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Abstract 

Ambartsumian's celebrated hypothesis that stellar flares and other phenomena of stellar 

instability are due to a novel source of energy and a novel means of transporting this energy 

to the outer layers of the star has drawn the attention of electrodynamicists to a number 

of fundamental problems. One of these problems, namely the energy transport problem, 

is the subject of this communication. Herein, by assuming that the matter of the star is 

an isotropic collisionless plasma, from Maxwell's field equations and Newton's equation of 

motion with nonlinear Lorentz driving force, we have derived a vector differential equation for 

electromagnetic wave propagation. This equation contains the Debye radius and the plasma 

frequency as parameters, and reduces to the well-known wave equation when its nonlinear 

terms are neglected. We have indicated that the nonlinear equation has cohesive (solitary) 

wave solutions for both the longitudinal and transverse components of the electromagnetic 

field. Such cohesive waves are appropriate for transporting energy from the prestellar core 

of the star to its outer layers since they hold their shape, are free from dispersive distortion, 

and can carry energy in discrete amounts. 
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In troduct ion 

In a previous communication^1) based on Ambartsumian's famous hypothesis on stellar 

instabilities, we pictured a flare star as a kind of transformer that converts the low-entropy 

energy of the star's pre-stellar matter into the high-entropy energy of the star's flare radiation, 

and we reasoned that energy is drawn from the pre-stellar matter and deposited in discrete 

amounts on the outer layers of the star by means of cohesive waves having the form of solitary 

waves or solitons. 

In the present communication we focus our attention on the cohesive waves and submit 

that such waves are mathematically possible if the nonlinearity of the plasma comprising the 

star is taken into account. 

We proceed by deriving from Maxwell's equations and Newton's equation of motion a 

differential equation for the propagation of electromagnetic waves in an isotropic collisionless 

electronic plasma which we suppose resembles closely the plasma of the star. We find that the 

resulting equation is a nonlinear vector equation. To handle such an equation, we scalarize 

it and obtain a nonlinear system of two coupled scalar equations. And it is these coupled 

equations that we regard as the mathematical starting point of the problem. 

Non l inear Vec tor Differential Equat ion 

We assume that the star's plasma is an isotropic collisionless electronic plasma; and we 

recall that for such a plasma the electric field E, in the linear approximation, must satisfy 

the well-known equation^2) 

<92E 
c 2 V χ V χ Ε - 3 α 2 ω 2 V ( V · Ε) + + ω 2 Ε = 0 , (1) 

where c denotes the velocity of light, ωρ denotes the plasma frequency, and a denotes the 

Debye radius. We also recall 

πιο?ω\ = κΤ , (2) 

where κ is Boltzmann's constant, Τ is the temperature, and m is the electronic mass. The 

vector Ε can be expressed as the sum of a transverse field E r and a longitudinal field E^. 

That is, 

Ε = E T + EL , (3) 
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where, by definition, 

V · Ετ = 0 and V χ EL = 0 . (4) 

Accordingly, from equation (1) it follows that for transverse waves 

2 T 1 Θ2ΈΤ ωΐ _ 

and for longitudinal waves 

3 a a

W , 2 V » E £ - ^ - ü # B £ = 0 . (6) 

Since equation (5) does not involve and since equation (6) does not involve ET we see that 

in the linear approximation there is no interaction between the longitudinal and transverse 

waves. In other words, if a wave is initially transverse, it remains transverse, and if a wave 

is initially longitudinal it remains longitudinal. This is true in the linear approximation but 

not in the nonlinear case. 

Taking into account the nonlinearity of the plasma that is quadratic with respect to the 

electric field Ε one can show that Ε must now satisfy the equation^3) 

c 2 V χ V χ Ε - 3aWpV(V · Ε) + ^ + ω2

ρ Ε = -ξ- J(Z + 2 * V · Φ) , (7) 

where e denotes the electronic charge and where the vectors Ζ, Φ, Φ satisfy 

λ = ν<··*>. ! γ = ε ' ^ = ε · w 

The right side of equation (7) expresses the quadratic nonlinearity of the plasma. 

The derivation of equation (7) is based on the Maxwell field equations and on the Newton 

equation of motion for the electrons of the plasma. From Maxwell's equations we have 

„ „ „ 1 d2E 4ττ ÔJ 

The current density J is given by 

J = nev , (10) 
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where η is the electron density and ν is the electron velocity, and the conservation of charge 

is given by 

^ + V - ( n v ) = 0 . (11) 

From Newton's equation of motion we have 

Ç + (v · V ) v = - ( Ε + - ν χ H) — — Vp . (12) 
ot m c mn 

The left side of this equation is the convective derivative of the velocity, and the first term 

on the right side is the Lorentz force, and the second term on the right side is the force due 

to electron pressure. With the aid of equations (10), (11), and (12) the current J can be 

expressed in terms of E, and by substituting the resulting equation into the right side of 

equation (9) we can obtain equation (7). 

When we neglect the nonlinear terms (v · V ) v and ν χ H in the equation of motion we 

obtain equation (1), but if take these nonlinear terms into account we obtain equation (7). 

The second term on the left side of equation (7) comes from the electron pressure term Vp 

of equation (12), and the right side of equation (7) comes from the nonlinear terms. 

The nonlinear vector differential equation (7) is the equation we must solve to see whether 

or not cohesive (solitary) wave solutions are possible. To make this equation mathematically 

tractable it must be scalarized. 

C o u p l e d Scalar Equat ions 

To reduce the vector wave equation to scalar form we orient the Cartesian coordinates x, 

y, ζ so that the x-axis becomes the longitudinal direction (the direction of propagation) and 

the z-axis becomes the transverse direction. From equation (8) we see that in component 

form Ε is given by 

Γ θ2Φι 32ΦΤ 1 

ε = [ ί 5 - · ° · ί Ι - ] ' ( Ι 3 ) 

or by 

Here Φ1 and Φ τ are the longitudinal and transverse components of the vector Φ , and 

are the longitudinal and transverse components of the vector Φ , and all four scalars Φ , 

Φ τ , Φ^, Φ τ are functions of only χ and t. 
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In view of representation (13) we can write equation (7) as two coupled scalar equations: 

Ci Φ1 = -ωΐ (2φ£φ £ + φ£φ£ + Φ£φ?") , (15) 

£ 2 Φ
τ = ±ω* (φ£φ£ + Φ&ΐ) , (16) 

where the subscripts χ and t denote partial differentiation with respect to χ and t, and where 

d* eft d2 

£ 1 = ^ - 3 ^ ^ - w + ^ _ ) ( 1 7 ) 

a* 2 a 4 , 2 a 2 

£ 2 = ä F " c + ( 1 8 ) 

are linear operators. 

Since we are interested in a wave profile that is moving at a constant speed U, the χ and 

t derivatives are related to each other linearly, i.e. 

For waves that satisfy relation (19) we can rewrite equation (15) and (16) in terms of Φ^ 

and Φ τ . That is we can write 

Μι Φ 1 = —ω\ (3Φ£Φ Χ + ψ £ φ Γ ) , (20) 

Μ2 Φ Τ = ~ω2

ρ ( Φ Τ Φ Ζ ) , , (21) 
m 

where the linear operators Λ4\ and M.2 are given by 

M l = ^ - ^ a W p ^ + . l § - t , (22) 

The coupled scalar equations (20) and (21) comprise the mathematical starting point of 

the problem. By inspection of these equations one can see that Φ χ = 0 implies that Φ τ = 0 

but Φ τ = 0 does not imply Φ^ = 0; that is, purely longitudinal waves may exists whereas 

purely transverse waves may not. When transverse waves exist they are accompanied by 
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longitudinal waves; and the interaction between trans verse and longitudinal waves is due to 

the inclusion of the nonlinearity of the plasma. 

Cohesive Wave Solutions 

Using the nonlinear coupled equations (20) and (21) as a point of departure, we have 

shown elsewhere^3) that cohesive (solitary) vector wave solutions are possible. We do not 

reproduce the calculations here because they are tedious and irrelevant to the matter at 

hand. The point of importance is that cohesive wave solutions can exist. For such waves the 

distortions produced by plasma dispersion are cancelled by distortions produced by plasma 

nonlinearity and the waves can travel through the plasma at a constant velocity and without 

any change of profile shape. 
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