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UNIQUELY LINE COLORABLE GRAPHS 

BY 

D. L. GREENWELLC1) AND H. V. KRONK(2) 

1. Introduction. A line-coloring of a graph G is an assignment of colors to the 
lines of G so that adjacent lines are colored differently; an n-line coloring uses « 
colors. The line-chromatic number %(G) is the smallest n for which G admits an «-
line coloring. Vizing [6] has shown that %'{G) is either A(G) or 1+A(G), where 
A(G) denotes the maximum degree of the points of G. Each %{G)-\m.t coloring of 
G partitions the line set of G into %\G) subsets, called line-color classes, two lines 
belonging to the same subset if and only if they are colored the same. If %'(G)=n 
and every two «-line colorings induce the same partition, then G is said to be 
uniquely n-line colorable. For example, the complete bipartite graph Kltn is uniquely 
w-line colorable. The analogous concept for point coloring was introduced by 
Cartwright and Harary [2]. Uniquely point colorable graphs were also investigated 
in [3], [4]. The main object of this note is to prove that every uniquely «-line 
colorable graph G has A(G)=« unless G is K3, the complete graph on three points. 

2. Uniquely «-line colorable graphs. In this section we develop some of the basic 
properties of uniquely «-line colorable graphs. 

THEOREM 1. If G is uniquely n-line colorable and C is some line-color class, then 
G—C is uniquely (n—l)-line colorable. 

Proof. The graph G—C must have only one («—l)-line coloring, since every 
(«—l)-line coloring of G—C can be extended to an «-line coloring of G by coloring 
the lines in C with the «th color. 

COROLLARY 1.1. If Gis uniquely n-line colorable and CX,C2,... , Cn are its line-
color classes, then the subgraph induced by \Jk

i=1 Ci9 k<n, is uniquely k-line colorable. 

Proof. By Theorem 1, G—Cn is uniquely («—l)-line colorable, and furthermore 
it is clear that Cw_x is a line-color class of G*—Cn. Applying Theorem 1 again we 
have [G—CJ — Cn_x is uniquely («—2)-line colorable. In general, by applying 
Theorem 1 («—&)-times we see that G—(JiU:+i *s uniquely fc-line colorable. 

The next corollary is the analogue to Theorem 4 of [2]. 
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COROLLARY 1.2. If G is uniquely n-line colorable, then the subgraph induced by the 
union of any two line-color classes is connected. 

Proof. The induced subgraph S formed by the union of any two line-color 
classes is uniquely 2-line colorable by Corollary 1.1. Therefore S must be connected. 
In fact, since no point of S can have degree larger than two, S must either be a 
path or a cycle of even length. 

In [3], it was shown that every uniquely «-point colorable graph is (n—1)-
connected. In order to state a corresponding result for uniquely n-line colorable 
graphs, we need to place a restriction on the minimum degree (5(G) of the points of 
the graph. 

THEOREM 2. If ô(G)>n—1 and G is uniquely n-line colorable, then G is (n~- 1)-
line connected. 

Proof. We observe first that G is uniquely n-line colorable if and only if its line 
graph L(G) is uniquely n-point colorable. If the removal of fewer than n—1 lines 
disconnects G and ô(G)>n—1, then the components of this disconnected graph 
each contain at least one line. Therefore the removal of the corresponding points in 
L(G) must disconnect L(G). This, however, contradicts the fact that L(G) is (n —1)-
connected. 

COROLLARY 2.1. If G is uniquely n-line colorable, ô(G)>n—l, and C is a line-
color class, then G—C is (n-~2)-line connected. 

Proof. Since ô(G)>n—1 and C is a line-color class ô(G—C)>n—2. The result 
now follows directly from Theorems 1 and 2. 

One of the chief results of [4] (see also [5]) is that for all n > 3 there exists a 
uniquely «-point colorable graph which contains no subgraph isomorphic to Kn. 
This result suggests the conjecture that for all n > 3 , there exists a uniquely n-line 
colorable graph G with A(G)=n—1. However, the final and main theorem of this 
section shows that only Kz has this property. 

THEOREM 3. Every uniquely n-line colorable graph G^KZ has A((7)=n. 

Proof. Suppose G is uniquely n-line colorable. By Vizing's theorem, we know 
that n=A(G) or n=A(G)+L Assume n=A(G)+ l . Let v be a point of G having 
degree n—l. Consider an n-line coloring of G with the colors 1, 2 , . . , n. We can 
assume that the color n is not used in coloring the lines incident to v and all other 
colors are. Let Q denote the lines of G colored /, 1 <i<n. As noted in the proof of 
Corollary 1.2, Cn and Ci9 l < / < n — 1 , together induce either a path or a cycle of 
even length. Denote this graph by S^ Since y is a point of St and no line incident to 
v is colored n, S{ must be a path. 
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We now show that each S{ contains exactly n points. Each Une incident to v has 
to be adjacent to some line colored n. There are n—l such lines, and no two of 
them can be incident to the same point. Thus there are (n—Indistinct points each 
incident to some line colored n. All of these points and v are in St. Suppose some 
Si9 say Sl9 has k>n points. Denote the points of this path by vl9 v2,..., vk. Since 
v is always an endpoint of each Si9 we may assume that v=vx and at least one of the 
points v2, vz,. . . , vn is not an endpoint of any S{. Call this point w. Since w is 
incident to a line colored n and is not an endpoint of any Si9 the degree of w in each 
S{ is two. But this means that w is incident to some line colored / for all / = 1 , . . . , n. 
This is impossible, however, since A(G)=n—l. Hence \V(Si)\=n. Furthermore, 
n must be odd; otherwise, there would only be n—2 points incident to lines colored 
n and we have just shown that we need at least n—l such points. 

Now since n is odd we have V(Si) = {v} U {u:u is incident to a line colored n} 
for all i. That is, V(Si)=V(Ss) for any i,j=l,... , z i - l . Since G=\JM Si> w e 

must have \V(G)\=n. Each of the n points of G must be endpoints of some St. 
Otherwise we could show, as we did with w in the preceding paragraph, that its 
degree was too large. Since v is always an endpoint and there are exactly w —1 
paths Si being considered, each point other than v is an endpoint in exactly one of 
the S^ So each point other than v has degree two in all but one of the S{. This 
forces G to be (n — l)-regular; that is, G must be Kn. 

It remains to show that G has to be Ks. Suppose G=Kn for n odd, n>5. If the 
points of G are labeled 1 , . . . , n then we can obtain two distinct line-colorings as 
follows: For one line-coloring take as line-color classes CP={(p—q,p+q):q=l, 
. . . , (H—l)/2} f o r / ? = l , . . . , « . where each of the numbers/?—# andp+q is ex­
pressed as one of the numbers 1, 2 , . . . , n modulo n. Another distinct line-coloring 
can be obtained by relabeling the points labeled 1,2, 3 by 3', 1', 2' respectively and 
using the same scheme. In this second coloring the line (1', 3') is colored 2 and is the 
same line as (2, 1) in the original labeling. But (2, 1) was not colored 2 in the first 
coloring since (1, 3) was colored 2. Furthermore (n, 4) is colored 2 in both colorings. 
Hence we have at least two distinct line-colorings of Kn for odd «7^3. Hence the 
only possible graph is Kz which is uniquely 3-line colorable. This completes the 
proof of Theorem 3. 

COROLLARY 3.1. Every uniquely n-line colorable regular graph is Hamiltonian. 

Proof. Let G be a uniquely «-line colorable regular graph. If G=K3, then it is 
Hamiltonian. If Gj£Kz, then, by Theorem 3, G is «-regular. Therefore each point of 
G is incident to n lines all of which have to be colored differently. Hence the union 
of two line-color classes is a connected spanning 2-regular subgraph; i.e., a Hamil­
tonian cycle. 

3. Uniquely 3-line colorable cubic graphs. We now consider briefly the special 
case of cubic graphs. It follows from Theorem 3 that there does not exist a uniquely 
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4-line colorable cubic graph. An infinite family of uniquely 3-line colorable cubic 
graphs can be constructed by repeatedly applying the next theorem. 

THEOREM A. If G is a uniquely 3-line colorable cubic graph and H is a cubic graph 
obtained from G by replacing a point of G with a triangle, then H is uniquely 3-line 
colorable. 

Proof. This result follows from the observation that each 3-line coloring of H 
induces a 3-line coloring of G. 

As an example, we note that Ké is uniquely 3-line colorable. Hence, the 3-
prism obtained from Ké by replacing one of its points with a triangle is uniquely 
3-line colorable. It is also easy to see that if G ̂ K± is a uniquely 3-line colorable 
cubic graph and H is a graph obtained from G by identifying three points of G 
which induce a triangle, then H is uniquely 3-line colorable. 

Each uniquely 3-line colorable cubic graph known to the authors is planar and 
contains a triangle. This leads us to make the following conjecture, which is related 
to a conjecture of Kotzig (see [1, Problem 1]). 

CONJECTURE 1. If G is a uniquely 3-line colorable cubic graph, then G is planar 
and contains a triangle. 

In connection with Conjecture 1, it is not hard to show that if there exists a non-
planar uniquely 3-line colorable cubic graph, then there exists a nonplanar uniquely 
3-line colorable cubic graph containing no triangle. 

Our final theorem shows that uniquely 3-line colorable cubic graphs are Hamil-
tonian in a very special way. 

THEOREM 5. Every uniquely 3-line colorable cubic graph contains exactly three 
Hamiltonian cycles. 

Proof. Let G be a uniquely 3-line colorable graph. As we observed in the proof 
of Corollary 3.1, the union of any two line-color classes in a 3-line coloring of G 
induces a Hamiltonian cycle. Hence G contains at least three Hamiltonian cycles. 
If there were a fourth Hamiltonian cycle in G, then another line-coloring of G 
could be produced by coloring the lines of the cycle with two colors and the re­
maining lines with the third color. 

Since Kotzig (see [1, Theorem 2]) has shown that every cubic bipartite graph 
has an even number of Hamiltonian cycles, Theorem 5 implies that every uniquely 
3-line colorable cubic graph contains an odd cycle. 

We conclude with a conjecture, which we suspect is a good deal easier than 
Conjecture 1. 

CONJECTURE 2. If G is a cubic graph containing exactly three Hamiltonian cycles, 
then G is uniquely 3-line colorable. 
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