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OUTER DERIVATIONS AND
CLASSICAL-ALBERT-ZASSENHAUS LIE ALGEBRAS

DAVID J. WINTER

1. Introduction. This paper is concerned with the structure of the
derivation algebra Der L of the Lie algebra L with split Cartan subalgebra
H. The Fitting decomposition

Der L= Dy(H) + D«(H)

of Der Lwith respect to ad ad H leads to a decomposition
Der L= Dy(H) + ad L™

where
[®= n L

i=1

This decomposition is studied in detail in Section 2, where the centralizer
of ad L*™ in Dy(H) is shown to be

Der(L, H) = Der(L/L*®, Cy(L™)),

which is Hom(L/L? Center L) when H is Abelian. When the root-spaces
L, (a nonzero) are one-dimensional, this leads to the decomposition of
Der L as

Der L = T + Der(L/L*®, Cy(L™®)) + ad L

where T is any maximal torus of Dy(H).
In Section 3, we determine Der L explicitly for extended classical-
Albert-Zassenhaus Lie algebras (defined below) in terms of the dual

R* = Hom(R, k)

{fiR = klf(a + b) = f(a) + f(b) for all a, b,a + b € R}

of the rootsystem R of L with respect to H. For classical Lie algebras, this
is a consequence of the Block [4] theory of trace forms. It is shown there
that all derivations of a classical Lie algebra L are inner if and only if L
has no component of type A,(p/r + 1); and for characteristic p > 5, if
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and only if L has a faithful representation with nondegenerate trace
form.

Throughout the paper, L is a finite dimensional Lie algebra over a field
k of characteristic p > 3 with split Cartan sub-algebra H and Cartan
decomposition

> L.

a4€ER

Following the conventions of Winter [11], we let R = R; U ... U R, be
the irreducible component decomposition of R, that is:

I.LR=R U ...UR,withR;, # {0} forl =i = n;

2.R; N R; = {0} for all i # j;

3.if g ER(IEién)andal ...t a, €R,
then at most one of the ¢;(1 = i = n) is nonzero.

If R = Ry, R is irreducible. We say that R is classical if there exists an
isomorphism f:R — R from R to the rootsystem R of some complex
semisimple Lie algebra. Here, /:R — R is an isomorphism if:

1. fis a bijection from R to R;

2.a+ b€ leandonlylff(a) + f(b) € R for all a, b, € R;

3.f(a + b) = f(a) + f(b) forall a, b € R.

If R is an additive subgroup of ka(a € R — {0} ), we say that R is
Albert-Zassenhaus. 1f each irreducible component R; of R is either classical
or Albert-Zassenhaus, we say that R is classical-Albert-Zassenhaus.

We say that a Lie algebra L with Cartan subalgebra H is classical
Albert-Zassenhaus with classical-Albert-Zassenhaus Cartan subalgebra H
if:

1. L = L? and Center L = {0};

2.dim L, = 1l and a([L,, L_,]) # O foralla € R — {0};

3. R is a classical-Albert-Zassenhaus rootsystem and

(Lo Lyl = Lyypforalla, b,a + b € R — {0}.

If L satisfies only conditions (2) and (3) above, L is called an extended
classical-Albert-Zassenhaus Lie algebra with extended classical-Albert-
Zassenhaus Cartan subalgebra H. Henceforth, we abbreviate “classical-
Albert-Zassenhaus” by “CAZ” and “Albert-Zassenhaus” by “AZ”.

Those CAZ Lie algebras for which R is classical are the classical Lie
algebras of Seligman [8], by Mills-Seligman [6] and Mills [5].

Let us next consider the CAZ Lie algebras (L, H) for which R is AZ.
Letting R be an additive subgroup of ka for some a € R — {0}, observe
that a is linear on H, since the root-spaces are one dimensional; and
that

H, = {h € Hla(h) = 0)

is {0}, since it centralizes all root-spaces and since the latter generate
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L™ = L. Tt follows that dim H = 1 and (L, H) is of rank 1. We may
conclude that those CAZ Lie algebras for which R is AZ are the AZ Lie
algebras of Albert-Frank [1] relative to one dimensional Cartan subalge-
bras, by Block [2]. Although Albert Zassenhaus Lie algebras have Cartan
subalgebras of dimension greater than 1, the above considerations show
that such other Cartan subalgebras do not arise as CAZ Cartan
subalgebras when R is AZ.

For p > 5, the class of CAZ Lie algebras is the class of Lie algebras
satisfying conditions (1) and (2), by Block [3].

The class of extended CAZ Lie algebras coincides with the class of those
symmetric Lie algebras of Winter [11] whose root-spaces L, (a nonzero)
are one-dimensional.

On concluding the introduction, we note that although the main results
of this paper are proved only for characteristics p > 3, all results up to
Corollary 2.8 are valid over fields of any characteristic.

2. The derivation algebra of a Lie algebra with given Cartan subalgebra.
To determine the derivation algebra D = Der L of a Lie algebra L, we
consider its Fitting decomposition D = Do(H) + Dx«(H) with respect to
ad ad H, H being a given Cartan subalgebra of L. Since the ideal ad L of D
contains [D, ad H], ad L contains Ds«(H). Consequently,

D«(H) = ad L«(ad H) C ad L™
where Lx(ad H) is the Fitting one space of L with respect to ad H and

This proves the following proposition, which reduces determination of
Der L to that of Dy(H).

2.1 PROPOSITION.
Der L = Dy(H) + ad L«(ad H) = Dy(H) + ad L*.

The outer derivation algebra Der L/ad L can now be described as
(Dy(H) + ad L)/ad L = Dy(H)/(Dy(H) N ad L).

Since Dy(H) N ad L = ad H, which is an ideal of the algebra Dy(H), this
establishes the following corollary, which characterizes the outer deriva-
tion algebra up to isomorphism of algebras.

2.2. CoroLLARY Der L /ad L = Dy(H)/ad H.
The ideal
C(ad L™) = {d € D|[d, ad L] = {0} }
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of Der L plays an important role in what follows. Its Fitting
decomposition relative to ad ad H, obtained by restriction to C(ad L) of
that of Der L, is

C(ad L) = C(ad L) N Dy(H) + C(ad L) N ad L«(ad H).

This decomposition leads to the following description of C(ad L) in
terms of

D(L, H) = {d € Dld(L) ¢ H},

the center Center ad L™ of ad L* and the centralizer
Cy(L?) = {h € H|[h, L] = 0}

of L™ in H.

2.3. ProrosITION. C(ad L*°) N Dy(H) = D(L, H), D(L, H), is an ideal
of Der L and

C(ad L*°) = D(L, H) + Center ad L™

with
D(L, H) N ad L = ad Cy(L™).

Proof. We first show that

C(ad L) N Dy(H) = D(L, H).

For this, suppose that d € C(ad L) N Dy(H). Then d(H) € H and
0 = [d, ad L™] = ad d(L*).

It follows that
d(L*™®) c Center L ¢ H and
d(L) = d(H + L) = d(H) + d(L®°) C H.

Next, suppose conversely that d € D(L, H). Observe for & € H that
[d, ad h] = ad d(h) € ad H,

since d(h) € H. Then
[d,ad H] = ad d(H) C ad H

and, therefore, d € Dy(H). It follows that d stabilizes the L,(a € R), since
d € Dy(H); and maps them into H, since d € D(L, H). Thus, d(L,) = 0
for a € R — {0}. Since L™ is generated by the L,(¢ € R — {0} ),
d(L*®) = {0}. Thus,

d € C(ad L*™) N Dy(H).
To see that D(L, H) is an ideal of Der L, observe that
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[D(L, H), Der L] = [D(L, H), Dy(H) | + [D(L, H), ad L™]
= [D(L, H), Dy(H) ],

by Proposition 2.1 and the foregoing discussion. Thus, it suffices to show
that D(L, H) is an ideal of Dy(H), which is easily verified.
We now have

\

C(ad L™) = C(ad L) N Dy(H) + C(ad L) N ad L«(ad H)
= D(L, H) + Center ad L.
It remains only to show that
D(L, H) N ad L = ad Cy(L™).
Clearly,
D(L, H) N ad L D ad Cy(L™).

Thus, it suffices to show that ad Cy (L) contains every element ad x of
D(L, H) N ad L. Since such an ad x stabilizes H, x is in H. Since ad x is in
D(L, H),

ad x(L™) = 0,

as observed above. Thus, x is in Cy(ad L) as asserted.
Proposition 2.3 shows that the contribution of C(ad L) to the outer
derivation algebra Der L/ad L is

(D(L, H) + ad L)/ad L = D(L, H)/(D(L, H) N ad L)
= D(L, H)/ad Cy(L™).
The following proposition describes D(L, H) as
D(L/L*, Cy(L*®)) = {d € D/d(L*) = 0 and d(L) € Cy(L™) }.
Since the latter is canonically isomorphic to
D(H/Hy, Cy(L™)) = {d € Der Hld(H,) = 0 and
d(H) ¢ Cy(L™)}

where H,, = H N L, the problem of determining D(L, H) is a problem
concerning derivations of a nilpotent Lie algebra H annihilating a
specified ideal H., of H and taking on values in a specified subalgebra
Cy (L) of H centralizing H..

2.4. PROPOSITION. D(L, H) = D(L/L%, Cx(L™)).
Proof. One inclusion is clear. For the other, let d € D(L, H). Then
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H > d(L) =dH + L) =dH) + 0 = d(H).
Therefore,
[d(L), L,] = [d(H), L,) € d([H, L,]) + [H, d(L,)]
=0+ 0( € R —{0}).
It follows that d(L) € Cy(L*™), as asserted.
When H is Abelian, Cy (L) is the center of L, in which case
D(L, H) = D(L/L*™, Cyx(L*>))

is just the space Hom(L/L? Center L) of homomorphisms of L to
Center L vanishing on L’.

2.5. CoroLLARY. If H is Abelian,
D(L, H) = Hom(L/L?, Center L).

When L has center 0, D(L, H) is Abelian, as we show in Proposition 2.7
below, using the following result.

2.6. PROPOSITION. ([7]). Let L have center 0. Then every element of L
centralizing L™ is contained in L*°.

2.7 PROPOSITION. Let L have center 0. Then D(L, H) is an Abelian ideal
of Der L andde = 0 for all d, e € D(L, H).

Proof. Since Ci(L™°) € L*°, by Proposition 2.6, and
D(L, H) = D(L/L*®, Cy(L®)),
by Proposition 2.4, we have
de(L) C d(Cy(L™®)) € d(L*) =0
for all d, e € D(L, H).

2.8. COROLLARY. Suppose that L is semisimple or L*> —= L. Then
D(L, H) = 0.

Proof. If L* = L, this follows from Proposition 2.4. If L is semisimple,
then D(L, H) is an Abelian ideal of Der L, by Proposition 2.7, so that

D(L,H)ynad L =0 and
0 =1[d ad L] = ad d(L) foralld € D(L, H).
Since Center L = 0, it follows that D(L, H) = 0.

We now consider Lie algebras L whose root-spaces L, (¢ € R — {0})
are one-dimensional. We let 7 be a maximal torus of the Lie
p-algebra Dy(H) in the sense of Winter [9] and proceed to show that
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DyH) = T + D(L, H). By the methods of ascent and descent, we may
assume with no loss of generality that T is split. Consider the eigenspace
decompositions Dy(H) = X Dy(H)p, L = 2 L. where

DyH), = {d € Dy(H) |[t,d] = b(t)d for all t € T},

L.={x € Llt(x) = c(t)x forallt € T}

for k-valued functions b, c on T. Smce dr maps each L. t0 L4 pe, = L, for
d € Dy(H),, Do(H)y contains d”” for e = 1. Taking p¢ = dim L, d”" is
semisimple and centralizes the maximal torus T of Dy(H), so that & eT.
We consider the Jordan decomposition d = d; + d, of d and properties of
it discussed in [9]. If d is semisimple, that is, d = d,, then d 1 is contamed in
the span of d”, d” ..; and, therefore, in the span of ar, alp .. for

= 1. It follows that dy is contained in the span of ar, @ . since
dp = &' Since d*" € T, it follows that d, € T. Since T is spht 1t follows
that 4 is split and that T contains the semisimple part d; of d. Letting
d, = d — d, be the nilpotent part of d, d, stabilizes the one-dimensional
spaces L, (a € R — {0} ). By the nilpotency of d,, we have d,(L,) =
0 (a € R — {0}), so that d,(L*) = 0. But then

d(L) = d,(H + L®) = d,(H) € H and d, € D(L, H).

It follows that d € T + D(L, H). Thus, Do(H) = T + D(L, H), which
establishes part of the following theorem.

2.9. THEOREM. Suppose that the root-spaces L, (a € R — {0} ) of L are
all one-dimensional and let T be a maximal torus of Dy(H). Then

Dy(H) = T + D(L/L®, Cjy(L®)) and
Der L = T + D(L/L®, Cy(L®)) + ad L.

Moreover:
1. if H is Abelian, then

Dy(H) = T + Hom(L/L? Center L),
2. if L has center 0 or L* = L, then Dy(H) is a torus T and
Der L =T+ adL withTnadlL = ad H.
Proof. The foregoing discussion establishes that
DyH) =T + D(L, H),
so that
Dy(H) = T + D(L/L®, Cy(L™)),

by Proposition 2.4. From this, (1) follows immediately, as does (2) in the
case L> = L. It remains to establish (2) when L has center 0. By (1), it
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suffices to show that H is abelian. Suppose to the contrary that it is not,
and choose x, y € H with [x, y] # 0 and [x, y] central in H. Since ad x,
ad y stabilize the one-dimensional spaces L, (¢ € R — {0} ), we have

0 = [ad x, ad y](L,) = ad [x, y}(L,)(@ € R — {0} )
and
[[x, y], L] = 0.
But then
[[x,») L) = [[x,»), H] + [[x, »]. L] = 0 + 0;
since [x, y] centralizes H, so that [x, y] € Center L = {0}, a contradiction.

We conclude that H is Abelian, as asserted.

3. The derivation algebra of an extended classical-Albert Zassenhaus Lie
algebra. Let

L= 2L,

u€ER

be an extended CAZ Lie algebra with extended CAZ Cartan subalgebra
H. Let d € Dy(H), so that d is a derivation of L stabilizing the one
dimensional spaces L, (¢ € R — {0} ). Then d determines scalars f(a) €
k (a € R — {0} ) such that

d(e,) = f(a)e,
where
L, ke,(a € R — {0}).
Let f(0) = 0. We then claim that
f € R* = Hom(R, k),
that is,
fla + b) = f(a) + f(b) foralla, b,a+ b € R.

If a = 0 or b = 0, this is trivial. Consider next the case a, b,a + b € R —
{0}. Then

Lu+h = k[eaa eb]’
so that
f(a + b)le,, ep]

I

d( e ep])
= [d(ea)’ eb] + [ea’ d(eb)]
= (f(a) + f(b)) [eu ep]-
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Since [e,, e,] # 0, it follows
fla + b) = f(a) + [f(b).
Finally, consider whether f(a) + f(—a) = 0 (a € R — {0} ). Let

ha = [ew e*alv

so that

[h, e,] = a(hy)e, with a(h,) # 0.
Then

f(a)[hw ea] = d( [hua ea]) = [d(ha)’ eu] + [hw d(ea) ]
Since

d(h,) = d([es e—]) = (f(a) + f(—a))les e
and

d(e,) = f(a)e,,
we conclude that
f(@)ha, ;] = (f(a) + f(—a) + f(a))[h, e,].

Since [hy, e,] # 0, it follows that f(a) + f(—a) = 0.
Observe next that each f € R* determines a derivation dy defined by

dr(H) = 0 and dy(e,) = f(a)e,.

Welet T = T(H) = {d|f € R*} and note that T is a torus in Dy(H). We
claim that

Dy(H) = T @ D(L, H),

where D(L, H) is the ideal of Der L defined in Section 2. For this, let
d € Dy(H) and take the corresponding / € R* constructed above by the
condition.

d(e,) = f(a)e, (a € R — {0}).
Let dy = d — dy and note that

dy(e,) = 0(a € R — {0}).
Then dy € D(L, H), so that

=dr+dy €T+ D(L, H).

We conclude that

DyH) =T + D(L, H).
Finally, suppose that dr € T N D(L, H). Then
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0 = dr(e,) = f(a)e, and f(a) =0(a € R — {0}),
so that /' = 0 and dy = 0. Thus,
Dy(H) = T @ D(L, H).

The foregoing discussion and Proposition 2.4, which characterizes
D(L, H), establish the following theorem, since

Der L = Dy(H) + ad L*™.
3.1. THEOREM. Let L = L, be an extended CAZ with extended

a4€ER

CAZ H. Then
Der L = (T(H) @ D(L/L*®, Cy(L*®))) + ad L.
For H Abelian, D(L/L®, Cyx(L™)) is given explicitly by
Hom(L/L?, Center L).

3.2. COROLLARY. Let L = L, be an extended CAZ with extended
a€R
CAZ H. Suppose that H is Abelian and either L = L? or Center L = 0.
Then

Der L = T(H) + ad L and Der L/ad L = T(H)/ad H.

3.3. CorOLLARY. Der L. = T(H) + ad L for any CAZ Lie algebra L with
CAZ Cartan subalgebra H.

Finally, we determine T(H) = {ds|f € R*}. By construction, this
reduces to determining R* = Hom(R, k). For this, we construct a
base aj,...,a, for the CAZ rootsystem R by expressing R as union
R = Ry U ... U R, of its irreducible components and taking ay, . . ., a,,
to be base for Ry, a, 41,...,a,+, to be base for R,,...,and
Ar 4. +r,_+1>---5 @ , .. to be base for R,. Here, a base for an
irreducible CAZ rootsystem R is a subset 7 = {a;,..., a,} of R such
that: .

(1) if R is a classical and R — R is an isomorphism from R to the
rootsystem R of a complex semisimple Lie algebra, then ay,...,a, is a
base for R;

(2) if R is Albert-Zassenhaus, then R is the direct sum

R=Zpa1@...®lpa,

where Z, is the prime subfield of k. We let rank R denote the cardinality of
a base m of a CAZ rootsystem R.

Each base # = {a),...,qa,} for a CAZ rootsystem R uniquely
determines a dual base #* = {f},...,f,} satisfying the following
conditions:
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l. #* ¢ R* = Hom(R, k);

Clearly, such a 7* is a basis for R* over k. To see that 7* exists, note that
it suffices to show that #* exists for every irreducible component R; of R,
since any element f € Hom(R;, k) can be regarded as an element of
Hom(R, k) by taking f(R;) = {0} for all j # i. Next, it is clear that 7*
exists by decree for any Albert-Zassenhaus rootsystem. Finally, let R be a
classical rootsystem and A:R — R an isomorphism from R to the
rootsystem of a complex semisimple Lie algebra. Then there exist
homomorphisms

f,’ZZﬁ — 7
defined by the condition
fia) = 8.

We may, therefore, define f; € Hom(R, k) by letting f;(a) be ﬁ(c;) reduced
modulo p. The resulting #* = {f},...,f,} is a dual base to

T = {a,,...,a,}.
The foregoing discussion establishes the following theorem, since it
shows that

dim T(H) = dim R* = cardinality of #* = rank R.
3.4. THEOREM. Let L be an extended Lie algebra with extended CAZ
Cartan subalgebra H. Then
Der L = T(H) + D(L,H) + ad L
where
dim T(H) = rank R and D(L, H) = D(L/L*, Cy(L*®)).

3.5. THEOREM. Let L be a CAZ Lie algebra with CAZ Cartan subalgebra
H. Then Dy(H) is a torus and Cartan subalgebra of Der L of dimension equal
to rank R.

Let L be a CAZ Lie algebra with CAZ Cartan subalgebra H, as defined
in Section 1. The dimension of H is one if L is Albert-Zassenhaus. The
dimension of H is rank R — 1 if L is classical of type A, where p/r + 1,
and it is rank R otherwise, by [8]. Letting Raz be the union of those
irreducible components of R which are Albert-Zassenhaus and R¢ be the
union of those irreducible components of R which are classical, these
observations can be expressed as follows.

3.6. THEOREM. Let L be a CAZ Lie algebra with CAZ Cartan subalgebra
H. Then

dim Der L/ad L = a — b + rank Ray
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where a is the number of irreducible componenis of Rc of type A (p/r + 1)
and b is the number of irreducible components of Raz.
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