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Abstract

The flow of ete™ plasma ejected by an axisymmetrically rotating magnetized neutron star is
considered in a hydrodynamical approximation. It is shown that in the vicinity of the light cylinder
a helical discontinuity is formed. The transformation of toroidal magnetic field energy into plasma
energy takes place at this discontinuity. Particles are accelerated to an energy of 10 TeV for a neutron

star with the characteristics of the Crab pulsar.

Introduction

The problem of plasma ejection from the magneto-
sphere of an axisymmetric rotator is of great im-
portance for understanding the charged particle ac-
celeration and electromagnetic radiation processes
in pulsars. The magnetospheric properties of an ax-
isymmetric rotator were discussed by Goldreich and
Julian (1969). Within the framework of this model,
Beskin, Gurevich and Istomin (1983) have explored
the possibility of strong particle acceleration close
to the light cylinder.

The purpose of this paper is to investigate the
movement of plasma as it emerges from the surface
of the neutron star and streams out to large dis-
tances. In particular, the characteristics of plasma
motions near the velocity-of-light cylinder are of
great interest.

We suppose that near the surface of the neutron
star a sufficiently dense e*e™ plasma is produced
and that beyond this point there is no further pro-
duction of particles in the magnetosphere (Ruder-
man and Sutherland 1975, Gurevich and Istomin
1985b).

Basic equations

The stationarity of the plasma flow and the az-
imuthal symmetry of the problem enable us to write
down easily the two first integrals of motion in the
hydrodynamical approximation. They are derived
from the conservation of the energy-momentum ten-
sor dT** /dz* = 0. The energy-momentum tensor
Tk is the sum of the tensors pertaining to material
particles and fields. According to Landau and Lif-
shitz (1973), the term describing material particles
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where

€ and p are the energy and pressure per particle (in
mc? units) in coordinates related to the center of
mass, and n is the density of particles in the plasma.
These equations are combined on the condition that
the fields are effectively “frozen” into the plasma—
that is, in the limit of infinitely high conductivity
(Landau and Lifshitz 1982)

E+[vx H)/c=0. (3)
Then we can write down Maxwell's equations and
the continuity relation

VxE =0
V-H =0
V-nv = 0. (4)

To define the plasma flow accurately it is nec-
essary to know all the electric and magnetic fields
within the magnetosphere. However, it turns out
that one can obtain a general solution to the prob-
lem for an arbitrary poloidal field which has the
same topology as the Goldreich and Julian (1969)
model. For this purpose it is convenient to consider
the plasma flow in a special curvilinear system of
coordinates given by the poloidal field.
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Description of the coordinate
system

Let us introduce an orthogonal coordinate system
so that one of its axes e, coincides with the direc-
tion of the poloidal magnetic field line H, , the
second axis e, corresponds to the azimuthal angle
¢, and the third axis is ¢ = e, x e,. The curvilin-
ear coordinates are then a, p,£, and the magnetic
field in this system of coordinates has the form

H=e,H" +e,H”. (5)

The real vector in such a coordinate system is
H"/\/_EO,H“’/\/ESO, where g¢,,9, are the compo-
nents of the metric tensor, g, being p?,

distance to the stellar rotation axis.
will be

and p the
The velocity

(6)

From the condition V x E = 0, it follows that
E¥ = 0. Recalling the “frozen” condition on the
field gives v* = 0. From eqs.(3), (5) and (6) it
follows that the electric field has only one non-zero
component E = EX.

Determining the form of the metric coeflicient
ge, the equation V- H = 0 in the curvilinear sys-
tem of coordinates will be

v = e,v” + e,v¥ + ecvt.

1/\/') ~(VgH®*/V4a) = 0. (7
Fromn the above we obtam
v/ 90 (€)/g¢(@,§) = pH®/po Hy (8)

where g is the determinant of the metric tensor, and
the index “0” is evaluated at the stellar surface.

Solution

As a result of the energy and angular-momentum
flux conservation laws, we have the two first inte-
grals of motion in a curvilinear system of coordi-
nates

J(&)mey(s+p) - V9-9¢EHY [4m = ﬂ’({) (9)
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where J(€) = \/gogenv® is the plasma flux, W (¢)

the energy flux, and 1\7(5) the angular momentum
flux. All three are constant on a field line of con-

stant §.
Introducing new variables
X = pQ/c,
Usy = Tv%c,
U, = Tv¥/c,and
h = H¥/H®
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the dependence E = X¢(¢)H can be derived from
eqs.(4) and (7), where ¢(§) is an arbitrary function,
constant on the poloidal field line (for more details,
see Bogovalov 1989).

On changing to the new variable X = X’q(ﬁ), we
obtain a set of algebraic equations from eqs.(1-10)

I'-Gh = W(§)
zU, - Gh = M(¢)
T +Uh = U, (11)
I’ = (e+p)?+U2+UZ,
where the function G(a,£) is equal to
HS 2 He
Glo) = goi) %o X (12)
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A single equation defining h as a function of the
parameter z can be obtained from the set of rela-
tions in eq.(11)
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where V. = W — M. All other quantities are ex-
pressed by the relations
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For the sake of definiteness, we will assume that
the rotation axis and magnetic moment are parallel.
We are interested in solutions for which I > 1, U, >
0, and A < 0. The last two inequalities pertain
to the matter flux and electromagnetic energy filux
directed from the star.

Figure 1 schematically illustrates the respective
behavior of the right-hand and left-hand sides of
eq.(13) for the cases when X < X, (solid lines),
1 > X > X. (dashed lines), and X > 1 (dotted
lines), where X, = /M/W. It is obvious that at
X < X. there is only one solution of eq.(13). We
refer to it as A. It describes the plasma flow from
the stellar surface. At X > X, another root B ap-
pears, which also describes a physically admissible
solution. The analysis shows (Bogovalov 1990) that
for the A solution the inequality

(v*/c)? < (H? (15)

is realized. For the B solution, the inequality of
eq.(13) is just reversed. The azimuthal magnetic
field in the flow A is thus energetically favored. This
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Plasma ejection from an axisymmetric rotator

Figure 1 See text

is because the electric current emanating from the
polar cap of the pulsar flows along the magnetic
field lines. Magnetic systems in which electric cur-
rent flows in the magnetic field direction are known
to be unstable with respect to helical disturbances
(Kadomtzev 1988). Therefore, it is reasonable to
assume that at large distances from the pulsar the
physically realized plasma flow will be described by
root B. The transition from flow A to flow B must
then be discontinuous.

The analysis carried out by Bogovalov (1990b)
has shown that a stable discontinuity can occur only
at the point X, and that it will be helical in form
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(Landau and Lifshitz 1982). At this discontinuity
the magnetic field vector rotates around the normal
to break the surface, and the plasma temperature
€ does not change. In this case the most important
feature is the transformation at the discontinuity
of azimuthal magnetic field energy into relativis-
tic particle energy. After the break the azimuthal
magnetic field returns to zero. For stellar parame-
ters appropriate for the Crab pulsar PSR 0531421,
it appears that particles will be accelerated up to
5 x 107mc? at the discontinuity. The total energy
released in these particles will be
L =H?R%Q*/4¢°, (16)
(Beskin, Gurevich, and Istomin 1983b), and for
PSR05314+21 this value will of the order 3 x
1038 ergs~1. This is quite sufficient to account for
the energy released into the Crab Nebula in the
form of relativistic particles (Shklovskii 1970).

The particle acceleration at the discontinuity is
produced as usual by an electric field. At the dis-
continuity the particles move transverse to the mag-
netic field, accumulate energy and simultaneously
form a current which shorts the current flowing out
of the polar cap region of the pulsar.
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