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Centre de Recerca Matemàtica, Edifici Cc, Campus de Bellaterra,
08193, Cerdanyola del Vallès, Barcelona, Spain

M. Saavedra
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In this paper we consider the unfolding of saddle-node

X =
1

xUa(x, y)

(
x(xμ − ε)∂x − Va(x)y∂y

)
,

parametrized by (ε, a) with ε ≈ 0 and a in an open subset A of R
α, and we study

the Dulac time T (s; ε, a) of one of its hyperbolic sectors. We prove (theorem 1.1)
that the derivative ∂sT (s; ε, a) tends to −∞ as (s, ε) → (0+, 0) uniformly on
compact subsets of A. This result is addressed to study the bifurcation of critical
periods in the Loud’s family of quadratic centres. In this regard we show
(theorem 1.2) that no bifurcation occurs from certain semi-hyperbolic polycycles.

Keywords: Period function; saddle-node unfolding; Dulac time; asymptotic
expansions

2020 Mathematics subject classification: 34C07; 34C20; 34C23

1. Introduction and main results

The present paper deals with planar polynomial ordinary differential systems and
we study the qualitative properties of the period function of centres. A singular
point of a planar differential system is a centre if it has a punctured neighbourhood
that consists entirely of periodic orbits surrounding it. The largest neighbourhood
with this property is called the period annulus of the centre and we denote it
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Non-bifurcation of critical periods from semi-hyperbolic polycycles 105

by P. The period function assigns to each periodic orbit in P its period. If the
period function is constant then the centre is called isochronous. The study of the
period function is a nontrivial problem and questions related to its behaviour have
been extensively studied. Let us quote, for instance, the problems of isochronicity
(see [4, 5, 25]), monotonicity (see [1, 24, 27]) or bifurcation of critical periods
(see [2, 12, 13]). Aside from the intrinsic interest of these problems, the study of
the period function is also important in the analysis of nonlinear boundary value
problems and in perturbation theory. Indeed, for instance, under the condition
of non-criticality of the period function, zeros of appropriate Melnikov functions
guarantee the persistence of subharmonic periodic orbits of a Hamiltonian system
after a small periodic non-autonomous perturbation (see [8, 15]). Most of the work
on planar polynomial differential systems, including the present paper, is related to
questions surrounding the well-known Hilbert’s 16th problem (see [9, 11, 22, 26]
and references therein) and its various weakened versions.

Chicone [3] has conjectured that if a quadratic differential system has a centre
with a period function which is not monotonic then, by an affine transformation
and a constant rescaling of time, it can be brought to the Loud normal form{

u̇ = −v + Buv,
v̇ = u + Du2 + Fv2,

(1.1)

and that the period function of these centres has at most two critical periods. In
fact, there is much analytic evidence that the conjecture is true (see [6, 24, 27]
for instance). On the other hand, it is proved in [10] that if B = 0 then the period
function of the centre at the origin of system (1.1) is globally monotonous. So, from
the point of view of the study of the period function, the most interesting stratum
of quadratic centres is the family (1.1) with B �= 0, which can be brought to B = 1
by means of a rescaling. Thus, using the vector field notation, in this paper we
consider

La := (−v + uv)∂u + (u + Du2 + Fv2)∂v where a := (D,F ) ∈ R
2. (1.2)

Following the terminology in [2], we shall refer to this family as the dehomogenized
Loud’s centres.

Compactifying R
2 to the Poincaré disc, see for instance [7], the boundary of the

period annulus P of the centre has two connected components, the centre itself
and a polycycle. We call them, respectively, the inner and outer boundary of the
period annulus. Since period function is defined on the set of periodic orbits in P,
usually the first step is to parametrize this set, let us say {γs}s∈(0,1), so that one
can study the qualitative properties of the period function by means of the map
s �→ period of γs, which is analytic on (0, 1). The critical periods are the critical
points of this function and its number, character (maximum or minimum) and
distribution do not depend on the particular parametrization of the set of periodic
orbits used. The dehomogenized Loud’s family (1.2) depends on a two-dimensional
parameter a and our aim is to decompose R

2 =∪Vi so that if a1 and a2 belong to the
same set Vi, then the corresponding period functions are qualitatively the same (i.e.
their critical periods are equal in number, character and distribution). A parameter
a0 ∈ R

2 is a regular value if it belongs to the interior of some Vi, otherwise it is a
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bifurcation value. The set of bifurcation values is B := ∪ ∂Vi and, roughly speaking,
it consists of those parameters a0 ∈ R

2 for which some critical period emerges or
disappears as a → a0. There are three different situations to consider:

(a) Bifurcations of critical periods from the inner boundary (i.e. the centre).

(b) Bifurcations of critical periods from the interior of the period annulus.

(c) Bifurcations of critical periods from the outer boundary (i.e. the polycycle).

We refer the reader to [18] for the definition of these notions.
With regards to the dehomogenized Loud’s centres (1.2), the bifurcation from

the centre was already solved by Chicone and Jacobs [2]. Our goal is to study
the bifurcation from the polycycle and to this end, together with P. Mardešić,
we have devoted a series of papers (see [17–21, 23]). The polycycle consists of
regular trajectories and singular points with a hyperbolic sector, which after the
desingularization process give rise to hyperbolic saddles and saddle-nodes. Most
of the cases studied so far correspond to hyperbolic polycycles, i.e. such that all
the singularities at its vertices are hyperbolic saddles. Although this is the generic
case in the family under consideration, in order to solve the problem we must
tackle the non-hyperbolic polycycles as well. Among them there are two cases in
which the polycycle has saddle-nodes, namely (D, F ) ∈ [−1, 0] × {1} and (D, F ) ∈
[−1, 0] × {0}. In both cases the saddle-node bifurcation occurs at infinity, so one
needs to extend the vector field to infinity by using, for instance, the Poincaré
compactification (see Figure 1).

We treated the first case in [20], where we proved a general result addressed to
study the local passage through a singularity unfolding a saddle-node bifurcation. In
the present paper we study the second case by adapting the general tools obtained
in [20]. Let us briefly explain the similarities and differences between both cases.
The key point is that the vector field La has a Darboux first integral, which enables
to find local changes of coordinates that bring each unfolding to a suitable normal
form. In the first case, see the proof of [20, theorem C], the saddle-node unfolding
La for D ∈ (0, 1) and F ≈ 1 can be brought locally to

1
yUa(x, y)

(
x(x2 − ε)

∂

∂x
− Va(x)y

∂

∂y

)
, where ε = 2(F − 1)

and y = 0 corresponds to the line at infinity. (In its regard we remark that the polar
factor can be neglected to draw the phase portrait but this cannot be done to study
the time.) In this case the hyperbolic saddles at ∂P bifurcating from the saddle-
node are placed at infinity for F < 1 and F > 1 (see the three phase portraits at
the top of Figure 1). In the present paper, by using the same techniques, we will
show that the saddle-node unfolding La for D ∈ (0, 1) and F ≈ 0 can be brought
locally to

1
xUa(x, y)

(
x(x2 − ε)

∂

∂x
− Va(x)y

∂

∂y

)
, where ε = −2F.

Here, the line at infinity corresponds to x = 0. Unlike the previous case, the hyper-
bolic saddles at ∂P bifurcating from the saddle-node are located at infinity for
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Figure 1. Phase portrait of La in the Poincaré disc for D ∈ (−1, 0) and F ≈ 1 (top) and
for D ∈ (−1, 0) and F ≈ 0 (bottom), where the centre at the origin is shifted to the left
for convenience and the vertical line is u = 1. The saddle-node singularity occurs for F = 1
and F = 0, respectively, and is placed at the intersection between the line at infinity (the
boundary of the disc) and u = 1.

F > 0 but they are not for F < 0 (see the three phase portraits at the bottom of
Figure 1). Thus, besides the saddle-node bifurcation, in this case there is a second
geometric phenomenon, namely, that the hyperbolic saddles at ∂P which bifurcate
from the saddle-node located at infinity come to the finite plane for F < 0. In this
paper we deal with this more intricate case and our main result states that there
is no bifurcation of critical periods.

In order to present our results in its full generality we adopt the framework
introduced in [20]. We consider the unfolding of saddle-node

X =
1

xUa(x, y)

(
x(xμ − ε)∂x − Va(x)y∂y

)
, (1.3)

parametrized by (ε, a) with ε ≈ 0 and a in an open subset A of R
α, and where

• μ ∈ N,

• (x, y, a) �→ Ua(x, y) is analytic on [−r, r]2 × A. Moreover, for each a ∈ A,
Ua(0, 0) > 0 and the Taylor series of Ua(x, y) at (0, 0) is absolutely convergent
on [−r, r]2.

• (x, a) �→ Va(x) is analytic on [−r, r] × A and, for all a ∈ A, Va(0) > 0.
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Figure 2. Transverse sections associated to the Dulac time T (s; ε, a) of the saddle-node
unfolding (1.3) for ε = 0 (and taking μ odd).

By rescaling, we can assume that r = 1 and Va(x) > 0 for all (x, a) ∈ [−1, 1] × A.
In what follows we denote by ϑε the largest real root of x(xμ − ε) = 0, i.e.

ϑε =

{
0, if ε � 0,

ε1/μ, if ε � 0.
(1.4)

Observe then, see (1.3), that (x, y) = (ϑε, 0) is a hyperbolic saddle of X for ε �= 0.
We are interested in the Dulac time T ( · ; ε, a) of the saddle-node unfolding (1.3)
between the transverse sections {y = 1} and {x = 1}. More concretely, see Figure 2,
for each s > 0 small enough, we define T (s; ε, a) to be the time that spends the
trajectory.

Theorem 1.1. The Dulac time T (s; ε, a) of the saddle-node unfolding (1.3) between
the transverse sections {y = 1} and {x = 1} verifies that

lim
(s,ε)→(0+,0)

∂sT (s; ε, a) = −∞

uniformly (with respect to a) on every compact subset of A.

In the next result we consider the family of dehomogenized Loud’s centres (1.2),
whose study is the main motivation of the present paper.

Theorem 1.2. Setting a = (D, F ), let {La, a ∈ R
2} be the family of vector fields

in (1.2) and consider the period function of the centre at the origin. Then every
a = (D, F ) ∈ (−1, 0) × {0} is a local regular value of the period function at the
outer boundary of the period annulus.

For a precise definition of local regular value we refer the reader to [18, definition
2.4], but roughly speaking it means that no critical period bifurcates from these
parameter values.
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2. Proofs of theorems 1.1 and 1.2

Proof of theorem 1.1. Let y = y(x; s) be the trajectory of the vector field
x(xμ − ε)∂x − Va(x)y∂y with initial condition y(s + ϑε; s) = 1. Then there exist
s0, ε0 > 0 small enough such that the Dulac time of (1.3) between {y = 1} and
{x = 1} is given by

T (s; ε, a) =
∫ 1

s+ϑε

Ua(x, y)
xμ − ε

∣∣∣∣
y=y(x;s)

dx

for all s ∈ (0, s0] and ε ∈ [−ε0, ε0]. Next, by applying the Weierstrass Division
theorem (see for instance [14, theorem 1.8] or [16, theorem 6.1.3]), we write

xUa(x, y) = xUa(x, 0) + yÛa(x, y),

where Ûa(x, y) is an analytic function on (x, y, a) ∈ [−1, 1]2 × A. Accordingly it
turns out that T (s; ε, a) = T0(s; ε, a) + T1(s; ε, a) with

T0(s; ε, a) :=
∫ 1

s+ϑε

Ua(x, 0)
xμ − ε

dx and T1(s; ε, a) :=
∫ 1

s+ϑε

yÛa(x, y)
x(xμ − ε)

dx.

Note, and this is the key point, that T1(s; ε, a) is the Dulac time of the saddle-node
unfolding

X̂ =
1

yÛa(x, y)

(
x(xμ − ε)∂x − Va(x)y∂y

)
,

which is in the hypothesis of [20, corollary B]. Thus, by applying that result with � =
k = 1, we obtain functions c0(ε, a) and c1(ε, a), satisfying that for every compact
set Ka ⊂ A, there exists ε1 > 0 such that c0 and c1 are continuous on [−ε1, ε1] × Ka

and

T1(s; ε, a) = c0(ε, a) + c1(ε, a)s + sh(s; ε, a), (2.1)

where the function h in the remainder verifies lims→0+ h(s; ε, a) = 0 and
lims→0+ s∂sh(s; ε, a) = 0 uniformly on [−ε1, ε1] × Ka. Observe on the other hand
that

∂sT0(s; ε, a) = −Ua(s + ϑε, 0)
(s + ϑε)μ − ε

.

Thus, the hypothesis Ua(0, 0) > 0 for all a ∈ A and the fact that ϑε tends to 0 as
ε → 0, imply that for each compact set K ⊂ A there exist positive constants M,
s0 and ε0 such that Ua(s + ϑε, 0) > M for all s ∈ (0, s0], ε ∈ [−ε0, ε0] and a ∈ K.
Accordingly

lim
(s,ε)→(0+,0)

∂sT0(s; ε, a) = −∞

uniformly on every compact subset of A. Consequently, taking (2.1) also into
account,

∂sT (s; εa) = ∂sT0(s; ε, a) + c1(ε, a) + h(s; ε, a) + s∂sh(s; ε, a) → −∞

as (s, ε) → (0+, 0) uniformly on Ka. This concludes the proof of the result. �
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Proof of theorem 1.2. For the sake of convenience we reverse time in the original
dehomogenized Loud family (1.2) and consider the vector field −La instead. To
study the saddle-node bifurcation that occurs at infinity we work in the projective
plane RP

2 and perform the change of coordinates

(z, w) =
(

1
v
,
1 − u

v

)
.

The meromorphic extension of −La in these coordinates is given by

X̄a :=
1
z

(
z
(
F + (D + 1)z2 − (2D + 1)zw + Dw2

)
∂z

+ w
(
−1 + F + (D + 1)z2 − (2D + 1)zw + Dw2

)
∂w

)
. (2.2)

Some long but easy computations show that the local analytic change of coordinates
given by

(x, y) = Ψ(z, w) :=

(
z√

g(z, w)
,

w√
g(z, w)

)
, (2.3)

where

g(z, w) :=
D

2(F − 1)(D + 1)
w2 − (2D + 1)

(2F − 1)(D + 1)
wz +

1
2(D + 1)

,

brings the vector field X̄a in (2.2) to

Xa =
1

xUa(x, y)

(
x(x2 + 2F )∂x + y(x2 + 2F − 2)∂y

)
, (2.4)

where

Ua(x, y) :=
(

(2D + 1)
2(2F − 1)

xy − D

4(F − 1)
y2 +

D + 1
2

)−1/2

.

Indeed, one can verify that Ψ∗Xa = (DΨ)−1(Xa ◦ Ψ) = X̄a. For reader’s conve-
nience let us briefly explain how we obtain this normalizing change of coordinates.
The idea arises from the fact that Ī(z, w) = w

z (1 + 2F g(z, w)
z2 )−1/2F is a first

integral of X̄a for F �= 0, and that the change of coordinates in (2.3) brings
it to I(x, y) = y

x (1 + 2F
x2 )−1/2F . Thus, since the 1-form dI is proportional to

x(x2 + 2F )dy − y(x2 + 2F − 2)dx, we deduce that the coordinate change brings
X̄a to

κa(x, y)
(
x(x2 + 2F )∂x + y(x2 + 2F − 2)∂y

)
,

so that the problem reduces to find this factor κa.
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Figure 3. Phase portrait of the orbital normal form x(x2 − ε)∂x − Va(x)y∂y.

We are now in position to apply theorem 1.1 because, taking

μ := 2, ε := −2F and Va(x) = 2 − 2F − x2,

observe that we can write the vector field in (2.4) as

Xa =
1

xUa(x, y)

(
x(xμ − ε)∂x − yVa(x)∂y

)
.

Note also, see the period annulus P in the phase portraits at the bottom of
Figure 1, that the points {(u, v) ∈ P : u > 0, v > 0} which are sufficiently close
to the saddle-node bifurcation are mapped by (u, v) �→ (x, y) = Ψ( 1

v , 1−u
v ) to the

quadrant {x > ϑε, y > 0}, see Figure 3, where ϑε is given in (1.4) with μ = 2.
Following the notation in theorem 1.1 we also take

A := (−1, 0) × (−1/2, 1/2).

Then Ua(0, 0) > 0 and Va(0) > 0 for all a ∈ A. Furthermore, working on any com-
pact subset Ka of A, we see that the Taylor series of Ua(x, y) at (0, 0) is absolutely
convergent for (x, y) ∈ [−r, r]2 for some r > 0 depending only on Ka. By rescaling
the local coordinates (x, y) we can assume that r = 1. This will change Ua, Va and
ε in terms of a but it will be clear that the proof does not depend on their particular
expression, provided that the new ε tends to zero as F → 0, which one can verify
that this is the case.

Next we proceed to study the period function of the centre near the polycycle at
the boundary of its period annulus. To this end we first note that the vector field
in (1.2) is invariant with respect to the symmetry (u, v) → (u, −v), and so is −La.
Consequently, see Figure 4, its period function is twice the time that the solutions
of −La spend for going from Σ1 := {u ≈ −∞, v = 0} to Σ2 := {u ≈ 1, v = 0}.

In order to study this, let us say, half period function we introduce two aux-
iliary transverse sections near the saddle-node bifurcation, Σn

1 := Ψ−1({y = 1})
and Σn

2 := Ψ−1({x = 1}), parameterized by s �→ Ψ−1(s + ϑε, 1) and s �→ Ψ−1(1, s),
respectively. Here, Ψ is the (local) normalizing change of coordinates given in (2.3)
and we work with the projective coordinates (z, w). Then we define T (s; a) to
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Figure 4. Phase portrait of the vector field −La for D ∈ (0, 1) and F ≈ 0 in the Poincaré
disc. On the left, for F � 0, and on the right, for F < 0. By symmetry, the period of a
periodic orbit is twice the time that spends the solution for going from Σ1 to Σ2. The
auxiliary transverse sections Σn

1 and Σn
2 are defined by means of the normalizing change

of coordinates Ψ that brings, locally, the saddle-node unfolding at infinity to the normal
form in (1.3), so that theorem 1.1 applies.

be half of the period of the periodic orbit γa,s of −La passing through the point
Ψ−1(s + ϑε, 1) ∈ Σn

1 and we decompose it as

T (s; a) = T1(s; ε, a) + T (s; ε, a) + T2

(
D(s; ε, a); ε, a

)
,

where (see Figure 4 again)

• T1(s; ε, a) is the time that spends γa,s for going from Σ1 to Σn
1 ,

• T ( · ; ε, a) and D( · ; ε, a) are the Dulac time and Dulac map from Σn
1 to Σn

2 ,
respectively,

• and T2( · ; ε, a) is the transition time form Σn
2 to Σ2.

(Here, the dependence on ε is redundant because it is a function of a = (D, F ) but
we keep it to be consistent with the notation of theorem 1.1.) We next study each
one of these summands. To this end, given any compact subset Ka of A, we denote
by I(Ka) the space of functions h(s; a), analytic on s ∈ (0, s0), verifying

lim
s→0+

h(s; a) = 0 and lim
s→0+

s∂sh(s; a) = 0 uniformly on Ka.

It is clear that I(Ka) is stable under addition and multiplication.
Let us observe first that we can write T1(s; a) = f(s + ϑε, a) where f is an ana-

lytic function at {0} × A, whereas the transition time T2(s; a) is analytic at {0} × A.
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Accordingly, for i = 1, 2, we have that

Ti(s; a) = ci,0(a) + ci,1(a)s + shi(s; a) with hi ∈ I(Ka)

and where ci,0 and ci,1 are continuous functions on Ka. At this point we fix any
D0 ∈ (−1, 0) and choose the compact set Ka to be a disc centred at the parameter
(D, F ) = (D0, 0). We note moreover that

y = g(x; a) := exp
(∫ x

1

Va(u)
u(u2 − ε)

du

)

is the Dulac map of the singular point at (ϑε, 0) of the vector field x(x2 −
ε)∂x − Va(x)y∂y between the transverse sections {y = 1, x > ϑε} and {x = 1, y >
0}. Since D(s; ε, a) = g(s + ϑε; a), by applying (b) in [20, corollary A] with
{μ = 2, � = k = 1, λ = 2 − 2F}, and shrinking the radius of Ka if neces-
sary, we deduce that D(s; ε, a) = sh0(s; a) with h0 ∈ I(Ka). Consequently,
T2(D(s; ε, a); ε, a) = c2,0(a) + sĥ2(s; a) where ĥ2(s) := c2,1h0(s) + h0(s)h2

(
sh0(s)

)
.

We claim that ĥ2 ∈ I(Ka). Indeed this is so because, using that h0 and h2 belong
to I(Ka), it follows easily that ν(s) := (h2 ◦ (sh0(s)))h0(s) and

s∂sν(s) =
(
h2 ◦ (sh0(s))

)(
s∂sh0(s)

)
+
(
(s∂sh2) ◦ (sh0(s))

)(
h0(s) + s∂sh0(s)

)
tend to zero as s → 0+ uniformly on Ka. Hence ν ∈ I(Ka) and then, since h0 ∈
I(Ka) as well, we get that ĥ2 = c2,1h0 + ν ∈ I(Ka) as desired. Summing up we can
write

T (s; a) = T (s; ε, a) + c0(a) + c1(a)s + sh(s; a)

where c0 := c1,0 + c2,0 and c1 := c1,1 are continuous functions on Ka and h := h1 +
h2 + ĥ2 ∈ I(Ka). Taking this into account, since a = (D, F ), the application of
theorem 1.1 to T (s; ε, a) shows that the derivative ∂sT (s;D, F ) tends to −∞ as
(s, D, F ) → (0+, D0, 0). Consequently, there exists δ > 0 such that ∂sT (s;D, F ) �=
0 for all (s, D, F ) with s ∈ (0, δ), |D − D0| < δ and |F | < δ. Since the period of
the periodic orbit γs,a is 2T (s;D, F ), this concludes the proof of the result. �
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in the plane by the use of the Poincaré-Birkhoff Theorem. Topol. Methods Nonlinear Anal.
40 (2012), 29–52.

9 J.-P. Françoise and C. Pugh. Keeping track of limit cycles. J. Differ. Equ. 65 (1986),
139–157.

10 A. Gasull, A. Guillamon and J. Villadelprat. The period function for second-order quadratic
ODEs is monotone. Qual. Theory Dyn. Syst. 4 (2004), 329–352.

11 A. Gasull, V. Ma-osa and F. Ma-osas. Stability of certain planar unbounded polycycles.
J. Math. Anal. Appl. 269 (2002), 332–351.

12 A. Gasull, C. Liu and J. Yang. On the number of critical periods for planar polynomial
systems of arbitrary degree. J. Differ. Equ. 249 (2010), 684–692.

13 M. Grau and J. Villadelprat. Bifurcation of critical periods from Pleshkan’s isochrones.
J. London Math. Soc. 81 (2010), 142–160.

14 G.-M. Greuel, C. Lossen and E. Shustin, Introduction to singularities and deformations,
Springer Monogr. Math. (Springer, Berlin, 2007).

15 J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations
of vector fields, Appl. Math. Sci. Vol. 42 (Springer-Verlag, New York, 1983).

16 S. G. Krantz and H. R. Parks, A Primer of Real Analytic Functions, Birkhäuser Advanced
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20 P. Mardešić, D. Maŕın, M. Saavedra and J. Villadelprat. Unfoldings of saddle-nodes and
their Dulac time. J. Differ. Equ. 261 (2016), 6411–6436.
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