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In this paper, we generalize the concept of functional dependence (FD) from time
series (see Wu [2005, Proceedings of the National Academy of Sciences 102,
14150–14154]) and stationary random fields (see El Machkouri, Volný, and Wu
[2013, Stochastic Processes and Their Applications 123, 1–14]) to nonstationary
spatial processes. Within conventional settings in spatial econometrics, we define
the concept of spatial FD measure and establish a moment inequality, an exponential
inequality, a Nagaev-type inequality, a law of large numbers, and a central limit
theorem. We show that the dependent variables generated by some common spatial
econometric models, including spatial autoregressive (SAR) models, threshold SAR
models, and spatial panel data models, are functionally dependent under regular
conditions. Furthermore, we investigate the properties of FD measures under various
transformations, which are useful in applications. Moreover, we compare spatial FD
with the spatial mixing and spatial near-epoch dependence proposed in Jenish and
Prucha ([2009, Journal of Econometrics 150, 86–98], [2012, Journal of Economet-
rics 170, 178–190]), and we illustrate its advantages.

1. INTRODUCTION

In recent years, spatial econometric models have been widely applied to various
fields of economics, for example, agricultural economics, international trade, cli-
mate economics, and regional and urban economics. Accordingly, various spatial
econometric models and estimation methods are investigated in the literature.
To study asymptotic theories for estimators of spatial econometric models, some
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limiting laws and dependence concepts are indispensable. Early development of
spatial econometrics, especially linear spatial models, has relied mainly on the
theories of linear-quadratic forms of independent variables (see Kelejian and
Prucha, 1998, 2001; Lee, 2004, 2007; Yu, de Jong, and Lee, 2008, among many
others). However, these theories are not applicable to some recent development in
spatial econometrics, for example, the spatial panel data model with endogenous
spatial weights matrix (Qu, Lee, and Yu, 2017), robust estimators (Liu et al., 2022),
quantile estimators (Xu et al., 2024), and nonlinear spatial econometric models
(Xu and Lee, 2015a, 2015b). In these papers, the authors employ weak spatial
dependence concepts like spatial strong mixing or spatial near-epoch dependence
(NED). Strong mixing and NED are widely used in time series (Davidson,
1994; Doukhan, 1994) and stationary random fields (Bolthausen, 1982; Dedecker,
1998),1 and they are generalized to spatial econometric settings by Jenish and
Prucha (2009, 2012).

However, strong mixing and NED have certain shortcomings. The strong mixing
coefficient involves the calculation of supremum over two σ -fields and hence is
quite complicated and inconvenient (Doukhan and Louhichi, 1999; Wu, 2005;
Xu and Lee, 2024). Moreover, even some AR(1) processes do not satisfy the
strong mixing condition (Andrews, 1984; Wu, 2005). For NED, its application
is mainly restricted to L2-NED, as Lp-NED (p �= 2) is usually not easy to
establish; and in some cases, some strong moment conditions are needed to
preserve NED properties. Therefore, we aim to find a better notion of weak spatial
dependence.

In Wu (2005), the concept of functional dependence (FD), also called physical
dependence, is proposed. It is often easy to verify and has many good properties.
Based on this concept, Liu, Xiao, and Wu (2013) and Wu and Wu (2016) establish
the Nagaev-type, Rosenthal-type, and exponential inequalities. El Machkouri et al.
(2013) generalize the FD from time series to stationary random fields located in
Z

d and study its limit theorems. FD has been widely used in statistics to establish
asymptotic theories of various statistics (Zhou and Wu, 2009; Wu, 2011; Chen,
Xu, and Wu, 2013; Wu and Wu, 2016).

However, the theory of FD on stationary random fields in Z
d in El Machkouri

et al. (2013) does not apply to spatial econometrics directly. The reasons for this are
twofold: (1) the spatial units are located inZd, which is seldom the setting in spatial
econometrics; (2) the data-generating process is supposed to be homogeneous
and the spatial process is required to be stationary. On the contrary, in spatial
econometrics, the spatial units are usually unevenly spaced, and the spatial random
variables are often nonstationary and heterogeneous triangular arrays. To fill
this gap, we generalize the spatial FD in El Machkouri et al. (2013). We allow
(1) the spatial units to be located in an unevenly spaced lattice, (2) the spatial

1A random field Y : Rd( or Zd) → R
pY is stationary means that the joint distribution of (Ys1,Ys2, . . . ,Yst ) does not

change under the translation of (s1, . . . ,st), that is, the joint probability density (or mass) function f (Ys1,Ys2, . . . ,Yst ) =
f (Ys1+r,Ys2+r, . . . ,Yst+r) for any (s1, . . . ,st) and r ∈ R

d( or Zd).
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SPATIAL FUNCTIONAL DEPENDENCE 3

process to be nonstationary, and (3) the random variables to be a heterogeneous
triangular array. Based on the spatial FD measure (FDM), we establish a moment
inequality, an exponential inequality, a Nagaev-type inequality, a law of large
numbers (LLN), and a central limit theorem (CLT) that are sufficiently general
to accommodate more applications of interest. We want to emphasize that the
generalization from El Machkouri et al. (2013) to our paper is not trivial, because
the techniques in their proofs do not apply to our setup due to heterogeneity and
nonstationarity.

Our FDM concept overcomes the shortcomings of mixing and NED. (1) It is
easy to calculate for many spatial econometric models, as it does not involve
σ -field or conditional expectation. For convenience, Su, Wang, and Xu (2023)
apply the theory of spatial FDM developed in this paper to study a heterogeneous
spatial dynamic panel data model. (2) Compared to NED, it can be conveniently
established under Lp-norm for any p≥1, and is, therefore, more flexible, espe-
cially under nonlinear transformations. (3) Compared to those needed for NED,
weaker conditions suffice for a CLT and an exponential inequality via spatial
FDM.

This paper is organized as follows: In Section 2, we present the definitions
of spatial FDM and spatial FD coefficient. In Section 3, we investigate their
theoretical properties, including some inequalities, an LLN, a CLT, and a het-
eroskedasticity and autocorrelation consistent (HAC) estimator for the variance
term in the CLT. In Section 4, we calculate the FDM of a nonlinear spatial
autoregressive (SAR) model, a threshold SAR model, and a spatial panel data
model. In Section 5, we investigate the properties of spatial FDM and the spatial
FD coefficient under various common transformations. In Section 6, we compare
spatial FDM with NED. Section 7 concludes this paper. The proofs for the LLN
and the CLT are collected in the appendixes, and all other proofs are provided in the
Supplementary Material. All sections, lemmas, and equations whose numberings
begin with “S” (e.g., Lemma S.3) are in the Supplementary Material.

Notation: The set of positive integers is denoted by N ≡ {1,2, . . .}. For any
column vector x = (x1,x2, . . . ,xd)

′ ∈ R
d, where R

d is the d-dimensional euclidean
space, ‖x‖ = (x′x)1/2 denotes its euclidean norm, ‖x‖∞ = max1≤k≤d |xk| represents
its infinity vector norm, and ‖x‖1 = ∑d

k=1 |xk| denotes its 1-norm. For any
random vector X ∈ R

d, its Lp-norm is defined as ‖X‖Lp ≡ [E(‖X‖p)]1/p. For any
square matrix A = (aij)n×n, its maximum row sum norm is defined as ‖A‖∞ =
max1≤i≤n

∑n
j=1 |aij|, Ai· denotes its ith row, and |A| is defined as |A| = (|aij|)n×n. For

any real number a, �a� denotes its integer part, that is, �a� = max {b ∈ Z : b ≤ a},
and a� ≡ min{b ∈ Z : b≥a}. Let (�,F,P) be a probability space. For any sub-σ -
field C ofF , we writePC(·) ≡P(· | C),EC(·) ≡E(· | C), and VarC(·) ≡ Var(·|C). For

a random vector X, let ‖X‖Lp,C = [EC(‖X‖p)]1/p. Let
p→,

Lp−→,
d→, and

a.s.−→ denote
convergence in probability, Lp convergence, convergence in distribution, and
convergence almost surely, respectively. For any set D, |D| denotes its cardinality.
For any two nonnegative functions f (x) and g(x) defined on [0,∞), f (x) = O(g(x))
as x → ∞ means that there exist constants M > 0 and x0 such that f (x) ≤ Mg(x)
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4 ZEQI WU ET AL.

whenever x≥x0 and f (x) < ∞ for all x ∈ [0,∞).2 For two sequences {an} and {bn},
an ∼ bn if and only if (iff) limn→∞ an

bn
= 1.

2. SPATIAL FUNCTIONAL DEPENDENCE MEASURE AND SPATIAL
FUNCTIONAL DEPENDENCE COEFFICIENT

In this section, we define the spatial FDM and the spatial FD coefficient. First, we
introduce some notation. Suppose there are some individuals (e.g., persons, cities,
countries), also called spatial units in this paper, located in a lattice Dn ⊂R

d. Here,
Dn can either be a finite set whose cardinality |Dn| = n, or be a countably infinite
set. We focus on two settings: (1) for cross-sectional data with n individuals, |Dn| =
n; (2) for spatial panel data, each spatial unit i is located in D̄n ⊂R

d, but we regard
(i,t), the combination of spatial unit i and time t, as a point in R

d+1 and define Dn ≡
D̄n ×{. . . ,T − 1,T} ≡ {(i,t) : i ∈ D̄n,t ≤ T} ⊂ R

d+1. In setting (2), |Dn| = ∞. For
any two individuals i = (i1, . . . ,id) and j = ( j1, . . . ,jd) inRd, dij ≡ max1≤k≤d |ik − jk|
denotes their distance.

Let ε = {εi,n,i ∈ Dn,n≥1} be an R
pε -valued independent random field. Another

random field Y = {Yi,n,i ∈ Dn,n≥1} is generated by

Yi,n = gi,n(εn), (2.1)

where {gi,n,i ∈ Dn,n≥1} is a set of RpY -valued Borel-measurable functions and
εn = ((ε′

i,n)i∈Dn)
′. In some models, for example, a linear SAR model, the explicit

functional form of gi,n(·) is known. However, in many nonlinear spatial economet-
ric models, for example, the SAR Tobit model in Xu and Lee (2015a), we do not
know the explicit functional form of gi,n(·), but it does not affect our analysis (see
Section 4.2 for more details).

Let (((ε∗
i,n)

′)i∈Dn)
′ be an independently and identically distributed (i.i.d.) copy

of εn. For any set I ⊂ Dn, we define εi,n,I ≡ ε∗
i,n if i ∈ I and εi,n,I ≡ εi,n if i /∈ I;

we write εn,I ≡ ((ε′
i,n,I)i∈Dn)

′. Furthermore, Yi,n,I = gi,n(εn,I) is called a coupled
version of Yi,n on I and Yn,I = ((Y ′

i,n,I)i∈Dn)
′. All our discussion in Sections 2, 3,

and 5 is based on (2.1).
Throughout the paper, we maintain these conventions on notation and the

following assumption concerning the lattice Dn.

Assumption 1. For all i �= j ∈ Dn, dij≥1.

Assumption 1 employs the increasing-domain asymptotics and rules out the
scenario of infilled asymptotics (also called fixed domain asymptotics), and it is
commonly used in the spatial econometrics literature (Jenish and Prucha, 2009,
2012; Qu and Lee, 2015; Xu and Lee, 2015a, 2015b, 2018; Liu et al., 2022; Xu

2In standard big O notation, usually it is not required that f (x) < ∞, but we impose this for the convenience of
our presentation. With this definition, we can safely claim that (i) supx∈A g(x)−1O(g(x)) < ∞ for any closed set
A ⊂ {y ∈ [0,∞) : g(y) > 0}, (ii)

∑∞
m=1 O(m−δ) < ∞ for any δ > 1, and (iii) f (x) = O(x−α) for some α > 0 implies

f (x) ≤ C(x+1)−α for any x ∈ [0,∞), where C > 0 is a constant not depending on x.
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SPATIAL FUNCTIONAL DEPENDENCE 5

et al., 2024). As n increases to infinity, the diameter of Dn also tends to infinity.
When we consider the geographical distance between two cities, Assumption 1
means that the centers of cities cannot be too close to each other. Although
the diameter of the earth is finite, which restricts the diameter of Dn, when we
apply our theory, we expect that the sample size is large enough such that our
asymptotic theory can approximate well. In addition, the distance might be “social-
economic distance,”3 which means that some coordinates might be economic or
social characteristics of the spatial units. So even if the geographical distance
between two individuals is small, their social-economic distance might be large.
In spatial statistics and computer science, sometimes researchers consider infill
asymptotics, for example, when we study the image of someone’s brain, but we do
not consider infill asymptotics in this paper.

Now, we are ready to introduce our main concepts.

2.1. Spatial Functional Dependence Measure

Definition 2.1. For any p≥1, n≥1 and I ⊂ Dn, we define the (spatial) Lp-FDM
as

δp(i,I,n) ≡ ∥∥Yi,n −Yi,n,I

∥∥
Lp = ∥∥gi,n(εn)−gi,n(εn,I)

∥∥
Lp .

When I = {j} is a singleton, we simplify the notation as δp(i,j,n) ≡ δp(i, {j},n).

When I = ∅, δp(i,∅,n) = 0, which causes no conflict. Definition 2.1 is a general-
ization of those in Wu (2005) and El Machkouri et al. (2013). The differences lie in
three aspects. First, the index sets in Wu (2005) and El Machkouri et al. (2013) are,
respectively, Z and Z

d. Instead, we consider an unevenly spaced lattice Dn in R
d,

which is in line with the paradigm of spatial econometrics. Second, Wu (2005) and
El Machkouri et al. (2013) require the nonlinear transformation g to be invariant
over i and n, which is ruled out by almost all spatial econometric models, but we
allow different gi,n for different i and n. Third, Wu (2005) and El Machkouri et al.
(2013) set εi,n’s to be i.i.d., but we allow the εi,n’s to be non-identically distributed.
Thus,

{
Yi,n,i ∈ Dn

}
might be nonstationary and heterogeneous in our setup.

Spatial statistics usually focuses on Gaussian processes and many results
are based on correlation or covariance functions, and FDM is closely related
to the correlation or covariance of Yi,n and Yi,n,I .4 Consider a linear process
Yi,n = ∑

j∈Dn
Aij,nεj,n, where |Dn| = n, Aij,n’s are constant and εj,n’s are i.i.d.

with expectation zero and unit variance. For any set I ⊂ Dn, direct calcula-
tions show that 1

2δ2(i,I,n)2 + Cov(Yi,n,Yi,n,I) = Var(Yi,n). If we consider the case
where Var(Yi,n) = 1, that is,

∑
j∈Dn

A2
ij,n = 1, the previous relationship becomes

3See Conley and Topa (2002) and the paragraph below Assumption 1 in Qu and Lee (2015) for some discussion
about social-economic distance.
4We thank an anonymous referee for sharing his/her deep insight into both the relationship between FDM and
the correlation (or covariance) functions and the possible applications of FDM in studying non-Gaussian spatial
processes.
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Figure 1. An illustration of δp(1,I ≡ {j ∈ Dn : d1j≥s
}
,n) ≡ ∥∥Y1,n −Y1,n,I

∥∥
Lp .

Corr(Yi,n,Yi,n,I) = 1 − 1
2δ2(i,I,n)2. In addition, the FD property is also related to

the covariance between two different Yi,n’s and the estimation of the asymptotic
variance of n−1/2∑

i∈Dn
(Yi,n −EYi,n).5 Since FDM does not require εi,n’s to be

normally distributed, a door is open to studying the important and challenging
problem of inference of non-Gaussian spatial processes.

2.2. Functional Dependence Coefficient

Definition 2.2 (The Lp-FD coefficient). For any p≥1 and s≥0, we define the
Lp-FD coefficient, also called p-stability coefficient, as

�p(s) ≡ sup
n

sup
i∈Dn

δp
(
i,
{
j ∈ Dn : dij≥s

}
,n
)

. (2.2)

When �p(s) → 0 as s → ∞, {Yi,n} is said to be Lp-functionally dependent (Lp-FD)
or p-stable on the independent random field {εi,n}.

Figure 1 illustrates the definition of �p(s). The Lp-FD coefficient defined above
is easy to calculate and enjoys many desirable properties as shown in Sections 3–6.
The δp(i,

{
j ∈ Dn : dij≥s

}
,n) in (2.2) measures the total influence of εj,n’s (dij≥s)

on Yi,n, defined as the magnitude of the change of Yi,n under Lp-norm if εj,n’s are
replaced by their i.i.d. copy ε∗

j,n’s simultaneously. Therefore, �p(s) → 0 as s → ∞
implies that the total impact from individuals far away can be arbitrarily small
uniformly in both i and n. Note that by Lyapunov’s inequality, if {Yi,n} is Lp-FD
on {εi,n}, it is also Lq-FD on {εi,n} for all q ∈ [1,p]. Although we do not know
whether �p(s) is weakly decreasing, �p(s) has a property similar to monotonicity:
�p(s) ≤ 3�p(s̃) for any s≥s̃ (Lemma S.3 in the Supplementary Material).

Compared with the FD concepts in Wu (2005) and El Machkouri et al. (2013),
ours is better suited for spatial econometric settings. Since {Yi,n} might be

5See Corollary 6.1 and Section 3.3 for details.
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nonstationary and heterogeneous, we need to calculate the spatial FDM of every
unit and take the supremum over all spatial units, but Wu (2005) and El Machkouri
et al. (2013) do not need to do so, as they study stationary processes. In addition,
our concept �p(s) employs the information of distance s, while El Machkouri
et al. (2013) define �p(s) as �p ≡∑j∈Rd δp(i,j). So, our definition shares some
similarity to spatial NED.

Compared with mixing (Jenish and Prucha, 2009) and NED (Jenish and Prucha,
2012), our FD coefficient in Definition 2.2 is more convenient. The strong mixing
coefficient is challenging to calculate since it involves complicated manipulation
of taking the supremum over σ -fields. Calculating spatial NED coefficient involves
conditional expectation, which sometimes is not easy. But calculating the Lp-FD
coefficient is quite convenient because the construction of the coupled version
Yi,n,I is explicit. The advantage of FD over spatial NED is discussed in detail in
Section 6.

Furthermore, we define the concept of the second-type FD coefficient, which is
mainly used in our proofs, in Appendix B. Moreover, we generalize the concept of
Lp-FD to the conditional Lp-FD, which is particularly useful for spatial panel data
models. See Appendix D for details.

3. PROPERTIES OF SPATIAL FUNCTIONAL DEPENDENCE

In this section, we establish some useful inequalities, an LLN, and a CLT for the
Yi,n generated by (2.1). Throughout this section, we let Tn be a finite subset of Dn,
we assume |Tn| → ∞ as n → ∞, and write Sn ≡∑i∈Tn

Yi,n.6

3.1. Inequalities under Spatial Functional Dependence

Moment and probability inequalities are crucial for developing limit theorems. In
this subsection, we establish a moment inequality, an exponential inequality and a
Nagaev-type inequality under spatial FD.

3.1.1. A Moment Inequality.

Theorem 3.1. Under Assumption 1, if {Yi,n} is Lp-FD on {εi,n} for some p≥2
with the Lp-FD coefficient �p(s) = O(s−κ) for some κ > d

2 as s → ∞, then

‖Sn −ESn‖Lp ≤ C|Tn|1/2,

where C > 0 is a constant depending neither on Tn nor n.

6When we study a cross-sectional spatial econometric model, Tn = Dn and |Dn| = n, and we do not need to introduce
Tn. However, when we study a spatial panel data model, we usually assume that the underlying data originate from
t = −∞, and thus, |Dn| = ∞. In practice, the observable data are only a subset of all yit’s. Thus, we introduce Tn ⊂ Dn,
rather than use Dn.
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Theorem 3.1 implies that
∥∥∑

i∈Tn
(Yi,n −EYi,n)

∥∥
Lp = O(

√|Tn|) as n → ∞, the
same order as the i.i.d. case. This inequality not only gives the convergence rate of
the LLN but also plays an essential role in establishing the CLT and the exponential
inequality. The constant C has an explicit form, see the proof of this theorem and
Theorem B.1 for more information.

3.1.2. An Exponential Inequality. Exponential inequalities play an indispens-
able role in high-dimensional statistics, nonparametric and semiparametric econo-
metrics. White and Wooldridge (1991) collect some exponential inequalities for
time series. Xu and Lee (2018) establish an exponential inequality for spatial
NED random fields. Wainwright (2019) focuses on the independent case for high-
dimensional models.

Theorem 3.2. Under Assumption 1, if (i) EYi,n = 0 for all n≥1, i ∈ Tn, and
(ii) {Yi,n} is Lp-FD on {εi,n} for any real number p≥2 with the Lp-FD coefficient
�p(s) ≤ O(pν)O(s−κ) for some κ > d

2 and ν≥0 as p → ∞ and s → ∞, where
O(pν) does not depend on s and O(s−κ) does not depend on p, then for any ε > 0,

P(|Sn|≥|Tn|ε) ≤ C1 exp
(−C2|Tn|1/(1+2ν)ε2/(1+2ν)

)
, (3.1)

where the constants C1,C2 > 0 depend neither on Tn, n nor ε.

The condition �p(s) ≤ O(pν)O(s−κ) restricts the speed at which �p(s) decreases
as s → ∞ and the speed at which �p(s) increases as p → ∞, and requires that the
effects of s and p on �p(s) be separable. This condition can be easily satisfied
for the SAR models discussed in Section 4.2. However, it is still possible that
this condition is not satisfied, for example, �p(s) = ηs/p for some 0 < η < 1. For
such situations, one can refer to Theorem B.2 in Appendix B for a more general
condition.

Next, we compare our exponential inequality with those in the literature.

1. Compared with the exponential inequality in Xu and Lee (2018), ours enjoys
some desirable features. First, in our exponential inequality, the term |Tn|1/(1+2ν)

does not depend on d. Second, Xu and Lee (2018) require the NED coefficient to
decrease exponentially fast, while we allow the Lp-FD coefficient to decrease at
the speed of a power function. Third, the decay rate of our exponential inequal-
ity is faster than that of Xu and Lee (2018). Therefore, all the shortcomings
of the exponential inequality in Xu and Lee (2018) pointed out by Yuan and
Spindler (2022, p. 4) have been overcome.

2. Yuan and Spindler (2022) also study the exponential inequality under NED.
Compared with their results, our exponential inequality does not have a remain-
der term.

3. Compared with the standard Bernstein’s inequality and Hoeffding’s inequality
(Wainwright, 2019), we see that when ν = 0 in (3.1), the decay rate with respect
to n is the same as the independent case; when ν > 0, the decay rate is slower.
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3.1.3. A Nagaev-Type Inequality. The condition �p(s) ≤ O(pν)O(s−κ) in
Theorem 3.2 usually requires that Yi,n have infinite order of moments, which
might be restrictive in some applications in spatial econometrics. In fact, if only a
finite order of moments exists, we have a Nagaev-type inequality. Nagaev (1979)
establishes the Nagaev inequality for i.i.d. random variables. Liu et al. (2013)
and Wu and Wu (2016) establish two Nagaev-type inequalities for functionally
dependent time series. In this paper, we follow the idea in Wu and Wu (2016) to
establish a Nagaev-type inequality for functionally dependent spatial variables. To
begin with, we generalize the dependence-adjusted norm (DAN) concept given
in Wu and Wu (2016), which plays the role of Lp-norm in the traditional Nagaev
inequality (Lemma S.11 in the Supplementary Material). For any ω≥0, we define
the DAN as

‖Y .‖p,ω ≡ sup
s≥0

(s+1)ω �p(s) < ∞.

Theorem 3.3. We assume EYi,n = 0 for all i ∈ Tn. If ‖Y .‖p,ω < ∞ for some
ω > d and p > 2. Then, for all x > 0 and κ≥1 satisfying κ > 3

2(ω−d)
,

P(|Sn|≥2x) ≤ C1 ‖Y .‖p
p,ω |Tn|

xp
+C2|Tn|κd exp

(
− C3x2

‖Y .‖2
2,ω |Tn|

)
,

where C1,C2,C3 > 0 are constants depending neither on x, n nor Tn.

3.2. Limit Theorems under Spatial Functional Dependence

Now, we establish an LLN and a CLT under spatial FD, which are vital to
establishing large sample properties of various estimators and test statistics in
econometrics and statistics.

3.2.1. The Law of Large Numbers.

Theorem 3.4. Under Assumption 1, if (i) ‖Y‖Lp = supn supi∈Dn
‖Yi,n‖Lp < ∞

for some p > 1, and (ii) {Yi,n} is L1-FD on {εi,n}, that is, lims→∞ �1(s) = 0, then

|Tn|−1 (Sn −ESn)
L1→ 0.

We note that the moment inequality (Theorem 3.1) also implies an LLN.
Theorem 3.1 requires some conditions on Lp-spatial FD coefficient (p≥2); how-
ever, Theorem 3.4 only imposes conditions on L1-FD coefficient for the LLN,
and it only requires that lims→∞ �1(s) = 0 without any specific decreasing
rate.
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3.2.2. The Central Limit Theorem.

Theorem 3.5. When pY = 1, under Assumption 1, if (i) supn supi∈Dn
‖Yi,n‖Lp <

∞ for some p > 2, (ii) B ≡ liminfn→∞ |Tn|−1σ 2
n > 0, where σ 2

n ≡ Var(Sn), and
(iii) the L2-FD coefficient of {Yi,n} on {εi,n} satisfies �2(s) = O(s−κ) as s → ∞ for
some κ > d

2 , then

Sn −ESn

σn

d→N (0,1) .

Conditions (i) and (ii) in Theorem 3.5 are standard in establishing CLTs (see
Jenish and Prucha, 2012, etc.). Condition (iii) requires that the dependence among
Yi,n’s cannot be too strong.

The NED CLT in Jenish and Prucha (2012) requires that the L2-NED coefficient
ψ(s) satisfies

∑∞
m=1 md−1ψ(m) < ∞. Our spatial FD CLT requires only that the

L2-FD coefficient �2(s) decreases faster than s−d/2, which is less restrictive.
By the Cramér–Wold device, we can generalize Theorem 3.5 to the multivariate

case.

Corollary 3.1. We write n ≡ Var(Sn) and λmin(n) is the minimum eigen-
value of n. When pY≥1, under Assumption 1, if (i) supn supi∈Dn

‖Yi,n‖Lp < ∞ for
some p > 2, (ii) B ≡ liminfn→∞ |Tn|−1λmin(n) > 0, and (iii) the L2-FD coefficient
of {Yi,n} on {εi,n} satisfies �2(s) = O(s−κ) for some κ > d

2 , then

−1/2
n (Sn −ESn)

d→N
(
0,IpY

)
.

3.3. Heteroskedasticity and Autocorrelation Consistent Estimator

For inference, we propose a HAC estimator for the variance term Vn ≡
Var(|Tn|−1/2Sn) = |Tn|−1n in the CLT (Corollary 3.1). The idea is borrowed
from Kojevnikov, Marmer, and Song (2021). We assume EYi,n = 0 for all i ∈ Tn.
Then, the variance of |Tn|−1/2Sn is

Vn ≡ Var(|Tn|−1/2Sn) =
∑
s≥0

vn(s), (3.2)

where vn(s) = |Tn|−1∑
i∈Tn

∑
j∈Tn:dij∈[s,s+1)E(Yi,nY ′

j,n).
As in the time series literature, we employ a kernel function k(·) : R → [−1,1]

to assign weights to the auto-covariance terms vn(s) so that we can estimate Vn

consistently. Let bn be the bandwidth. Then, the HAC estimator of Vn is given by

V̂n =
∑
s≥0

kn(s)̂vn(s), (3.3)

where kn(s) = k(s/bn) and v̂n(s) = |Tn|−1∑
i∈Tn

∑
j∈Tn:dij∈[s,s+1) Yi,nY ′

j,n.
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Next, we establish the consistency of the HAC estimator by imposing certain
assumptions on the moment and weak dependence of {Yi,n}, the bandwidth bn, and
the kernel function k(·).

Theorem 3.6. Let 2 < p0 ≤ q0 ∈R satisfy 1
p0

+ 3
q0

= 1
2 . We suppose EYi,n = 0 for

all i ∈ Tn. If (i) ‖Y‖Lq0 ≡ supi,n ‖Yi,n‖Lq0 < ∞, (ii) the kernel function k(·) satisfies
k(0) = 1, k(u) = 0 when |u| > 1, k(u) = k(−u) for all u ∈ R, and |k(u) − 1| ≤
Ck|u|1+ck for some constants Ck,ck > 0, (iii) {Yi,n} is L2-FD on an independent
random field {εi,n} with the L2-FD coefficient satisfying �2(s) = C�s−c� , where

the constants C� > 0 and c� > max
{

ck +d +1, (2q0−6)d
q0−6

}
, (iv) bn = Cb|Tn|cb for

some constants Cb > 0 and cb ∈ (0, 1
2d ), then as n → ∞,

V̂n −Vn = op(1).

Remark 3.1. We note that 2 < p0 ≤ q0 and 1
p0

+ 3
q0

= 1
2 imply q0 ≥ 8. Condition

(ii) is satisfied by most common kernel functions with compact supports, such
as k(u) = 1(|u| ≤ 1). Condition (iii) requires the L2-FD coefficient of {Yi,n} to
decrease sufficiently fast. Condition (iv) assumes that the bandwidth bn increases
as a power function of |Tn|.

4. EXAMPLES OF SPATIAL STABLE PROCESSES

In this section, we provide some primitive conditions to calculate the spatial FDM
and the Lp-FD coefficient of {Yi,n} generated by an SAR model, a threshold SAR
model, and a spatial panel data model. We also show how FD is employed to
establish asymptotic distributions of estimators of the SAR Tobit model and a
dynamic network quantile regression model.

4.1. A General Criterion

First, we provide a general criterion to establish the Lp-FD property. Let X =
{Xi,n,i ∈ Dn,n≥1} be an R

pX -valued triangular array random field and denote
Xn ≡ ((X′

i,n)i∈Dn)
′. Suppose {Yi,n,i ∈ Dn,n≥1} is generated by7

Yi,n = hi,n (Xn), (4.1)

where hi,n : (RpX )n → R
pY satisfies the following condition: for all x,x• ∈ (RpX )n,∥∥hi,n (x)−hi,n (x•)

∥∥≤
∑
j∈Dn

mij,n

∥∥xj − x•
j

∥∥, (4.2)

where xj is the jth component of x. Denote φ(s) ≡ supn,i∈Dn

∑
j∈Dn:dij≥s mij,n.

7When Xi,n’s are independent, representation (4.1) is identical to (2.1). However, representation (4.1) allows Xi,n’s
to be dependent, more specifically, allows

{
Xi,n = Xi,n(un)

}
to be generated by an independent random field {ui,n}.

In this case, hi,n(Xn(·)) can be regarded as gi,n(·) in (2.1).
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Proposition 4.1. If (i) lims→∞ φ(s) = 0, (ii) Xi,n’s are independent, and (iii)
‖X‖Lp = supn,i∈Dn

‖Xi,n‖Lp < ∞ for some p≥1, then (i) for all i,j ∈ Dn, δp(i,j,n) ≤
2‖X‖Lp mij,n, and (ii) {Yi,n} is Lp-FD on {Xi,n} with the Lp-FD coefficient �p(s)
satisfying �p(s) ≤ 2‖X‖Lpφ(s) for all s ∈ [0,∞).

When Xi,n’s are dependent, we assume they are generated by another latent
independent random field {ui,n : i ∈ Dn,n≥1}, and the Lp-FD property of {Yi,n}
is more complicated than that in Proposition 4.1. The result is presented in
Proposition 4.2.

Proposition 4.2. If (i) lims→∞ φ(s) = 0 and φ(0) = supn,i∈Dn

∑
j∈Dn

mij,n < ∞,
(ii) for some p≥1, {Xi,n} is Lp-FD on an independent random field {ui,n} with the
FDM δX,p(i,I,n) and the Lp-FD coefficient �X,p(s) satisfying lims→∞ �X,p(s) = 0
and �X,p(0) < ∞, then (i) for all i,k ∈ Dn, the FDM of {Yi,n} on {ui,n} satisfies
δp(i,k,n) ≤ ∑j∈Dn

mij,nδX,p(j,k,n), and (ii) the Lp-FD coefficient �p(s) satisfies
�p(s) ≤ 3�X,p(0)φ(s̃) + 3φ(0)�X,p(s − s̃) for all s ∈ [0,∞) and s̃ ∈ [0,s]. In
particular, �p(s) ≤ 3�X,p(0)φ( s

2 )+3φ(0)�X,p(
s
2 ).

We note that the conditions on mij,n for Lp-FD and L2-NED (Prop. 1 in Jenish
and Prucha, 2012) are almost identical. However, here the p≥1 can be an arbitrary
number; Proposition 1 in Jenish and Prucha (2012) is applicable only to p = 2.
With more choices for p, FD is more flexible and more convenient than NED in
applications.

4.2. Spatial Autoregressive Models

In this subsection, we calculate the FDM and the Lp-FD coefficient for the
SAR models. The individuals 1,2, . . . ,n are located in some lattice Dn ⊂ R

d

satisfying Assumption 1, and we identify each individual with its location in R
d

for simplicity.

4.2.1. SAR Model. The SAR model can be written as⎛⎜⎝ Y1,n
...

Yn,n

⎞⎟⎠= Yn = F (λWnYn +Xnβ + εn) =
⎛⎜⎝ F

(
λW1·,nYn +X′

1,nβ + ε1,n
)

...
F
(
λWn·,nYn +X′

n,nβ + εn,n
)
⎞⎟⎠,

(4.3)

where Wn = (wij,n)n×n is a nonstochastic and nonzero spatial weights matrix,
Wi·,n is the ith row of Wn, F : R → R is a Borel-measurable function, F(a) ≡
(F(a1), . . . ,F(an))

′ for any column vector a = (a1, . . . ,an)
′ ∈R

n, λ ∈R and β ∈R
K

are true model parameters, Xn = (X1,n,X2,n, . . . ,Xn,n)
′ ∈ R

n×K is the exogenous
variable matrix, and εn = (ε1,n,ε2,n, . . . ,εn,n)

′ ∈ R
n is the disturbance term. The

SAR model and its variants have been widely used in applications. When F(x) = x,
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(4.3) becomes Yn = λWnYn +Xnβ +εn, which is the standard (linear) SAR model;
when F(x) = max(0,x), (4.3) becomes the SAR Tobit model studied in Xu and Lee
(2015a).

We employ Propositions 4.1 and 4.2 to show that the {Yi,n} generated by (4.3) is
FD under some weak conditions. To do so, we need to impose some assumptions
on the function F, the spatial weights matrix Wn, {Xi,n}, and {εi,n}.

Assumption 2. F is a Lipschitz function with the Lipschitz constant L > 0, that
is, for any e,e• ∈ R, |F(e•)−F(e)| ≤ L |e• − e|. And ζ ≡ L |λ|supn ‖Wn‖∞ < 1.

Assumption 2 is a generalization of Assumption 2 in Xu and Lee (2015a) and
Assumption 3 in Xu and Lee (2015b). It ensures the existence and uniqueness of
the solution of (4.3). See Xu and Lee (2015a) for more discussion about it.

Assumption 3. The weights wij,n in Wn satisfy one of the following conditions:

(1) Only individuals whose distances are less than some specific constant d̄0 > 1
may affect each other directly, that is, wij,n can be nonzero only if dij < d̄0.

(2)
∣∣wij,n

∣∣≤ cd−α
ij for some constants c > 0 and α > d.

Assumption 3 is intuitive. From our definition, FD property implies that when
the distance dij is large, εi,n has a negligible impact on Yj,n. In the SAR model,
wij,n represents the direct impact of Yj,n on Yi,n. Thus, intuitively, for an FD SAR
process, |wij,n| should decrease as dij increases. Assumption 3(1) implies that there
is a threshold distance d̄0 such that when dij≥d̄0, wij,n will be zero. Assumption 3(2)
allows wij,n to decrease as a power function of the distance dij. In fact, we relax
Assumption 3(2) in Xu and Lee (2015a) which requires the number of spatial
units with strong impacts to be uniformly bounded. And if we impose a faster
decreasing rate on wij,n, for example,

∣∣wij,n

∣∣ ≤ cexp(−αdij), we can obtain a
stronger conclusion.

Assumption 4. One of the following conditions is satisfied:

(1) (X′
i,n,εi,n)’s are independent over i.

(2) For some p≥1,
{
(X′

i,n,εi,n)
′ : i ∈ Dn,n≥1

}
is Lp-FD on an independent random

field u = {ui,n : i ∈ Dn,n≥1} with the spatial FDM δXε,p(i,I,n) and the Lp-FD
coefficient �Xε,p(s) satisfying lims→∞ �Xε,p(s) = 0 and �Xε,p(0) < ∞.

Assumption 4 considers two cases: (1) (X′
i,n,εi,n)’s are independent, and (2)

they are spatially dependent. In both cases, we do not require that Xi,n and εi,n

be independent. So, conditional heteroskedasticity is allowed. When (X′
i,n,εi,n)’s

are spatially dependent, we suppose that they are generated by some independent
underlying random vectors ui,n’s. Similar ideas are widely employed. For example,
in time series, we usually model a dependent process as a moving average process.
Since Assumption 4(2) allows εi,n’s to be dependent, the SAR model with an SAR
disturbance (called the SARAR model) is a special case of (4.3), and we discuss
it in Section 4.2.2. Moreover, Assumption 4(2) allows contextual effects. If {Xi,n}
is Lp-FD on some independent random field {ui,n}, by Proposition 4.2, {Wi·,nXn}
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is also Lp-FD on {ui,n} under some reasonable conditions. Thus, Assumption 4(2)
allows {Wi·,nXn} as a special term.

We recall that L is the Lipschitz constant of F(·). To present our main results,
denote

Mn ≡ (mij,n)n×n ≡ L (In −L |λ| |Wn|)−1 ,

where |Wn| ≡ (|wij,n|)n×n. Under Assumption 2, Mn is well-defined and Neumann’s
expansion is allowed.

Proposition 4.3. We assume Cxε,p ≡ supn,i

∥∥X′
i,nβ + εi,n

∥∥
Lp < ∞, where p is

the same as that in Assumption 4. Let δp(i,j,n) and �p(s) denote the FDM and the
Lp-FD coefficient of {Yi,n}, respectively.

(1) Under Assumption 2, {Yi,n} is uniformly Lp-bounded.
(2) (i) Under Assumptions 2 and 4(1), δp(i,j,n) ≤ 2Cxε,pmij,n for all i,j ∈ Dn.

(ii) Under Assumptions 2 and 4(2), δp(i,k,n)≤∑n
j=1(‖β‖+1)mij,nδXε,p(j,k,n)

for all i,k ∈ Dn.
(3) Under Assumptions 1, 2, 3(1), and 4(1), {Yi,n} is Lp-FD on

{
(X′

i,n,εi,n)
′} and

�p(s) ≤ 2Cxε,pφ(s) for all s ∈ [0,∞), where φ(s) ≤ L
1−ζ

ζ s/d̄0 and ζ is defined
in Assumption 2.

(4) Under Assumptions 1, 2, 3(2), and 4(1), {Yi,n} is Lp-FD on
{
(X′

i,n,εi,n)
′} and

�p(s) ≤ 2Cxε,pφ(s) for all s ∈ [0,∞), where φ(s) = O(s−(α−d)(logs)α−d) does
not depend on p.

(5) Under Assumptions 1, 2, 3(1), and 4(2), {Yi,n} is Lp-FD on {ui,n} and

�p(s) ≤ 3(‖β‖+1)�Xε,p(0)φ
( s

2

)
+3(‖β‖+1)φ (0)�Xε,p

( s

2

)
for all s ∈ [0,∞), where φ(s) = L

1−ζ
ζ s/d̄0 . In particular, as s → ∞,

(i) if �Xε,p(s) = O(s−α1) for some α1 > 0, then �p(s) = O(s−α1);
(ii) if �Xε,p(s) = O(ηs) for some 0 < η < 1, then �p(s) = O(ξ s), where ξ =

max(η1/2,ζ 1/(2d̄0)).
(6) Under Assumptions 1, 2, 3(2), and 4(2), {Yi,n} is Lp-FD on the random field

{ui,n} and

�p(s) ≤ 3(‖β‖+1)�Xε,p(0)φ
( s

2

)
+3(‖β‖+1)φ (0)�Xε,p

( s

2

)
for all s ∈ [0,∞), where φ(s) = O(s−(α−d)(logs)α−d) does not depend on p.
In particular, as s → ∞, if �Xε,p(s) = O(s−(α−d)(logs)α−d), then �p(s) =
O(s−(α−d)(logs)α−d).

From Proposition 4.3, under certain conditions, the {Yi,n} generated by the
SAR model is Lp-FD. In Section S.2 in the Supplementary Material, we apply
Proposition 4.3 to show that the score function of the SAR Tobit model studied in
Xu and Lee (2015a) satisfies a CLT, and this is a critical step in establishing the
asymptotic distribution of their estimator.

https://doi.org/10.1017/S026646662400015X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662400015X
https://doi.org/10.1017/S026646662400015X


SPATIAL FUNCTIONAL DEPENDENCE 15

4.2.2. SARAR Model. The SARAR model is a generalization of the SAR
model and is widely used in applications. Thus, we explore its FD properties.
The form of the SARAR model is the same as (4.3), but εn = ρMnεn + vn, where
vn = (v1,n, . . . ,vn,n)

′, vi,n’s are i.i.d. random variables, and Mn = (mij,n)n×n is a
nonstochastic and nonzero spatial weights matrix. As mentioned previously, the
SARAR model is just a special case of the previous SAR model in our setting.
Thus, we can employ Proposition 4.3 to establish the Lp-FD property of the
SARAR model by imposing some conditions on Mn to ensure that {εi,n} is Lp-FD
on {vi,n}.

Assumption 5.

(1) The Lipschitz constant of F : R → R is L, and ζ ≡ L |λ|supn ‖Wn‖∞ < 1;
(2)

∣∣wij,n

∣∣≤ cd−α
ij and

∣∣mij,n

∣∣≤ cd−α
ij for some constants c > 0 and α > d;

(3) for some p≥1, {Xi,n} is Lp-FD on an independent random field {ui,n : i ∈
Dn,n≥1} with the Lp-FD coefficient �X,p(s) = O(s−(α−d)(logs)α−d) satisfying
�X,p(0) < ∞; and (u′

i,n,vi,n)’s are independent over i;
(4) supn ‖ρMn‖∞ < 1;
(5) ‖v‖Lp = supn,i

∥∥vi,n

∥∥
Lp < ∞,‖X‖Lp = supn,i

∥∥X′
i,nβ
∥∥

Lp < ∞.

Assumption 5 inherits the assumptions of Proposition 4.3(6) directly. Conse-
quently, the Lp-FD coefficient of {Yi,n} is a direct result of Proposition 4.3(6).

Proposition 4.4. Under Assumptions 1 and 5, {Yi,n} is Lp-FD on
{
(u′

i,n,vi,n)
′}

with the Lp-FD coefficient �p(s) = O(s−(α−d)(logs)α−d) as s → ∞.

4.2.3. SARMA Model. The SAR model with moving average disturbances
(SARMA model) is another generalization of SAR model (Huang, 1984; Fingle-
ton, 2008; Doğan and Taşpınar, 2013). The form of the SARMA model is the
same as (4.3), except that εn = vn −ρMnvn, where vn = (v1,n, . . . ,vn,n)

′, vi,n’s are
i.i.d. random variables, and Mn = (mij,n)n×n is a nonstochastic and nonzero spatial
weights matrix. Here are the assumptions needed to establish the FD properties of
the SARMA model.

Assumption 6.

(1) The Lipschitz constant of F : R → R is L, and ζ ≡ L |λ|supn ‖Wn‖∞ < 1;
(2)

∣∣wij,n

∣∣≤ cd−α
ij and

∣∣mij,n

∣∣≤ cd−α
ij for some constants c > 0 and α > d;

(3) for some p≥1, {Xi,n} is Lp-FD on an independent random field {ui,n :
i ∈ Dn,n≥1} with the Lp-FD coefficient �X,p(s) satisfying �X,p(s) =
O(s−(α−d)(logs)α−d) as s → ∞ and �X,p(0) < ∞; and (u′

i,n,vi,n)’s are
independent over i;

(4) ‖v‖Lp = supn,i

∥∥vi,n

∥∥
Lp < ∞ and ‖X‖Lp = supn,i

∥∥X′
i,nβ
∥∥

Lp < ∞.

Like the SARAR model, Assumption 6 also inherits the assumptions of
Proposition 4.3(6). Thus the Lp-FD coefficient of {Yi,n} is a direct result of
Proposition 4.3(6).
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Proposition 4.5. Under Assumptions 1 and 6, {Yi,n} is Lp-FD on {(u′
i,n,vi,n)

′}
with the Lp-FD coefficient �p(s) = O(s−(α−d)(logs)α−d) as s → ∞.

4.3. A Threshold Spatial Autoregressive Model

A threshold spatial autoregressive (TSAR) model, which combines a threshold
model and an SAR model, has received increasing attention recently. Deng (2018)
considers a TSAR model and proposes a two-stage least squares estimator for the
model. Li (2022) studies the quasi-maximum likelihood estimation of a TSAR
model. Here, we explore the FD properties of the TSAR model in Li (2022), which
can be written as

Yn = (λ1Dγ +λ2D̄γ

)
WnYn +Dγ Xnβ1 + D̄γ Xnβ2 + εn, (4.4)

where Yn = (Y1,n, . . . ,Yn,n)
′, Dγ = diag

{
1(q1,n ≤ γ ), . . . ,1(qn,n ≤ γ )

}
, D̄γ =

In − Dγ , λ1,λ2,γ ∈ R and β1,β2 ∈ R
K are true model parameters, Xn =

(X1,n,X2,n, . . . ,Xn,n)
′ ∈ R

n×K are exogenous variables, qi,n’s are the exogenous
threshold variables which might be part of xi,n, εn = (ε1,n,ε2,n, . . . ,εn,n)

′ ∈ R
n is

the disturbance term, and Wn = (wij,n)n×n is a nonstochastic and nonzero spatial
weights matrix. We first state some assumptions.

Assumption 7.

(1) λsupn ‖Wn‖∞ < 1, where λ ≡ max {|λ1|, |λ2|};
(2)

∣∣wij,n

∣∣≤ cd−α
ij for some constants c > 0 and α > d;

(3) qi,n’s are independent across i; for some p≥1,
{
(X′

i,n,εi,n)
′ : i ∈ Dn,n≥1

}
is Lp-

FD on an independent random field u = {ui,n : i ∈ Dn,n≥1} with the spatial
FDM δXε,p(i,I,n) and the Lp-FD coefficient �Xε,p(s) satisfying �Xε,p(s) =
O(s−(α−d)(logs)α−d) as s → ∞ and �Xε,p(0) < ∞;

(4) ‖ε‖Lp = supn,i

∥∥εi,n

∥∥
Lp < ∞ and ‖X‖Lp = supn,i ‖Xi,n‖Lp < ∞.

Proposition 4.6. Under Assumptions 1 and 7, the {Yi,n} generated by the
model (4.4) is Lp-FD on {(u′

i,n,qi,n)
′} with the Lp-FD coefficient �p(s) =

O(s−(α−d)(logs)α−d) as s → ∞.

4.4. Spatial Panel Data Models

In this section, we discuss the FD of spatial panel data models. We suppose that
in the panel data, there are N individuals named as 1, . . . ,N and they are located
in DN ⊂ R

d, and the time periods originate from −∞: t = . . . , −1,0,1, . . . ,T . We
regard each individual i at time t as a point in the (d + 1)-dimensional spatial-
temporal space R

d+1: (i,t) ∈ DNT ≡ {(i,t) ∈ R
d+1 : i ∈ DN,t = T,T −1, . . .

}
. We

adopt the same metric as in Qu et al. (2017):

dit;jτ ≡ ‖(i,t)− (j,τ )‖∞ = max
{
dij, |t − τ |}≡ max

{
max

1≤k≤d
|ik − jk|, |t − τ |

}
.
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We still consider the setting in Assumption 1, that is, dij≥1 for any i �= j.
Consequently, for any different pair (i,t),(j,τ ) ∈ DNT , dit;jτ≥1.

We suppose that the fixed effects in the spatial panel data model are random,
which includes nonstochastic fixed effects as a special case. So, we employ
the concept of conditional spatial FDM here.8 Let (�,F,P) be the underlying
probability space and C be a sub-σ -field of F . We suppose εit’s ((i,t) ∈ DNT )
are conditionally independent on C, and we write εNt ≡ (ε′

1t,ε
′
2t, . . . ,ε

′
Nt)

′. We
suppose yit’s ((i,t) ∈ DNT ) are generated by εNt’s: yit = git(εNt,εN,t−1, . . .). We write
YNt = (y1t, . . . ,yNt)

′ and GNt = (g1t, . . . ,gNt)
′. We can also write the system as

YNt =
⎛⎜⎝ g1t(εNt,εN,t−1, . . .)

...
gNt(εNt,εN,t−1, . . .)

⎞⎟⎠≡ GNt(εNt,εN,t−1, . . .). (4.5)

For all (i,t) ∈ DNT , given C, let ε∗
it be an i.i.d. copy of εit, and ε∗

it is independent of εjτ

for all (j,τ ) ∈ DNT . For any set I ⊂ DNT , we define εit,I ≡ ε∗
it if (i,t) ∈ I and εit,I ≡ εit

otherwise, and εNt,I ≡ (ε′
1t,I,ε

′
2t,I, . . . ,ε

′
Nt,I)

′. Then yit,I = git(εNt,I,εN,t−1,I, . . .) is a
coupled version of yit on I and YNt,I = (y1t,I, . . . ,yNt,I)

′. Although the notation for
spatial panel data is slightly different from that in Section 2, for example, DNT here
corresponds to Dn in Section 2, the setting in the spatial panel data is a special case
of the general setting in Section 2. For clarity, we restate Definitions 2.1 and 2.2
in the spatial panel data setting.

Definition 4.1 (The FDM for spatial panel data). For p≥1, (i,t) ∈ DNT and I ⊂
DNT, define the conditional FDM as δCp (it,I) ≡ ∥∥yit − yit,I

∥∥
Lp,C . When I = {(j,τ )}

is a singleton, we simplify the notation as δCp (it,{(j,τ )}) ≡ δCp (it,jτ).

Definition 4.2 (The Lp-FD coefficient for spatial panel data). Let p≥1. For
the system in (4.5), {yit} is said to be C-conditionally Lp-functionally dependent
(Lp-FD) or C-conditionally p-stable on {εit} if the C-conditional Lp-FD coefficient
satisfies

�C
p (s) ≡ sup

N,T
sup

(i,t)∈DNT

δCp
(
it,
{
(j,τ ) ∈ DNT : dit;jτ≥s

})→ 0 as s → ∞. (4.6)

4.4.1. A General SDPD Model. Next, we study the FD properties of the spatial
dynamic panel data (SDPD) model, which has been widely investigated in the
literature (see, e.g., Yu et al., 2008; Lee and Yu, 2010, among many others). The
SDPD model is specified as

YNt = λWNYNt +γ YN,t−1 +ρWNYN,t−1 +XNtβ +μtlN +νN +VNt, (4.7)

where t = T,T −1, . . . ,i = 1, . . . ,N, YNt = (y1t,y2t, . . . ,yNt)
′, WN = (wij,N)N×N is a

nonstochastic spatial weights matrix and invariant as t changes,

8See Appendix D for details about the conditional spatial functional dependence.
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XNt = (x1t, . . . ,xNt)
′ ∈ R

N×p is the regressor matrix, μt is the time fixed effect
at period t, lN = (1, . . . ,1)′ is N-dimensional, νN = (ν1, . . . ,νN)′ is an N × 1
column vector of individual fixed effects, VNt = (v1t, . . . ,vNt)

′ is the disturbance
term, and λ,γ,ρ,β ∈ R are true model parameters. Denote SN ≡ IN − λWN ,
AN ≡ S−1

N (γ IN + ρWN), εNt ≡ XNtβ + μtlN + νN + VNt, and εNt ≡ (ε1t, . . . ,εNt)
′.

Then (4.7) can be written as YNt = ANYN,t−1 + S−1
N εNt. Under some suitable

conditions, by iterating the above equation, we have

YNt =
∞∑

h=0

Ah
NS−1

N εN,t−h. (4.8)

For this example, we define C ≡ ∨∞
t=−∞ ∨∞

N=1 σ(μt,νN) as the sub-σ -field gener-
ated by all fixed effects. To obtain the conditional Lp-FD coefficient for the SDPD
model, the following assumptions are needed.

Assumption 8. |wij,N | ≤ cd−α
ij for some constants c > 0 and α > d.

Assumption 9. supN ‖WN‖∞ ≤ 1 and |λ|+|γ |+|ρ| < 1. Denote ζ ≡ |γ |+|ρ|
1−|λ| < 1.

Assumption 10. ‖ε‖Lp,C ≡ supN,T supi,t ‖εit‖Lp,C < ∞ a.s. for some p≥1.

Assumption 11. Conditional on C, (x′
it,vit)’s are independent over i and t.

These assumptions are like those for the SAR model, but all the statements here
are conditional on C.

Proposition 4.7. For model (4.7), under Assumptions 1 and 8–11, (1)
{yit : (i,t) ∈ DNT} is C-conditionally Lp-FD on {εit} with the C-conditional Lp-
FD coefficient �C

p (s) = ‖ε‖Lp,CO(s−(α−d)(logs)α−d) almost surely as s → ∞; (2)
the same conclusion also holds for {Wi·,NYNt : (i,t) ∈ DNT}.

Remark 4.1. In Proposition 4.7, we require xit’s and vit’s to be conditionally
independent on C. In Section S.8.4 in the Supplementary Material, we provide
an example where vit’s are correlated. Our conclusion can also be generalized to
allow xit’s to be correlated in both the spatial and time dimension. For instance,
we consider XNt = ∑∞

τ=0 Dτ X̃N,t−τ , where the px × 1 random vectors x̃it’s (the
transpose of the ith row of X̃Nt) are identically distributed and conditionally
independent on C over i and t, Dτ is an N × N nonstochastic matrix whose row-
sum-norm decreases exponentially as τ → ∞, that is, ‖Dτ‖∞ ≤ C0 exp(−C1τ) for
some constants C0,C1 > 0 and supi

∑
j:dij≥s(Dτ )ij = O(s−(α−d)(logs)α−d) for any

τ≥0, where (Dτ )ij is the (i,j)th entry of Dτ . Then

∞∑
h=0

Ah
NS−1

N XN,t−hβ =
∞∑

h=0

Ah
NS−1

N

( ∞∑
τ=0

Dτ X̃N,t−h−τ

)
β

=
∞∑

k=0

(
k∑

τ=0

Ak−τ
N S−1

N Dτ

)
X̃N,t−kβ.
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From the proof of Lemma A.8 in Su et al. (2023),
∥∥∥∑k

τ=0 Ak−τ
N S−1

N Dτ

∥∥∥∞
decreases

exponentially as k → ∞. This fact can be used to replace the fact that ‖Ah
NS−1

N ‖∞
decreases exponentially as h → ∞ in the proof of Proposition 4.7. Further,
by (1) replacing t1 − t2≥s and 0 ≤ t1 − t2 < s in the last inequality of (S.37)
by t1 − t2≥s̃ and 0 ≤ t1 − t2 < s̃, respectively, where s̃ depends on s and s̃ ≤
s, and (2) selecting s̃ appropriately, we can show that {yit : (i,t) ∈ DNT} is
C-conditionally Lp-FD on {(x̃′

it,vit)
′} with the C-conditional Lp-FD coefficient

�C
p (s) = O(s−(α−d)(logs)α−d+1) a.s. as s → ∞.

Remark 4.2. We can allow the slope coefficients of different individuals to
be different, as long as their upper bounds satisfy Assumption 9. For exam-
ple, we denote the spatial coefficient for the ith row of WNYNt by λi, λ ≡
supN∈N supi=1,...,N |λi|, and �N ≡ diag{λ1, . . . ,λN}. Then

�NWN = λdiag

{
λ1

λ
, . . . ,

λN

λ

}
WN ≡ λW̌N,

where W̌N ≡ diag
{

λ1
λ
, . . . ,

λN
λ

}
WN can be regarded as the new spatial weights

matrix. Then Proposition 4.7 remains applicable.

4.4.2. A DNQR Model. Next, we give an example to illustrate how FD is used
to derive a CLT, which is an important step in deriving the asymptotic distribution
of the estimator for the dynamic network quantile regression (DNQR) model in
Xu et al. (2024). Their model can be specified as9

YNt = γ1τ WNYNt +γτ2WNYN,t−1 +γτ3YN,t−1 +γ0τ lN +ZNtατ + lNB′
τ Ft +VNt,

(4.9)

where t = T,T − 1, . . . ,i = 1, . . . ,N, YNt = (y1t,y2t, . . . ,yNt)
′, WN = (wij,N)N×N is

a nonstochastic time-invariant spatial weights matrix, ZNt = (z1t, . . . ,zNt)
′ ∈ R

N×pz

is the exogenous regressor matrix, γ0τ is the intercept term, lN = (1, . . . ,1)′ is N-
dimensional, ft = (ft1, . . . ,ftm)′ ∈R

m×1 is a vector of time-varying common factors
and Ft = (f ′

t , . . . ,f
′
t−k)

′ ∈R
(k+1)m×1, VNt = (v1t, . . . ,vNt)

′ is the disturbance term and
vit’s are independent, and γ0τ,γ1τ,γ2τ,γ3τ ∈R, ατ ∈R

pz , and Bτ = (β ′
0τ, . . . ,β

′
kτ )

′ ∈
R

(k+1)m×1 are true model parameters. We write xit = (1,z′
i,t,Yi,t−1,Yi,t−1,F′

t)
′ and

φτ = (γ0τ,α
′
τ,γτ2,γτ3,B′

τ )
′, where Yi,t−1 = Wi·,NYN,t−1. We take the instrumental

variable as rit = (e′
iW

2
NYN,t−1,e′

iW
3
NYN,t−1)

′ ∈R
2, where ei ∈R

N is a column vector
with unity on the ith entry and zeros otherwise. We write �it ≡ (x′

it,r
′
it)

′, uit ≡ yit −
γ1τ Yit −x′

itφτ and sit ≡ ψτ (uit) ·�it, where Yit ≡ Wi·,NYNt and ψτ (·) ≡ τ −1(· ≤ 0).
In Xu et al. (2024), they explore the asymptotic theory for the instrumental variable
quantile regression (IVQR) estimator by establishing the NED property of {yit}.
Here, we establish the CLT for {sit}, a crucial step in establishing the asymptotic
normality of the IVQR estimator by using FD.

9Here, we use a slightly different form, but it is equivalent to the one in Xu et al. (2024).
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Assumption 12. Let C ≡ ∨∞
t=−∞σ(z′

1t, . . . z′
Nt,F

′
t).

(1) supN ‖WN‖∞ = 1 and |γ1τ |+ |γ2τ |+ |γ3τ | < 1. We write ζ ≡ |γ2τ |+|γ3τ |
1−|γ1τ | < 1.

(2) ‖v‖Lp,C ≡ supN,T,i,t ‖vit‖Lp,C <∞ a.s. for some p > 2; |γ0τ |+supN,T,i,t

∣∣z′
itατ

∣∣≤
dz < ∞; and ‖Bτ‖∞ supT,t ‖Ft‖1 ≤ df < ∞.

(3) |wij,N | ≤ cd−α
ij for some constants c > 0 and α > 3

2 d + 1
2 .

(4) Conditional on C, vit’s are independent over i and t.
(5) � ≡ τ(1− τ) limN,T→∞(NT)−1∑N

i=1

∑T
t=1E(�it�

′
it | C) is nonsingular a.s.

(6) P(vit ≤ 0 | C,xit,rit) = τ a.s.

Assumptions 12(1)–(4) directly inherit Assumptions 8–11. Similar assumptions
as those in Assumption 12 are also employed in Assumptions 2.1 and 3.2 and The-
orem 3 in Xu et al. (2024). Xu et al. (2024) require α > 2d+1 in Assumption 12(3)
to establish NED, so our assumption is less restrictive. Then we have the following
CLT.

Proposition 4.8. For model (4.9), let GNT = ∑T
t=1

∑N
i=1 sit. Under Assump-

tions 1 and 12,

�−1/2 GNT −ECGNT√
NT

d→N(0,I).

To conduct inference, one must estimate � consistently. A natural estimator is

�̂ = τ(1− τ)

NT

N∑
i=1

T∑
t=1

�it�
′
it,

and it is a consistent estimator for � by the conditional LLN under FD
(Theorem D.1).

Proposition 4.9. For model (4.9), under Assumptions 1 and 12, �̂
p→�.

Remark. Though the spatial weights matrices (Wn or WN) considered in this
section are nonstochastic, our theory can also accommodate stochastic matrices.
In Section S.8 in the Supplementary Material, we discuss the spatial FD properties
of more examples, including the models with a stochastic (or even possibly
endogenous) spatial weights matrix. All the examples in this section and Section
S.8 in the Supplementary Material share a similar structure: the right-hand sides
of these data generating processes (e.g., (4.3), (4.4), and (4.7)) are all Lipschitz
functions of the spatial interaction term (WnYn or WNYNt) and the right-hand-
side function is a contraction mapping of Yn or YNt, which is preserved under
our assumptions (e.g., Assumption 2). The Lipschitz and contraction mapping
properties are vital for condition (4.2) to hold such that the general criteria
(Propositions 4.1 and 4.2) are applicable to establish the spatial FD property. When
the Lipschitz and contraction mapping properties do not hold, for example, the
right-hand side is an indicator function (when Yi,n is discrete), the general criteria
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are not applicable and we have to resort to other methods to establish the spatial FD
property of Yi,n. Finally, the establishment of the FD property does not require the
coefficients in the models to be homogeneous (i.e., identical for all individuals). We
allow for individual heterogeneity in the models (e.g., the functional-coefficient
SAR model in Sun (2016), the smooth-coefficient SAR model in Malikov and Sun
(2017) and the heterogeneous SDPD model in Su et al. (2023)). See Section S.8
in the Supplementary Material for more information.

5. TRANSFORMATIONS OF SPATIAL STABLE PROCESSES

In this section, we investigate the FDM and the FD coefficient under various
transformations. In applications, estimators and testing statistics are certain func-
tions of the data. Thus, one needs to calculate the FD coefficients of those
estimators and testing statistics to employ the tools in Section 3. Since �p(s) ≡
supn supi∈Dn

δp(i,
{
j ∈ Dn : dij≥s

}
,n), it suffices to consider the properties of Lp-

FDM δp(i,I,n) under various transformations.10 Throughout this section, denote
the Lp-FDM (p≥1) of the random field {Yi,n} ({Zi,n} or {Xi,n}) over an independent
random field {εi,n} by δY,p(i,I,n) (δZ,p(i,I,n) or δX,p(i,I,n)).

First, we consider a family of functions Hi,n : RpY → R
pZ satisfying the

following condition: for all y,y• ∈ R
pY ,∥∥Hi,n (y)−Hi,n (y•)

∥∥≤ Bi,n (y,y•)‖y− y•‖ . (5.1)

We write Zi,n ≡ Hi,n(Yi,n) in Propositions 5.1–5.3. When Bi,n is bounded by a
constant C, from the following proposition, we have δZ,p(i,I,n) ≤ CδY,p(i,I,n).
And NED shares a similar property.

Proposition 5.1. If supn,i supy,y• Bi,n(y,y•) ≤ C < ∞ in (5.1) for some constant
C, then δZ,p(i,I,n) ≤ CδY,p(i,I,n) for any p≥1, i ∈ Dn, I ⊂ Dn, n≥1.

When Bi,n(y,y•) is unbounded, for example, Hi,n(x) = x2, the following two
propositions summarize the corresponding results.

Proposition 5.2. We suppose Bi,n(y,y•) ≤ C1(‖y‖a + ‖y•‖a + 1) in (5.1) for
some constants a > 0 and C1 < ∞. The constants p,q,r≥1 satisfy p−1 = q−1 +r−1.
If ‖Y‖Lar ≡ supn,i∈Dn

‖Yi,n‖Lar < ∞, then δZ,p(i,I,n) ≤ C1(2‖Y‖a
Lar +1)δY,q(i,I,n)

for all i ∈ Dn, I ⊂ Dn, and n≥1.

We note that there is a trade-off between p, q, and r. If we want a larger p, then a
larger q or a larger r is needed. In the NED case (Lemma A.4, Xu and Lee, 2015a),
p is restricted to be 2, but here p can be any number greater than or equal to 1. In
Proposition 5.2, the Lp-FD of {Zi,n} is preserved by the Lq-FD of {Yi,n} for some

10The θm,p,ι defined in Appendix B is also a special case of δp(i,I,n) with I = Ii,m,ι. Thus, the properties of FDM
δp(i,I,n) under transformations are also applicable for θm,p,ι.
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q > p. In fact, when {Yi,n} is Lp-FD, {Zi,n} might also be Lp-FD, as can be seen in
the following proposition.

Proposition 5.3. We suppose Bi,n(y,y•) ≤ C1(‖y‖a + ‖y•‖a + 1) in (5.1) for
some constants a≥1 and C1 < ∞, and ‖Y‖Lq ≡ supn,i∈Dn

‖Yi,n‖Lq < ∞ for some q
satisfying q > (a+1)p and q≥ ap

p−1 , where p > 1 is a constant. Then for any i ∈ Dn

and I ⊂ Dn, there exists a constant C2 > 011 such that

δZ,p(i,I,n) ≤ C2
{
δY,p(i,I,n)

}(q−ap−p)/(pq−ap−p)
. (5.2)

Let us compare Propositions 5.2 and 5.3. Suppose that we want to establish a
CLT for {Zi,n}. If we employ Proposition 5.2, by Theorem 3.5, we need �Y,q(s) =
O(s−d/2) for some q > 2. If instead we employ Proposition 5.3, we need �Y,2(s) =
O(s−κ) for some κ >

d(pq−ap−p)

2(q−ap−p)
as s → ∞. Since pq−ap−p

q−ap−p > 1, we require a faster
decreasing rate of �Y,2(s) than that of �Y,q(s) when we use Proposition 5.2. The
price to employ Proposition 5.2 is a higher-order FD coefficient, that is, q > 2.

Next, we consider a discontinuous nonlinear transformation, 1(· > 0), which is
widely used to study binary data and censored data.

Proposition 5.4. We write Zi,n ≡ 1(Yi,n > 0) and suppose the probability
density functions of {Yi,n} are uniformly bounded in i and n. Then, for any p≥1,
i ∈ Dn, and I ⊂ Dn, there exists a constant C > 0 not depending on p, i, I, or n,
such that

δZ,p(i,I,n) ≤ C
{
δY,p(i,I,n)

}1/(p+1)
.

We suppose Yi,n and Zi,n are real-valued in the following. In applications, one
usually needs to deal with the summation or product of Yi,n and Zi,n. The case of
summation is a direct result of Minkowski’s inequality, and thus we omit its proof.

Proposition 5.5. The Lp-FDM of
{
Yi,n +Zi,n

}
satisfies δY+Z,p(i,I,n) ≤

δY,p(i,I,n)+ δZ,p(i,I,n) for any i ∈ Dn and I ⊂ Dn and p≥1.

The case of product is more complicated. Like Propositions 5.2 and 5.3, we also
have two results. We write Xi,n ≡ Yi,nZi,n in the following two propositions.

Proposition 5.6. We suppose
{
Yi,n ∈ R

}
and

{
Zi,n ∈ R

}
are two random fields

on the independent random field {εi,n} with ‖Y‖Lr2 = supn,i ‖Yi,n‖Lr2 < ∞ and
‖Z‖Lr1 = supn,i ‖Zi,n‖Lr1 < ∞, where r1,r2 > 1. Let p,q1,q2 > 1 be constants
and p−1 = q−1

1 + r−1
1 = q−1

2 + r−1
2 . Then, the FDM of {Xi,n} on {εi,n} satisfies

δX,p(i,I,n) ≤ ‖Z‖Lr1 δY,q1(i,I,n)+‖Y‖Lr2 δZ,q2(i,I,n) for any i ∈ Dn and I ⊂ Dn.

11Here, C2 might depend on p. If one wants to establish an exponential inequality for Zi,n, one must refer to the proof
of this proposition to determine how C2 depends on p. This is also the case for Proposition 5.7.
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As Proposition 5.2, Proposition 5.6 employs higher-order FDMs to calculate Lp-
FDM, that is, q1 and q2 are both greater than p. We can avoid higher order FDMs
with the help of the following proposition. But the price is that the decay rate of
the Lp-FDM is slower.

Proposition 5.7. We suppose supn,i ‖Yi,n‖Lq < ∞ and supn,i ‖Zi,n‖Lq < ∞ for
some q satisfying q > 2p and q≥ p

p−1 , where p > 1 is a constant. Then, for any
i ∈ Dn and I ⊂ Dn, there exist constants C1,C2 > 0 such that

δX,p(i,I,n) ≤ C1
{
δY,p(i,I,n)

}(q−2p)/(pq−2p) +C2
{
δZ,p(i,I,n)

}(q−2p)/(pq−2p)
.

In practice, we can use either Proposition 5.6 or 5.7 depending on different
conditions. An advantage of Proposition 5.7 is that the p in the δp(i,I,n) coefficient
of three or even more random fields could be kept unchanged. However, since
q−2p

pq−2p < 1, compared to using Proposition 5.6, we need faster rates for δY,p(i,I,n)

and δZ,p(i,I,n) (�Y,p(s) and �Z,p(s)) to establish the inequalities and limit theo-
rems in Section 3 for {Xi,n} when we apply Proposition 5.7.

6. COMPARISON OF FUNCTIONAL DEPENDENCE AND NED

In this section, we compare spatial FD and spatial NED thoroughly. Spatial NED
was proposed by Jenish and Prucha (2012). For the convenience of reference, we
review its definition first.

Definition. For some p ≥ 1, let Z = {Zi,n,i ∈ Dn,n≥1
}

and ε = {εi,n,i ∈ Dn,

n ≥ 1
}

be two random fields with ‖Zi,n‖Lp < ∞, and Dn satisfies Assumption 1. The
random field Z is said to be uniformly Lp-NED on ε if

∥∥Zi,n −E(Zi,n|Fi,n(s))
∥∥

Lp ≤
Cψ(s) for some constant C and some sequence ψ(s)≥0 with lims→∞ ψ(s) = 0,
where Fi,n(s) ≡ σ(εj,n : dij < s) denotes the sub-σ -field generated by the εj,n’s
located within the open ball centering at i ∈ Dn and of radius s. The C is called
the NED scaling factor. The ψ(s) is called the NED coefficient and can be without
loss of generality (w.l.o.g.) assumed to be nonincreasing.

The idea of NED is that if every spatial unit is mainly affected by its close
neighbors, while spatial FD means that the effects of faraway spatial units are
negligible. The ideas of these two concepts are similar. Hence, it is natural to ask
whether there is any relationship between them. We answer this question in the
following theorem.

Theorem 6.1.

(1) If {Yi,n} is Lp-FD on an independent random field {εi,n}, that is,
lims→∞ �p(s) = 0, then {Yi,n} is uniformly Lp-NED on {εi,n} with the NED
scaling factor C = 1 and the NED coefficient ψ(s) ≤ �p(s).
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(2) If {Yi,n} is Lp-NED on an independent random field {εi,n} with the NED scaling
factor C = 1, that is, lims→∞ ψ(s) = 0, and in addition Yi,n =∑j∈Dn

wij,nεj,n

for any i ∈ Dn, where wij,n’s are nonstochastic coefficients, then {Yi,n} is Lp-FD
on {εi,n} with the Lp-FD coefficient �p(s) ≤ 2ψ(s).

Therefore, Lp-FD implies Lp-NED and they are equivalent when Yi,n is a linear
process in εj,n’s. Now, all properties of a NED random field on an independent
random field {εi,n} also hold for spatial functional dependent processes, for
example, the following covariance inequality. This implies that

∣∣Cov(Yi,n,Yj,n)
∣∣

decreases to 0 as dij increases to ∞. In other words, Yi,n is mainly correlated with
those Yj,n’s of close neighbors.

Corollary 6.1. Under Assumption 1, if (i) ‖Y‖L2 ≡ supn,i ‖Yi,n‖L2 < ∞, and
(ii) {Yi,n} is L2-FD on an independent random field {εi,n}, that is, lims→∞ �2(s) =
0, then for all i �= j ∈ Dn and 0 < s ≤ dij

2 ,
∣∣Cov(Yi,n,Yj,n)

∣∣≤ 2‖Y‖L2 �2(s).

Though FD implies NED when εi,n’s are independent, we note that FD is not
only a special case of NED, but a more powerful and convenient weak dependence
concept. Here, we summarize the advantages of FD over NED.

1. Spatial FD is more convenient to calculate than spatial NED, especially when
we need to deal with nonlinear transformations. When we need to deal with
various nonlinear transformations, in many cases, only L2-NED is convenient.
This is because the definition of NED involves a conditional expectation,
and the conditional expectation is the best predictor under L2-distance. This
property is widely used in the proofs about NED under nonlinear transfor-
mations (see, e.g., Lemmas A.2 and A.4 in Xu and Lee, 2015a). However,
the conditional expectation is not needed to calculate Lp-FDMs or Lp-FD
coefficients. So, we can usually obtain the Lp-FDM conveniently for any p≥1
under suitable conditions; and the Lp-FD property can be preserved under
various transformations, as can be seen from Section 5.

2. As shown in Theorems 3.2 and 3.5, compared to using NED, it usually requires
weaker conditions to establish a CLT and an exponential inequality by using
FDM. For CLT, it only requires the L2-FD coefficient to decrease slightly faster
than s−d/2; however, it requires L2-NED coefficient to decrease slightly faster
than s−d. The exponential inequality under FDM enjoys both less restrictive
conditions and a faster decay rate, as discussed in Section 3.1.2.

3. Compared to NED, weaker conditions are needed to establish FD properties.
For example, in Case 1 of Assumption 3.2 in Xu et al. (2024), in addition to the
condition that |wij| ≤ cd−α

ij , another condition about the column sums of Wn is
needed, which is not needed in our paper (see Assumption 12(3)).

Due to these reasons, we believe that spatial FDM is a more powerful and
convenient weak dependence concept than NED for theoretical studies in spatial
econometrics.
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7. CONCLUSION

In this paper, we generalize the concept of FD proposed in Wu (2005) to the spatial
FD to fit the common settings in spatial econometrics. We establish a moment
inequality, an exponential inequality, a Nagaev-type inequality, a law of large
numbers, and a central limit theorem such that they can be employed in future
studies in spatial econometrics. We verify the concepts for a nonlinear SAR model,
a threshold SAR model, and an SDPD model. Furthermore, we establish different
conditions to preserve the spatial FD property under various transformations. We
compare spatial FD with the spatial NED proposed by Jenish and Prucha (2012),
and illustrate its advantages over the spatial NED.

There are some future research directions. (1) If a better strategy can be found to
prove Theorem B.1 such that the term ι

d/2
m in the definition of the second-type Lp-

FD coefficient �s,p,ι ≡∑∞
m=s ι

d/2
m θm,p,ι can be dropped, and some conditions in our

theoretical results can be relaxed. (2) We are working on relaxing the assumption
that individuals are located in a euclidean space such that the FD theory can be
applied to more general network data. (3) We are applying the tools developed in
this paper to study the quantile regression of spatial econometric models.

APPENDIXES

A. Two Lemmas for CLT

Lemma A.1 (CLT for spatially m-dependent triangular array). Let m≥0 be fixed.{
Xi,n,i ∈ Tn,n≥1

}
is a spatially m-dependent zero-mean triangular array (i.e., Xi,n and Xj,n

are independent when dij≥m), where Tn satisfies Assumption 1. And

limk→∞ supn,i∈Tn
E[X2

i,n1(
∣∣Xi,n

∣∣ > k)] = 0, that is, Xi,n’s are uniformly L2-integrable.

Denote Sn ≡∑i∈Tn
Xi,n and σ 2

n ≡ Var(Sn). Assume B ≡ liminfn→∞ |Tn|−1σ 2
n > 0. Then

Sn

σn

d→N (0,1) .

Proof. Since
{
Xi,n,i ∈ Tn,n≥1

}
is spatially m-dependent, its φ-mixing coefficients

φ̄k,l(r) = 0 for all k,l ∈ N when r > m. Thus, Assumption 4 in Jenish and Prucha (2009) is
satisfied. Since Assumptions 1, 2, and 5 in Jenish and Prucha (2009) are also satisfied, by

Theorem 1(b) in Jenish and Prucha (2009), Sn
σn

d→N(0,1). �

Lemma A.2 (Prop. 6.3.9 in Brockwell and Davis, 1991). Let Wn, n = 1,2, . . . and Uns,

s = 1,2, . . ., be random vectors such that (1) Uns
d→Us as n → ∞ for each s = 1,2, . . .; (2)

Us
d→U as s → ∞; (3) lims→∞ limsupn→∞P(|Wn −Uns| > ε) = 0 for every ε > 0. Then

Wn
d→U as n → ∞.

B. Second-Type Functional Dependence Coefficient

In this section, we introduce the second-type Lp-FD coefficient, which is mainly used
to develop our theory. In this paper, when we mention an Lp-FD coefficient without
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“second-type,” we refer to the Lp-FD coefficient in Definition 2.2. To begin with, we define
I ≡ {ι = (ι0,ι1, . . .) : ι0 = 0,ιm > ιm−1,ιm ∈ N for all m≥1} to be the set of all strictly
increasing integer-valued sequences ι starting at ι0 = 0. The proofs of this section are
collected in Section S.3 in the Supplementary Material.

Definition B.1 (The second-type Lp-FD coefficient). For any p≥1, m ∈ N, and ι ∈ I ,
denote Ii,m,ι = {j ∈ Dn : dij ∈ [ιm−1,ιm)} and

θm,p,ι ≡ sup
n

sup
i∈Dn

δp(i,Ii,m,ι,n) = sup
n

sup
i∈Dn

‖Yi,n −Yi,n,Ii,m,ι
‖Lp .

For any s ∈ N, the second-type Lp-FD coefficient is defined as

�s,p,ι ≡
∞∑

m=s
ι
d/2
m θm,p,ι,

and denote �p,ι ≡ �1,p,ι =∑∞
m=1 ι

d/2
m θm,p,ι.

In Definition B.1, Ii,m,ι is the set of individuals whose distance to i is within [ιm−1,ιm),
which can be regarded as a ring inRd . Therefore, δp(i,Ii,m,ι,n) measures the impact of εj,n’s

in this ring on Yi,n, and θm,p,ι is its supremum over i and n. �s,p,ι ≡ ∑∞
m=s ι

d/2
m θm,p,ι

is a weighted sum of θm,p,ι with m≥s, measuring the total impact of εj,n’s with distance
dij≥ιm−1. Thus, �s,p,ι decreases as the distance s increases.

Definition B.1 is motivated by Wu (2005), El Machkouri et al. (2013), Liu et al. (2013),
and Wu and Wu (2016). They define �p ≡∑∞

m=1 θm,p,ι̃, where ι̃ = (0,1,2, . . .). Their ι̃ is

a special case of ours. Using various ι’s, we can improve some of our theoretical results.12

Notice that they do not have the term ι
d/2
m , but this term is essential to establish the moment

inequality in our setup (see the proof of Theorem B.1).
We now employ θm,p,ι and �s,p,ι to establish a moment inequality and an exponential

inequality, which will lead to Theorems 3.1 and 3.2. To start with, we first give a crucial
lemma.

Lemma B.1. For system (2.1), let Fi,n(s) ≡ σ(εj,n : dij < s) denote the sub-σ -field
generated by the εj,n’s located within the open ball centering at i ∈ Dn and of radius s.
Denote Vi,n,ι(m) ≡ E(Yi,n|Fi,n(ιm)) −E(Yi,n|Fi,n(ιm−1)). Then for any i ∈ Dn, m ∈ N,
p≥1 and ι ∈ I , we have∥∥Vi,n,ι(m)

∥∥
Lp ≤ θm,p,ι. (B.1)

In the following of this section, let Tn be a finite subset of Dn such that |Tn| → ∞ as
n → ∞, Sn ≡∑i∈Tn

Yi,n and Zn ≡ Sn/
√|Tn|. The moment inequality is stated as follows.

Theorem B.1. Under Assumption 1, if �p,ι < ∞ for some p≥2 and ι ∈ I , then∥∥∥∥∥∥
∑
i∈Tn

(Yi,n −EYi,n)

∥∥∥∥∥∥
Lp

≤ 2d
√

p−1�p,ι|Tn|1/2. (B.2)

12We will elaborate on this at the end of this section.
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The main strategy to prove Theorem B.1 is to decompose every (Yi,n − EYi,n) as a
summation of a martingale difference array

{
Vi,n,ι(m)

}∞
m=1 and apply Lemma B.1 to bound

the Lp-norm of the mth element of the martingale difference array by θm,p,ι. An application
of Theorem B.1 is the following exponential inequality.

Theorem B.2. Under Assumption 1, if (i) EYi,n = 0 for any i ∈ Tn, (ii) for any real
number p≥2, there exists a sequence ι(p) ∈ I such that �p,ι(p) < ∞, and (iii)

γ0 ≡ sup
p≥2

p−ν�p,ι(p) < ∞, (B.3)

then for α = 2
1+2ν

and for all t ∈ [0,t0), we have

m(t) ≡ E
[
exp
(
t |Zn|α)]≤ 1+ cα

(
1− t

t0

)−1/2 t

t0
,

where t0 = (eαγ α
0 2αd)−1 and cα is a constant depending only on α. Hence, for any ε > 0,

by taking t = t0/2, we have

P(|Sn|≥|Tn|ε) ≤
(

1+
√

2cα

2

)
exp

(
−|Tn|1/(1+2ν)ε2/(1+2ν)

2αd+1eαγ α
0

)
.

Condition (B.3) is similar to (2.21) in Wu and Wu (2016). It assumes that �p,ι(p) increases
slower than Cpν for some ν≥0 as p → ∞. As mentioned in Wu and Wu (2016), γ0 can be
regarded as a dependence-adjusted norm.

Next, we summarize the relations between the two types of Lp-FD coefficients in
Lemmas B.2–B.5. Lemmas B.3–B.5 are the keys to transfer the properties of θm,p,ι and
�s,p,ι to the properties of �p(s) in Section 3 and they will be used in the proofs of
Theorems 3.1–3.5. In the following lemmas, �p(s) denotes the Lp-FD coefficient of {Yi,n}
on {εi,n}.

Lemma B.2. For any p≥1, m≥1, and ι ∈ I , we have θm,p,ι ≤ 3�p(ιm−1). Immediately,

�s,p,ι ≤ 3
∞∑

m=s
ι
d/2
m �p(ιm−1) and �p,ι ≤ 3

∞∑
m=1

ι
d/2
m �p(ιm−1).

Lemma B.3. If {Yi,n} is L1-FD on {εi,n}, then lims→∞
∑∞

m=s θm,1,ι = 0 for some ι ∈ I .

Lemma B.4. For any p≥1, if �p(0) < ∞ and �p(s) = O(s−κ ) as s → ∞ for some κ > d
2 ,

then �p,ι < ∞ and �s,p,ι = o(s−1) as s → ∞ for some ι ∈ I .

Lemma B.5. If {Yi,n} is Lp-FD on {εi,n} for any p≥2 with �p(s) ≤ O(pν)O(s−κ ) for

some κ > d
2 and ν≥0 as p → ∞ and s → ∞, where O(pν) does not depend on s and

O(s−κ ) does not depend on p, then γ0 ≡ supp≥2 p−ν�p,ι < ∞ for some ι ∈ I .

Finally, we illustrate how various ι’s can improve our results. Take Theorem B.1
as an example. If we fix ι as ι∗ = (0,1,2, . . .), then �p,ι∗ = ∑∞

m=1 md/2θm,p,ι∗ ≤
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∑∞
m=1 md/2�p(m − 1) by Lemma B.2. To establish the moment inequality, we need the

condition �p(s) = O(s−d/2−1−δ) for some δ > 0 to ensure �p,ι∗ < ∞. However, from

Lemma B.4, whenever �p(s) = O(s−d/2−δ) for some δ > 0, we have �p,ι < ∞ for some ι.
Similar improvement also appears in the proofs of the LLN, the CLT and the exponential
inequality.

C. Proofs for Section 3.2

The proofs in this section rely heavily on the theory of the second-type Lp-FD coefficient
in Appendix B. Recall I ≡ {ι = (ι0,ι1, . . .) : ι0 = 0,ιm > ιm−1,ιm ∈ N for all m≥1}.

Proof of Theorem 3.4. The idea of the proof is borrowed from that for the LLN in
Jenish and Prucha (2012). By Condition (ii) in this theorem and Lemma B.3, there exists a
sequence ι ∈ I such that

lim
s→∞

∞∑
m=s

θm,1,ι = 0. (C.1)

Recall that Fi,n(m) = σ(εj,n : dij < m). For any fixed s ∈ N, we decompose Yi,n −EYi,n as

Yi,n −EYi,n = ξ s
i,n +ηs

i,n,

where ξ s
i,n = E(Yi,n|Fi,n(ιs)) − EYi,n and ηs

i,n = Yi,n − E(Yi,n|Fi,n(ιs)). Therefore, it
suffices to show that both ξ s

i,n and ηs
i,n satisfy an LLN.

(1) Consider ξ s
i,n first. It suffices to show that ξ s

i,n satisfies the assumptions of Theorem 3
in Jenish and Prucha (2009). First, for all s≥1, i ∈ Tn, and n≥1, by conditional Jensen’s
inequality,

sup
n,i∈Tn

∥∥∥ξ s
i,n

∥∥∥
Lp

≤ 2 sup
n,i∈Tn

∥∥Yi,n
∥∥

Lp < ∞.

So, {ξ s
i,n,i ∈ Tn,n ∈N} is uniformly Lp-bounded for p > 1, and as a result, it is uniformly L1-

integrable. Second, since ξ s
i,n is measurable with respect to Fi,n(ιs) and εi,n’s are indepen-

dent, ξ s
i,n and ξ s

j,n are independent when dij≥2ιs. Thus, the α-mixing coefficient ᾱξ s(1,1,r)

of ξ s
i,n will become zero when r≥2ιs, which indicates that

∑∞
m=1 md−1ᾱξ s(1,1,m) < ∞.

Therefore, all the conditions in Theorem 3 in Jenish and Prucha (2009) are satisfied for ξ s
i,n.

So, for each s≥1,

1

|Tn|

∥∥∥∥∥∥
∑
i∈Tn

ξ s
i,n

∥∥∥∥∥∥
L1

→ 0 as n → ∞. (C.2)
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(2) Next, we will investigate ηs
i,n. Recall Vi,n,ι(k) ≡ E(Yi,n|Fi,n(ιk))−E(Yi,n|Fi,n(ιk−1))

and note that ηs
i,n =∑∞

k=s+1 Vi,n,ι(k). Thus,

1

|Tn|

∥∥∥∥∥∥
∑
i∈Tn

ηs
i,n

∥∥∥∥∥∥
L1

= 1

|Tn|

∥∥∥∥∥∥
∑
i∈Tn

∞∑
k=s+1

Vi,n,ι (k)

∥∥∥∥∥∥
L1

≤ 1

|Tn|
∞∑

k=s+1

∑
i∈Tn

∥∥Vi,n,ι (k)
∥∥

L1

≤ 1

|Tn|
∞∑

k=s+1

∑
i∈Tn

θk,1,ι =
∞∑

k=s+1

θk,1,ι → 0 as s → ∞,

(C.3)

where the last inequality follows from (B.1) and the last limit follows from (C.1).
Combining (C.2) and (C.3), for all s≥1, we have

limsup
n→∞

1

|Tn|

∥∥∥∥∥∥
∑
i∈Tn

(
Yi,n −EYi,n

)∥∥∥∥∥∥≤ limsup
n→∞

1

|Tn|

∥∥∥∥∥∥
∑
i∈Tn

ξ s
i,n

∥∥∥∥∥∥+ limsup
n→∞

1

|Tn|

∥∥∥∥∥∥
∑
i∈Tn

ηs
i,n

∥∥∥∥∥∥
≤

∞∑
k=s+1

θk,1,ι.

By letting s → ∞, we complete the proof. �

Proof of Theorem 3.5. This proof adopts the strategy employed by Jenish and Prucha
(2012) in proving their NED CLT. As this proof is lengthy, we break it up into several parts.

Step 1. Decomposition of Yi,n. By Condition (i) in this theorem and Lyapunov’s
inequality,

�2(0) = sup
n

sup
i∈Dn

∥∥∥Yi,n −Yi,n,
{
j:dij≥0

}∥∥∥
L2

≤ 2sup
n

sup
i∈Dn

∥∥Yi,n
∥∥

Lp < ∞.

Together with Condition (iii) in this theorem, by Lemma B.4, there exists a sequence ι ∈ I
such that

�2,ι < ∞ and �s,2,ι = o(s−1) (C.4)

as s → ∞. Now, recall that Fi,n(m) = σ(εj,n : dij < m). For any fixed s ∈N, we decompose
Yi,n −EYi,n as follows:

Yi,n −EYi,n = ξ s
i,n +ηs

i,n,

where ξ s
i,n = E(Yi,n|Fi,n(ιs))−EYi,n and ηs

i,n = Yi,n −E(Yi,n|Fi,n(ιs)). Let

Sn,s =
∑
i∈Tn

ξ s
i,n, S̃n,s =

∑
i∈Tn

ηs
i,n, σ 2

n,s = Var
(
Sn,s

)
, σ̃ 2

n,s = Var
(

S̃n,s

)
.

By the Minkowski inequality and Sn −ESn = Sn,s + S̃n,s, we have

σn = ‖Sn −ESn‖L2 ≤ ∥∥Sn,s
∥∥

L2 +
∥∥∥S̃n,s

∥∥∥
L2

= σn,s + σ̃n,s.

Similar inequalities hold if we exchange the locations of σn,σn,s,σ̃n,s in the above inequal-
ity, which leads to∣∣σn −σn,s

∣∣≤ σ̃n,s and
∣∣σn − σ̃n,s

∣∣≤ σn,s. (C.5)
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Now, we consider the spatial FDM of
{
ηs

i,n : i ∈ Dn,n≥1
}

on
{
εi,n : i ∈ Dn,n≥1

}
. Recall

that Ii,m,ι =
{
j ∈ Dn : dij ∈ [ιm−1,ιm)

}
and denote F̌i,n(ιs)= σ

{
εj,n : j ∈ {dij < ιs

}\Ii,m,ι

}
,

F̆i,m,ι = σ
{
ε∗

j,n : j ∈ Ii,m,ι

}
. Then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ηs

i,n −ηs
i,n,Ii,m,ι

= Yi,n −E

(
Yi,n

∣∣∣∣Fi,n (ιs)

)
−Yi,n,Ii,m,ι

+E

(
Yi,n,Ii,m,ι

∣∣∣∣F̌i,n (ιs)∨ F̆i,m,ι

)
, ιm ≤ ιs,

ηs
i,n −ηs

i,n,Ii,m,ι
= Yi,n −Yi,n,Ii,m,ι

, ιm > ιs.

Let θ s
m,2,ι ≡ supn supi∈Dn

∥∥∥ηs
i,n −ηs

i,n,Ii,m,ι

∥∥∥
L2

and �s
2,ι ≡ ∑∞

m=1 ι
d/2
m θ s

m,2,ι. When m ≤
s, that is, ιm ≤ ιs, because Vi,n,ι(k) = E(Yi,n|Fi,n(ιk)) −E(Yi,n|Fi,n(ιk−1)) and ηs

i,n =∑∞
k=s+1 Vi,n,ι(k), by Minkowski’s inequality,

θ s
m,2,ι ≤ sup

n
sup
i∈Dn

{∥∥∥ηs
i,n

∥∥∥
L2

+
∥∥∥ηs

i,n,Ii,m,ι

∥∥∥
L2

}

≤ 2sup
n

sup
i∈Dn

∥∥∥ηs
i,n

∥∥∥
L2

= 2sup
n

sup
i∈Dn

∥∥∥∥∥∥
∞∑

k=s+1

Vi,n,ι (k)

∥∥∥∥∥∥
L2

≤ 2
∞∑

k=s+1

sup
n

sup
i∈Dn

∥∥Vi,n,ι (k)
∥∥

L2 ≤ 2
∞∑

k=s+1

θk,2,ι,

where the last inequality follows from (B.1). When m > s, that is, ιm > ιs, we have

θ s
m,2,ι = sup

n
sup
i∈Dn

∥∥∥Yi,n −Yi,n,Ii,m,ι

∥∥∥
L2

= θm,2,ι.

Therefore, by the above two results,

�s
2,ι ≡

∞∑
m=1

ι
d/2
m θ s

m,2,ι =
s∑

m=1

ι
d/2
m θ s

m,2,ι +
∞∑

m=s+1

ι
d/2
m θ s

m,2,ι

≤ 2
s∑

m=1

ι
d/2
m

∞∑
k=s+1

θk,2,ι +
∞∑

m=s+1

ι
d/2
m θm,2,ι

≤ 2
s∑

m=1

∞∑
k=s+1

ι
d/2
k θk,2,ι +2

∞∑
m=s+1

ι
d/2
m θm,2,ι

= 2(s+1)�s+1,2,ι → 0 as s → ∞,

where the last limit follows from �s,2,ι = o(s−1) in (C.4). Next, from (C.4), Theorem B.1
implies that σn = ‖Sn −ESn‖L2 ≤ 2d�2,ι

√|Tn| and

σ̃n,s =
∥∥∥S̃n,s

∥∥∥
L2

=
∥∥∥∥∥∥
∑
i∈Tn

ηs
i,n

∥∥∥∥∥∥
L2

≤ 2d�s
2,ι

√|Tn|. (C.6)
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From Condition (ii) in this theorem, σn≥√
B|Tn| for all n≥N (w.l.o.g. set N = 1). Conse-

quently,

lim
s→∞ sup

n≥1

σ̃n,s

σn
≤ lim

s→∞
2d�s

2,ι√
B

= 0. (C.7)

By (C.5) and (C.7),

lim
s→∞ limsup

n→∞

∣∣∣∣1− σn,s

σn

∣∣∣∣≤ lim
s→∞ sup

n≥1

σ̃n,s

σn
= 0, (C.8)

and

C ≡ sup
n≥1

sup
s∈N

σn,s

σn
< ∞. (C.9)

Step 2. Establish CLT for Sn,s =∑i∈Tn
ξ s

i,n. To do so, we need to show that for any fixed

s, ξ s
i,n satisfies the conditions of Lemma A.1. First,

{
ξ s

i,n

}
is 2ιs-dependent because ξ s

i,n is

measurable with respect to Fi,n(ιs) and εi,n’s are independent. Second, by the conditional
Jensen inequality,

sup
n,i∈Tn

∥∥∥ξ s
i,n

∥∥∥
Lp

= sup
n,i∈Tn

∥∥∥∥E(Yi,n

∣∣∣∣Fi,n (ιs)

)
−EYi,n

∥∥∥∥
Lp

≤ 2 sup
n,i∈Dn

∥∥Yi,n
∥∥

Lp < ∞.

So, {ξ s
i,n} is uniformly Lp-bounded. Since p > 2, {ξ s

i,n} is also uniformly L2 integrable.

Third, by (C.6), we have σ̃n,s√|Tn| ≤ 2d�s
2,ι. Since lims→∞ �s

2,ι = 0, there exists s0 such that

whenever s≥s0, σ̃n,s√|Tn| ≤ 2d�s
2,ι ≤

√
B

2 . Therefore, it follows from (C.5) that for all s≥s0,

(σn − σ̃n,s)/
√|Tn| ≤ σn,s/

√|Tn|. Hence,

liminf
n→∞

σn,s√|Tn|≥ liminf
n→∞

σn√|Tn| − limsup
n→∞

σ̃n,s√|Tn|≥
√

B−
√

B

2
=

√
B

2
> 0.

Thus, by Lemma A.1, when s≥s0,

Sn,s

σn,s

d→N (0,1) as n → ∞. (C.10)

Since the value of s0 does not affect the later analysis, suppose s0 = 1 in the following
w.l.o.g.

Step 3. CLT for σ−1
n
∑

i∈Tn
(Yi,n −EYi,n). Next, we will show that the just established

CLT for
{
ξ s

i,n

}
can be carried over to {Yi,n} by the same argument as in Jenish and Prucha

(2012). Denote Wn = σ−1
n (Sn −ESn) and Uns = σ−1

n Sn,s. Then Wn − Uns = σ−1
n S̃n,s.

Condition (3) of Lemma A.2 holds because

lim
s→∞ limsup

n→∞
P(|Wn −Uns| > ε) = lim

s→∞ limsup
n→∞

P

(∣∣∣σ−1
n S̃n,s

∣∣∣2 > ε2
)

≤ lim
s→∞ limsup

n→∞
σ̃ 2

n,s

σ 2
n ε2

= 0, (C.11)
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where the inequality follows from Markov’s inequality and the last limit is due to (C.7).

Next, we proceed to show Wn
d→U ∼ N(0,1) by contradiction. In order to do that, let M

be the set of all probability measures on (R,B), and observe that we can metricize M
by, for example, the Prokhorov distance d(·,·). Let μn and μ be the probability measure

corresponding to Wn and U, respectively. Then Wn
d→U ⇐⇒ μn → μ ⇐⇒ d(μn,μ) → 0

as n → ∞. Now, we suppose μn does not converge to μ, that is, for some ε > 0, there exists a
subsequence {n(m)}∞m=1 such that d(μn(m),μ) > ε for all n(m). From (C.9), 0 <

σn,s
σn

≤ C <

∞, that is,
{

σn,s
σn

}∞
n=1

is a uniformly bounded sequence over s ∈ N. Especially, for s = 1,{
σn(m),1/σn(m)

}∞
m=1 is a bounded sequence. By the Bolzano–Weierstrass Theorem, it has

a convergent subsequence
{
σn(m(k1)),1/σn(m(k1))

}∞
k1=1 such that σn(m(k1)),1/σn(m(k1)) →

p(1) as k1 → ∞. For s = 2, consider
{
σn(m(k1)),2/σn(m(k1))

}
. By the same argument, there

exists a further subsequence {n(m(k1(k2)))} such that σn(m(k1(k2))),2/σn(m(k1(k2))) → p(2).
Repeating this argument, we can construct a subsequence {n(m(k1(k2(· · ·(ks)))))} for all
s≥1 and σn(m(k1(k2(···(ks))))),s/σn(m(k1(k2(···(ks))))) → p(s) as ks → ∞. Now construct
a subsequence {nl}: n1 is the first element of {n(m(k1))}, n2 is the second element of
{n(m(k1(k2)))}, and so on. Then for all s≥1,

lim
l→∞

σnl,s

σnl

= p(s) .

It follows from (C.10), Uns = σn,s
σn

[σ−1
n,s
∑

i∈Tn
ξ s

i,n], and Slutsky’s theorem that Unls
d→Us ∼

N(0,p2(s)) as l → ∞. Since |p(s)−1| ≤
∣∣∣p(s)− σnl,s

σnl

∣∣∣+ ∣∣∣σnl,s
σnl

−1
∣∣∣,

lim
s→∞|p(s)−1| ≤ lim

s→∞ limsup
l→∞

∣∣∣∣p(s)− σnl,s

σnl

∣∣∣∣+ lim
s→∞ limsup

l→∞

∣∣∣∣σn,s

σn
−1

∣∣∣∣= 0,

where the last limit follows from (C.8). Therefore, Us
d→U. And by (C.11),

lim
s→∞ limsup

l→∞
P
(∣∣Wnl −Unls

∣∣> ε
)≤ lim

s→∞ limsup
n→∞

P(|Wn −Uns| > ε) = 0.

Then by Lemma A.2, Wnl
d→U ∼ N(0,1) as l → ∞. So, d(Wnl,U) → 0. Since {nl} ⊂

{n(m)}, d(Wnl,U) → 0 contradicts the assumption that d(μn(m),μ) > ε for all n(m). Hence,

σ−1
n (Sn −ESn) = Wn

d→U. �

D. Conditional Spatial Functional Dependence

We generalize the concept of spatial FDM to the conditional spatial FDM. The only
difference to the original spatial FD is that now the underlying random field becomes
conditionally independent (see, e.g., Chow and Teicher, 2003) and all expectations are
taken conditionally. Let (�,F,P) be the underlying probability space and C be a sub-σ -field
of F .

Let Yn be defined as in (2.1), where εi,n’s are conditionally independent given C. So,
εi,n’s might be dependent on each other unconditionally. Suppose that conditional on C,
ε∗

i,n is an i.i.d. copy of εi,n. For a set I ⊂ Dn, define εi,n,I ≡ ε∗
i,n if i ∈ I and εi,n,I ≡ εi,n if
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i /∈ I; we denote εn,I = ((ε′
i,n,I)i∈Dn)

′. Then Yi,n,I = gi,n(εn,I) is a coupled version of Yi,n

on I and Yn,I = (Y1,n,I, . . . ,Yn,n,I)
′.

Definition D.1 (Conditional spatial FD). Let Yn and εn be defined as above. For
p≥1,n≥1 and I ⊂ Dn, define δCp (i,I,n) ≡ ∥∥Yi,n −Yi,n,I

∥∥
Lp,C . And we say that Y ={

Yi,n,i ∈ Dn,n≥1
}

is C-conditionally Lp-functionally dependent or C-conditionally p-stable
on ε = {εi,n,i ∈ Dn,n≥1

}
if the C-conditional Lp-FD coefficient

�C
p (s) ≡ sup

n≥1
sup
i∈Dn

δCp
(
i,
{
j : dij≥s

}
,n
)→ 0 almost surely (a.s.) as s → ∞. (D.1)

The conditional spatial FD inherits the properties of the unconditional version. This is
because the theorems used in the proofs of the unconditional theorems can be generalized
to the corresponding conditional versions (see Roussas, 2008; Prakasa Rao, 2009; Yuan,
Wei, and Lei, 2014; and the supplementary document of Forchini, Jiang, and Peng, 2018).
Now, we state our LLN and CLT under conditional spatial FD. In the following, suppose
that

{
Yi,n,i ∈ Dn,n≥1

}
is generated by ε = {εi,n,i ∈ Dn,n≥1

}
, and εi,n’s are conditionally

independent given C. Tn is a finite subset of Dn satisfying |Tn| → ∞ as n → ∞, and we
write Sn ≡∑i∈Tn

Yi,n and σ 2
n ≡ VarC(Sn).

Theorem D.1 (Law of large numbers). Under Assumption 1, suppose that
supn≥1 supi∈Dn

‖Yi,n‖Lp,C < ∞ a.s. for some p > 1 and {Yi,n} is C-conditionally L1-FD
on {εi,n}, that is, lims→∞ �1(s) = 0 a.s. as s → ∞. Then

|Tn|−1 (Sn −ECSn
) p→0.

Proof. From Theorem 3.4, |Tn|−1
∥∥Sn −ECSn

∥∥
L1,C

a.s.−−→0 as n → ∞. Thus, by the
Markov inequality, for any ε > 0,

EC
{

1
[
|Tn|−1 ∥∥Sn −ECSn

∥∥> ε
]}

a.s.−−→0,

as n → ∞. Since the indicator function 1(·) is always bounded by 1, by the law of iterated
expectation and the bounded convergence theorem,

E

{
1
[
|Tn|−1 ∥∥Sn −ECSn

∥∥> ε
]}

= EEC
{

1
[
|Tn|−1 ∥∥Sn −ECSn

∥∥> ε
]}

→ 0,

that is, |Tn|−1(Sn −ECSn)
p→0. �

Theorem D.2 (Central limit theorem). Under Assumption 1, suppose the follow-
ing conditions hold: (1) supn≥1 supi∈Dn

‖Yi,n‖Lp,C < ∞ a.s. for some p > 2; (2)

liminfn→∞ |Tn|−1σ 2
n > 0 a.s.; (3) the C-conditional L2-FD coefficient of {Yi,n} on {εi,n}

satisfies �2(s) = O(s−κ ) a.s. as s → ∞ for some κ > d
2 . Then

Sn −ECSn

σn

d→N (0,1) .

Proof. From Theorem 3.5, for all x ∈ R, PC(
Sn−ECSn

σn
≤ x)

a.s.−−→�(x) as n → ∞, where
�(·) is the cumulative distribution function of N(0,1). Since PC(·) is always bounded by 1,
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by the law of iterated expectation and the bounded convergence theorem,

P

(
Sn −ECSn

σn
≤ x

)
= EPC

(
Sn −ECSn

σn
≤ x

)
→ �(x),

as n → ∞ for all x ∈ R, that is, Sn−ECSn
σn

d→N(0,1). �

SUPPLEMENTARY MATERIAL

Wu, Z., Jiang, W., & Xu, X. (2024). Supplement to “Applications of Functional
Dependence to Spatial Econometrics,” Econometric Theory Supplementary Mate-
rial. To view, please visit https://doi.org/10.1017/S026646662400015X.
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