ON THE PRINCIPLE OF DEPENDENT CHOICES AND SOME FORMS OF ZORN'S LEMMA

BY

ELLIOT S. WOLK

ABSTRACT. The main result of this paper is to prove that a generalization of the Principle of Dependent Choices, introduced by A. Levy [2; see also 1, Chapter 8], is equivalent to a form of Zorn's Lemma.

The Principle of Dependent Choices [1, Section 2.4] is a weak version of the Axiom of Choice (AC), and may be stated as follows.

DC: Let X be a non-empty set. If R is a relation with dom R = X and range $R \subseteq X$, then there exists a sequence $\{x_n, n < \omega\}$ such that $x_n R x_{n+1}$ for all $n < \omega$.

We first show, without any use of AC, that the statement DC is equivalent to the following weak form of Zorn's Lemma.

 Z_{ω} : If every chain in a partially ordered set P is finite, then P contains a maximal element.

Proof. $DC \Rightarrow Z_{\omega}$. Suppose P satisfies the hypothesis of Z_{ω} but contains no maximal element. Define a relation R on the set P by xRy if and only if x < y, for $x \in P$, $y \in P$. By DC, there exists a sequence $\{x_n, n < \omega\}$ with $x_0 < x_1 < x_2 < \cdots$, a contradiction.

 $Z_{\omega} \Rightarrow DC$. Let R be a relation with dom R = X and range $R \subseteq X$. Let S be the set of all finite sequences $s = \{x_0, \ldots, x_k\}$ of elements of X such that $x_0Rx_1R\cdots Rx_k$. Partially order S by defining s < t if and only if dom s is an initial segment of dom t and s(i) = t(i) for all $i \in \text{dom } s$. By the hypothesis of DC, S has no maximal element. Hence by Z_{ω} there exists an infinite chain C in S. Then $\bigcup \{s: s \in C\}$ is an infinite sequence $\{x_n, n < \omega\}$ with x_nRx_{n+1} for all $n < \omega$.

The purpose of this note is to show that a generalized form of DC, introduced by A. Levy [2; see also 1, Chapter 8], is equivalent to a corresponding generalization of Z_{ω} . By a sequence of type γ , where γ is any ordinal, we mean any function defined on the set γ . The following proposition, as we shall show, may be regarded as a generalisation of DC. Here and throughout this paper λ will denote an initial ordinal (aleph).

Received by the editors June 3, 1982 and, in revised form, October 19, 1982 AMS Subject Classification (1980), 03E25, 04A25

^{© 1983} Canadian Mathematical Society

 DC_{λ} : Let X be any non-empty set and $S_{\lambda}(X)$ the set of all sequences in X of type less than λ . If R is a relation with dom $R = S_{\lambda}(X)$ and range $R \subseteq X$, then there exists a sequence f of type λ such that, for, all $\alpha < \lambda$,

$$(f \mid \alpha)Rf(\alpha).$$

In the statement of DC_{λ} it is assumed that $S_{\lambda}(X)$ contains the empty set \emptyset , which may be considered as a sequence of type 0. A. Levy has shown that DC_{μ} implies DC_{λ} whenever $\lambda < \mu$, and also that the statement $(\forall \lambda)$ DC_{λ} is equivalent to AC [1, p. 120].

Let us say that a partially ordered set P is well-founded if and only if every chain in P is well-ordered. We consider two propositions related to Zorn's Lemma:

 Z_{λ} : Let P be a partially ordered set in which every well-ordered chain has type less than λ . If every well-ordered chain in P has an upper bound in P, then P contains a maximal element.

 Z_{λ}^* : Let P be a well-founded partially ordered set in which every chain has type less than λ . If every chain in P has an upper bound in P, then P contains a maximal element.

Our purpose is to prove (without AC) that for each initial ordinal λ , the statements DC_{λ} , Z_{λ} , and Z_{λ}^* are all equivalent.

If s is a sequence in a partially ordered set P, we say that s is strictly increasing if and only if $\alpha < \beta$ implies $s(\alpha) < s(\beta)$ for all α , β in dom s. In this case the range of s is a well-ordered chain in P.

We now prove our main result.

THEOREM 1. For each initial ordinal λ , the statements DC_{λ} , Z_{λ} , and Z_{λ}^* are equivalent.

Proof. Since Z_{λ} trivially implies Z_{λ}^* , it will be sufficient to prove that $Z_{\lambda}^* \Rightarrow DC_{\lambda} \Rightarrow Z_{\lambda}$.

 $Z_{\lambda}^* \Rightarrow DC_{\lambda}$. Let X be a non-empty set, λ an initial ordinal, and R a relation with dom $R = S_{\lambda}(X)$ and range $R \subseteq X$. Let us say that a sequence s in X is R-admissible if and only if (i) $(s \mid \alpha) \in S_{\lambda}(X)$ for all $\alpha \in \text{dom } s$, and (ii) $(s \mid \alpha) \in Rs(\alpha)$ for all $\alpha \in \text{dom } s$. We must show that the set P of all R-admissible sequences contains a member which is of type λ . For $s \in P$, $t \in P$, define s < t if and only if dom s is an initial segment of dom t, and $s(\alpha) = t(\alpha)$ for all $\alpha \in \text{dom } s$. The set P is a well-founded partially ordered set with respect to the relation \leq . Note that for any chain C in P, $\bigcup \{s: s \in C\}$ is an R-admissible sequence and hence is an upper bound of C in C in C suppose C contains no member of type C. Then there is no chain C in C of type C0 supposes then C1 secure then C3 would be a sequence of type C3. So C3 satisfies the hypothesis of C3, and we therefore conclude that C2 contains a maximal element C3, which by assump-

tion has type $\beta < \lambda$. By the hypothesis of DC_{λ} there exists $y \in X$ with tRy. Define a sequence t^* by

$$t^*(\alpha) = t(\alpha)$$
 for $\alpha < \beta$,
 $t^*(\beta) = y$.

Then t^* is R-admissible but $t < t^*$, contradicting the maximality of t.

 $DC_{\lambda} \Rightarrow Z_{\lambda}$. Suppose P satisfies the hypothesis of Z_{λ} and P contains no maximal element. Let B(P) be the set of all $s \in S_{\lambda}(P)$ such that

- (i) s is strictly increasing, and
- (ii) P-range s contains an upper bound of range s.

Define a relation R as follows:

- (1) if $s \in B(P)$, then sRy if and only if $s(\alpha) < y$ for all $\alpha \in dom s$,
- (2) if $s \in S_{\lambda}(P) B(P)$, then sRy for all $y \in P$.

By DC_{λ} , there exists a sequence f of type λ with $(f \mid \alpha)Rf(\alpha)$ for all $\alpha < \lambda$. We assert that f is strictly increasing. For suppose not. Let β_0 be the first ordinal less than λ for which there exists $\beta < \beta_0$ with $f(\beta) \leq f(\beta_0)$. Then $f \mid \beta_0$ is a strictly increasing sequence and $A = \operatorname{range}(f \mid \beta_0)$ is well-ordered. If A contains a greatest element m, then since m is not a maximal element of P (by our assumption on P), it follows that $f \mid \beta_0 \in B(P)$. Hence, by definition of R, we have $f(\beta) < f(\beta_0)$ for all $\beta < \beta_0$: a contradiction. If A has no greatest element, then since A has an upper bound in P, we again have $f \mid \beta_0 \in B(P)$ and $f(\beta) < f(\beta_0)$ for all $\beta < \beta_0$: again a contradiction. Hence f is strictly increasing.

However, the above result implies that range f is a well-ordered chain in P of type λ , contradicting the hypothesis on P and completing the proof of the theorem.

As a consequence of Levy's result that the statement $(\forall \lambda)$ DC_{λ} is equivalent to AC, we have the following corollary of Theorem 1.

THEOREM 2. Each of the statements $(\forall \lambda)Z_{\lambda}$ and $(\forall \lambda)Z_{\lambda}^*$ is equivalent to AC.

As a final comment, it follows that the statement $(\forall \lambda)Z_{\lambda}^*$ is equivalent to the usual form of Zorn's Lemma.

The author wishes to express his gratitude to Professor James Schmerl for valuable advice and criticism.

REFERENCES

- 1. T. J. Jech, The Axiom of Choice, North-Holland, 1973.
- 2. A. Levy, The interdependence of certain consequences of the axiom of choice, Fund. Math. **54** (1964), 135–157.

DEPARTMENT OF MATHEMATICS,

University of Connecticut, Storrs, CT 06268