
Canad. Math. Bull. Vol. 26 (3), 1983 

ON THE PRINCIPLE OF DEPENDENT CHOICES AND 
SOME FORMS OF ZORN's LEMMA 

BY 

E L L I O T S. W O L K 

ABSTRACT. The main result of this paper is to prove that a 
generalization of the Principle of Dependent Choices, introduced by 
A. Levy [2; see also 1, Chapter 8], is equivalent to a form of Zorn's 
Lemma. 

The Principle of Dependent Choices [1, Section 2.4] is a weak version of the 
Axiom of Choice (AC), and may be stated as follows. 

DC: Let X be a non-empty set. If R is a relation with dom R = X and range 
R ^ X, then there exists a sequence {xn, n < oy} such that xnRxn+1 for all n < co. 

We first show, without any use of AC, that the statement DC is equivalent to 
the following weak form of Zorn's Lemma. 

Z^: If every chain in a partially ordered set P is finite, then P contains a 
maximal element. 

Proof. DC => Z^. Suppose P satisfies the hypothesis of Z^ but contains 
no maximal element. Define a relation R on the set P by xRy if and only 
if x < y, for x e P, y e P. By DC, there exists a sequence {xn, n < co} with 
x0<x1<x2<- • • , a contradiction. 

ZM => DC. Let R be a relation with dom R = X and range R^X. Let S be 
the set of all finite sequences s ={x0,..., xk} of elements of X such that 
x0RxxR - - • Rxk. Partially order S by defining s < t if and only if dom s is an 
initial segment of dom t and s(i) = t(i) for all i edoms . By the hypothesis of 
DC, S has no maximal element. Hence by ZM there exists an infinite chain C in 
S. Then | J { s : s e C } is an infinite sequence {xn,n<co} with xn.Rxn+1 for all 
n <o). 

The purpose of this note is to show that a generalized form of DC, 
introduced by A. Levy [2; see also 1, Chapter 8], is equivalent to a correspond­
ing generalization of Zw. By a sequence of type y, where y is any ordinal, we 
mean any function defined on the set 7. The following proposition, as we shall 
show, may be regarded as a generalisation of DC Here and throughout this 
paper À will denote an initial ordinal (aleph). 
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DCk: Let X be any non-empty set and Sk(X) the set of all sequences in X 
of type less than À. If R is a relation with dom R = Sk(X) and range i ? ç X , 
then there exists a sequence / of type À such that, for, all a < À, 

(f\a)Rf(a). 

In the statement of DCk it is assumed that Sk(X) contains the empty set 0 , 
which may be considered as a sequence of type 0. A. Levy has shown that DC^ 
implies DCk whenever A<JLL, and also that the statement (VA) DCk is 
equivalent to AC [1, p. 120]. 

Let us say that a partially ordered set P is well-founded if and only if every 
chain in P is well-ordered. We consider two propositions related to Zorn's 
Lemma: 

Zk : Let P be a partially ordered set in which every well-ordered chain has 
type less than À. If every well-ordered chain in P has an upper bound in P, then 
P contains a maximal element. 

Z*: Let P be a well-founded partially ordered set in which every chain has 
type less than À. If every chain in P has an upper bound in P, then P contains a 
maximal element. 

Our purpose is to prove (without AC) that for each initial ordinal À, the 
statements DCk, Zk, and Zf are all equivalent. 

If s is a sequence in a partially ordered set P, we say that s is strictly 
increasing if and only if a < |8 implies s(a)<s((3) for all a, /3 in dom s. In this 
case the range of s is a well-ordered chain in P. 

We now prove our main result. 

THEOREM 1. For each initial ordinal À, the statements D Q , Zx, and Z* are 
equivalent 

Proof. Since ZÀ trivially implies Z*, it will be sufficient to prove that 
Z*^DCk^Zk. 

Z* => DCk. Let X be a non-empty set, À an initial ordinal, and R a relation 
with dom R = Sk (X) and range R^X. Let us say that a sequence s in X is 
R-admissible if and only if (i) (s | a)e Sk(X) for all a G dom s, and (h) (s | a) 
Rs(a) for all a e d o m s . We must show that the set P of all .R-admissible 
sequences contains a member which is of type À. For s eP, t e P, define s < t if 
and only if dom s is an initial segment of dom f, and s(a) = t(a) for all 
a e dom s. The set P is a well-founded partially ordered set with respect to the 
relation <. Note that for any chain C in P, U{s: s e C} is an R-admissible 
sequence and hence is an upper bound of C in P. Suppose P contains no 
member of type À. Then there is no chain C in P of type À ; because then (J {s : 
s eC} would be a sequence of type A. So P satisfies the hypothesis of Z*, and 
we therefore conclude that P contains a maximal element t, which by assump-
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tion has type |3 <À. By the hypothesis of DCk there exists y eX with tJRy. 
Define a sequence t* by 

t*(ot) = t(a) for a<fr 

f*(j3) = y. 

Then f* is R-admissible but f<f*, contradicting the maximality of t. 
DCk^Zk. Suppose P satisfies the hypothesis of Zk and P contains no 

maximal element. Let B(P) be the set of all s e Sk(P) such that 
(i) s is strictly increasing, and 

(ii) P — range s contains an upper bound of range s. 
Define a relation R as follows: 

(1) if seB(P), then sRy if and only if s(a)<y for all a e d o m s , 
(2) if seSk(P)-B(P), then sRy for all y e P. 

By DCk, there exists a sequence / of type À with (/1 a)Rf(a) for all a<\. We 
assert that / is strictly increasing. For suppose not. Let |30 be the first ordinal 
less than A for which there exists j3<j30 with f(P)Kf(Po)- Then / | j 3 0 is a 
strictly increasing sequence and A = range(/ 1130) is well-ordered. If A contains 
a greatest element m, then since m is not a maximal element of P (by our 
assumption on P), it follows that / | | 3 0 G B ( P ) . Hence, by definition of R, we 
have /(/3)</(j30) for all 0 </30: a contradiction. If A has no greatest element, 
then since A has an upper bound in P, we again have f\&0eB(P) and 
/(|3) </(j30) for all 0 < j30: again a contradiction. Hence / is strictly increasing. 

However, the above result implies that range / is a well-ordered chain in P 
of type A, contradicting the hypothesis on P and completing the proof of the 
theorem. 

As a consequence of Levy's result that the statement (VA) DCk is equivalent 
to AC, we have the following corollary of Theorem 1. 

THEOREM 2. Each of the statements (VA)ZX and (VA)Z* is equivalent to AC. 

As a final comment, it follows that the statement (VA)Z* is equivalent to the 
usual form of Zorn's Lemma. 

The author wishes to express his gratitude to Professor James Schmerl for 
valuable advice and criticism. 
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