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Abstract
In this paper, we identify some conditions to compare the largest order statistics from resilience-scale models
with reduced scale parameters in the sense of mean residual life order. As an example of the established result,
the exponentiated generalized gamma distribution is examined. Also, for the special case of the scale model,
power-generalized Weibull and half-normal distributions are investigated.

1. Introduction

If operating of a system comprising 𝑛 components depends to at least 𝑘 active components, then it is
called a 𝑘-out-of-𝑛 system. The lifetimes of 𝑘-out-of-𝑛 systems thus can be described by order statistics
arising from the lifetimes of their components. Due to this intimate relation, order statistics play a
fundamental rule in the context of reliability theory. In this regard, extreme order statistic, among others,
corresponding to the lifetimes of series and parallel systems have received more attentions because of
their importance in analyzing of the lifetimes of complex systems; see Barlow and Proschan [7]. For
elaborate discussions on order statistics and their applications, one may refer to Balakrishnan and Rao
[4,5] and David and Nagaraja [11].

Consider a nonnegative random variable 𝑇 with distribution function 𝐹𝑇 and assume that 𝐹𝑇 (𝑥) =
𝐺 𝜃 (𝛿𝑥) for all 𝑥 ∈ R+(= [0,∞)) wherein 𝐺 is an absolutely continuous distribution function (centered
on R+) with corresponding reversed hazard rate function 𝑟 . Then, it is said that 𝑇 follows the resilience-
scale (RS) model with baseline distribution 𝐺, resilience parameter 𝜃 ∈ R+ and scale parameter 𝛿 ∈ R+,
written as 𝑇 ∼ 𝑅𝑆(𝐺; 𝜃, 𝛿). Note that the RS model becomes the scale model when 𝜃 = 1. If 𝑟𝑇 denotes
the reversed hazard rate function of 𝑇, then one can see that 𝑟𝑇 (𝑥) = 𝜃𝛿𝑟 (𝛿𝑥) for all 𝑥 ∈ R+. Therefore,
the RS model can be viewed as the scaled version of the proportional hazard rate model. On the other
hand, the RS model can be achieved by using the exponentiation method on the scale model, which
for this reason, it is also called as the exponentition scale model in the literature. For a comprehensive
discussion on the exponentiation method and its applications, we refer the readers to AL-Hussaini and
Ahsanullah [1]. It should be mentioned that the RS model contains some well-known life distributions
such as generalized exponential distribution, exponentiated Weibull distribution, exponentiated Lomax
distribution, generalized Rayleigh distribution, exponentiated gamma distribution and exponentiated
generalized gamma distribution.
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In the recent years, some studies have been focused on stochastic comparisons between the largest
order statistics for several specific cases of the RS model. For example, one can see Balakrishnan et
al. [3] and Kundu et al. [21] for the case of generalized exponential distribution; Fang and Zhang [14],
Kundu and Chowdhury [20] and Barmalzan et al. [8] for the case of exponentiated Weibull distribution;
Fang and Xu [13] for the case of exponentiated gamma distribution; Haidari et al. [16] and Haidari and
Payandeh Najafabadi [15] for the case of the exponentiated generalized gamma distribution. However,
stochastic ordering relations between the largest order statistics based on random variables following the
general RS models have not received the attentions they deserve. Indeed, to the best of our knowledge,
only few works in this direction are published so far including Zhang et al. [31], Haidari et al. [17] and
Lu et al. [23].

Mean residual life function is a key tool in reliability, life testing and survival analysis. Provided that
an item is of age 𝑡 ∈ R+, the remaining lifetime after 𝑡 is a random variable whose expected value is
called the mean residual life (MRL) function at time 𝑡. As one can see, the MRL function sums up the
entire residual life distribution of an item while the failure (hazard) rate function describes the effect of
an immediate failure. From this point of view, the MRL function is likely to be more efficient than the
failure (hazard) rate function. The MRL function has wide applications in other areas such as renewal
theory, demography, social sciences and actuarial sciences; see Chapter 4 of Lai and Xie [22] and the
references therein.

Before going into the background of the idea investigated in this paper, let us briefly recall some
definitions. For two nonnegative random variables 𝑇1 and 𝑇2 with survival functions 𝐹̄𝑇1 and 𝐹̄𝑇2 , and
mean residual functions 𝑚𝑇1 (𝑡) = [𝐹̄𝑇1 (𝑡)]−1

∫ ∞
𝑡

𝐹̄𝑇1 (𝑢) 𝑑𝑢 and 𝑚𝑇2 (𝑡) = [𝐹̄𝑇2 (𝑡)]−1
∫ ∞
𝑡

𝐹̄𝑇2 (𝑢) 𝑑𝑢, it
is said that 𝑇1 is larger than 𝑇2 with respect to the mean residual life order, denoted by 𝑇1 ≥mrl 𝑇2,
if 𝑚𝑇1 (𝑡) ≥ 𝑚𝑇2 (𝑡) for all 𝑡 ∈ R+; see Chapter 2 of Shaked and Shanthikumar [27] for more details
on the mean residual life order and its properties. Let 𝑢1:𝑛 ≤ · · · ≤ 𝑢𝑛:𝑛 and 𝑣1:𝑛 ≤ · · · ≤ 𝑣𝑛:𝑛
denote the increasing arrangements of the components of nonnegative vectors 𝒖 = (𝑢1, . . . , 𝑢𝑛) and
𝒗 = (𝑣1, . . . , 𝑣𝑛), respectively. Then, 𝒖 is said to reciprocal majorize 𝒗, written as 𝒖

rm� 𝒗, if
∑𝑘

𝑖=1 𝑢
−1
𝑖:𝑛 ≥∑𝑘

𝑖=1 𝑣
−1
𝑖:𝑛 for all 𝑘 = 1, . . . , 𝑛. For additional details on the reciprocal mjorization order and its application,

one may refer to Zhao and Balakrishnan [32].
Suppose 𝑇1, . . . , 𝑇𝑛 and 𝑇∗

1 , . . . , 𝑇
∗
𝑛 are two sets of independent exponential random variables with

𝑇𝑖 , 𝑇𝑗 , 𝑇∗
𝑖 and 𝑇∗

𝑗 having the respective hazard rates 𝛿1, 𝛿2, 𝛿∗1 and 𝛿∗2 for 𝑖 = 1, . . . , 𝑙 and 𝑗 = 𝑙 + 1, . . . , 𝑛
(1 ≤ 𝑙 ≤ 𝑛 − 1), and let 𝑇𝑛:𝑛 (resp. 𝑇∗

𝑛:𝑛) denotes the largest order statistic based on 𝑇1, . . . , 𝑇𝑛 (resp.
𝑇∗

1 , . . . , 𝑇
∗
𝑛 ). In the sequel, a vector with all its elements being one is represented by 1𝑘 . In Open Problem

2 of Balakrishnan and Zhao [6], the following idea concerning the mean residual life order between 𝑇𝑛:𝑛
and 𝑇∗

𝑛:𝑛 is proposed:

Under the assumptions 𝛿1 ≤ 𝛿∗1 ≤ 𝛿∗2 ≤ 𝛿2 and (𝛿11𝑙 , 𝛿21𝑛−𝑙)
rm� (𝛿∗11𝑙 , 𝛿∗21𝑛−𝑙), does the ordering

𝑇𝑛:𝑛 ≥mrl 𝑇
∗
𝑛:𝑛 hold?

For 𝛿1 ≤ 𝛿2, set

Ω(𝛿1, 𝛿2) = {(𝑥, 𝑦) ∈ R+2 : 𝛿1 ≤ 𝑥 ≤ 𝑦 ≤ 𝛿2 and 𝑙𝛿−1
1 + (𝑛 − 𝑙)𝛿−1

2 ≥ 𝑙𝑥−1 + (𝑛 − 𝑙)𝑦−1}.

Now, the foresaid idea can be restated as follows:

If (𝛿∗1, 𝛿∗2) ∈ Ω(𝛿1, 𝛿2), then does the ordering 𝑇𝑛:𝑛 ≥mrl 𝑇
∗
𝑛:𝑛 hold?

Zhao and Balakrishnan [33] showed that the answer of the above questions is positive for the special
case when 𝑛 = 2. However, the complete answer is provided by Wang and Cheng [29] with the aid of an
effective method which is new in the context of stochastic orderings of order statistics; see Wang [28]
and Wang and Cheng [30] for further details on this method and its applications.

The idea investigated in this paper is concerning the mean residual life order between the largest order
statistics in the RS models. Consider two nonnegative random vectors (𝑇1, . . . , 𝑇𝑛) and (𝑇∗

1 , . . . , 𝑇
∗
𝑛 )
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Figure 1. Plot of the region Δ𝜃1 , 𝜃2 (𝛿1, 𝛿2).

with𝑇𝑖 ∼ 𝑅𝑆(𝐺; 𝜃𝑖 , 𝛿1),𝑇𝑗 ∼ 𝑅𝑆(𝐺; 𝜃 𝑗 , 𝛿2),𝑇∗
𝑖 ∼ 𝑅𝑆(𝐺; 𝜃𝑖 , 𝛿∗1) and𝑇∗

𝑗 ∼ 𝑅𝑆(𝐺; 𝜃 𝑗 , 𝛿
∗
2) for 𝑖 = 1, . . . , 𝑙

and 𝑗 = 𝑙 + 1, . . . , 𝑛. Assume that the region Δ𝜃1 , 𝜃2 (𝛿1, 𝛿2) is formed by the lines 𝑦 = 𝑥 and 𝑦 = 𝛿2,
and the curve 𝜃1𝑥

−1 + 𝜃2𝑦
−1 = 𝜃1𝛿

−1
1 + 𝜃2𝛿

−1
2 for 𝛿1 ≤ 𝛿2 and 𝜃𝑖 ≥ 1, 𝑖 = 1, 2. The graph of this

region is plotted in Figure 1 in which 𝛿𝐻 = (𝜃1 + 𝜃2)/(𝜃1𝛿
−1
1 + 𝜃2𝛿

−1
2 ) is the weighted harmonic

mean of 𝛿1 and 𝛿2 with corresponding weights 𝜃1 and 𝜃2. Set 𝜉1 =
∑𝑙

𝑖=1 𝜃𝑖 and 𝜉2 =
∑𝑛

𝑗=𝑙+1 𝜃 𝑗 . We
will find some conditions on the baseline distribution 𝐺 such that, for (𝛿∗1, 𝛿∗2) ∈ Δ𝜉1 , 𝜉2 (𝛿1, 𝛿2), the
ordering 𝑇𝑛:𝑛 ≥mrl 𝑇∗

𝑛:𝑛 holds. We will also examine this result when the baseline distribution is the
generalized gamma. When 𝜃𝑖 = 1 for all 𝑖 = 1, . . . , 𝑛 (the scale model with reduced heterogeneity of
scale parameters), the power-generalized Weibull and half-normal distributions are investigated as the
examples. For many well-known distributions, a huge body of literature exists concerning comparisons
of their largest order statistics with respect to magnitude orders such as the usual stochastic, hazard rate,
and likelihood ratio orders. But, for the mean residual life order, attentions has been focused just on the
exponential distribution whereas other distributions remain noticeably absent in the literature. The results
established in this paper fill this gape by extension of the previous ones from the exponential framework
to the exponentiated generalized gamma, power-generalized Weibull and half-normal frameworks.

The general structure of the paper can be summarized as follows: In Section 2, we present the
main results. Several examples and illustrations are stated in Section 3. Finally, some discussions are
made in Section 4. Throughout the paper, we write 𝑃

sgn
= 𝑄 to mean that 𝑃 and 𝑄 have the same sign.

Furthermore, for any differentiable function 𝑤(𝑥), 𝑤′(𝑥) denotes the first derivative of 𝑤(𝑥) with respect
to 𝑥 while the notion 𝜕𝑖𝑏(𝑥1, 𝑥2) is used for the partial derivative of any differentiable function 𝑏(𝑥1, 𝑥2)
with respect to 𝑥𝑖 , 𝑖 = 1, 2.

2. Main results

Here, we compare the largest order statistics arising from independent random variables following
heterogeneous RS models with respect to the mean residual life order. In what follows, everywhere we
use the notions (𝑇1, . . . , 𝑇𝑛) ∼ 𝑅𝑆(𝐺; 𝜽 , 𝜹𝑙) and (𝑇∗

1 , . . . , 𝑇
∗
𝑛 ) ∼ 𝑅𝑆(𝐺; 𝜽 , 𝜹∗𝑙 ) wherein 𝜽 = (𝜃1, . . . , 𝜃𝑛),

𝜹𝑙 = (𝛿11𝑙 , 𝛿21𝑛−𝑙) and 𝜹∗𝑙 = (𝛿∗11𝑙 , 𝛿∗21𝑛−𝑙), it means that 𝑇𝑖 ∼ 𝑅𝑆(𝐺; 𝜃𝑖 , 𝛿1), 𝑇𝑗 ∼ 𝑅𝑆(𝐺; 𝜃 𝑗 , 𝛿2),
𝑇∗
𝑖 ∼ 𝑅𝑆(𝐺; 𝜃𝑖 , 𝛿∗1) and 𝑇∗

𝑗 ∼ 𝑅𝑆(𝐺; 𝜃 𝑗 , 𝛿
∗
2) for 𝑖 = 1, . . . , 𝑙 and 𝑗 = 𝑙 + 1, . . . , 𝑛. Furthermore, the

survival, density, hazard rate and reversed hazard rate functions of the baseline distribution function
𝐺, centered on R+, are respectively denoted by 𝐺̄, 𝑔, 𝑟 = 𝑔/𝐺̄ and 𝑟 = 𝑔/𝐺. Set 𝛼(𝑥) = 𝑥𝑟 (𝑥),
𝛾(𝑥) = 𝑥𝑟 ′(𝑥)/𝑟 (𝑥), 𝐹 (𝑥; 𝑢1, 𝑢2) = [𝐺 (𝑢1𝑥)] 𝜃1 [𝐺 (𝑢2𝑥)] 𝜃2 and 𝐹̄ (𝑥; 𝑢1, 𝑢2) = 1 − 𝐹 (𝑥; 𝑢1, 𝑢2) for all
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𝑥 ∈ R+ and (𝑢1, 𝑢2) ∈ R+2. Under this setting, it can be easily seen that

𝛾(𝑥) = 𝑥𝑔′(𝑥)
𝑔(𝑥) − 𝛼(𝑥), 𝑥 ∈ R+, (1)

𝑥𝑟 ′(𝑥)
𝑟 (𝑥) =

𝑥𝑔′(𝑥)
𝑔(𝑥) + 𝑥𝑟 (𝑥), 𝑥 ∈ R+. (2)

To prove the main result, we need a series of lemmas which are presented in the sequel.

Lemma 1 (Mitrinović et al. [24, p. 71]). Let 𝑦𝑘 ∈ (0, 1) and 𝜈𝑘 ≥ 1 for all 𝑘 = 1, . . . , 𝑛. Then, we have

1 −
𝑛∏

𝑘=1
(1 − 𝑦𝑘 )𝜈𝑘 ≤

𝑛∑
𝑘=1

𝜈𝑘 𝑦𝑘 .

Lemma 2 (Mitrinović et al. [24, p. 340]). Consider three vectors 𝑐𝑐𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ R𝑛, 𝑞𝑞𝑞 =
(𝑞1, . . . , 𝑞𝑛) ∈ R𝑛 and 𝑑𝑑𝑑 = (𝑑1, . . . , 𝑑𝑛) ∈ R+𝑛. Then, we have

min
{
𝑐1

𝑑1
, . . . ,

𝑐𝑛
𝑑𝑛

}
≤

∑𝑛
𝑖=1 𝑞𝑖𝑐𝑖∑𝑛
𝑖=1 𝑞𝑖𝑑𝑖

≤ max
{
𝑐1

𝑑1
, . . . ,

𝑐𝑛
𝑑𝑛

}
.

Lemma 3. Suppose that 𝜃𝑖 ≥ 1 for 𝑖 = 1, 2. Let the function 𝐿(·; 𝑡) : R+ → R+ be defined as:

𝐿(𝑥; 𝑡) = 𝐹̄ (𝑥; 1, 𝑡)
𝐹 (𝑥; 1, 𝑡)𝛼(𝑥) ,

wherein 𝑡 ≥ 1. Assume that the following conditions hold:

(a1) 𝑟 (𝑥) is increasing in 𝑥 ∈ R+;
(a2) 𝛼(𝑥)/𝐺̄ (𝑥) is increasing in 𝑥 ∈ R+.

Then, 𝐿(𝑥; 𝑡) is decreasing in 𝑥 ∈ R+.

Proof. Since 𝐹 ′(𝑥; 1, 𝑡) = (𝜃1𝑟 (𝑥) + 𝜃2𝑡𝑟 (𝑡𝑥))𝐹 (𝑥; 1, 𝑡) for all 𝑥 ∈ R+, then we find

(𝑥𝐿(𝑥; 𝑡))′ sgn
= −𝐹 ′(𝑥; 1, 𝑡)𝐹 (𝑥; 1, 𝑡)𝑟 (𝑥) − (𝐹 ′(𝑥; 1, 𝑡)𝑟 (𝑥) + 𝐹 (𝑥; 1, 𝑡)𝑟 ′(𝑥))𝐹̄ (𝑥; 1, 𝑡)
= −𝐹 ′(𝑥; 1, 𝑡)𝐹 (𝑥; 1, 𝑡)𝑟 (𝑥) − 𝐹 ′(𝑥; 1, 𝑡)𝐹̄ (𝑥; 1, 𝑡)𝑟 (𝑥) − 𝐹 (𝑥; 1, 𝑡)𝐹̄ (𝑥; 1, 𝑡)𝑟 ′(𝑥)
= −𝐹 ′(𝑥; 1, 𝑡)𝑟 (𝑥)(𝐹 (𝑥; 1, 𝑡) + 𝐹̄ (𝑥; 1, 𝑡)) − 𝐹 (𝑥; 1, 𝑡)𝐹̄ (𝑥; 1, 𝑡)𝑟 ′(𝑥)
= −𝐹 ′(𝑥; 1, 𝑡)𝑟 (𝑥) − 𝐹 (𝑥; 1, 𝑡)𝐹̄ (𝑥; 1, 𝑡)𝑟 ′(𝑥)
= −(𝜃1𝑟 (𝑥) + 𝜃2𝑡𝑟 (𝑡𝑥))𝐹 (𝑥; 1, 𝑡)𝑟 (𝑥) − 𝐹 (𝑥; 1, 𝑡)𝐹̄ (𝑥; 1, 𝑡)𝑟 ′(𝑥)

= −𝐹 (𝑥; 1, 𝑡)𝐹̄ (𝑥; 1, 𝑡)𝑟 (𝑥)
𝑥

(
𝜃1𝑥𝑟 (𝑥) + 𝜃2𝑡𝑥𝑟 (𝑡𝑥)

𝐹̄ (𝑥; 1, 𝑡) + 𝛾(𝑥)
)

sgn
= −

(
𝜃1𝛼(𝑥) + 𝜃2𝛼(𝑡𝑥)

𝐹̄ (𝑥; 1, 𝑡) + 𝛾(𝑥)
)
, 𝑥 ∈ R+. (3)

We also have

𝜃1𝛼(𝑥) + 𝜃2𝛼(𝑡𝑥)
𝐹̄ (𝑥; 1, 𝑡) ≥ 𝜃1𝛼(𝑥) + 𝜃2𝛼(𝑡𝑥)

𝜃1𝐺̄ (𝑥) + 𝜃2𝐺̄ (𝑡𝑥)
≥ min

{
𝛼(𝑥)
𝐺̄ (𝑥) ,

𝛼(𝑡𝑥)
𝐺̄ (𝑡𝑥)

}

=
𝛼(𝑥)
𝐺̄ (𝑥) , 𝑥 ∈ R+, (4)
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wherein the first inequality is obtained from Lemma 1, the second inequality is derived from Lemma 2
and finally the last identity is established based on Condition (𝑎2) and the restriction 𝑡 ≥ 1. Now, upon
combining Eqs. (1), (2) and (4), it follows from Condition (𝑎1) that

𝜃1𝛼(𝑥) + 𝜃2𝛼(𝑡𝑥)
𝐹̄ (𝑥; 1, 𝑡) + 𝛾(𝑥) ≥ 𝛼(𝑥)

𝐺̄ (𝑥) +
𝑥𝑔′(𝑥)
𝑔(𝑥) − 𝛼(𝑥)

=
𝑥𝑔′(𝑥)
𝑔(𝑥) + 𝑥𝑟 (𝑥)

=
𝑥𝑟 ′(𝑥)
𝑟 (𝑥)

≥ 0, 𝑥 ∈ R+,

which confirms the right-hand side of (3) is non-positive. Thus, 𝑥𝐿(𝑥; 𝑡) is decreasing in 𝑥 ∈ R+ and so,
𝐿(𝑥; 𝑡) is also decreasing in 𝑥 ∈ R+, as required. �

Lemma 4. For 𝑡 ∈ R+ and 𝑢2 ≥ 𝑢1, let the function Ξ(·; 𝑡) : R+ → R be defined as:

Ξ(𝑥; 𝑡) = 𝛼(𝑡)𝐹 (1; 𝑢1, 𝑢2)𝐹̄
( 𝑥
𝑡
; 𝑢1, 𝑢2

)
− 𝛼(𝑥)𝐹

( 𝑥
𝑡
; 𝑢1, 𝑢2

)
𝐹̄ (1; 𝑢1, 𝑢2).

Assume that the following conditions hold:

(a1) 𝑟 (𝑥) is increasing in 𝑥 ∈ R+;
(a2) 𝛼(𝑥)/𝐺̄ (𝑥) is increasing in 𝑥 ∈ R+;
(a3) 𝑟 (𝑐1𝑥)/𝑟 (𝑐2𝑥) is increasing in 𝑥 ∈ R+ for 0 < 𝑐1 ≤ 𝑐2.

Then, we have

(i) Ξ(𝑥; 𝑢1) ≤ 0 for all 𝑥 ≥ 𝑢1;
(ii) Ξ(𝑥; 𝑢1) − Ξ(𝑥; 𝑢2) ≤ 0 for all 𝑥 ≥ 𝑢2.

Proof. (i) The function Ξ(𝑥; 𝑢1) can be rewritten as

Ξ(𝑥; 𝑢1) = 𝛼(𝑢1)𝛼(𝑥)𝐹 (1; 𝑢1, 𝑢2)𝐹
(
𝑥

𝑢1
; 𝑢1, 𝑢2

) (
𝐹̄ ( 𝑥

𝑢1
; 𝑢1, 𝑢2)

𝐹 ( 𝑥
𝑢1

; 𝑢1, 𝑢2)𝛼(𝑥)
− 𝐹̄ (1; 𝑢1, 𝑢2)

𝐹 (1; 𝑢1, 𝑢2)𝛼(𝑢1)

)
, 𝑥 ≥ 𝑢1.

On the other hand, we have

𝐹

(
𝑥

𝑢1
; 𝑢1, 𝑢2

)
=

[
𝐺

(
𝑢1

𝑥

𝑢1

)] 𝜃1 [
𝐺

(
𝑢2

𝑥

𝑢1

)] 𝜃2

= [𝐺 (𝑥)] 𝜃1

[
𝐺

(
𝑢2

𝑢1
𝑥

)] 𝜃2

= 𝐹

(
𝑥; 1,

𝑢2

𝑢1

)
, 𝑥 ∈ R+.

Now, from the above observation and the notion of Lemma 3, one can easily find that

Ξ(𝑥; 𝑢1) = 𝛼(𝑢1)𝛼(𝑥)𝐹 (1; 𝑢1, 𝑢2)𝐹
(
𝑥

𝑢1
; 𝑢1, 𝑢2

) (
𝐹̄ (𝑥; 1, 𝑢2

𝑢1
)

𝐹 (𝑥; 1, 𝑢2
𝑢1
)𝛼(𝑥) −

𝐹̄ (𝑢1; 1, 𝑢2
𝑢1
)

𝐹 (𝑢1; 1, 𝑢2
𝑢1
)𝛼(𝑢1)

)

= 𝛼(𝑢1)𝛼(𝑥)𝐹 (1; 𝑢1, 𝑢2)𝐹
(
𝑥

𝑢1
; 𝑢1, 𝑢2

) (
𝐿

(
𝑥;

𝑢2

𝑢1

)
− 𝐿

(
𝑢1;

𝑢2

𝑢1

))
, 𝑥 ≥ 𝑢1.
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By Lemma 3, we know 𝐿(𝑥; 𝑢2/𝑢1) is decreasing in 𝑥 ∈ R+ which results in Ξ(𝑥; 𝑢1) ≤ 0 for all 𝑥 ≥ 𝑢1.
(ii) Let us define D = {𝑦 ≥ 𝑢2 : Ξ(𝑦; 𝑢2) ≤ 0}. For 𝑥 ∈ D𝑐 (the complement of D), we have from

Part (i) that Ξ(𝑥; 𝑢1) − Ξ(𝑥; 𝑢2) ≤ 0. In the sequel, it is assume that 𝑥 ∈ D. Because 𝐹 (𝑥; 𝑢1, 𝑢2) is
increasing in 𝑥 ∈ R+, it follows that 𝐹 (𝑥/𝑢2; 𝑢1, 𝑢2) ≤ 𝐹 (𝑥/𝑢1; 𝑢1, 𝑢2) for all 𝑥 ∈ R+ and 𝑢2 ≥ 𝑢1. Now,
using this observation, we have

Ξ(𝑥; 𝑢1) − Ξ(𝑥; 𝑢2)

= 𝐹

(
𝑥

𝑢1
; 𝑢1, 𝑢2

)
𝐹 (1; 𝑢1, 𝑢2)𝛼(𝑥)𝛼(𝑢1)

(
𝐹̄ ( 𝑥

𝑢1
; 𝑢1, 𝑢2)

𝛼(𝑥)𝐹 ( 𝑥
𝑢1

; 𝑢1, 𝑢2)
− 𝐹̄ (1; 𝑢1, 𝑢2)

𝛼(𝑢1)𝐹 (1; 𝑢1, 𝑢2)

)

− 𝐹 ( 𝑥

𝑢2
; 𝑢1, 𝑢2)𝐹 (1; 𝑢1, 𝑢2)𝛼(𝑥)𝛼(𝑢2)

(
𝐹̄ ( 𝑥

𝑢2
; 𝑢1, 𝑢2)

𝛼(𝑥)𝐹 ( 𝑥
𝑢2

; 𝑢1, 𝑢2)
− 𝐹̄ (1; 𝑢1, 𝑢2)

𝛼(𝑢2)𝐹 (1; 𝑢1, 𝑢2)

)

≤ 𝐹

(
𝑥

𝑢1
; 𝑢1, 𝑢2

)
𝐹 (1; 𝑢1, 𝑢2)𝛼(𝑥)𝛼(𝑢1)

(
𝐹̄ ( 𝑥

𝑢1
; 𝑢1, 𝑢2)

𝛼(𝑥)𝐹 ( 𝑥
𝑢1

; 𝑢1, 𝑢2)
− 𝐹̄ (1; 𝑢1, 𝑢2)

𝛼(𝑢1)𝐹 (1; 𝑢1, 𝑢2)

)

− 𝐹

(
𝑥

𝑢1
; 𝑢1, 𝑢2

)
𝐹 (1; 𝑢1, 𝑢2)𝛼(𝑥)𝛼(𝑢2)

(
𝐹̄ ( 𝑥

𝑢2
; 𝑢1, 𝑢2)

𝛼(𝑥)𝐹 ( 𝑥
𝑢2

; 𝑢1, 𝑢2)
− 𝐹̄ (1; 𝑢1, 𝑢2)

𝛼(𝑢2)𝐹 (1; 𝑢1, 𝑢2)

)

= 𝐹

(
𝑥

𝑢1
; 𝑢1, 𝑢2

)
𝐹 (1; 𝑢1, 𝑢2)𝛼(𝑥)

(
𝐹̄ ( 𝑥

𝑢1
; 𝑢1, 𝑢2)

𝛼(𝑥)𝐹 ( 𝑥
𝑢1

; 𝑢1, 𝑢2)
𝛼(𝑢1) −

𝐹̄ ( 𝑥
𝑢2

; 𝑢1, 𝑢2)
𝛼(𝑥)𝐹 ( 𝑥

𝑢2
; 𝑢1, 𝑢2)

𝛼(𝑢2)
)

= Υ(𝑥), say.

Setting 𝑐1 = 𝑢1/𝑢2 and 𝑐2 = 1 in Condition (𝑎3), it follows that 𝑟 (𝑢1/𝑢2𝑥)/𝑟 (𝑥) ≥ 𝑟 (𝑢1)/𝑟 (𝑢2) or
equivalently 𝛼(𝑢1/𝑢2𝑥)/𝛼(𝑥) ≥ 𝛼(𝑢1)/𝛼(𝑢2) for all 𝑥 ≥ 𝑢2. From this observation and Lemma 3, we
obtain

Υ(𝑥) sgn
=

𝐹̄ ( 𝑥
𝑢2

; 𝑢1, 𝑢2)
𝛼(𝑥)𝐹 ( 𝑥

𝑢1
; 𝑢1, 𝑢2)

𝛼(𝑢1) −
𝐹̄ ( 𝑥

𝑢2
; 𝑢1, 𝑢2)

𝛼( 𝑢1
𝑢2
𝑥)𝐹 ( 𝑥

𝑢2
; 𝑢1, 𝑢2)

𝛼( 𝑢1
𝑢2
𝑥)𝛼(𝑢2)
𝛼(𝑥)

≤
𝛼( 𝑢1

𝑢2
𝑥)𝛼(𝑢2)
𝛼(𝑥)

(
𝐹̄ ( 𝑥

𝑢1
; 𝑢1, 𝑢2)

𝛼(𝑥)𝐹 ( 𝑥
𝑢1

; 𝑢1, 𝑢2)
−

𝐹̄ ( 𝑥
𝑢2

; 𝑢1, 𝑢2)
𝛼( 𝑢1

𝑢2
𝑥)𝐹 ( 𝑥

𝑢2
; 𝑢1, 𝑢2)

)

=
𝛼( 𝑢1

𝑢2
𝑥)𝛼(𝑢2)
𝛼(𝑥)

(
𝐿

(
𝑥;

𝑢2

𝑢1

)
− 𝐿

(
𝑢1

𝑢2
𝑥;

𝑢2

𝑢1

))
≤ 0, 𝑥 ≥ 𝑢2.

Thus, we can conclude that Ξ(𝑥; 𝑢1) − Ξ(𝑥; 𝑢2) ≤ 0 for all 𝑥 ≥ 𝑢2, as desired. �

For a given point (𝛿1, 𝛿2) with 0 < 𝛿1 ≤ 𝛿2 and 𝜃𝑖 ≥ 1, 𝑖 = 1, 2, we can redefine the region
Δ𝜃1 , 𝜃2 (𝛿1, 𝛿2), proposed in Introduction, as follows:

Δ𝜃1 , 𝜃2 (𝛿1, 𝛿2) = {(𝑥, 𝑦) ∈ R+2 : 𝛿1 ≤ 𝑥 ≤ 𝑦 ≤ 𝛿2 and 𝜃1𝛿
−1
1 + 𝜃2𝛿

−1
2 ≥ 𝜃1𝑥

−1 + 𝜃2𝑦
−1}.

A question arises here: what condition the function 𝜑 : R+2 → R must have to satisfy the inequality
𝜑(𝛿1, 𝛿2) ≥ 𝜑(𝛿∗1, 𝛿∗2) for (𝛿∗1, 𝛿∗2) ∈ Δ𝜃1 , 𝜃2 (𝛿1, 𝛿2)? If 𝜃1𝛿

∗−1
1 + 𝜃2𝛿

∗−1
2 = 𝜃1𝛿

−1
1 + 𝜃2𝛿

−1
2 , then the point

(𝛿∗1, 𝛿∗2) lies on the curve 𝜃1𝑥
−1 + 𝜃2𝑦

−1 = 𝜃1𝛿
−1
1 + 𝜃2𝛿

−1
2 . Because the vector field of this curve is

(1,−𝜃1𝜃
−1
2 𝑥−2𝑦2), then the inequality 𝜑(𝛿1, 𝛿2) ≥ 𝜑(𝛿∗1, 𝛿∗2) holds if 𝜑(𝑥, 𝑦) is decreasing along the vector

(1,−𝜃1𝜃
−1
2 𝑥−2𝑦2). If (𝛿∗1, 𝛿∗2) lies inside the regionΔ𝜃1 , 𝜃2 (𝛿1, 𝛿2), that is, 𝜃1𝛿

∗−1
1 +𝜃2𝛿

∗−1
2 < 𝜃1𝛿

−1
1 +𝜃2𝛿

−1
2 ,

then there exists a point (𝛿′1, 𝛿∗2) on the curve 𝜃1𝑥
−1 + 𝜃2𝑦

−1 = 𝜃1𝛿
−1
1 + 𝜃2𝛿

−1
2 such that 𝛿1 < 𝛿′1.

In this case, if 𝜑(𝑥, 𝑦) is decreasing along the vectors (1, 0) and (1,−𝜃1𝜃
−1
2 𝑥−2𝑦2), then we have

𝜑(𝛿1, 𝛿2) ≥ 𝜑(𝛿′1, 𝛿∗2) ≥ 𝜑(𝛿∗1, 𝛿∗2). Consequently, we can state the following lemma.
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Lemma 5. Consider the function 𝜑 : R+2 → R. If 𝜑(𝑢1, 𝑢2) is decreasing along the vectors 𝒗1 = (1, 0)
and 𝒗2 = (1,−𝜃1𝜃

−1
2 𝑢−2

1 𝑢2
2), then we have

(𝛿∗1, 𝛿∗2) ∈ Δ𝜃1 , 𝜃2 (𝛿1, 𝛿2) ⇒ 𝜑(𝛿1, 𝛿2) ≥ 𝜑(𝛿∗1, 𝛿∗2).

Next theorem deals with the mean residual life order between the largest order statistics arising from
the RS models.

Theorem 1. Suppose (𝑇1, . . . , 𝑇𝑛) ∼ 𝑅𝑆(𝐺; 𝜽 , 𝜹𝑙) and (𝑇∗
1 , . . . , 𝑇

∗
𝑛 ) ∼ 𝑅𝑆(𝐺; 𝜽 , 𝜹∗𝑙 ). Set 𝜉1 =

∑𝑙
𝑖=1 𝜃𝑖

and 𝜉2 =
∑𝑛

𝑖=𝑙+1 𝜃𝑖 . Assume that the following conditions hold:

(a1) 𝑟 (𝑥) is increasing in 𝑥 ∈ R+;
(a2) 𝛼(𝑥)/𝐺̄ (𝑥) is increasing in 𝑥 ∈ R+;
(a3) 𝑟 (𝑐1𝑥)/𝑟 (𝑐2𝑥) is increasing in 𝑥 ∈ R+ for 0 < 𝑐1 ≤ 𝑐2.

If (𝛿∗1, 𝛿∗2) ∈ Δ𝜉1 , 𝜉2 (𝛿1, 𝛿2), then we have 𝑇𝑛:𝑛 ≥mrl 𝑇
∗
𝑛:𝑛.

Proof. The distribution functions of 𝑇𝑛:𝑛 and 𝑇∗
𝑛:𝑛 are respectively as

𝐹𝑇𝑛:𝑛 (𝑥) = [𝐺 (𝛿1𝑥)] 𝜉1 [𝐺 (𝛿2𝑥)] 𝜉2 , 𝐹𝑇 ∗
𝑛:𝑛 (𝑥) = [𝐺 (𝛿∗1𝑥)] 𝜉1 [𝐺 (𝛿∗2𝑥)] 𝜉2 , 𝑥 ∈ R+.

Evidently, the distribution function of 𝑇𝑛:𝑛 (resp. 𝑇∗
𝑛:𝑛) is the same as that of 𝑇2:2 (resp. 𝑇∗

2:2) by replacing
𝜃𝑖 by 𝜉𝑖 for 𝑖 = 1, 2. Therefore, it is enough to prove the required result for the special case of 𝑛 = 2. The
mean residual life functions of 𝑇2:2 and 𝑇∗

2:2 can be rewritten respectively as

𝑚𝑇2:2 (𝑥) = 𝑥𝜑(𝛿1𝑥, 𝛿2𝑥), 𝑚𝑇 ∗
2:2
(𝑥) = 𝑥𝜑(𝛿∗1𝑥, 𝛿∗2𝑥), 𝑥 ∈ R+,

wherein

𝜑(𝑢1, 𝑢2) =
∫ ∞

1 𝐹̄ (𝑥; 𝑢1, 𝑢2) 𝑑𝑥
𝐹̄ (1; 𝑢1, 𝑢2)

, 0 < 𝑢1 ≤ 𝑢2.

According to Lemma 5, the desired result follows if we could show that 𝜑(𝑢1, 𝑢2) is decreasing at the
directions 𝑣𝑣𝑣1 and 𝑣𝑣𝑣2. The partial derivative of 𝜑(𝑢1, 𝑢2) with respect to 𝑢1 can be expressed as

𝜕1𝜑(𝑢1, 𝑢2) = [𝐹̄ (1; 𝑢1, 𝑢2)]−2
{
−𝜃1𝐹̄ (1; 𝑢1, 𝑢2)

∫ ∞

1
𝑥𝑟 (𝑢1𝑥)𝐹 (𝑥; 𝑢1, 𝑢2) 𝑑𝑥

+𝜃1𝑟 (𝑢1)𝐹 (1; 𝑢1, 𝑢2)
∫ ∞

1
𝐹̄ (𝑥; 𝑢1, 𝑢2) 𝑑𝑥

}

= 𝜃1𝑢
−2
1 [𝐹̄ (1; 𝑢1, 𝑢2)]−2

∫ ∞

𝑢1

Ξ(𝑥; 𝑢1) 𝑑𝑥,

wherein the function Ξ(.; 𝑢1) is defined in Lemma 4. Similarly, the partial derivative of 𝜑(𝑢1, 𝑢2) with
respect to 𝑢2 is

𝜕2𝜑(𝑢1, 𝑢2) = 𝜃2𝑢
−2
2 [𝐹̄ (1; 𝑢1, 𝑢2)]−2

∫ ∞

𝑢2

Ξ(𝑥; 𝑢2) 𝑑𝑥.

Using Part (i) of Lemma 4, one can easily observe that Ξ(𝑥; 𝑢1) ≤ 0 for all 𝑥 ≥ 𝑢1. Hence, we find that

∇𝑣𝑣𝑣1𝜑 = 𝜕1𝜑(𝑢1, 𝑢2) ≤ 0,
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and so, 𝜑 is decreasing at the direction 𝑣𝑣𝑣1. The gradient of 𝜑 along the vector 𝑣𝑣𝑣2 is

∇𝑣2𝑣2𝑣2𝜑 = 𝜕1𝜑(𝑢1, 𝑢2) − 𝜃1𝜃
−1
2 𝑢2

2𝑢
−2
1 𝜕2𝜑(𝑢1, 𝑢2)

sgn
=

∫ ∞

𝑢1

Ξ(𝑥; 𝑢1) 𝑑𝑥 −
∫ ∞

𝑢2

Ξ(𝑥; 𝑢2) 𝑑𝑥

=
∫ 𝑢2

𝑢1

Ξ(𝑥; 𝑢1) 𝑑𝑥 +
∫ ∞

𝑢2

(Ξ(𝑥; 𝑢1) − Ξ(𝑥; 𝑢2)) 𝑑𝑥

According to Lemma 4, it readily follows ∇𝒗2𝜑 ≤ 0 which results in 𝜑 is also decreasing at the direction
𝒗2, completing the proof of the theorem. �

In Theorem 1, the inference is focused on the scale parameters while both involved vectors of random
variables have the common resilience parameters. It is worthwhile to point that the effect of resilience
parameters on the mean residual life function of 𝑇𝑛:𝑛 is also an interesting problem. To see more
information in this direction, we refer the readers to Haidari et al. [17]. It should be mentioned that the
result of Theorem 1 extends those of Zhao and Balakrishnan [33] and Wang and Cheng [29] which are
established when the baseline distribution is exponential.

Now, let us give a reliability explanation of Theorem 1. Consider a factory that produces some specific
units with parallel structures made up 𝑛 components. Suppose the components used in building the units
come from a supplier, say Supplier I, which has two production lines. Due to production policies, the
factory selects 𝑙 components from one of the production line and the remaining 𝑛 − 𝑙 components from
the another one. Supplier I asserts the lifetimes of its produced components in each line follow the RS
models with same scale parameters but with possibly different resilience parameters. For some reasons
such as high price or unavailability of the components in a specific period of time, the factory decides
to purchase its required components from a new supplier, say Supplier II. The produced components by
Supplier II, like Supplier I, are built in two production lines with their lifetimes following the RS models
with same scale parameters but with possibly different resilience parameters. In such a case, changing
the components may impress the quality of the units of the factory. Therefore, to avoid the quality
loss of the units, the factory must investigate the effect of these changes. In this situation, Theorem 1
gives some sufficient conditions to compare the mean residual life functions of the units comprising the
components of Suppliers I and II.

Next proposition is an immediate consequence of Theorem 1 because the scale model can be obtained
from the RS model when all the resilience parameters are equal to 1.

Proposition 1. Consider two sets of independent nonnegative random variables 𝑇1, . . . , 𝑇𝑛 and
𝑇∗

1 , . . . , 𝑇
∗
𝑛 following the multiple-outlier scale models with common baseline distribution function 𝐺

and respective vectors of scale parameters (𝛿11𝑙 , 𝛿21𝑛−𝑙) and (𝛿∗11𝑙 , 𝛿∗21𝑛−𝑙). Assume that the following
conditions hold:

(a1) 𝑟 (𝑥) is increasing in 𝑥 ∈ R+;
(a2) 𝛼(𝑥)/𝐺̄ (𝑥) is increasing in 𝑥 ∈ R+;
(a3) 𝑟 (𝑐1𝑥)/𝑟 (𝑐2𝑥) is increasing in 𝑥 ∈ R+ for 0 < 𝑐1 ≤ 𝑐2.

If (𝛿∗1, 𝛿∗2) ∈ Δ𝑙,𝑛−𝑙 (𝛿1, 𝛿2), then we have 𝑇𝑛:𝑛 ≥mrl 𝑇
∗
𝑛:𝑛.

Remark 1. It should be noted that Condition (𝑎2) in Theorem 1 (Proposition 1) satisfies if and only if

1 + 𝛾(𝑥) + 𝑥𝑟 (𝑥) ≥ 0, for all 𝑥 ∈ R+,

which, by Eqs. (1) and (2), can be rewritten as

1 + 𝑥𝑟 ′(𝑥)
𝑟 (𝑥) − 𝛼(𝑥) ≥ 0, for all 𝑥 ∈ R+.
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Furthermore, Condition (𝑎3) in Theorem 1 (Proposition 1) is equivalent to say that 𝛾(𝑥) is decreasing
in 𝑥 ∈ R+.

3. Illustration with examples

In this section, we present some examples of well-known distributions verifying the conditions of the
results given in the previous section. Recall that 𝐺̄, 𝑟 and 𝑟 are respectively the survival, hazard rate
and reversed hazard rate functions of the baseline distribution in both RS and scale models. Also, the
functions 𝛼 and 𝛾 are defined as 𝛼(𝑥) = 𝑥𝑟 (𝑥) and 𝛾(𝑥) = 𝑥𝑟 ′(𝑥)/𝑟 (𝑥) for 𝑥 ∈ R+.

3.1. Exponentiated generalized gamma distribution

If a random variable 𝑌 admits the following distribution function

𝐹 (𝑥; 𝜏, 𝛽, 𝜃, 𝛿) =
[∫ 𝑥

0

𝜏𝛿𝛽

Γ( 𝛽𝜏 )
𝑢𝛽−1𝑒−(𝛿𝑢)

𝜏

𝑑𝑢

] 𝜃
, 𝑥 ∈ R+, (𝜃, 𝜏, 𝛽, 𝛿) ∈ R+4,

wherein Γ(·) is the incomplete gamma function, then it is said that 𝑌 has the exponentiated generalized
gamma (EGG) distribution with shape parameters (𝜃, 𝜏, 𝛽) and scale parameter 𝛿, denoted by 𝑌 ∼
EGG(𝜃, 𝜏, 𝛽, 𝛿). This distribution is introduced and investigated comprehensively by Cordeiro et al. [10].
The EGG distribution contains some known distributions such as Weibull, generalized gamma (GG),
generalized exponential, exponentiated Weibull and exponentiated gamma as special cases. Note that,
the EGG distribution belongs to the RS model when the baseline distribution is the GG distribution with
shape parameters (𝜏, 𝛽) and scale parameter 1 (denoted by GG(𝜏, 𝛽) and called as the GG distribution
with shape parameters (𝜏, 𝛽)); see Kleiber and Kotz [19] for more details on the GG distribution and
its applications.

To show Theorem 1 can be applied for the EGG distribution, we need the following lemma.

Lemma 6. The GG distribution with shape parameters (𝜏, 𝛽) satisfies all conditions of Theorem 1
when 𝜏 ≥ 𝛽 ≥ 1.

Proof. Khaledi et al. [18] proved the followings for GG(𝜏, 𝛽):

𝛼(𝑥) ≤ 𝛽, 𝑥 ∈ R+; (5)

𝛽 − 1 < 𝑥
𝑟 ′(𝑥)
𝑟 (𝑥) < 𝜏 − 1, 𝑥 ∈ R+, 𝜏 > 𝛽. (6)

When 𝜏 ≥ 𝛽 ≥ 1, it is well-known that the GG distribution has an increasing hazard rate function,
and so, Condition (𝑎1) of Theorem 1 is fulfilled. Also, upon combining Eqs. (5) and (6), we find that
1 + (𝑥𝑟 ′(𝑥))/𝑟 (𝑥) − 𝛼(𝑥) ≥ 0 for all 𝑥 ∈ R+ and 𝜏 > 𝛽. Using this observation and Remark 1, we see
that 𝛼(𝑥)/𝐺̄ (𝑥) is increasing in 𝑥 ∈ R+ when 𝜏 > 𝛽. Furthermore, if 𝜏 = 𝛽, then the GG distribution is
reduced to Weibull distribution. In this case, we have 𝛼(𝑥)/𝐺̄ (𝑥) = 𝛽𝑥𝛽𝑒𝑥

𝛽 which clearly is increasing
in 𝑥 ∈ R+ for all 𝛽 ∈ R+. Hence, Condition (𝑎2) of Theorem 1 is satisfied for 𝜏 ≥ 𝛽. As Ding et al. [12]
have shown, 𝛾(𝑥) is decreasing in 𝑥 ∈ R+ for all (𝜏, 𝛽) ∈ R+2 and so, by Remark 1, we can conclude
that Condition (𝑎3) of Theorem 1 is held. The proof is now completed. �

Next corollary is a direct consequence of Theorem 1 and Lemma 6.

Corollary 1. Let 𝑇1, . . . , 𝑇𝑛 and 𝑇∗
1 , . . . , 𝑇

∗
𝑛 be two sets of independent random variables with 𝑇𝑖 ∼

EGG(𝜃𝑖 , 𝜏, 𝛽, 𝛿1), 𝑇𝑗 ∼ EGG(𝜃 𝑗 , 𝜏, 𝛽, 𝛿2), 𝑇∗
𝑖 ∼ EGG(𝜃𝑖 , 𝜏, 𝛽, 𝛿∗1) and 𝑇∗

𝑗 ∼ EGG(𝜃 𝑗 , 𝜏, 𝛽, 𝛿
∗
2) for

𝑖 = 1, . . . , 𝑙 and 𝑗 = 𝑙+1, . . . , 𝑛. If 𝜏 ≥ 𝛽 ≥ 1 and (𝛿∗1, 𝛿∗2) ∈ Δ𝜉1 , 𝜉2 (𝛿1, 𝛿2), then we have𝑇𝑛:𝑛 ≥mrl 𝑇
∗
𝑛:𝑛.
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Several well-known lifetime distributions satisfy in Corollary 1 as listed below:

(i) Set 𝜃1 = · · · = 𝜃𝑛 = 1 and 𝜏 = 𝛽 = 1. In this case, we have the multiple-outlier exponential
models. This statement is proved by Zhao and Balakrishnan [33] for 𝑛 = 2, while the general case
is established by Wang and Cheng [29].

(ii) Set 𝜃1 = · · · = 𝜃𝑛 = 1 and 𝜏 = 𝛽. This case deals with Weibull distributed random variables with
common shape parameter 𝜏 and reduced scale parameters. Note that, the mean residual life order
holds under the restriction 𝜏 ≥ 1. For the special case of 𝜏 = 2, Rayleigh distribution is involved.

(iii) Set 𝜏 = 𝛽 = 1. In this statement, we have the generalized exponential distributed random variables
with heterogeneous shape parameters and reduced scale parameters.

(iv) Set 𝜏 = 𝛽. This case concerns the exponentiated Weibull distributed random variables. Like Case
(ii), a restriction 𝜏 ≥ 1 is appeared for the mean residual life order to be hold.

3.2. Power-generalized Weibull distribution

A random variable 𝑌 is said to have the power-generalized Weibull (PGW) distribution with shape
parameters (𝜌, 𝛾) and scale parameter 𝛿, denoted by PGW(𝜌, 𝛾, 𝛿), if its distribution function is as
follows:

𝐹 (𝑥; 𝜌, 𝛾, 𝛿) = 1 − 𝑒1−(1+(𝛿𝑥)𝜌)1/𝛾
, 𝑥 ∈ R+, (𝜌, 𝛾, 𝛿) ∈ R+3.

This distribution is introduced by Bagdonavicius and Nikulin [2] in the context of accelerated failure
time models. It contains exponential, Rayleigh and Weibull distributions as special cases. The PGW
distribution is a suitable model to analysis the lifetime data sets due to its flexible hazard rate function
which admits monotone and non-monotone shapes; see Nikulin and Haghighi [26] and Nadaraja and
Haghighi [25]. It is clear that the PGW distribution belongs to the scale model with the baseline
distribution as PGW(𝜌, 𝛾, 1) (called as the PGW distribution with shape parameters (𝜌, 𝛾)).

Before presenting an application of Proposition 1 for the case of PGW distribution, we state the next
lemma.

Lemma 7. The PGW distribution with shape parameters (𝜌, 𝛾) satisfies all conditions of Proposition
1 when 𝜌 ≥ 1 and 𝛾 ≤ 1.

Proof. With the restrictions 𝜌 ≥ 1 and 𝛾 ≤ 1, Condition (𝑎1) of Proposition 1 is satisfied because
the PGW distribution admits an increasing hazard rate function under the mentioned restrictions.
Furthermore, as shown by Ding et al. [12], we have

𝑥
𝑟 ′(𝑥)
𝑟 (𝑥) = 𝜌 − 1 + 𝜌

(
1
𝛾
− 1

)
𝑥𝜌

1 + 𝑥𝜌
, 𝑥 ∈ R+.

It is obvious that (𝑥𝑟 ′(𝑥))/𝑟 (𝑥) is increasing in 𝑥 ∈ R+ for 𝛾 ≤ 1. Also, one can easily find that

lim
𝑥→0

𝑥
𝑟 ′(𝑥)
𝑟 (𝑥) = 𝜌 − 1, lim

𝑥→∞
𝑥
𝑟 ′(𝑥)
𝑟 (𝑥) =

𝜌

𝛾
− 1.

Upon combining the above observations, we obtain

𝜌 − 1 ≤ 𝑥
𝑟 ′(𝑥)
𝑟 (𝑥) ≤ 𝜌

𝛾
− 1, 𝑥 ∈ R+, 𝛾 ≤ 1. (7)
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Figure 2. Plot of the mean residual functions of 𝑇4:4 and 𝑇∗
4:4 when 𝑙 = 2, 𝜌 = 1, 𝛾 = 0.5, (𝛿1, 𝛿2) =

(2, 3.5) and (𝛿∗1, 𝛿∗2) = (3, 3.2) for random variables with PGW distributions.

Furthermore, using the L’Hopital’s rule, it follows that

lim
𝑥→0

𝛼(𝑥) = 𝜌

𝛾
lim
𝑥→0

𝑥𝜌 (1 + 𝑥𝜌)1/𝛾−1

𝑒 (1+𝑥𝜌)1/𝛾−1 − 1

= lim
𝑥→0

𝜌(1 + 𝑥𝜌) + 𝜌( 1
𝛾 − 1)𝑥𝜌

(1 + 𝑥𝜌)𝑒 (1+𝑥𝜌)1/𝛾−1

= 𝜌. (8)

According to Lemma A.6 of Khaledi et al. [18], we know that 𝛼(𝑥) is decreasing in 𝑥 ∈ R+ which along
with Eq. (8) result in

𝛼(𝑥) ≤ 𝜌, 𝑥 ∈ R+. (9)

Now, using Eqs. (7) and (9), we readily find that 1 + (𝑥𝑟 ′(𝑥))/𝑟 (𝑥) − 𝛼(𝑥) ≥ 0 for all 𝑥 ∈ R+ and 𝛾 ≤ 1
and so, based on Remark 1, one can observe that 𝛼(𝑥)/𝐺̄ (𝑥) is increasing in 𝑥 ∈ R+ when 𝛾 ≤ 1. Hence,
Condition (𝑎2) of Proposition 1 is fulfilled under the restriction 𝛾 ≤ 1. Furthermore, from Remark 1
once again and Lemma 4.11 of Ding et al. [12], we see that Condition (𝑎3) of Proposition 1 is satisfied
when 𝛾 ≤ 1, completing the proof of the lemma. �

From Proposition 1 and Lemma 7, the next corollary readily follows.

Corollary 2. Let 𝑇1, . . . , 𝑇𝑛 and 𝑇∗
1 , . . . , 𝑇

∗
𝑛 be two sets of independent random variables with 𝑇𝑖 ∼

PGW(𝜌, 𝛾, 𝛿1), 𝑇𝑗 ∼ PGW(𝜌, 𝛾, 𝛿2), 𝑇∗
𝑖 ∼ PGW(𝜌, 𝛾, 𝛿∗1) and 𝑇∗

𝑗 ∼ PGW(𝜌, 𝛾, 𝛿∗2) for 𝑖 = 1, . . . , 𝑙 and
𝑗 = 𝑙 + 1, . . . , 𝑛. If 𝜌 ≥ 1, 𝛾 ≤ 1 and (𝛿∗1, 𝛿∗2) ∈ Δ𝑙,𝑛−𝑙 (𝛿1, 𝛿2), then we have 𝑇𝑛:𝑛 ≥mrl 𝑇

∗
𝑛:𝑛.

Next example illustrates the result given in Corollary 2.

Example 1. Set 𝑛 = 4, 𝑙 = 2, 𝜌 = 1, 𝛾 = 0.5, (𝛿1, 𝛿2) = (2, 3.5) and (𝛿∗1, 𝛿∗2) = (3, 3.2). In this case, we
have

Δ2,2 (2, 3.5) =
{
(𝑥, 𝑦) ∈ R+2 : 2 ≤ 𝑥 ≤ 𝑦 ≤ 3.5 and 𝑥−1 + 𝑦−1 ≤ 11

14

}
.

It can be readily seen that (𝛿∗1, 𝛿∗2) ∈ Δ2,2 (2, 3.5) which, according to Corollary 2, results in𝑇4:4 ≥mrl 𝑇
∗
4:4.

In Figure 2, the mean residual life functions of 𝑇4:4 and 𝑇∗
4:4 is plotted over the interval (0, 1.1].
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3.3. Half-normal distribution

Consider a random variable 𝑌 with its distribution function has the following form:

𝐹 (𝑥;𝜆) =
∫ 𝑥

0

𝛿
√

2√
𝜋

𝑒−(𝛿𝑦)
2/2 𝑑𝑦, 𝑥 ∈ R+, 𝛿 ∈ R+.

Then, it is said that 𝑌 follows the half-normal (HN) distribution with scale parameter 𝛿, denoted by
𝑌 ∼ 𝐻𝑁 (𝛿). Clearly, the HN distribution belongs to the scale model and the baseline distribution in this
case obtains by choosing 𝛿 = 1 (called as the standard HN).

Lemma 8. The standard HN satisfies all conditions of Proposition 1.

Proof. The hazard function of the standard HN is as follows:

𝑟 (𝑥) = 𝑒−𝑥
2/2∫ ∞

𝑥
𝑒−𝑦2/2 𝑑𝑦

, 𝑥 ∈ R+.

Taking derivative of 𝑟 (𝑥) with respect to 𝑥 ∈ R+, we find that

𝑟 ′(𝑥) sgn
= 𝑒−𝑥

2/2 − 𝑥

∫ ∞

𝑥

𝑒−𝑦
2/2 𝑑𝑦

= 𝑠(𝑥), say.

It is easy to see that 𝑠′(𝑥) ≤ 0 for all 𝑥 ∈ R+. From this observation and the fact that lim𝑥→∞ 𝑠(𝑥) = 0,
we can readily conclude that 𝑟 (𝑥) is increasing in 𝑥 ∈ R+. Thus, Condition (𝑎1) of Proposition 1 is held.
Moreover, from Ding et al. [12], we have

𝛾(𝑥) = −𝑥2 − 𝛼(𝑥), 𝑥 ∈ R+,

which, for all 𝑥 ∈ R+, results in

1 + 𝛾(𝑥) + 𝑥𝑟 (𝑥) = (1 − 𝛼(𝑥)) + 𝑥(𝑟 (𝑥) − 𝑥)
= 𝐷1 + 𝐷2, say.

As pointed out by Ding et al. [12], we know 𝛼(𝑥) ≤ 1 for all 𝑥 ∈ R+ and hence 𝐷1 ≥ 0. Furthermore,
it is shown in the above that 𝑠(𝑥) ≥ 0 or equivalently 𝑟 (𝑥) ≥ 𝑥 for all 𝑥 ∈ R+ which results in 𝐷2 ≥ 0.
Therefore, 1 + 𝛾(𝑥) + 𝑥𝑟 (𝑥) ≥ 0 for all 𝑥 ∈ R+ and so, according to Remark 1, Condition (𝑎2) of
Proposition 1 is also satisfied. Finally, from Ding et al. [12] and Remark 1, we can see that Condition
(𝑎3) of Proposition 1 is obtained. The proof is now completed. �

From Proposition 1 and Lemma 8, the next corollary immediately follows.

Corollary 3. Let 𝑇1, . . . , 𝑇𝑛 and 𝑇∗
1 , . . . , 𝑇

∗
𝑛 be two sets of independent random variables with 𝑇𝑖 ∼

𝐻𝑁 (𝛿1), 𝑇𝑗 ∼ 𝐻𝑁 (𝛿2), 𝑇∗
𝑖 ∼ 𝐻𝑁 (𝛿∗1) and 𝑇∗

𝑗 ∼ 𝐻𝑁 (𝛿∗2) for 𝑖 = 1, . . . , 𝑙 and 𝑗 = 𝑙 + 1, . . . , 𝑛. If
(𝛿∗1, 𝛿∗2) ∈ Δ𝑙,𝑛−𝑙 (𝛿1, 𝛿2), then we have 𝑇𝑛:𝑛 ≥mrl 𝑇

∗
𝑛:𝑛.

In the following example, the result given in Corollary 3 is investigated numerically.

Example 2. Set 𝑛 = 2, 𝑙 = 1, and (𝛿1, 𝛿2) = (0.5, 1), (𝛿∗1, 𝛿∗2) = (0.75, 0.8). Then, it is easy to see that
(𝛿∗1, 𝛿∗2) ∈ Δ1,1 (0.5, 1) wherein

Δ1,1 (0.5, 1) = {(𝑥, 𝑦) ∈ R+2 : 0.5 ≤ 𝑥 ≤ 𝑦 ≤ 1 and 𝑥−1 + 𝑦−1 ≤ 3}.
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Figure 3. Plot of the mean residual functions of 𝑇2:2 and 𝑇∗
2:2 when 𝑙 = 1, (𝛿1, 𝛿2) = (0.5, 1) and

(𝛿∗1, 𝛿∗2) = (0.75, 0.8) for random variables with HN distributions.

Now, by Corollary 3, we can conclude 𝑇2:2 ≥mrl 𝑇
∗
2:2. In Figure 3, the mean residual life functions of 𝑇2:2

and 𝑇∗
2:2 is plotted over the interval (0, 9].

4. Discussion

In this paper, we have established some conditions for the mean residual life order between the largest
order statistics in the RS models to be hold. We have also studied an application of this result for the
case of exponentiated generalized gamma, power-generalized Weibull and half-normal distributions.
The results established here extend and reinforce those of Zhao and Balakrishnan [33] and Wang and
Cheng [29]. Following the definitions of weighted majorization and related orders presented in Cheng
[9], let us define the weighted version of reciprocal majorization order. Set E+

𝑛 = {(𝑥1, . . . , 𝑥𝑛) ∈ R+𝑛 :
0 < 𝑥1 ≤ · · · ≤ 𝑥𝑛} and 𝜽 = (𝜃1, . . . , 𝜃𝑛) ∈ R𝑛. For two vectors (𝑢1, . . . , 𝑢𝑛) and (𝑣1, . . . , 𝑣𝑛) in E+

𝑛 ,
we say that (𝑢1, . . . , 𝑢𝑛) is greater than (𝑣1, . . . , 𝑣𝑛) on E+

𝑛 with respect to 𝜽-reciprocal majorization
order, denoted by (𝑢1, . . . , 𝑢𝑛)

rm�𝜽 (𝑣1, . . . , 𝑣𝑛) on E+
𝑛 , if

∑𝑖
𝑘=1 𝜃𝑘𝑢

−1
𝑘 ≥ ∑𝑖

𝑘=1 𝜃𝑘𝑣
−1
𝑘 for all 𝑖 = 1, . . . , 𝑛.

In the definition of the region Δ𝜃1 , 𝜃2 (𝛿1, 𝛿2), the restrictions 𝜃1 ≥ 1 and 𝜃2 ≥ 1 are appeared because
of utilizing the inequality in Lemma 1. Now, if (𝛿∗1, 𝛿∗2) ∈ Δ𝜃1 , 𝜃2 (𝛿1, 𝛿2) without any restriction on 𝜃𝑖’s,
then we can see that 𝛿1 ≤ 𝛿∗1 ≤ 𝛿∗2 ≤ 𝛿2 and (𝛿1, 𝛿2)

rm� (𝜃1 , 𝜃2) (𝛿∗1, 𝛿∗2) on E+
2 . Thus, if the restrictions

are dropped, then the weighted version of reciprocal majorization order can be used in comparison of
the largest order statistics in the RS models. With the help of some numerical examples, we conjecture
that the mean residual life order given in Theorem 1 may hold without any restrictions on 𝜃𝑖’s. We are
currently working on this problem and hope to report the findings in the future works.

Acknowledgments. The authors express their sincere thanks to the Editor-in-Chief and the anonymous reviewers for their useful
comments and suggestions on an earlier version of the manuscript which led to this improved one.
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