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ISOTONIAN ALGEBRAS

MINA BIGDELI, JURGEN HERZOG, TAKAYUKI HIBI,
AYESHA ASLOOB QURESHI anp AKIHIRO SHIKAMA

Abstract. To a pair P and @ of finite posets we attach the toric ring K[P, Q]
whose generators are in bijection to the isotone maps from P to (). This class of
algebras, called isotonian, are natural generalizations of the so-called Hibi rings.
We determine the Krull dimension of these algebras and for particular classes
of posets P and @ we show that K [P, ] is normal and that their defining ideal
admits a quadratic Grébner basis.

81. Introduction

Let K be a field, and let L be a finite distributive lattice. In 1987,
Takayuki Hibi [11] introduced the K-algebra K[L] which nowadays is called
the Hibi ring of the distributive lattice L. The K-algebra K[L] is generated
over K by the elements « € L with defining relations a8 = (a A 5)(a V 5)
with «, f € L. In the early paper, Hibi also showed that K[L] is a normal
Cohen—Macaulay domain.

One remarkable fact is that K[L] may be viewed as a toric ring. This
can be seen by using Birkhoff’s fundamental theorem from 1937 which says
that each finite distributive lattice is the ideal lattice of a finite poset P.
Indeed, the subposet of L, induced by the join-irreducible elements of L,
is the poset P whose ideal lattice Z(P) is the given distributive lattice
L. Having the poset P of join-irreducible elements of L at our disposal,
we can write K[L] as the K-algebra generated over K by the monomials
ur =[1l,er zp [pgr vp € K[{2p, Yp}pep] with I € Z(P). Hibi, in his classical
paper also showed that the Krull dimension of K[L] is equal to |P|+ 1,
where |P| is the cardinality of P.
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Birkhoff’s theorem can also be phrased as follows: let P and Q) be finite
posets. We denote by Hom(P, Q) the set of order preserving maps, also
called isotone maps. Observe that Hom(P, Q) is again a finite poset, by
setting ¢ < 1 if and only if p(p) < ¢ (p) for all p € P. Let L be a distributive
lattice with P its subposet of join-irreducible elements. Birkhoff’s theorem
is equivalent to saying that there is a natural isomorphism of posets L =
Hom(P, [2]). Here for an integer n we denote by [n] the totally ordered set
{I<2<---<n}.

The set P of finite posets together with the isotone maps forms a category,
first considered in [6]. In the same paper the authors introduced the ideal
L(P, Q) which is generated by the monomials

Up = H Tpop) With ¢ € Hom(P, Q).
peEP

In the special cases when P =[n| or Q= [n|, the ideals L(P, Q) first
appeared in the work [4] of Ene, Mohammadi and Jiirgen Herzog. In the
sequel the algebraic and homological properties of the ideals L(P, Q) have
been subject of further investigations in the papers [10] and [14].

Here we are interested in the algebras K [P, )] which are the toric rings
generated over K by the monomials u, with ¢ € Hom(P, Q). We call these
algebras isotonian because their generators are in bijection with the isotone
maps from P to Q. In the special case that @ = [2], we obtain the classical
Hibi rings. Accordingly, one would expect that isotonian algebras share
all the nice properties of Hibi rings. In Theorem 3.1 it is shown that
dim K[P, Q] = |P|(|Q| — s) +rs — r + 1, where 7 is the number of connected
components of P and s is the number of connected components of (). The
proof of this theorem also shows that the algebraic variety whose coordinate
ring is K[P, Q] is birationally equivalent to the Segre product of suitable
copies of affine spaces.

Hibi rings are normal and Cohen—Macaulay. Do the same properties hold
for isotonian algebras? In Corollary 4.3 it is shown that this is the case
when the Hasse diagram of P is a forest. But this is also the case when
Q@ = [n], as shown in [4, Corollary 4.3]. Corollary 4.3 is a straightforward
consequence of a more general fact. Indeed, in Theorem 4.2 the following
result is proved: let P’ be the poset which is obtained from P by adding
an element p’ to P which has a unique upper or lower neighbor in P.
Then K[P, Q] is normal if and only if K[P’, Q] is normal. Based on these
results and on computational evidence we are lead to conjecture that all
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isotonian algebras are normal Cohen—Macaulay domains. One way to prove
this conjecture in general would be to show that there exists a term order
such that the initial ideal of the defining ideal Jp g of K[P, Q)] is squarefree.
By a theorem of Sturmfels [17, Chapter 8] this would imply that K[P, Q)] is
normal, and by a theorem of Hochster [13, Theorem 1] this in turn implies
Cohen—Macaulayness. In Theorem 5.5 we show that if P is a chain and
Q is a rooted or co-rooted poset, then Jpg has a quadratic (and hence
also a squarefree) Grobner basis with respect to the reverse lexicographic
order induced by a canonical labeling of the variables. In general, Jp o may
contain generators of arbitrarily high degree. This happens if ) contains
as an induced subposet, what we call a poset cycle. On the other hand, we
conjecture that Jpg is quadratically generated if and only if @) does not
contain any induced poset cycle of length greater than 4.

We would like to mention that Engstrom and Norén [5] introduced
an algebra, associated to the set of homomorphisms between two finite
graphs. While in our case the generators of the algebra correspond to the
graph of isotone maps between posets, the generators of the Engstrom—
Norén algebras correspond to the edge maps between the two given graphs.
It is interesting that the classical Hibi rings, which are a very special
case of isotonian algebras, allows also some interpretation in their theory,
[5, Theorem 10.2]. Otherwise, though in spirit similar, the two theories are
independent and disjoint.

§2. Operations on posets and the K-algebra K[P, ()]

Let P and @ be finite posets. A map ¢: P — @ is called isotone (order
preserving), if o(p) < p(p') for all p,p’ € P with p<p’. The set of all
isotone maps from P to @ is denoted by Hom(P, Q). Obviously, if P, Q
and R are finite posets and ¢ € Hom(P,Q) and ¢ € Hom(Q, R), then
1 o € Hom(P, R). We denote by P the category whose objects are finite
posets and whose morphisms are isotone maps. We note that Hom(P, Q) is
again a poset with ¢ < 4 for ¢, ¥ € Hom(P, Q) if and only if p(p) < ¢(p) for
all p € P. Thus, Hom(P, _): P — P is a covariant and Hom(_, Q): P - P a
contravariant functor.

Let P € P, and let p1, p2 € P. One says that pa covers p1 if p1 < p2, and
there is no p € P with p; < p < pa. We define the graph G(P) on the vertex
set P as follows: a 2-element subset {p1, p2} is an edge of G(P) if and only
if po covers p; or p; covers pa. The graph G(P) is the underlying graph of
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1

Figure 1.
Poset P.

the so-called Hasse diagram of P which may be viewed as a directed graph
whose edges are the ordered pairs (p1, p2), where py covers p;.

We say that P is connected, if G(P) is a connected graph. Given two
posets P; and P, the sum P; 4+ P, is defined to be the disjoint union of the
elements of P, and P, with p < ¢ if and only if p,q€ P, or p,q € P, and
p < q in the corresponding posets P or P». Then it is clear that any P € P
can be written as P = Zgzl P; where each P; is a connected subposet of P.
The subposets P; of P are called the connected components of P.

ExXAMPLE 2.1. Let P be the poset displayed in Figure 1.

We identify an isotone map ¢: P — P with ¢(p;) =p;, (i=1,2,3)
with the sequence jijsj3. With the notation introduced, the elements of
Hom(P, P) are:

111,112, 121, 113, 131, 122, 123, 132, 133, 222, 333.
The poset Hom(P, P) is displayed in Figure 2.

The product P; x P, of P, and P, is the poset whose elements are the
pairs (p1, p2) with p; € P; and ps € P5. The order relations in P; x P5 are
defined componentwise. For P; x Py, X - - - x Py we also write Hle P

In the next lemma we present two obvious (but useful) rules of the
Hom-posets.

LEMMA 2.2. Let PP, Ps,...,P. and Q,Q1,Q2,...,Qs be finite
posets, and assume that P is connected. Then:

(a) Hom(}>;_; P, Q) = [[;_; Hom(P;, Q);
(b) HOHl(P, Z?:l Ql) = Zf:l HOH](P, Ql)

We now introduce the isotonian algebra K[P, Q)] attached to a pair P, Q) of
finite posets. For this purpose we fix a field K, and consider the polynomial
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111

Figure 2.
Hom(P, P).

ring over K in the variables z, , with p € P and ¢ € Q. Then K [P, Q] is the
toric ring generated over K by the monomials

Up = H Lpp(p)-

pEP

Let RlzK[fl,...,fr]CK[$1,...,ZIS‘n] and RQZK[gl,...,gs]C
Klyi, ..., ym] be two standard graded K-algebras. Then

R1®R2:K[f17°"7f7"7.gl7"'7gs]

is the tensor product of Ry and Ry over K, while
RixRy=K[{figj:i=1,...,r,5=1,...,s}

is the Segre product of Ry and Ro.
The following isomorphisms are immediate consequences of Lemma 2.2
and the definition of isotonian algebras.

LEMMA 2.3. Let PP, Ps,...,P. and Q,Q1,Q2,...,Qs be finite
posets and assume that P is connected. Then:

(a) K[X2i4 P Q= K[P, Q] x K[P,, Q] x-- x K[P, Ql;
(b) K[P’ZleQi]gK[P7Ql]®K[P7Q2]®"'®K[PaQs]-

As a first consequence we obtain
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COROLLARY 2.4. Let P be a finite poset with connected components
P, P, ..., P. and let Q be a finite poset with connected components
Q1,Q2,...,Qs. Then K[P,Q] is normal if all K[P;, Q;] are normal. In
particular, if this is the case, then K[P, Q)] is also Cohen—Macaulay.

Proof. 1t is a well-known fact that the Segre product or the tensor
product of normal standard graded toric rings is normal. Thus the assertion
follows. The Cohen—Macaulayness of K[P, @] is then the consequence of
Hochster’s theorem [13, Theorem 1]. [

Let P €P. The dual poset PV of P is the poset whose underlying set
coincides with that of P and whose order relations are reversed. In other
words, p < p’ in P is equivalent to p’ < p in PV.

Since ¢: P — @ is isotone if and only if p: PY — QV is isotone, we have

LEMMA 2.5. Let P and Q be finite posets. Then the K -algebras K[P, Q]
and K[PV, Q"] are isomorphic.

§3. The dimension of K[P, Q]

In this section we compute the dimension of the algebra K[P, Q]. The
result is given in

THEOREM 3.1. Let P and @ be finite posets and let v be the number of
connected components of P and s be the number of connected components

of Q. Then dim K [P, Q] = |P|(|Q| —s) +rs —r + 1.

Proof. By using Lemma 2.3 and the fact that for any two standard
graded K-algebras R and S, dim R® S =dim R+ dim S and dim R S =
dim R+ dim S — 1 (see [7, Theorem 4.2.3]), the desired conclusion follows
once we have shown that dim K[P, Q] = |P|(|Q| — 1) + 1 in the case that P
and @ are connected. Let L be the quotient field of K [P, Q)]. Since K [P, Q)]
is an affine domain, the dim K[P, @] is the transcendence degree of L/K.

Let L' be the field generated by the elements:

(i) uq= HpEP Tpq for g € Q;
(ii) zpg/xpy forpe P, q, ¢ €Q and ¢<¢'.

We show that L' = L. It is obvious that elements u, belong to L. Let I
be any poset ideal of P and let ¢, ¢ € Q with ¢ < ¢'. Then @&q’q) P—Q

defined by

(qvql) — q if p 6 I’
er (p) = {q’ otherwise,
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is an isotone map with image {q,¢'}. Given any pg € P, one can find
two poset ideals I,J of P such that J=TU{pp} and po ¢ I. Then

~1
U(pgq,q’) = HpEI Lp,q Hp¢1 Tpq and %,(Jq,q’) = (Hpel wp,q)xpo,q(npgzl mp,q’)xm,q/-
It follows that u(pgqu/) /“wﬁq"” = Tpo.q/Tpy,q- 1t shows that all elements in

(ii) belong to L. Therefore, L' C L.

In order to prove the converse inclusion, let P ={py,...,p,} and let
qi, - - -, Gn be arbitrary elements in ). We show by induction on k that the
monomial Tp, ¢, *** Tpp g1 Tprsrsqisr *°° Lpn,gn CaN be obtained as a product
of Tp, g1 Tpn.g. and suitable elements in (ii) and their inverses. This
will imply that any monomial generator of K[P, Q] is contained in L/,
because the element =, 4, Tps g0 = * - Tp, g, Can then be written as a product of
Tpiqr** Tpn,qn and elements of type (ii) and their inverses. As a consequence
this will imply that L C L'.

For k=1, the statement is trivial. Since ) is connected, there exists a
sequence of elements ¢j, ..., ¢ in @ with ¢ =¢; and ¢ = gx+1 and ¢ and
Gi+1 are comparable for all ¢ in (). Then

t

Tpgy1,q1 /x}?kﬂ,%ﬂ = H(xpk+1ﬁi/xpk+1ﬁi+1)’
i=1

where each x,, | g,/Tp, g, OF its inverse is a monomial of type (ii). Then
the monomial Ty, ¢ " Tp.g1 Tpi1,q1 Tppiosgire " Tpnygn Can be obtained
as a product of the monomial xp, g = Tp, ¢1Tpy 1 ,qpis *** Tpn,g, and the
monomial Ty, 1 g1 /Tpyi1,qiir-

Let T be a spanning tree (i.e., a maximal tree) of G(Q) and choose an
element pg € P. Next we show that L is generated by the elements:

(1) ug=1l,ep Tpg, for ¢ € Q;
(ii') @p,q/pq for p€ P\ {po} and {q, '} € E(T) with ¢ <¢’;

where E(T) is the edge set of T. For any q < ¢ in @, we can obtain a

sequence ¢i, ..., G in T such that ¢ =q and ¢ =¢' and ¢; and ;11 are
neighbors for all =1, ..., t. Consequently, we obtain
t—1

Tp,q/Tp,q = H Tp,d; | Tp,Gisa -
i=1

Also note that @p,q/Tpyq = (ug/Ug ) (I pep (po} (Tpa'/Tpg)) for g < q', and
hence xp,4/%p, ¢ is & product of elements of type (i) and (ii’) and their
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inverses. This shows that all monomials of type (ii) can be obtained as
product of monomials of type (i) and type (ii’) and their inverses.

Let A be the set of exponent vectors (in QF*?) of the monomials of
type (i) and B be the set of exponent vectors of the monomials of type
(ii"). We show the set of vectors AU B is linearly independent. Then [18,
Proposition 7.1.17] implies that the Krull dimension of K[P, Q] is equal to
the cardinality of the set AU B.

Note that vectors in A are linearly independent because their support is
pairwise disjoint. Also, the vectors in B are linearly independent. To see this,
we let B, C B be the set of exponent vectors of monomials g/, o in (ii’)
with p fixed. Then B is the disjoint union of the sets B, with p € P\ {po}.
Moreover, for distinct p, p’ € P\ {po} the vectors in B, and B,y have disjoint
support. Thus it suffices to show that for a fixed p € P\ {po} the vectors in
B, are linearly independent. Now we fix such p € P\ {po}. Then the matrix
formed by the vectors of B), is the incidence matrix of the tree 7" which is
known to be of maximal rank (see for example [18, Lemma 8.3.2]). Thus the
vectors of B, are linearly independent, as desired.

Finally, to show that AU B is a set of linearly independent vectors it
suffices to show V. NW = {0}, where V is the Q-vector space spanned by
A and W is the Q-vector space spanned by B. Thus we have to show that
ifveV and we W with v =w, then v =w = 0. This is equivalent to say
that if u is a product of elements of (i) and its inverses and «’ is a product
of elements of (ii’) and its inverses, and if u =1/, then v =1u'=1. This is
indeed the case, because if v # 1, then u contains factors of the form z,, 4,
while v’ does not.

Now we determine the cardinality of AUB (which coincides with
dim K [P, Q)]). Observe that |A|=|Q| and |B| = (|P| — 1)(|Q| — 1), so that
AUB| = (1P| - 1)(1Q] - 1) + Q] = [PI(|Q] - 1) + 1. 0

COROLLARY 3.2. Let P and Q be finite connected posets with |P|=n
and |Q| =m, and let Xpg be the irreducible variety given by the defining
ideal Jpg of K[P,Q|. Then Xpgq is birationally equivalent to the variety
Y,..m whose coordinate ring is the n-fold Segre product of the m-dimensional
polynomial ring over K.

Proof. Let P={pi1,...,pn}, and let L be the quotient field of K[P, Q]
and T be the toric ring whose generators are of the form H?:1 Tp;.q; With
gj € Q. Note that

T =S %Sy % * S,
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where S; = K[zp, q: ¢€ Q] for i=1,...,n. It was shown in the proof of
Theorem 3.1 that L is also the quotient field of T'. This yields the desired
conclusion. []

§4. Normality of K[P, Q)]

In this section we prove normality of K[P, Q] in certain cases. As K [P, ()]
is a toric ring, normality of K[P, Q], by a theorem of Hochster [13, Theorem
1], implies that K[P, Q] is Cohen-Macaulay as well.

Let H be an affine semigroup and ZH be the associated group of H. The
semigroup H is normal, if whenever da € H for a € ZH and some d € N, then
a € H. By [2, Theorem 6.1.4], K[H] is normal if and only if H is normal.
We apply this criterion to K[P, Q]. Since K[P, @] is a toric ring, there exists
an affine semigroup H such that K[H|= K[P, Q]. It follows that K[P, Q]
is normal if and only if H is normal. In our particular situation, when
P={p1,...,pn}, the monomials in K[ZH] corresponding to the elements
in ZH are of the form uiluf! - uF! with u; = Tp, g1, Tpysain = * * Tpngin fOT
i=1,...,s, s>1and ¢; € Q. Thus it will follow that K[P, Q)] is normal if
whenever (ujﬂugEl —ufh? e K[P,Q), then vi'ui! - uf! € K[P, Q).

LEMMA 4.1. Let P, Q be two finite posets with P = {p1,...,pn}, and let
as before Sy = Klxp, q: ¢ € Q] fori=1,...,n. Assume that for any integer
d>1 and any sequence of monomials vi,...,vs € Sy %Sy *---% S, with
(vive - - - v)? € K[P, Q] it follows that viv - - - vy € K[P, Q]. Then the toric
ring K [P, Q] is normal.

Proof. Suppose (u iluéﬂ —ufh)? e K[P,Q]. We show that there exist
monomials v1,...,v; € Sy % So*---% S, such that (u{El L cuFh)d =
(vy - - - )% Then our assumption implies that vy ---v; € K [P, Q]. Since
(uftuf! - uF)d = (v - - )% and since K[P, Q] is a toric ring, we have

u; U
1 U
Fly Tt 1 — 9, - - - vy, and so the desired conclusion follows.

Uy Uy - ug
Without loss of generality we may assume that

(uliluétl ’ ‘U;H)d = (ul_l T U;l)d(ur-i-l T US)d

for some r < s. Let u; = H’;:l Tp, q;; for 1 <i<s. Then

n T S
1 —1\d d —d d
(ul sty )N (Urgr o us) :H [( m,qm) ( H xpi,qm)]
i=1 k=1 k=r+1

belongs to K [P, @]. Since the elements in K[P, Q)] have no negative powers,
it follows that each factor in [[,_, x;‘qui cancels against a factor in
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L, 41 xgi,q;ﬂ-' Without loss of generality we may assume that for each

. r —d . 2r d
iy [Tee1 Tpq,, cancels against [[;2, ., x5 . . Then

n S
(u%duéd e ufl)d - H ( H xgiﬂki) =(v1--- Usf2r)da

=1 \k=2r+1

_TI"
where vj = Hi:l Lpiqartj,it D
Based on the criterion given in Lemma 4.1 we show

THEOREM 4.2. Let P and Q be finite posets, and let P’ be a poset which
is obtained from P by adding an element p' to P with the property that p’
has a unique neighbor in G(P'). Then K[P', Q] is normal if and only if
K[P, Q] is normal.

Proof. By Corollary 2.4 we may assume that P is connected. Let
P={p1,...,pn} and set p,4+1 =p’. We may assume that p,, is the unique
neighbor of p,y1 in G(P) and that p, < pn41. In other words, p, is the
unique element in P covered by pp41.

Suppose first that K[P’, Q] is normal but K[P, Q] is not normal. Then
there exist monomials wj,...,us €Sy *---% S, such that (uj--- us)d €
K[P,Q] but uy - - -us € K[P, Q).

We write ¢; for the (not necessarily isotone) map P — @) corresponding
to w;, and define the map ¢ : P’ — @ by setting

iy Jwilp) i p# puta,
(pl(p) {Soi(pn) if p=ppi1.

Let u} be the monomial corresponding to ;. Then we have (u} ---u})? €
K[P', Q] but v} - - - ul, & K[P', Q], a contradiction.

Conversely, suppose that K[P, Q] is normal. Let ug, ..., us € S1 % S *
cook Sy withu; = H;Lill Tp, g, fori=1,...,s. By Lemma 4.1 it is enough
to show that if (ujusg - - - us)? € K[P’, Q] for some d € N, then ujus - - - us €
K[P', Q).

In order to prove this, we first observe that ¢ : P’ — Q is isotone, if and
only if ¢(p) < p(q) for all pairs p,q € P’ for which ¢ covers p. Hence, ¢:
P’ — Q is isotone if and only if the restriction of ¢ to P is isotone and
©(Pn) < (Pnt1)-

As a consequence of this observation we obtain the following statement:

let v1,...,v4 €851 %851 %% S,,1 with Ui:l_[;illmqu/__ fori=1,...,t,
i
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and set v; = [[i_, Tyl for i=1,...,t. Then vy ---v; € K[P', Q] if and
only if:

(i) o1---0 € K[P,Q);
(ii) there exists a permutation 7: [t] — [t] such that ¢;, < ¢ (iyn1 for all i.

Condition (ii) can be rephrased as follows: let G be the bipartite
graph with bipartition V(G) =V; U Vo, where V; ={x1,...,2;} and V5 =
{y1,. .., ye}. Welet {z;,y;} be an edge of G if and only if ¢;,, < q; ,, ;1. We
call G the graph attached to vy, ..., v:. By definition, a perfect matching
of G is a disjoint union of ¢ edges of G.

Now condition (ii) is equivalent to the following condition:

(i") The graph G attached to vy, ..., v; admits a perfect matching.

Now we come back to the sequence uq, ..., us € S1 * Sy % - - - xSy 1 with
u; = H;lill Ty, fori=1,..., s for which (ujug - - - us)? € K[P', Q).

Then (i) implies that (4 - - - @5)% € K[P, Q]. By assumption, K[P, Q] is
normal. This implies that @y - - - 45 € K[P, Q], where @; = [[}_; 2, 4;;- Thus
it will follow that u - - - us € K[P’, Q] if the graph G attached to uy, . . ., us
admits a perfect matching.

We let G@ be the graph attached to d copies of u1, . . . , us:

Uy ey Ugy e ooy, ULy ...y, Ug
TV
d times

Since (uyusg - - - us)? € K[P, Q] it follows from (ii’) that G(?) admits a perfect

matching.
Note that G(¥ may be viewed as the bipartite graph with vertex
decomposition
V(ED) = ur?,
where

V9 =M i=1,... s, k=1,...,d} and
Vi = (yMii=1,.. s k=1,... d}.
The edges of G@ are {xl(k), y§l)} with ¢in < gjns1 and k, 1 € [d].

Suppose that G has no perfect matching. Then Hall’s marriage theorem
(see for example [9, Lemma 9.1.2]) implies that there exists a set S C V}
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P Q
Figure 3.
Jp,q is not quadratic.

such that |[Ng(S)| < |S|. Here
Na(S)={y;: {zi, y;} with z; € S}

is the set of neighbors of S.
Let S@ = {2\": 2, € S, 1 <k <d}. Then S@ c V¥ and

Ny (S| = d|Ng(S)| < d|S| = |SD)].

Thus, G¥ does not have a perfect matching, a contradiction.

By using Theorem 4.2 and an obvious induction argument, we obtain

COROLLARY 4.3. Let P and Q be finite posets. Then K [P, Q)] is a normal

Cohen—Macaulay domain if G(P) is a tree.

Corollary 4.3 implies in particular that K{[n], Q] is normal. On the other
hand, the normality of K[P, [n]] has been proved in [4, Corollary 4.2]. These

types of algebras are called letterplace algebras. Thus we have

COROLLARY 4.4. All letterplace algebras are normal Cohen—Macaulay

domains.

It seems that K[P, Q] is normal, not only when G(P) is a tree. For
example, it can be shown by using Normaliz [3] that the isotonian algebra

K[Q, Q] is normal for the poset ) shown in Figure 3.

Further computational evidence and the above special cases lead us to

the following

CONJECTURE 4.5. Let P and @Q be finite posets. Then K[P, Q] is a

normal Cohen—Macaulay domain.
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85. Grobner basis

Let P and @ be finite posets. Let S = K[y,: ¢ € Hom(P, Q)] be the
polynomial ring in the variables y,, and let 7:5 — K[P, Q] be the K-
algebra homomorphism defined by y,, — [] . We denote the kernel
of by J PQ-

Let P={p1,p2,...,pn}. We may assume that the labeling of the
elements of P is chosen such that p; <p; implies ¢ <j. Similarly,
Q={q1,q9,-..,qn} is labeled. Having fixed this labeling we sometimes
WIite Y(jy ja,....jn) TOT Yy if ©(pi) = ¢qj, fori=1,...,n.

For @ = [2] the ideal Jp is the defining ideal of the Hibi ring associated
with the distributive lattice L = Hom(P, [2]). In this case it is known that
Jp,g has a quadratic Grébner basis, [9, Theorem 10.1.3]. For arbitrary posets
P and @ the ideal Jpg is not always generated in degree 2. The simplest
example is given by the posets P and @ displayed in Figure 3.

peP Lpp(p)

In this example Jpg is generated by the binomial y(i 4y(25)¥s.6) —
Y(1,5)Y(2,6)Y(3,4)-

It is known that in general Jp is generated by binomials. Consult [12]
for fundamental materials on toric ideals and Grébner basis.

We identify each ¢ € Hom(P,Q) with the sequence (jf“o), o ,jff)),
where p(p;) = qc0) for 1 <i < n. We introduce the total ordering < of the

variables y, with ¢ € Hom(P, Q) by setting y, <y, if ji(:)) <ji(;b), where
10 is the smallest integer for which ji(go) #* jz.(;ﬁ). Let <,y denote the reverse
lexicographic order on S induced by the above ordering < of the variables

Yy, with ¢ € Hom(P, Q).

ExamMPLE 5.1. Let P ={pi, p2, p3}, where p; <p2 and p; < ps3, and
Q ={q1, 2, g3}, where ¢1 < g3 and g2 < g3. Then the total ordering < on
the variables y, with ¢ € Hom(P, Q) is

Ya,1,1) <Y,1,3) <Y,33) <Y222) <Y223) <Y23,3) <Y33,3)-

We say that u,uy is nonstandard with respect to <,ey if there exist
@' and 9" for which wupty = upty and Y Yy <rev Yply- An expression
W = Uy, U, - * * Uy, Of a monomial w belonging to K[P, Q] is called standard
if no ugup,;, where 1<i<j<s, is nonstandard. It follows that each
monomial possesses a standard expression. However, a standard expression
of a monomial may not be unique.
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EXAMPLE 5.2. Let P=[2] and @ be as in Figure 3. Then each
of the expressions w( 4)u@5Ua3e) and w5 U6t Of the monomial
T11T12213%24%25% 26 1S standard.

LEMMA 5.3. Let P={pi,...,pn} be an arbitrary finite poset and
Q =[2]. Then every monomial belonging to K[P, Q] possesses a unique
standard expression.

Proof. Let w = uy, - - - uy, with g, < -+ <y, . Suppose that there exist
2<ip<nand 1<k <k <s for which ¢i(pi,) =2 and ¢ (pi,) = 1. Since
Yoo <+ - <Yy, it follows that there is 1<’ <ip with ¢g(py) =1 and
¢r (pir) = 2. Since each of the inverse images ¢, ' (1) and ¢,,' (1) is a poset
ideal of P, it follows that each of the maps ¥y : P — Q and ¢p : P — Q
defined by setting

Y (pi) = min{pk(pi), o (pi)}  and Yy (pi) = max{pk(pi), i (i) }

for 1 <i<n is isotone. Furthermore, one has Y Yo <rev YorYop and
Uy Uy, = Uy Uyp,,- Thus w =1y, - -u,, cannot be standard. Since
Yo < < Yy, , it follows that

e1(p1) < p2(p1) <- - - < ws(p1)-

Hence, if w = uy, - - - uy, is standard with y,, <--- <y,,, then

s

1(pi) < pa(pi) < < ps(pi)

for 1 <4 < n. This guarantees that a standard expression of each monomial
belonging to K [P, Q)] is unique, as desired. 0

A finite poset @ is called a rooted tree if whenever «, 8 and v belong to
Q@ with 8 < a and v < «, then either 8 <y or v < . In other words, a finite
poset @ is a rooted tree if a maximal chain of ) descending from each a € Q)
is unique. A finite poset is a co-rooted tree if its dual poset is a rooted tree.

LEMMA 5.4. Let P=[2] and let Q be a co-rooted tree. Then each
monomial belonging to K[P, Q] possesses a unique standard expression.

Proof. Let u be a monomial belonging to K[P, Q]. Let u=uy, - - - uy,
and u = uy, - - - uy, be standard expressions of u with y,, <---<y,, and
Yy < <Yy, Then one has ¢p(1) =5 (1) for 1 <k <s. Furthermore,
or(1) < pp(2) and Yr(l) < Yr(2) for 1 <k <s. In order to show that the
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standard expressions g, - - - Uy, and gy, - - - Uy, coincide, we may assume
without loss of generality that ¢; #1; for all ¢ and j. Since @ is a co-
rooted tree and since 1(1) < v1(2) and 91 (1) < ¥1(2) with p1(1) =1(1),
it follows that ¢1(2) and 11 (2) are comparable. Let, say, ¢1(2) < 11(2). Since
Up, - - Up, = Uy, - - - Uy, there is 2 < ko <s with Py, (2) = p1(2). Hence
Yo (1) < 9 (2) < 91(2) and 1(1) < Pg, (2) < 91(2). One can then define
¥} and 1y belonging to Hom(P, Q) by setting

Vi) =v1(1),  U1(2) =vko(2),  Uie(1) =¥k (1), 3, (2) = ¥1(2).
Then ), Uy = Uy Uy with Ypi <Y S Yay, - Furthermore, Yy, 2 Yy -
Hence Yy, Yo, <vev Yuor, Y1 - It then follows that U, Unpy, - CANNOY be stan-
dard. Hence a standard expression of each monomial belonging to K[P, Q]

is unique, as desired. 0

THEOREM 5.5. Let P be a chain and @) a co-rooted tree. Then each
monomial belonging to K[P, Q] possesses a unique standard expression.

Proof. We may assume that P = [n]. Then for each ¢ € Hom(P, @), one
has o) S S G- In other words, the image ¢([n]) is a multichain (chain
1 n

with repetitions) of @ of length n. It then follows that u,u, with y, < yy
is nonstandard if and only if there is 2 <i < n with ¢(i) > (i) such that
@(i —1) <9(i) and P(i — 1) < (). In fact, one has Yy yy <rev Yu¥y, Wwhere

(1) (i—1) (4

SO/:(j(p "").](P 7j¢7"'7j(n)) and
1/}/ = (jq)(bl)p .. )j$71)7j§(0i)7 ... 7]4;n))

Given ¢ € Hom(P, @), we introduce ¢* € Hom(P \ {n}, Q) by setting
©*(i) = (i) for i € [n—1]. Let u be a monomial belonging to K[P,Q].
Let u =1y, - - - up, and u=uy, - - - uy, be standard expressions of u with
Ypor <+ <Yy, and yy,, < -+ - <Yy, . The above observation guarantees that
each of upr - - - upr and uys - - - uyy is a standard expression. Thus, working
on induction on n, it follows that ¢ =1 for 1<k <s. In particular
or(n—1)=1vr(n—1) for 1 <k < s.

Now, in order to show that the standard expressions uy, ---u,, and
Uy, - - - Uy, coincide, one must show that ¢ (n) =1, (n) for 1 <k <s. This
can be done by using the same technique as in the proof of Lemma 5.4. []

COROLLARY 5.6. Let P be a chain and suppose that each connected
component of Q) is either a rooted or a co-rooted poset. Then the toric ideal
Jpg possesses a quadratic Grobner basis.
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Figure 4.
A cycle but not a poset cycle.

Proof. Let @Q be a co-rooted tree. Let G denote the set of quadratic
binomials of S of the form y,vyy — yoryy With yoyy <vev Yoy Further-
more, write in<, (G) for the monomial ideal of S which is generated by
those quadratic monomials y,y, for which u,uy are nonstandard. Let w
and w’ be monomials of S with w # w’ such that neither w nor w’ belongs
to inc,., (G). It then follows from Theorem 5.5 that 7(w) # 7(w’). In other
words, the set of those monomials 7(w) of K[P, Q] with w € in.__ (G) is
linearly independent. By virtue of the well-known technique ([1, Lemma 1.1]
and [16, (0.1)]) on initial ideals, this fact guarantees that G is a quadratic
Grobner basis of Jp g with respect to <rey, as desired.

Let @ be a rooted tree. Lemma 2.5 says that K[PY, Q"] is isomorphic to
K|[P,Q]. Since PY = P and since Q" is a co-rooted tree, it follows that Jp
possesses a quadratic Grobner basis, as required.

Now assume that each component Q; (i =1,...,m) of @ is either rooted
or co-rooted. As seen before, the toric ideal of each K [P, @);] has a quadratic
Grobner basis. Since by Lemma 2.3(b), K[P, ()] is the tensor product of the
K-algebras K[P, Q] it follows that the Grébner basis of Jpg is the union
of the Grobner basis of the Jp,. Thus the desired result follows. [

As we have seen at the beginning of this section, Jpg is not always
generated by quadratic binomials. We say that C' is a poset £-cycle, if the
vertices of C are aq,...,ap, b1, ..., b, whose covering relations are a; < b,
a; < bjy1 for 1 < i < ¢ where byy1 =b1. The poset ) in Figure 3 is a poset
6-cycle. Note that not any cycle of G(P) is a poset cycle (see for example
Figure 4).
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Based on Theorem 5.5, Corollary 5.6 and experimental evidence we
propose

CONJECTURE 5.7. Let P,Q € P, and assume that Q does not contain
any induced poset cycle of length greater than 4. Then Jpg is generated by
quadratic binomials.

The poset @ given in Figure 3 is a poset cycle. As expected by our
conjecture, Jpg g is not generated by quadrics. Actually, Jjj ¢ does not even
possess a quadratic Grobner basis with respect to the reverse lexicographic
term order induced by the natural order of the variables.
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