD82 67,812 112.3 32.85 22.5 no 3.35 1.7 8.956 0.753 4.106
MD83 72,575 112.3 32.85 22.5 no 3.35 1.7 8.856 0.753 4.319
GLF5 41,277 105.6 28.50 25.0 no 2.50 4.1 6.702 0.772 5.632
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Table 1. Continued.

ICAO MTOM (kg) Sref (m2) s (m) �w (deg) Winglets bf (m) BPR ψ 0 MDO (ηL/D)DO

CRJ9 38,329 76.2 23.25 26.0 no 2.69 5.1 7.351 0.753 4.460
DC93 48,988 93.0 28.44 24.0 no 3.35 1.0 7.952 0.733 3.359
RJ1H 44,225 77.3 26.34 15.0 no 3.50 5.1 9.769 0.676 3.318
B722∗ 83,820 157.9 32.92 32.0 no 3.76 1.0 7.902 0.830 3.844
A20N 79,000 122.4 35.10 25.0 yes 3.59 11.6 7.531 0.753 6.661
A21N 93,500 122.4 35.27 25.0 yes 3.95 11.6 8.035 0.753 5.962

the various components, including that between the wing and the engines, and improved manufactur-
ing techniques have reduced excrescence drag and surface roughness. These new results suggest that,
between 1970 and 2000, ψ0 has decreased by about 15% and a “best fit” gives

ψ0(
(ψ0)PS

)
original

≈ 9.0 − 4.0

(
first flight

1000

)
. (69)

Hence, a small, but significant, improvement to the overall accuracy of the method can be achieved by
applying a simple correction factor to the original values of ψ0. Where the factor for a particular aircraft
type is given by Obert, the Obert value is used. In all other cases, an estimate is obtained from Equation
(69).

In Ref. (3), nominal values for bypass ratio were provided for specific engines. However, most aircraft
can be fitted with more than one engine type and, in some instances, the precise engine type may not
be known. Therefore, to cover the more general case, the average BPR for all engine types fitted to each
aircraft type was obtained using the data provided in the ICAO engine data base [17]. These values were
used to estimate η2 via Equation (36) from Poll and Schumann [5]. The revised input values are given
in Table 1.

The parametersψ4,ψ 5 andψ 6 retain the values given in Poll and Schumann [5]. However, since their
definitions have changed, the parameters τ , ψ1, ψ 2, ψ 3 and ψ 7 must be recomputed.

The procedure began by obtaining initial estimates for τ and E using Equations (C-4) and (C-5) from
Appendix C and giving (Cd0)DO the mid-range value of 0.0175. An initial estimate for ψ2 was obtained
by combining Equations (16), (18), (50), (59) and (60) to give

ψ2 ≈ 0.985
√
π .AR.E.ψ0 (70)

and an estimate for ψ7 was then obtained from Equation (62). If the assumed value of (m/MTOM) was
less than, or equal to, ψ7, the static pressure at cruise, (p∞)DO, must be less than 226.32 hPa and ιDO was
set to unity, otherwise ιDO was set to 0.74505. Furthermore, since the aircraft is operating in the ISA,
�DO is zero when ιDO is unity, otherwise it is equal to −0.255. The initial estimate for Rac

DO found from
Equation (63), followed by

(
Cac

F

)
DO

and (CD0)DO from Equations (16) and (17). The parameters (k1)DO

and (k)DO follow from Equations (22) and (23). Taking j1 and j2 to be 0.080 and 0.875, respectively,
Equations (43) and (45) were then used to obtain (Cdw/Cd0)DO and XDO. Since MDO is assumed to be
equal to the value of ψ4 given in Poll and Schumann [5], from Equation (31)

(MCC)
ac
DO =

(
ψ4cos (�w)

XDO

)
. (71)

This was combined with (CL)DO from Equation (60) to give δDO from Equation (41). In addition, this
allows the estimation of a self-consistent value of the overall wing technology factor, (MTF)

ac, to be
obtained from Equation (34), i.e.

(MTF)
ac = constant = (MCC)

ac
DO + 0.10

(
(CL)DO

cos2 (�w)

)
. (72)
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At this point, the values of (Cdw/Cd0)DO, δDO, ιDO and η2 were used to obtain an improved estimate for
(CL)DO from Equation (42). The value of (p∞)DO was then obtained from the definition of lift coefficient
(Equation (5)). This was then used in Equation (55) to give a new value of Rac

DO and in Equations (D-1) or
(D-2) from Appendix D to give the corresponding flight level, (FL)DO. The revised values of (CL)DO and
Rac

DO were then used as input and the process repeated until full convergence was achieved. Corresponding
values of τ , E,ψ2 andψ 7 were then obtained. It was found that the difference between the fully converged
results and the initial estimates from the approximate solution was less than 2.5% for all parameters.

Finally, in Poll and Schumann [5] the values of ψ 1 were obtained by calibration using public domain
information for (ηoL/D). Therefore, since the definition of τ has changed, ψ1 must also be recalculated
to match these original values. The full set of results is given in Tables 2 and 3.

8.0 A Modified wave drag model
Shevell [8] assumes that there is a unique relationship between Cdw and X, but, in practice, this is unlikely
to be the case. However, since it is being assumed that the value of MDO is known, Shevell’s concept can
be used to construct a “bespoke” wave drag model for each aircraft that has the correct behaviour at the
design optimum condition.

The general expression for X is obtained by combining Equations (31), (34) and (71), i.e.

X = M∞cos (�w)(
(MTF)

ac − 0.10
(

CL
cos2(�w)

)) (73)

and, in the immediate vicinity of the design optimum condition, the wave drag can be represented by a
generalised form of equation (38), i.e.

Cdw

cos3(�w)
≈ j1(X − j2)

2. (74)

Therefore, at the design optimum condition, combining this with Equation (40) gives

j1 =
(

1

δ.X

)2

DO

(
CL

Cd0

∂Cdw

∂CL

)2

DO

(
Cd0

Cdw

)
DO

(
(Cd0)DO

cos3(�w)

)
(75)

and, hence,

j2 = XDO −
√

1

j1

(
Cdw

Cd0

)
DO

(
(Cd0)DO

cos3(�w)

)
. (76)

If it is assumed that the Cdw at the design condition is given by Equation (43), the corresponding lift
coefficient can be found by iterative solution of Equation (42), using the approximate result given in
Equation (50) as the first guess. This guarantees that all the conditions for the design optimum are met
and the numerical values are self-consistent.

Using Equation (A-16) from Appendix A, the revised coefficients J1 and J2 are

j1 = 1

16.3

⎛
⎝ (1 − b(1 + �))+ 16.3σ 2 Cd0

cos3(�w)
− (

1 + (
k1
K

)
b(1 + �DO)

) (KC2
L

Cd0

)
σδX

⎞
⎠

2

DO

(77)

and

j2 = XDO −
√

16.3

j1

(
σ
(Cd0)DO

cos3(�w)

)
. (78)

Since J1 and J2 depend only upon aircraft and engine characteristics, these parameters are also
characteristics of the aircraft-engine combination. Hence, J1 and J2 are included in Table 3.
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Table 2. Estimates of the performance characteristics at the design condition (aircraft operating in
the ISA with a mass of 80% MTOM)

ICAO MDO (FL)DO (Rac)DO (MTF)ac (CL)DO (L/D)DO (Cd)DO (ηL/D)DO J1 J2

A30B 0.753 358.5 9.25E+07 0.712 0.548 15.7 0.0350 4.642 0.074 0.868
A306 0.753 340.2 9.86E+07 0.721 0.519 16.9 0.0307 5.003 0.076 0.871
A310 0.772 373.1 8.14E+07 0.744 0.558 16.9 0.0329 5.544 0.073 0.869
A313 0.772 358.9 8.69E+07 0.738 0.564 17.2 0.0329 5.114 0.075 0.870
A318 0.753 392.0 5.42E+07 0.754 0.564 18.2 0.0309 5.447 0.075 0.871
A319 0.753 377.6 5.81E+07 0.755 0.569 18.0 0.0316 5.564 0.075 0.871
A320 0.753 385.4 5.59E+07 0.750 0.590 17.0 0.0347 5.440 0.073 0.869
A321 0.753 351.1 6.51E+07 0.740 0.606 16.9 0.0359 5.376 0.074 0.869
A332 0.786 365.8 1.10E+08 0.762 0.528 21.1 0.0250 7.047 0.076 0.872
A333 0.786 368.6 1.09E+08 0.761 0.535 20.7 0.0258 6.712 0.076 0.872
A342 0.786 354.3 1.16E+08 0.760 0.551 20.5 0.0268 6.861 0.077 0.872
A343 0.786 358.1 1.14E+08 0.757 0.561 20.0 0.0281 6.600 0.076 0.872
A345 0.796 305.2 1.53E+08 0.762 0.512 20.9 0.0245 7.144 0.078 0.874
A346 0.796 312.3 1.49E+08 0.759 0.523 20.3 0.0258 7.243 0.077 0.873
A359 0.820 377.8 1.21E+08 0.791 0.493 21.9 0.0225 8.302 0.078 0.874
A388 0.820 338.9 1.95E+08 0.794 0.446 20.6 0.0216 7.638 0.082 0.876
B712 0.724 369.0 5.06E+07 0.713 0.582 15.8 0.0367 4.211 0.072 0.867
B732 0.685 361.0 5.15E+07 0.665 0.555 15.5 0.0357 3.499 0.072 0.866
B733 0.729 367.4 5.39E+07 0.715 0.578 15.0 0.0384 4.251 0.072 0.867
B734 0.729 346.9 5.86E+07 0.710 0.579 15.4 0.0377 4.202 0.074 0.868
B735 0.729 362.9 5.55E+07 0.721 0.550 15.9 0.0346 4.197 0.074 0.870
B736 0.758 405.9 5.14E+07 0.759 0.564 18.2 0.0310 5.138 0.075 0.871
B737 0.758 393.4 5.46E+07 0.758 0.567 18.0 0.0315 5.195 0.075 0.871
B738 0.758 373.4 6.01E+07 0.754 0.581 17.4 0.0335 5.106 0.074 0.870
B739 0.758 359.3 6.42E+07 0.749 0.585 17.8 0.0330 5.112 0.075 0.871
B742 0.830 333.4 1.56E+08 0.707 0.459 17.7 0.0260 5.417 0.074 0.868
B743 0.830 327.6 1.59E+08 0.697 0.454 17.9 0.0254 5.505 0.073 0.867
B744 0.830 337.2 1.59E+08 0.714 0.466 19.0 0.0246 6.170 0.074 0.869
B748 0.830 327.7 1.72E+08 0.732 0.458 20.4 0.0224 7.133 0.077 0.872
B752 0.772 361.1 8.01E+07 0.770 0.497 17.8 0.0280 5.585 0.078 0.874
B753 0.772 354.5 8.20E+07 0.760 0.522 17.0 0.0306 5.196 0.078 0.873
B762 0.772 350.6 1.02E+08 0.719 0.500 18.4 0.0272 6.294 0.076 0.871
B763 0.772 362.7 9.73E+07 0.730 0.470 19.5 0.0240 6.156 0.077 0.873
B764 0.772 340.7 1.05E+08 0.723 0.544 19.5 0.0278 6.360 0.075 0.870
B77L 0.811 326.2 1.43E+08 0.772 0.519 21.7 0.0239 7.555 0.078 0.873
B772 0.811 356.7 1.29E+08 0.767 0.495 20.5 0.0242 6.947 0.078 0.874
B77W 0.811 332.6 1.40E+08 0.767 0.542 20.5 0.0264 7.755 0.076 0.872
B773 0.811 355.8 1.29E+08 0.760 0.515 19.4 0.0266 6.812 0.077 0.872
B788 0.815 380.4 1.06E+08 0.785 0.518 21.8 0.0238 8.323 0.077 0.873
B789 0.815 361.2 1.17E+08 0.785 0.518 21.8 0.0238 8.279 0.077 0.873
E135 0.704 436.9 2.64E+07 0.709 0.562 15.2 0.0370 3.429 0.074 0.869
E145 0.704 419.9 2.87E+07 0.706 0.570 14.9 0.0382 3.686 0.073 0.868
E170 0.733 403.7 3.84E+07 0.742 0.579 16.3 0.0355 4.262 0.074 0.870
E195 0.758 404.1 4.47E+07 0.765 0.560 16.3 0.0344 4.551 0.075 0.871
MD82 0.753 392.9 5.17E+07 0.744 0.616 16.2 0.0380 4.106 0.072 0.866
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Table 2. Continued.

ICAO MDO (FL)DO (Rac)DO (MTF)ac (CL)DO (L/D)DO (Cd)DO (ηL/D)DO J1 J2

MD83 0.753 376.9 5.58E+07 0.745 0.610 16.4 0.0371 4.319 0.072 0.867
GLF5 0.772 453.9 3.83E+07 0.765 0.508 17.3 0.0293 5.632 0.077 0.873
CRJ9 0.753 389.3 4.33E+07 0.739 0.504 15.9 0.0316 4.460 0.076 0.872
DC93 0.733 392.7 4.58E+07 0.719 0.565 16.5 0.0343 3.359 0.074 0.868
RJ1H 0.676 361.8 4.47E+07 0.713 0.624 15.0 0.0417 3.318 0.073 0.869
B722 0.830 418.8 5.96E+07 0.734 0.504 15.1 0.0334 3.844 0.072 0.865
A20N 0.753 373.1 5.93E+07 0.786 0.598 19.8 0.0303 6.661 0.076 0.873
A21N 0.753 347.0 6.61E+07 0.777 0.625 19.2 0.0326 5.962 0.077 0.873

For values of X greater than XDO, an additional term is required to capture the drag generated by
strong shock waves. At this stage in the development of the model, it is proposed that the additional
wave drag as X increases be represented by a variant of Equation (37), i.e.(

Cdw

cos3(�w)

)
shock

≈ j3(X − XDO)
4, (79)

where j3 is a constant that needs to be determined by calibration. However, initial indications are that j3

is of order 100. Hence, for values of X greater than XDO, the wave drag coefficient is given by

(Cdw)rise ≈ cos3(�w)
(
j1(X − j2)

2 + j3(X − XDO)
4
)

. (80)

This revised model allows the aircraft’s lift-to-drag ratio to be estimated for any combination of Mach
number and lift coefficient.

9.0 Updating the PS method
As described in Poll and Schumann [4, 5], application of the PS method for the estimation of the cruise
values of (ηoL/D) for any combination of mass, Mach number and flight level7 requires a knowledge of
the operational optimum conditions for (ηoL/D) for the actual mass and the specific atmosphere being
encountered. The operational optima are governed by Equations (8) and (9), whilst the design optimum
is governed by Equations (13) and (14), and so, in general, the two conditions will not be the same.
Whilst the full model described in the previous sections can always be used to determine the opera-
tional optimum, this will need to be done numerically. However, in practise, the differences between the
design optimum and the operational optima are expected to be small and so, to a good approximation,
operational optimum conditions may be expressed as perturbations of the design optimum values.

The estimation of the operational optimum begins by determining the value of the pressure variation
parameter, iOO, see Equation (A-7), in the actual atmosphere. Using Equation (61), if

m

MTOM
>
( m

MTOM

)
(pTP)ISA

≈
(

1 + b

2

(
1.34 (1 − τ)

(
�T

)
OO

− 1.20 (1 + �OO)
))
ψ7, (81)

ιOO is equal to 0.74505, otherwise, ιOO is equal to unity. Then, with m,
(
�T

)
OO

and �OO specified, using
Equations (65), (60), (66) and (67),

(
Cac

F

)
OO

≈ (
1 + κOOb

(
1.34

(
�T

)
OO

− 0.60ιOOb(1 + �OO)
)) ( a

ψ b
5

)(
ψ7

(
MTOM

m

))ιOOκOOb

, (82)

(CL)OO ≈ (1 − 0.60b(1 + �OO)) ψ2

(
Cac

F

)( 1−τ
2 )

OO
, (83)

7Values must lie within the ranges of validity specified in Poll and Schumann [4, 5].
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Table 3. Revised estimates of the PS characteristic parameters

ICAO τ ψ 0 ψ 1 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 η1 η2

A30B 0.150 8.774 0.132 8.104 0.444 0.753 9.17E+07 0.693 0.844 0.346 0.545
A306 0.134 7.804 0.148 8.081 0.501 0.753 9.17E+07 0.716 0.777 0.344 0.538
A310 0.163 8.376 0.152 8.038 0.464 0.772 8.63E+07 0.657 0.923 0.376 0.536
A313 0.159 8.213 0.142 8.066 0.475 0.772 8.63E+07 0.711 0.845 0.343 0.537
A318 0.163 7.471 0.154 7.931 0.516 0.753 6.29E+07 0.607 1.005 0.348 0.532
A319 0.166 7.701 0.155 7.962 0.503 0.753 6.29E+07 0.656 0.942 0.358 0.522
A320 0.179 8.395 0.146 7.924 0.459 0.753 6.29E+07 0.656 0.976 0.370 0.522
A321 0.180 8.631 0.143 7.989 0.449 0.753 6.29E+07 0.794 0.816 0.369 0.528
A332 0.149 6.692 0.197 8.088 0.590 0.786 1.13E+08 0.645 0.893 0.379 0.535
A333 0.153 6.900 0.185 8.087 0.572 0.786 1.13E+08 0.645 0.904 0.368 0.534
A342 0.156 7.077 0.188 8.110 0.562 0.786 1.13E+08 0.711 0.828 0.376 0.498
A343 0.161 7.384 0.177 8.103 0.537 0.786 1.13E+08 0.711 0.843 0.372 0.498
A345 0.135 6.731 0.204 8.159 0.595 0.796 1.26E+08 0.831 0.665 0.382 0.479
A346 0.141 7.057 0.203 8.169 0.568 0.796 1.26E+08 0.822 0.686 0.399 0.479
A359 0.132 6.140 0.243 8.013 0.641 0.820 1.31E+08 0.569 0.943 0.413 0.445
A388 0.100 6.132 0.238 8.055 0.644 0.820 1.80E+08 0.620 0.773 0.406 0.470
B712 0.174 8.722 0.116 7.893 0.437 0.724 5.26E+07 0.699 0.906 0.317 0.545
B732 0.158 8.406 0.101 7.911 0.449 0.685 5.15E+07 0.698 0.868 0.285 0.627
B733 0.171 9.200 0.118 7.940 0.416 0.729 5.56E+07 0.700 0.899 0.335 0.534
B734 0.164 8.898 0.118 7.984 0.433 0.729 5.57E+07 0.774 0.801 0.324 0.534
B735 0.154 8.335 0.122 7.957 0.462 0.729 5.60E+07 0.681 0.881 0.313 0.534
B736 0.163 7.425 0.146 7.910 0.518 0.758 6.39E+07 0.567 1.071 0.327 0.527
B737 0.165 7.611 0.146 7.937 0.507 0.758 6.39E+07 0.607 1.012 0.334 0.531
B738 0.173 8.182 0.139 7.973 0.473 0.758 6.39E+07 0.684 0.924 0.341 0.533
B739 0.168 7.928 0.141 8.007 0.490 0.758 6.39E+07 0.737 0.847 0.334 0.533
B742 0.115 7.019 0.164 7.819 0.536 0.830 1.42E+08 0.654 0.754 0.339 0.541
B743 0.113 6.882 0.167 7.769 0.543 0.830 1.42E+08 0.664 0.734 0.341 0.542
B744 0.119 6.688 0.185 7.844 0.567 0.830 1.47E+08 0.652 0.766 0.360 0.537
B748 0.115 6.249 0.215 7.836 0.614 0.830 1.53E+08 0.669 0.735 0.382 0.468
B752 0.125 7.102 0.173 8.043 0.548 0.772 8.02E+07 0.623 0.870 0.362 0.542
B753 0.132 7.594 0.157 8.097 0.516 0.772 8.02E+07 0.673 0.829 0.351 0.542
B762 0.129 6.963 0.189 7.928 0.552 0.772 9.81E+07 0.657 0.814 0.393 0.538
B763 0.119 6.297 0.191 7.842 0.605 0.772 9.81E+07 0.582 0.880 0.362 0.538
B764 0.154 7.202 0.176 7.991 0.540 0.772 9.81E+07 0.748 0.779 0.374 0.534
B77L 0.140 6.504 0.213 8.121 0.613 0.811 1.27E+08 0.765 0.730 0.385 0.486
B772 0.127 6.462 0.206 8.024 0.608 0.811 1.27E+08 0.632 0.837 0.376 0.490
B77W 0.152 7.159 0.211 8.136 0.557 0.811 1.27E+08 0.774 0.751 0.420 0.489
B773 0.137 7.069 0.196 8.079 0.557 0.811 1.27E+08 0.659 0.834 0.391 0.507
B788 0.146 6.383 0.235 7.984 0.615 0.815 1.17E+08 0.589 0.954 0.418 0.445
B789 0.147 6.478 0.232 8.029 0.610 0.815 1.17E+08 0.657 0.861 0.417 0.445
E135 0.158 8.018 0.105 7.691 0.463 0.704 3.81E+07 0.487 1.232 0.273 0.541
E145 0.163 8.380 0.110 7.732 0.445 0.704 3.81E+07 0.536 1.141 0.299 0.543
E170 0.168 8.144 0.122 7.858 0.468 0.733 4.72E+07 0.589 1.060 0.309 0.533
E195 0.157 8.034 0.134 7.947 0.478 0.758 5.50E+07 0.569 1.062 0.324 0.534
MD82 0.190 8.956 0.107 7.947 0.424 0.753 6.03E+07 0.660 1.010 0.301 0.611
MD83 0.187 8.856 0.113 7.993 0.432 0.753 6.03E+07 0.706 0.939 0.313 0.611
GLF5 0.131 6.702 0.181 7.727 0.557 0.772 5.99E+07 0.406 1.329 0.376 0.558
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Table 3. Continued.

ICAO τ ψ 0 ψ 1 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 η1 η2

CRJ9 0.130 7.351 0.142 7.750 0.509 0.753 4.96E+07 0.550 0.993 0.325 0.533
DC93 0.162 7.952 0.097 7.907 0.475 0.733 5.34E+07 0.606 1.009 0.248 0.627
RJ1H 0.187 9.769 0.089 8.058 0.400 0.676 4.49E+07 0.776 0.877 0.274 0.534
B722 0.135 7.902 0.118 7.776 0.463 0.830 7.88E+07 0.477 1.134 0.286 0.627
A20N 0.184 7.531 0.176 7.930 0.521 0.753 6.29E+07 0.705 0.923 0.376 0.385
A21N 0.193 8.035 0.152 7.934 0.490 0.753 6.29E+07 0.835 0.801 0.347 0.385

(
L

D

)
OO

≈ (1 + 0.08b(1 + �OO)) ψ3

(
1

Cac
F

)( 1+τ
2 )

OO

(84)

and

(ηoL/D)OO ≈ (1 + 0.08b(1 + �OO)) ψ1

(
1

Cac
F

)( 1+τ
2 )

OO

. (85)

Finally, Equation (46) is used to provide a correction to the Mach number,

MOO ≈ψ4

(
1 − 0.10

cos2 (�w)

(
(CL)OO − (CL)DO

(MCC)DO

))
. (86)

In the Poll and Schumann [4, 5] method, ψ1, ψ 2, and ψ 3 are assumed to be constant. However, the
solutions developed here, specifically Equations (60), (66) and (67), show that these parameters are
Reynolds number dependent. This dependency is both direct and indirect, but, in all cases, it is very
weak. Therefore, if these parameters are evaluated at the design condition, they may be taken to be
constant without any significant loss of accuracy. The relevant values of ψ1, ψ 2 and ψ 3 are those listed
in Table 3.

10. Discussion
As noted in the previous section, Poll and Schumann [5] have already obtained estimates for MDO (=ψ 4)
that are adequate for practical application. These can be compared with the estimates obtained using the
present approach and the results are given in Fig. 6. The estimates and the data correlate extremely well,
but the scatter is ±6%, which is about the expected level due to the uncertainty in the value of intercept
in Equation (34). Hence, estimates for MDO can only be improved by improving the accuracy of (Mcc)DO

and this requires detail that is unlikely to ever appear in the open literature.
In the current approach, the Poll and Schumann [5] estimates for MDO are combined with the

(accurate) estimates of XDO from Equation (45) to obtain a value of (Mcc)DO for each aircraft, i.e.

(MCC)
ac
DO = MDOcos(�w)

XDO

. (87)

A “least squares” fit to the resulting values gives

(MCC)
ac
DO ≈ 0.75 − 0.10

(
(CL)DO

cos2 (�w)

)
. (88)

The close agreement between this result and Equation (34) is a very strong indication that the drag
estimates are accurate, but, as already noted, the intrinsic uncertainty is too great for a combination of
Equations (46) and either (34) or (88) to yield satisfactory estimates for MDO.

Apart from MDO and, consequently, δDO, the uncertainty associated with all the other parameters is
very small. The principal finding, and the result upon which the estimates are based, is the estimate
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Figure 6. Comparison of the estimates of the optimum Mach number with the values given by Poll and
Schumann [5]. The dashed lines indicate a deviation of ±6%.

for the Reynolds number at the design optimum (ηoL/D) – see Equation (63). This depends upon the
aircraft’s geometry, the instantaneous aircraft mass, m, and the properties of the atmosphere. Once this
quantity is determined, the zero-lift drag coefficient, (Cd0)DO and the lift-dependent drag factor, KDO,
follow immediately from Equations (16), (17) and (23). The second key result is the expression for the
wave drag coefficient at the design optimum as given in Equation (43), i.e.

(Cdw)DO ≈ 3.2

(
(2η2 + b)

(
1 −

(
2 + η2

2η2 + b

)
b(1 + �DO)

))2(
(Cd0)

2

cos3(�w)

)
DO

. (89)

Taking mid-range values for the various parameters, a typical value for (Cdw)DO is found to be about
8 drag counts or 2.5% of the total drag. This in consistent with statements in Torenbeek [9] that “com-
pressibility drag in fuel economical flight is typically between 5 and 10 counts’ or about 3% of the total
– see Fig. 14.6 of Ref. (9). The wave drag coefficient is found to increases as (Cd0)DO squared and also as
almost η2 squared. Consequently, aircraft with a smaller wing area per passenger and using low bypass
ratio engines will have the highest values of wave drag at the optimum condition. This situation is typical
of the older, short haul, single aisle aircraft. Conversely, long haul, twin aisle aircraft with large wing
area per passenger and high bypass ratio engines will have low values. The wave drag also depends upon
both the local temperature and the lapse rate.

The approximate solution also allows the effects of compressibility and variable Reynolds number on
the maximum value of the lift-to-drag ratio and the lift coefficient and Mach number at which it occurs
to be identified. As shown, in general, the results may be expressed as(

L

D

)
DO

∝ 1

2

(
1

KCd0

)1/2

DO

, (CL)DO ∝
(

Cd0

K

)1/2

DO

and (Cd)DO ∝ 2(Cd0)DO. (90)

When the Reynolds number is constant, i.e. changes in speed and altitude do not change Reynolds
number, and there is no wave drag, the constants of proportionality are all unity.

As shown in Equations (50), (51) and (52), when both wave drag and Reynolds number variation are
present and the aircraft is flying in the International Standard Atmosphere, the constants of proportion-
ality for flight in the troposphere are found to be about 0.96 for (L/D)DO, 0.92 for (CL)DO and 0.96 for
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(Cd)DO, whilst in the stratosphere the constants are 0.96, 0.90 and 0.94, respectively. In all cases, the
constants are less than unity. The lowest values occur in the stratosphere and the impact upon (CL)DO

is largest with a reduction of 10%, followed by (Cd)DO with 6% and then (L/D)DO with 4%. These are
significant changes, particularly for (CL)DO.

The reduction in (CL)DO means that, for an aircraft of given mass flying at the optimum Mach number,
the optimum flight level will be reduced relative to the constant Reynolds number, zero wave drag case.
In Poll [3] it was found that, in the vicinity of the ISA tropopause,

d(FL)

FL
≈ −0.61

dp∞
p∞

= 0.61
d(CL)DO

(CL)DO

. (91)

Hence, for flight in the troposphere, the reduction in cruise altitude due to compressibility and Reynolds
number variation is about 1,750 feet. When the aircraft leaves the troposphere and enters the stratosphere,
(CL)DO drops by an additional 2%, giving a further reduction of about 450 feet.

The approximate solution also allows the separation of the compressibility and Reynolds number
effects. Reynolds number variation is removed by setting the constant b equal to zero. In this case, the
constants of proportionality are the same for flight in both troposphere and stratosphere, becoming 0.95
for (L/D)DO, 0.985 for (CL)DO and 1.035 for (Cd)DO. Therefore, through compressibility effects alone,
(L/D)DO is reduced by about 5% and (CL)DO is reduced by just 1.5%, whilst (Cd)DO is increased by
3.5%. Consequently, compressibility effects alone would account for a reduction in cruise altitude of
only about FL 3.5, or 350 feet. The conclusion is that (L/D)DO is controlled primarily by compressibility
effects, as shown in Equation (42), whilst the values of CL and Cd at the design condition are largely
determined by the Reynolds number variation, i.e. by the value of the coefficient b.

Generally, the surface of an aircraft is never perfectly smooth and in the early days of civil jet transport
the surface quality could deteriorate quite quickly in routine operations. In extreme cases, the surface
could become “aerodynamically rough”, with the drag coefficient being a constant determined by the
scale of the roughness, see, e.g. Obert [15] (Chapter 40). In this case, b is zero. As indicated in Equations
(50) to (52), in this situation, the changes to (L/D)DO, (CL)DO and (Cd)DO are both relatively small and
have no dependence upon the nature of the atmosphere. Since most of the standard texts on aircraft per-
formance were written many years ago, this may explain why the effects of wave drag receive so little
attention. More recently, with the progressive improvement in manufacturing processes and the devel-
opment of better paints, modern surfaces tend to be “aerodynamically smooth”, but with the boundary
layers on the wing and fuselage usually still in the fully turbulent state, i.e. b is about 0.14.

Looking to the future, one of the most effective ways to reduce fuel consumption is to produce aircraft
that can support extensive areas of laminar flow on the wing, the empennage and, possibly, the fuselage.
This is because advanced materials and manufacturing techniques can now deliver extremely smooth
surfaces with very few, or no, steps, or gaps, and very small waviness. These surfaces can also be per-
forated to allow the use of weak, surface suction to increase the stability of the laminar boundary layer
and delay transition to turbulence to higher Reynolds numbers. The first generation of these aircraft are
likely to see a 10% to 15% reduction in the Cd0 resulting from limited regions of laminar flow on the
wings and empennage and, from Equation (52), this will give a 5 to 7.5% increase in (L/D)DO, with a
corresponding reduction in the required fuel flow rate. However, as can be seen from Equation (50), this
change in Cd0 also reduces (CL)DO by 5% to 7.5%, corresponding to a reduction in the optimum cruise
altitude of between 1000 and 1500 feet. Furthermore, the existence of any regions of laminar flow will
increase the value of the coefficient, b, in the skin friction law (Equation (17)). This is because, in pure
laminar flow, b is equal to 0.5 – see Shevell [8]. Therefore, as the area covered by laminar flow increases
and that covered by turbulent flow decreases, b must increase progressively from the current value of
0.14 to 0.5 and the constant of proportionality in Equation (50) will drop from about 0.9 to about 0.7.
The combined effects of a reduction in Cd0 and an increase in b will produce a significant lowering of
the design optimum and, hence, the operational optimum cruise altitudes for these “advanced” aircraft.
In addition, for a given aircraft, the improvement in (L/D)DO reduces the fuel required and, hence, the
operational mass of the aircraft. This increases the optimum cruise altitude. However, it is demonstrated
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in Appendix E that, all other things being equal, the reduction in (CL)DO is always the dominant effect.
Consequently, the application of drag reducing technology to lower Cd0 will always reduce the optimum
cruise altitude.

Up to the present time, the evolutionary trend has been one of incremental improvements in engine
overall efficiency and increases in airframe aerodynamic efficiency – through higher wing aspect ratios
and small reductions in Cd0 – see Poll [18]. The primary impact has been reduced trip fuel and the net
effect is that optimum cruise altitudes have been rising slowly over time. The potential reversal of this
trend by the introduction of novel technologies may have implications for the aircraft’s environmental
impact and deserves further consideration.

11.0 Conclusions
A turbofan powered, civil transport aircraft, with a specified weight and operating in a specified atmo-
sphere, has its lowest possible fuel burn at a particular value of Mach number and flight level. These
optimum operating conditions are governed by two partial differential equations, involving character-
istics of both airframe and engine. However, for fixed Mach number cruise, the airframe lift-drag ratio
and the engine overall efficiency both exhibit local maxima with respect to drag and, hence, thrust.
Consequently, an absolute optimum is obtained when both parameters peak at the same Mach number
and flight level. It is shown that this “perfect” matching of components can only be achieved at one par-
ticular set of conditions, termed the “design optimum” and the corresponding Mach number and flight
level are fundamental characteristics of the aircraft-engine combination. Consequently, the governing
differential equations for the general optimum have been used to describe the design optimum condi-
tions in a completely general atmosphere. An approximate solution has been developed using established
aerodynamic theory and a simple, aircraft bespoke, wave drag model that also allows the wave drag to be
estimated at Mach numbers and flight levels far removed from the design optimum values. The solution
has been used to estimate the influence of compressibility and Reynolds number both collectively and
separately. Relative to the “classic text book” situation with constant Reynolds number and zero wave
drag, it is found that L/D at the design optimum is hardly affected by changes in Reynolds number, but it
is reduced by about 5% due to compressibility effects. Conversely, the corresponding values of lift and
drag coefficients are reduced by about 10% and 6% respectively, primarily, due to variations in Reynolds
number. Therefore, the effect of Reynolds number variation due to changes in flight level is significant.

In general, the flight conditions for the operating optimum will not be the same as the design optimum
due to differences in aircraft weight and atmospheric conditions. However, since these variations are
generally small, it has been possible to adapt a previously published method to estimate the optimum
operating conditions for any aircraft weight and any atmospheric conditions, using the design optimum
condition as the datum case.

Finally, some small changes have been made to previously published coefficients to improve the
accuracy of the estimates. The revised parameter values are given in tabular form.

Looking ahead, comparisons are being conducted between the PS model and a number of sets of
data from open sources, plus a few observations from other models. Preliminary results indicate that
differences between the PS model and specific data sets can be largely removed by minor adjustments
to some of the input parameters, but no changes to the model structure are required.
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Appendix A. Estimation of the lift and drag coefficients at the design optimum condition.
Differentiation of the drag polar shown in Equation (15) gives

M∞
Cd

∂Cd

∂M∞
= Cd0

Cd

((
M∞
Cd0

∂Cd0

∂M∞

)
−
(

4 −
(

M∞
K

∂K

∂M∞

))(
KC2

L

Cd0

)
+
(

M∞
Cd0

∂Cdw

∂M∞

))
(A-1)

and
CL

Cd

∂Cd

∂CL

= Cd0

Cd

((
CL

Cdo

∂Cd0

∂CL

)
+
(

2 +
(

CL

K

∂K

∂CL

))(
KC2

L

Cd0

)
+
(

CL

Cd0

∂Cdw

∂CL

))
. (A-2)

Using Equations (16) and (17), (
Rac

Cd0

dCd0

dRac

)
= −b = −0.14 (A-3)

and, from Equation (4),

Rac = S1/2
ref

(
γ pTP

μTPaTP

)
ISA

(
p∞

(pTP)ISA

)(
M∞
φ

)
, (A-4)

where the subscript TP refers to conditions at the tropopause. Furthermore, as shown by Poll and
Schumann [4], in a general atmosphere,

φ = μ∞a∞
(μTPaTP)ISA

≈
(

T∞
(TTP)ISA

)1.34

≈
(

1 + 1.34
�T

(TTP)ISA

)(
T∞
TTP

)1.34

ISA

≈ (
1 + 1.34�T

) ( (pTP)ISA

p∞

)1.34ω

.

(A-5)

where �T is the difference between the actual temperature and the temperature in the International
Standard Atmosphere [1] at the same flight level and ω is a constant. Hence,

Rac = S1/2
ref

(
γ pTP

μTPaTP

)
ISA

(
M∞

1 + 1.34�T

)(
p∞

(pTP)ISA

)i

, (A-6)
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with

ι= 1 + 1.34ω. (A-7)

If p∞ is greater than, or equal to, (pTP)ISA, i.e. p∞ ≥ 226.32 hPa, ω is −0.19026 and ι is 0.74505 and, if
p∞ is less than (pTP)ISA, ω is zero and ι is equal to one. In addition, when the Mach number is constant,(

p∞
Rac

∂Rac

∂p∞

)
= 1 −

(
p∞
φ

∂φ

∂p∞

)
= 1 + �. (A-8)

In the special case of the International Standard Atmosphere,

� ≈ ι− 1 = 1.34ω, (A-9)

whilst, in a completely general atmosphere, as demonstrated in Poll and Schumann [4],

� ≈ 277
(
1 −�T

) ( 1

(TTP)ISA

d∞
dL

)
. (A-10)

Hence, from Equations (7), (A-3), (A-4) and (A-8),(
M∞
Cd0

∂Cd0

∂M∞

)
= −b and

(
CL

Cdo

∂Cd0

∂CL

)
= b(1 + �) . (A-11)

Also, from Equations (22) and (23),(
CL

K

∂K

∂CL

)
= k1

K

(
CL

Cdo

∂Cd0

∂CL

)
and

(
M∞
K

∂K

∂M∞

)
= k1

K

(
M∞
Cd0

∂Cd0

∂M∞

)
. (A-12)

Equations (A-1) and (A-2) then become
M∞
Cd

∂Cd

∂M∞
= Cd0

Cd

((
M∞
Cd0

∂Cdw

∂M∞

)
− b −

(
4 +

(
k1

K

)
b

)(
KC2

L

Cd0

))
(A-13)

and
CL

Cd

∂Cd

∂CL

= Cd0

Cd

((
CL

Cd0

∂Cdw

∂CL

)
+ b(1 + �)+

(
2 +

(
k1

K

)
b(1 + �)

)(
KC2

L

Cd0

))
. (A-14)

Therefore, at the design optimum, Equations (13), (14), (15), (A-13) and (A-14) combine to give(
M∞
Cd0

∂Cdw

∂M∞

)
DO

=
(

2 + η2 +
(

k1

K

)
b

)(
KC2

L

Cd0

)
DO

− (2 − η2)

(
Cdw

Cd0

)
DO

− (2−η2 − b) (A-15)

and(
CL

Cd0

∂Cdw

∂CL

)
DO

= (1 − b(1 + �DO))+
(

Cdw

Cd0

)
DO

−
(

1 +
(

k1

K

)
b(1 + �DO)

)(
KC2

L

Cd0

)
DO

. (A-16)

In addition, rearranging Equation (A-16) and neglecting quantities that are small compared to unity
gives

(CL)DO ≈
(

1 − 1

2

(
b

(
1 +

(
k1

K

))
(1 + �DO)+

(
Cdw

Cd0

)
DO

((
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)
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Cd0

K

)1/2
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(A-17)
and, using Equation (15),

(Cd)DO ≈ 2

(
1 − 1

2

(
b

(
1 +

(
k1

K

))
(1 + �DO)+

(
Cdw

Cd0
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DO
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(A-18)
Hence, (

L

D

)
DO

≈ 1

2

(
1 − 1

2

(
Cdw

Cd0

)
DO

)(
1

KCd0
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DO

. (A-19)
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Appendix B. An approximate solution for the wave drag at the design optimum condition.
For simplicity, let (

Cdw

Cd0

)
DO

= z and

(
CL

Cdw

∂Cdw

∂CL

)
DO

= γ . (B-1)

Noting that, since (k1/K) is of order 0.1 and b is equal to 0.14, their product is of order 0.01, which is
small compared to unity, Equations (A-15) and (A-16) can be written as(

M∞
Cd0

∂Cdw

∂M∞

)
DO

≈ (2 + η2)

(
KC2

L

Cd0

)
DO

− (2 − η2) z − (2 − η2 − b) (B-2)

and (
CL

Cd0

∂Cdw

∂CL

)
DO

= γ z ≈ (1 − b(1 + �DO))+ z −
(

KC2
L

Cd0

)
DO

. (B-3)

Hence, (
M∞
Cd0

∂Cdw

∂M∞

)
DO

≈ (2η2 − b((1 + �DO) (2 + η2)− 1))− (γ (2 + η2)− 2η2) z. (B-4)

Using Equation (39),

(2η2 − b((1 + �DO) (2 + η2)− 1))− (γ (2 + η2)− 2η2) z = 2z (1 − δDO)

(
X

X − j2

)
DO

(B-5)

and, using equation (40),

z

(
(2 + δDOη2)

(
X

X − j2

)
DO

− 2η2

)
= 2η2l, (B-6)

where

l = 1 − b

2η2

((1 + �DO) (2 + η2)− 1) . (B-7)

Rearranging Equation (B-6), using Equation (38) and setting(
lη2Cd0

j1(j2)
2cos3(�w)

)
= α, (B-8)

gives

X2
DO (2 − (2 − δDO) η2)− XDO(2 − (4 − δDO) η2) j2 − 2b2 (η2 + α)= 0. (B-9)

The exact solution is given by the positive value of
XDO

j2

= (2 − (4 − δDO) η2)

2 (2 − (2 − δDO) η2)
(1 ± f1) , (B-10)

where

f1 =
(

1 + 8(2 − (2 − δDO) η2)

(2 − (4 − δDO) η2)
2 (η2 + α)

)1/2

. (B-11)

Hence,

z = j1(XDO − j2)
2

(
cos3(�w)

(Cd0)DO

)
=
(

cos3(�w) j1(j2)
2

4(Cd0)DO(2 − (2 − δDO) η2)
2

)
f2, (B-12)

where

f2 = ((2 − (4 − δDO) η2) f1 − (2 + δDOη2)
2. (B-13)
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Figure B-1. The variation of the function f2 with α when η2 is 0.50 and δDO is 0.2. The solid line is the
exact result and the dashed line is the parabolic approximation.

Based upon the earlier work of Poll and Schumann [4, 5], the expected parameter ranges for the
current global aircraft fleet are

0.015<
(Cd0)DO

cos3(�w)
< 0.030 (B-14)

and

0.30<η2 < 0.65. (B-15)

In addition,

0.6<
(CL)DO

cos2 (�w)
< 0.75 (B-16)

and, hence, from Equations (34) and (41),

0.15< δDO < 0.25. (B-17)

Therefore, in practice, the range of values for f 2 and α are bounded and, as shown in Fig. B-1, when
f 2 is plotted as a function of for constant values of η2 and δDO, the variation in the range of interest is
almost parabolic, i.e.

f2 ≈ (Fα)2. (B-18)

where F is a constant whose value depends only upon η2 and δDO. The values of F were chosen to give
the best fit over the mid-range with equal deviations at the extremes, with the maximum deviation from
the exact solution being about ±10%. Using equation (B-7), it follows that follows that

z ≈
(

η2lF

2 (2 − (2 − δDO) η2)

)2 (
(Cd0)o

j1(j2)
2cos3(�w)

)

≈ f3

(
2η2 + b

2η2

)2(
1 −

(
2 + η2

2η2 + b

)
b(1 + �DO)

)2 (
(Cd0)o

j1(j2)
2cos3(�w)

)
, (B-19)

https://doi.org/10.1017/aer.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.10


The Aeronautical Journal 1101

Figure B-2. The variation of the function f3 with η2 and δDO. The solid line is the result for δDO equal
to 0.2, the open circles are for δDO of 0.15 and the open diamonds are for δDO of 0.25.

where

f3 ≈
(

η2F

2 (2 − (2 − δDO) η2)

)2

. (B-20)

The variation over the full parameter range is shown in Fig. B-2, where the effect of δDO is clearly very
small and may be neglected.

A “least-squares” fit to get the best value of f 3 over the full variable range yields

f3 ≈ 0.795(η2)
2. (B-21)

The error introduced by neglecting δDO is less than ± 3%. Since this result is insensitive to δDO it is
also insensitive to uncertainties in the values of the coefficients in Equation (50).

Finally, (
Cdw

Cd0

)
DO

≈
(

σ 2

j1(j2)
2

)(
(Cd0)DO

cos3(�w)

)
, (B-22)

where

σ ≈ 0.445 (2η2 + b)

(
1 −

(
2 + η2

2η2 + b

)
b(1 + �DO)

)
. (B-23)

Appendix C. The approximate variation of the low-speed Oswald efficiency factor with the drag
coefficient.
The low-speed value of the Oswald efficiency factor is given by Equations (20), (21) and (22). However,
to simplify the mathematical manipulations, an approximate power law form is required, i.e.

eLS ≈ E

(Cac
F )

τ where τ = −
(

Cac
F

eLS

)
deLS

dCac
F

. (C-1)

From Equation (20),
deLS

dk1

= − (π .AR) e2
LS (C-2)
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and, from Equation (22),
dk1

dCac
F

= k1

Cac
F

. (C-3)

Hence,

τ = −
(

Cac
F

eLS

) (− (π .AR) e2
LS

) k1

Cac
F

= π .AR.k1.eLS, (C-4)

and

E = eLS

(
Cac

F

)τ
. (C-5)

Appendix D. Relations linking static pressure, indicated altitude and flight level.
As described in Poll [3] and Poll and Schumann [4], “altitude” is determined by comparing ambient
static pressure, p∞ with a reference pressure, pref , specified by Air Traffic Management (ATM). The
altimeter then provides an indicated altitude (IA) by using the variation of height versus p∞/pref in the
International Standard Atmosphere [6]. For take-off and landing, pref is the local airport pressure (the
QFE) and so IA is measured relative to the runway. At an ATM specified height above the airport, pref

is set to the actual pressure at sea level (the QNH or “regional” pressure) and, consequently, the IA is
measured relative to sea level. Finally, as the aircraft passes through the ATM determined “transition”
altitude, pref is set to the ISA sea level pressure (1.01325 bars) and the IA is the height above sea level
that the aircraft would have in the ISA. Since the vertical variation of ambient pressure and temperature
on any particular day is unlikely to be the same as in the ISA, the indicated altitude will probably not be
the true geometric value. To avoid any ambiguity, above the transition altitude, the term flight level (FL)
is used. Therefore, an aircraft flying at a fixed flight level is following an isobar. Flight level is defined as
the indicated altitude divided by 100. Hence, if the ambient pressure is given in bars, when p∞ is greater
than 0.2263204 bars, the flight level is

FL = IA (feet)

100
= 1454.422

(
1 − 0.9974987p0.190263

∞
)

, (D-1)

otherwise

FL = IA (feet)

100
= 51.75864 (1 − 4.019779ln(p∞)) . (D-2)

Appendix E. An estimate of the effect of reducing Cd0 on the optimum cruise flight level.
Differentiating Equations (50) and (51) gives

d(CL)DO

(CL)DO

= 1

2

d(Cd0)DO

(Cd0)DO

and
d(L/D)DO

(L/D)DO

= −1

2

(
d(Cd0)DO

(Cd0)DO

)
. (E-1)

From Equation (3), the total fuel required for the flight, usually called the trip fuel, (mf )trip, is almost
inversely proportional to L/D and so

d
(
mf

)
trip(

mf

)
trip

≈ −d(L/D)DO

(L/D)DO

. (E-2)

Hence, since the take-off aircraft mass, MTO, is the sum of the trip fuel mass and a constant mass
comprising the structure weight, the payload and the reserve fuel,

dMTO

MTO
≈ −

((
mf

)
trip

MTO

)
d(L/D)DO

(L/D)DO

= 1

2

((
mf

)
trip

MTO

)(
d(Cd0)DO

(Cd0)DO

)
. (E-3)
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Near the tropopause, the variation of flight level with ambient pressure is given approximately by
Equation (91). Therefore, if (CL)DO changes due to a change in Cd0,

d(FL)DO

(FL)O

≈ 0.61

2

(
d(Cd0)DO

(Cd0)DO

)
(E-4)

and, if (mf )trip changes due to a change in Cd0,

d(FL)DO

(FL)DO

≈ −0.61

2

((
mf

)
trip

MTO

)(
d(Cd0)DO

(Cd0)DO

)
. (E-5)

Consequently, the total change in flight level resulting from a change in Cd0 is

d(FL)DO

(FL)DO

≈ 0.61

2

(
1 −

((
mf

)
trip

MTO

)) (
d(Cd0)DO

(Cd0)DO

)
. (E-6)

Since the ratio of trip fuel mass to take-off mass can never exceed unity, all other things being equal, a
decrease in Cd0 always lowers the optimum cruise flight level.
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