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Abstract
Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled skew shape posets are precisely the
finite posets P with underlying set {1, 2, . . . , |𝑃 |} such that the P-partition generating function is symmetric and
the set of linear extensions of P, denoted Σ𝐿 (𝑃), is a left weak Bruhat interval in the symmetric group𝔖 |𝑃 | . We
describe the permutations in Σ𝐿 (𝑃) in terms of reading words of standard Young tableaux when P is a regular
Schur labeled skew shape poset, and classify Σ𝐿 (𝑃)’s up to descent-preserving isomorphism as P ranges over
regular Schur labeled skew shape posets. The results obtained are then applied to classify the 0-Hecke modules M𝑃

associated with regular Schur labeled skew shape posets P up to isomorphism. Then we characterize regular Schur
labeled skew shape posets as the finite posets P whose linear extensions form a dual plactic-closed subset of𝔖 |𝑃 | .
Using this characterization, we construct distinguished filtrations of M𝑃 with respect to the Schur basis when P is a
regular Schur labeled skew shape poset. Further issues concerned with the classification and decomposition of the
0-Hecke modules M𝑃 are also discussed.
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1. Introduction

Schur labeled skew shape posets naturally appear in the context of the celebrated Stanley’s P-partitions
conjecture. Let P𝑛 be the set of posets with underlying set [𝑛] := {1, 2, . . . , 𝑛}. Each poset 𝑃 ∈ P𝑛 can be
identified with the labeled poset (𝑃, 𝜔) with the labeling 𝜔 : 𝑃 → [𝑛] given by 𝜔(𝑖) = 𝑖. Consequently,
to each poset 𝑃 ∈ P𝑛, one can associate the following generating function for its P-partitions:

𝐾𝑃 :=
∑

𝑓 :𝑃-partition
𝑥
| 𝑓 −1 (1) |
1 𝑥

| 𝑓 −1 (2) |
2 · · · .

In 1972, Stanley [34, p. 81] proposed a conjecture stating that 𝐾𝑃 is a symmetric function if and only
if P is a Schur labeled skew shape poset. For the precise definition of Schur labeled skew shape posets,
refer to Section 2.3. While this conjecture has been verified to be true for all posets P with |𝑃 | ≤ 8, it
remains an open question in the general case (see [28]). We denote by SP𝑛 the set of all Schur labeled
skew shape posets in P𝑛.

Regular posets were introduced by Björner–Wachs [8] during their investigation of the convex subsets
of the symmetric group𝔖𝑛 on {1, 2, . . . 𝑛} under the right weak Bruhat order. For 𝑃 ∈ P𝑛 with the partial
order �, let Σ𝑅 (𝑃) be the set of permutations 𝜋 ∈ 𝔖𝑛 satisfying that if 𝑥 � 𝑦, then 𝜋−1 (𝑥) ≤ 𝜋−1 (𝑦).
They observed that every convex subset of 𝔖𝑛 under the right weak Bruhat order appears as Σ𝑅 (𝑃)
for some 𝑃 ∈ P𝑛, and every right weak Bruhat interval in 𝔖𝑛 is convex. This observation led them to
characterize the posets 𝑃 ∈ P𝑛 satisfying that Σ𝑅 (𝑃) is a right weak Bruhat interval. They introduced
the notion of regular posets and proved that 𝑃 ∈ P𝑛 is a regular poset if and only if Σ𝑅 (𝑃) is a right
weak Bruhat interval in𝔖𝑛. For the definition of regular posets, refer to Definition 2.3. We denote by
RP𝑛 the set of all regular posets in P𝑛.

Let RSP𝑛 := RP𝑛 ∩ SP𝑛. In the following, we explain the reason why we consider regular Schur
labeled skew shape posets from the perspective of the representation theory of the 0-Hecke algebra.

In 1996, Duchamp, Krob, Leclerc and Thibon [12] showed that the Grothendieck ring of the tower of
0-Hecke algebras

⊕
𝑛≥0 𝐻𝑛 (0), when equipped with addition and multiplication from direct sum and

induction product, is isomorphic to the ring QSym of quasisymmetric functions. To be precise, they
showed that the map

ch :
⊕
𝑛≥0

G0(𝐻𝑛 (0)-mod) → QSym, [F𝛼] ↦→ 𝐹𝛼,

called the quasisymmetric characteristic, is a ring isomorphism. Here, G0 (𝐻𝑛 (0)-mod) is the
Grothendieck group of the category 𝐻𝑛 (0)-mod of finitely generated left 𝐻𝑛 (0)-modules, 𝛼 is a com-
position, F𝛼 is the irreducible 𝐻𝑛 (0)-module attached to 𝛼, and 𝐹𝛼 is the fundamental quasisymmetric
function attached to 𝛼 (for more details, see Section 2.4). Afterwards, Bergeron–Li [5] showed that
the map ch is not just a ring isomorphism but also a Hopf algebra isomorphism. In 2002, Duchamp–
Hivert–Thibon [11] associated a right 𝐻𝑛 (0)-module 𝑀𝑃 with each poset 𝑃 ∈ P𝑛, such that the image
of 𝑀𝑃 under the quasisymmetric characteristic is 𝐾𝑃 . This was achieved by defining a suitable right
𝐻𝑛 (0)-action on Σ𝑅 (𝑃).

Since the middle of 2010, various left 0-Hecke modules, each equipped with a tableau basis and
yielding an important quasisymmetric characteristic image, have been constructed ([2, 4, 32, 37, 38]).
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In order to handle these modules in a uniform manner, Jung–Kim–Lee–Oh [19] introduced a left 𝐻𝑛 (0)-
module B(𝐼), referred to as the weak Bruhat interval module associated with I, for each left weak
Bruhat interval I in𝔖𝑛. Furthermore, they showed that

⊕
𝑛≥0 G0 (ℬ𝑛) is isomorphic to QSym as Hopf

algebras, where ℬ𝑛 is the full subcategory of 𝐻𝑛 (0)-mod consisting of objects that are direct sums of
finitely many isomorphic copies of weak Bruhat interval modules of 𝐻𝑛 (0). Recently, Choi–Kim–Oh
[9] clarified the exact relationship between the weak Bruhat interval modules and the 0-Hecke modules
𝑀𝑃 , using Björner–Wachs’ characterization. More precisely, they constructed a contravariant functor
F : 𝐻𝑛 (0)-mod → mod-𝐻𝑛 (0) that preserves the quasisymmetric characteristic and showed that
𝑀𝑃 = F (B(Σ𝐿 (𝑃))), where mod-𝐻𝑛 (0) is the category of finitely generated right 𝐻𝑛 (0)-modules and
Σ𝐿 (𝑃) := {𝛾−1 | 𝛾 ∈ Σ𝑅 (𝑃)} for 𝑃 ∈ RP𝑛. For technical reasons, we use a slightly different 0-Hecke
module, denoted as M𝑃 , instead of Duchamp, Hivert and Thibon’s module 𝑀𝑃 . This module is a left
𝐻𝑛 (0)-module with the basis Σ𝐿 (𝑃). For the detailed definition of M𝑃 , refer to Definition 2.8.

The aim of this paper is to give a comprehensive investigation of regular Schur labeled skew shape
posets and their associated 0-Hecke modules.

In Section 3, we provide an explicit description of Σ𝐿 (𝑃) for 𝑃 ∈ RSP𝑛. We first introduce a Schur
labeling 𝜏𝑃 , which is a bijective tableau uniquely determined by suitable conditions. For details, see
Equation (3.2). Let 𝜆/𝜇 be the shape of 𝜏𝑃 . Then 𝜏𝑃 gives rise to a reading, denoted read𝜏𝑃 , on the set
SYT(𝜆/𝜇) of standard Young tableaux of shape 𝜆/𝜇. We show that all permutations in Σ𝐿 (𝑃) appear
as reading words of standard Young tableaux of shape 𝜆/𝜇, i.e., Σ𝐿 (𝑃) = read𝜏𝑃 (SYT(𝜆/𝜇)) (Lemma
3.2). Then, we derive that

Σ𝐿 (𝑃) = [read𝜏𝑃 (𝑇𝜆/𝜇), read𝜏𝑃 (𝑇
′
𝜆/𝜇)]𝐿 ,

where 𝑇𝜆/𝜇(resp. 𝑇 ′
𝜆/𝜇

) is the standard Young tableau obtained by filling the Young diagram of shape
𝜆/𝜇 by 1, 2, . . . , 𝑛 from left to right starting with the top row (resp. from top to bottom starting with
leftmost column) (Theorem 3.9).

In Section 4, we introduce an equivalence relation 𝐷

 on the set Int(𝑛) of left weak Bruhat intervals

in𝔖𝑛. This relation is defined by 𝐼1
𝐷

 𝐼2 if there is a descent-preserving poset isomorphism between 𝐼1

and 𝐼2. We show that every equivalence class C is of the form

{[𝛾, 𝜉𝐶𝛾]𝐿 | 𝛾 ∈ [𝜎0, 𝜎1]𝑅},

where 𝜎0 and 𝜎1 are the minimal and maximal elements in {𝜎 | [𝜎, 𝜌]𝐿 ∈ 𝐶}, respectively, and
𝜉𝐶 = 𝜌𝜎−1 for any [𝜎, 𝜌]𝐿 ∈ 𝐶 (Theorem 4.6). In the case where 𝑃 ∈ RSP𝑛, we show in Theorem 4.7
that the equivalence class of Σ𝐿 (𝑃) is given by

{Σ𝐿 (𝑄) | 𝑄 ∈ RSP𝑛 with sh(𝜏𝑄) = sh(𝜏𝑃)}. (1.1)

In Section 5, we classify the 𝐻𝑛 (0)-modules M𝑃 up to isomorphism as P ranges over RSP𝑛. We
show in Theorem 5.5 that for 𝑃,𝑄 ∈ RSP𝑛,

M𝑃 � M𝑄 if and only if sh(𝜏𝑃) = sh(𝜏𝑄).

The ‘if’ part is straightforward and can be derived from Equation (1.1). As for the ‘only if’ part, it can
be verified by showing that when 𝜏𝑃 and 𝜏𝑄 have different shapes, it results in either nonisomorphic
projective covers or nonisomorphic injective hulls of M𝑃 and M𝑄. To accomplish this, we compute both
a projective cover and an injective hull of M𝑃 for 𝑃 ∈ RSP𝑛 (Lemma 5.4).

In Section 6, we first prove that a poset 𝑃 ∈ P𝑛 is a regular Schur labeled skew shape poset if and
only if Σ𝐿 (𝑃) is dual plactic-closed (Theorem 6.4). This improves Malvenuto’s result [27, Theorem 1],
which states that if Σ𝐿 (𝑃) is dual plactic-closed, then 𝑃 ∈ SP𝑛. Then, we introduce the notion of a
distinguished filtration of an 𝐻𝑛 (0)-module M with respect to a linearly independent subset B of QSym𝑛

(Definition 6.5). If such a filtration is available, we have a representation theoretic interpretation of the
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expansion of ch([𝑀]) in B. The existence of a distinguished filtration is quite nontrivial as seen in
Example 6.6. However, using the characterization given in Theorem 6.4, we show that M𝑃 admits a
distinguished filtration with respect to the Schur basis when 𝑃 ∈ RSP𝑛 (Theorem 6.7).

The final section is mainly devoted to further issues concerned with the classification and decom-
position of the 0-Hecke modules M𝑃 . We discuss the classification problem for {M𝑃 | 𝑃 ∈ SP𝑛} and
{M𝑃 | 𝑃 ∈ RP𝑛}. In particular, we expect that for 𝑃,𝑄 ∈ RP𝑛, M𝑃 � M𝑄 if and only if Σ𝐿 (𝑃)

𝐷

 Σ𝐿 (𝑄)

(Conjecture 7.2). The decomposition problem is also discussed for the 0-Hecke modules M𝑃 when
𝑃 ∈ RSP𝑛. Based on experimental data, we expect that for 𝑃 ∈ RSP𝑛, M𝑃 is indecomposable if and
only if sh(𝜏𝑃) is disconnected and does not contain any disconnected ribbon (Conjecture 7.5). At the
end of this section, we provide a remark on how to recover M𝑃 for 𝑃 ∈ RSP𝑛 from a module of the
generic Hecke algebra 𝐻𝑛 (𝑞) by specializing q to 0.

In the appendix, we give a tableau description of M𝑃 for 𝑃 ∈ RSP𝑛. For a skew partition 𝜆/𝜇 of size n,
we construct an 𝐻𝑛 (0)-module 𝑋𝜆/𝜇 with standard Young tableaux of shape 𝜆/𝜇 as basis elements. This
module can be viewed as a representative of the isomorphism class of M𝑃 in the category 𝐻𝑛 (0)-mod
for every 𝑃 ∈ RSP𝑛 with sh(𝜏𝑃) = 𝜆/𝜇.

2. Preliminaries

For integers m and n, we define [𝑚, 𝑛] and [𝑛] to be the intervals {𝑡 ∈ Z | 𝑚 ≤ 𝑡 ≤ 𝑛} and
{𝑡 ∈ Z | 1 ≤ 𝑡 ≤ 𝑛}, respectively. Throughout this paper, n will denote a nonnegative integer unless
otherwise stated.

2.1. Compositions, Young diagrams and bijective tableaux

A composition 𝛼 of n, denoted by 𝛼 |= 𝑛, is a finite ordered list of positive integers (𝛼1, 𝛼2, . . . , 𝛼𝑘 )

satisfying
∑𝑘

𝑖=1 𝛼𝑖 = 𝑛. We call 𝛼𝑖 (1 ≤ 𝑖 ≤ 𝑘) a part of 𝛼, 𝑘 =: ℓ(𝛼) the length of 𝛼, and 𝑛 =: |𝛼 | the
size of 𝛼. And we define the empty composition ∅ to be the unique composition of size and length 0.
Whenever necessary, we set 𝛼𝑖 = 0 for all 𝑖 > ℓ(𝛼).

Given 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑘 ) |= 𝑛 and 𝐼 = {𝑖1 < 𝑖2 < · · · < 𝑖𝑙} ⊆ [𝑛 − 1], let

set(𝛼) := {𝛼1, 𝛼1 + 𝛼2, . . . , 𝛼1 + 𝛼2 + · · · + 𝛼𝑘−1}, and
comp(𝐼) := (𝑖1, 𝑖2 − 𝑖1, 𝑖3 − 𝑖2, . . . , 𝑛 − 𝑖𝑙).

The set of compositions of n is in bijection with the set of subsets of [𝑛 − 1] under the correspondence
𝛼 ↦→ set(𝛼) (or 𝐼 ↦→ comp(𝐼)). The reverse composition 𝛼r of 𝛼 is defined to be the composition
(𝛼𝑘 , 𝛼𝑘−1, . . . , 𝛼1), and the complement 𝛼c of 𝛼 is defined to be the unique composition satisfying
set(𝛼𝑐) = [𝑛 − 1] \ set(𝛼).

If a composition 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑘 ) |= 𝑛 satisfies 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑘 , then it is called a partition
of n and denoted as 𝜆  𝑛. Given two partitions 𝜆 and 𝜇 with ℓ(𝜆) ≥ ℓ(𝜇), we write 𝜆 ⊇ 𝜇 if 𝜆𝑖 ≥ 𝜇𝑖 for
all 1 ≤ 𝑖 ≤ ℓ(𝜇). A skew partition 𝜆/𝜇 is a pair (𝜆, 𝜇) of partitions with 𝜆 ⊇ 𝜇. We call |𝜆/𝜇 | := |𝜆 | − |𝜇 |
the size of 𝜆/𝜇. In the case where 𝜆 ⊃ 𝜇 ⊃ 𝜈, we say that 𝜆/𝜇 extends 𝜇/𝜈.

Given a partition 𝜆, we define the Young diagram yd(𝜆) of 𝜆 to be the left-justified array of n boxes,
where the ith row from the top has 𝜆𝑖 boxes for 1 ≤ 𝑖 ≤ 𝑘 . Similarly, given a skew partition 𝜆/𝜇, we
define the Young diagram yd(𝜆/𝜇) of 𝜆/𝜇 to be the Young diagram yd(𝜆) with all boxes belonging to
yd(𝜇) removed. A Young diagram is called connected if for each pair of consecutive rows, there are at
least two boxes (one in each row) which have a common edge. A skew partition is called connected if the
corresponding Young diagram is connected, and it is called basic if the corresponding Young diagram
contains neither empty rows nor empty columns. In this paper, every skew partition is assumed to be
basic unless otherwise stated.

For two skew partitions 𝜆/𝜇 and 𝜈/𝜅, we define 𝜆/𝜇 ★ 𝜈/𝜅 to be the skew partition whose Young
diagram is obtained by taking a rectangle of empty squares with the same number of rows as yd(𝜆/𝜇)
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and the same number of columns as yd(𝜈/𝜅), and putting yd(𝜈/𝜅) below and yd(𝜆/𝜇) to the right of this
rectangle. For instance, if 𝜆/𝜇 = (2, 2) and 𝜈/𝜅 = (3, 2)/(1), then 𝜆/𝜇 ★ 𝜈/𝜅 = (5, 5, 3, 2)/(3, 3, 1) and

yd(𝜆/𝜇 ★ 𝜈/𝜅) = .

Given a skew partition 𝜆/𝜇 of size n, a bijective tableau of shape 𝜆/𝜇 is a filling of yd(𝜆/𝜇) with
distinct entries in [𝑛]. For later use, we denote by 𝜏

𝜆/𝜇
0 (resp. 𝜏𝜆/𝜇1 ) the bijective tableau of shape 𝜆/𝜇

obtained by filling 1, 2, . . . , 𝑛 from right to left starting with the top row (resp. from top to bottom
starting with the rightmost column). If 𝜆/𝜇 is clear in the context, we will drop the superscript 𝜆/𝜇 from
𝜏
𝜆/𝜇
0 and 𝜏

𝜆/𝜇
1 . Again, letting 𝜆/𝜇 = (2, 2) ★ (3, 2)/(1), we have

𝜏0 =

2 1
4 3

6 5
8 7

and 𝜏1 =

3 1
4 2

6 5
8 7

.

A bijective tableau is referred to as a standard Young tableau if the elements in each row are arranged
in increasing order from left to right, and the elements in each column are arranged in increasing order
from top to bottom. We denote by SYT(𝜆/𝜇) the set of all standard Young tableaux of shape 𝜆/𝜇. And
we let SYT𝑛 :=

⋃
𝜆𝑛 SYT(𝜆).

2.2. Weak Bruhat orders on the symmetric group

Let𝔖𝑛 denote the symmetric group on [𝑛]. Every permutation 𝜎 ∈ 𝔖𝑛 can be expressed as a product
of simple transpositions 𝑠𝑖 := (𝑖, 𝑖 + 1) for 1 ≤ 𝑖 ≤ 𝑛 − 1. A reduced expression for 𝜎 is an expression
that represents 𝜎 in the shortest possible length, and the length ℓ(𝜎) of 𝜎 is the number of simple
transpositions in any reduced expression for 𝜎. Let

Des𝐿 (𝜎) := {𝑖 ∈ [𝑛 − 1] | ℓ(𝑠𝑖𝜎) < ℓ(𝜎)} and Des𝑅 (𝜎) := {𝑖 ∈ [𝑛 − 1] | ℓ(𝜎𝑠𝑖) < ℓ(𝜎)}.

It is well known that if 𝜎 = 𝑤1𝑤2 · · ·𝑤𝑛 in one-line notation, then

Des𝐿 (𝜎) = {𝑖 ∈ [𝑛 − 1] | 𝑖 is right of 𝑖 + 1 in 𝑤1𝑤2 · · ·𝑤𝑛} and
Des𝑅 (𝜎) = {𝑖 ∈ [𝑛 − 1] | 𝑤𝑖 > 𝑤𝑖+1}.

The left weak Bruhat order �𝐿 (resp. right weak Bruhat order �𝑅) on𝔖𝑛 is the partial order on𝔖𝑛

whose covering relation �c
𝐿 (resp. �c

𝑅) is given as follows:

𝜎 �c
𝐿 𝑠𝑖𝜎 if 𝑖 ∉ Des𝐿 (𝜎) (resp. 𝜎 �c

𝑅 𝜎𝑠𝑖 if 𝑖 ∉ Des𝑅 (𝜎)).

Although these two weak Bruhat orders are not identical, there exists a poset isomorphism

(𝔖𝑛, �𝐿) → (𝔖𝑛, �𝑅), 𝜎 ↦→ 𝜎−1.
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For each 𝛾 ∈ 𝔖𝑛, let

Inv𝐿 (𝛾) := {(𝑖, 𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 and 𝛾(𝑖) > 𝛾( 𝑗)} and
Inv𝑅 (𝛾) := {(𝛾(𝑖), 𝛾( 𝑗)) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 and 𝛾(𝑖) > 𝛾( 𝑗)}.

Then, for 𝜎, 𝜌 ∈ 𝔖𝑛,

𝜎 �𝐿 𝜌 if and only if Inv𝐿 (𝜎) ⊆ Inv𝐿 (𝜌) and
𝜎 �𝑅 𝜌 if and only if Inv𝑅 (𝜎) ⊆ Inv𝑅 (𝜌).

Given 𝜎, 𝜌 ∈ 𝔖𝑛, the left weak Bruhat interval [𝜎, 𝜌]𝐿 (resp. the right weak Bruhat interval [𝜎, 𝜌]𝑅)
denotes the closed interval {𝛾 ∈ 𝔖𝑛 | 𝜎 �𝐿 𝛾 �𝐿 𝜌} (resp. {𝛾 ∈ 𝔖𝑛 | 𝜎 �𝑅 𝛾 �𝑅 𝜌}) with respect to
the left weak Bruhat order (resp. the right weak Bruhat order).

For later use, we introduce the following lemma.

Lemma 2.1 [6, Proposition 3.1.6]. For 𝜎, 𝜌 ∈ 𝔖𝑛 with 𝜎 �𝑅 𝜌, the map [𝜎, 𝜌]𝑅 → [id, 𝜎−1𝜌]𝑅, 𝛾 ↦→

𝜎−1𝛾 is a poset isomorphism. Equivalently, for 𝜎, 𝜌 ∈ 𝔖𝑛 with 𝜎 �𝐿 𝜌, the map [𝜎, 𝜌]𝐿 →

[id, 𝜌𝜎−1]𝐿 , 𝛾 ↦→ 𝛾𝜎−1 is a poset isomorphism.

Let us collect notations which will be used later. For 𝑆 ⊆ 𝔖𝑛 and 𝜉 ∈ 𝔖𝑛, let

𝑆 · 𝜉 := {𝛾𝜉 | 𝛾 ∈ 𝑆} and 𝜉 · 𝑆 := {𝜉𝛾 | 𝛾 ∈ 𝑆}.

We use 𝑤0 to denote the longest element in 𝔖𝑛. For 𝐼 ⊆ [𝑛 − 1], let 𝔖𝐼 be the parabolic subgroup of
𝔖𝑛 generated by {𝑠𝑖 | 𝑖 ∈ 𝐼} and 𝑤0 (𝐼) the longest element in𝔖𝐼 . For 𝛼 |= 𝑛, let 𝑤0 (𝛼) := 𝑤0 (set(𝛼)).
Finally, for 𝜎 ∈ 𝔖𝑛, we let 𝜎𝑤0 := 𝑤0𝜎𝑤0.

Lemma 2.2 [7, Theorem 6.2]. For 𝐼 ⊆ 𝐽 ⊆ [𝑛 − 1], we have

{𝜎 ∈ 𝔖𝑛 | 𝐼 ⊆ Des𝐿 (𝜎) ⊆ 𝐽} = [𝑤0 (𝐼), 𝑤0 (𝐽
c)𝑤0]𝑅 .

2.3. Regular posets and Schur labeled skew shape posets

Let P𝑛 be the set of posets whose underlying set is [𝑛]. Given 𝑃 ∈ P𝑛, we write the partial order of P
as �𝑃 .

Definition 2.3 [8, p. 110]. A poset 𝑃 ∈ P𝑛 is said to be regular if the following holds: for all 𝑥, 𝑦, 𝑧 ∈ [𝑛]
with 𝑥 �𝑃 𝑧, if 𝑥 < 𝑦 < 𝑧 or 𝑧 < 𝑦 < 𝑥, then 𝑥 �𝑃 𝑦 or 𝑦 �𝑃 𝑧.

We denote by RP𝑛 the set of all regular posets in P𝑛. In the following, we will explain how regular
posets can be characterized in terms of left weak Bruhat intervals.

Given 𝑃 ∈ P𝑛, let

Σ𝐿 (𝑃) := {𝜎 ∈ 𝔖𝑛 | 𝜎(𝑖) ≤ 𝜎( 𝑗) for all 𝑖, 𝑗 ∈ [𝑛] with 𝑖 �𝑃 𝑗}.

Throughout this paper, Σ𝐿 (𝑃) is considered as the set of all linear extensions of P under the correspon-
dence 𝜎 ↦→ ([𝑛], �𝐸 ), where �𝐸 is the total order on [𝑛] given by 𝜎−1 (1) �𝐸 𝜎−1(2) �𝐸 · · · �𝐸

𝜎−1 (𝑛).
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Theorem 2.4 [8, Theorem 6.8]. Let 𝑈 ⊆ 𝔖𝑛 with |𝑈 | > 1. The following conditions are equivalent:

(1) U is a left weak Bruhat interval.
(2) 𝑈 = Σ𝐿 (𝑃) for some 𝑃 ∈ RP𝑛.

Consider the map

η : P𝑛 → 𝒫(𝔖𝑛), 𝑃 ↦→ Σ𝐿 (𝑃),

where 𝒫(𝔖𝑛) is the power set of𝔖𝑛. One can see that η is injective. Combining this with Theorem 2.4,
we obtain a one-to-one correspondence

η |RP𝑛 : RP𝑛 → Int(𝑛), 𝑃 ↦→ Σ𝐿 (𝑃),

where Int(𝑛) is the set of nonempty left weak Bruhat intervals in𝔖𝑛.
Next, let us introduce Schur labeled skew shape posets. Let 𝜆/𝜇 be a skew partition of size n. Given

a bijective tableau 𝜏 of shape 𝜆/𝜇, we define poset(𝜏) to be the poset ([𝑛], �𝜏), where

𝑖 �𝜏 𝑗 if and only if 𝑖 lies weakly upper-left of 𝑗 in 𝜏. (2.1)

The Hasse diagram of poset(𝜏) can be obtained by rotating 𝜏135◦ counterclockwise.1

Example 2.5. Let 𝜆/𝜇 = (2, 2)★ (3, 2)/(1). For the bijective tableaux 𝜏0 and 𝜏1 of shape 𝜆/𝜇 introduced
in Section 2.1, we have

poset(𝜏0) = 1

2

3

4

5

6

7

8 and poset(𝜏1) = 1

3

2

4

5

6

7

8 .

A Schur labeling of shape 𝜆/𝜇 is a bijective tableau of shape 𝜆/𝜇 such that the entries in each row
decrease from left to right and the entries in each column increase from top to bottom. Let S(𝜆/𝜇) be
the set of all Schur labelings of shape 𝜆/𝜇. Since 𝜏0 and 𝜏1 are Schur labelings of shape 𝜆/𝜇, S(𝜆/𝜇) is
nonempty. Set

SP(𝜆/𝜇) := {poset(𝜏) | 𝜏 ∈ S(𝜆/𝜇)} and SP𝑛 :=
⋃

|𝜆/𝜇 |=𝑛

SP(𝜆/𝜇).

Definition 2.6. A poset 𝑃 ∈ P𝑛 is said to be a Schur labeled skew shape poset if it is contained in SP𝑛.

Remark 2.7. In some papers, for instance [27, 28], authors used a different convention than ours for
Schur labeling. We adopt the definition of Schur labeling used in Stanley’s paper [34].

For simplicity, we set RSP𝑛 := RP𝑛 ∩ SP𝑛.

2.4. The 0-Hecke algebra and the quasisymmetric characteristic

The 0-Hecke algebra 𝐻𝑛 (0) is the associative C-algebra with 1 generated by 𝜋1, 𝜋2, . . . , 𝜋𝑛−1 subject to
the following relations:

1Note that poset(𝜏) ∈ P𝑛. Following our convention, the partial order �𝜏 can also be written as �poset(𝜏) .
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𝜋2
𝑖 = 𝜋𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝜋𝑖𝜋𝑖+1𝜋𝑖 = 𝜋𝑖+1𝜋𝑖𝜋𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 2,
𝜋𝑖𝜋 𝑗 = 𝜋 𝑗𝜋𝑖 if |𝑖 − 𝑗 | ≥ 2.

For each 1 ≤ 𝑖 ≤ 𝑛−1, let 𝜋𝑖 := 𝜋𝑖 −1. Then, {𝜋𝑖 | 𝑖 = 1, 2, . . . , 𝑛−1} is also a generating set of 𝐻𝑛 (0).
For any reduced expression 𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖𝑝 for 𝜎 ∈ 𝔖𝑛, let

𝜋𝜎 := 𝜋𝑖1𝜋𝑖2 · · · 𝜋𝑖𝑝 and 𝜋𝜎 := 𝜋𝑖1𝜋𝑖2 · · · 𝜋𝑖𝑝 .

It is well known that these elements are independent of the choices of reduced expressions, and both
{𝜋𝜎 | 𝜎 ∈ 𝔖𝑛} and {𝜋𝜎 | 𝜎 ∈ 𝔖𝑛} are C-bases for 𝐻𝑛 (0).

According to [30], there are 2𝑛−1 pairwise nonisomorphic irreducible 𝐻𝑛 (0)-modules which are
naturally indexed by compositions of n. To be precise, for each composition 𝛼 of n, there exists an
irreducible 𝐻𝑛 (0)-module F𝛼 := C𝑣𝛼 endowed with the 𝐻𝑛 (0)-action defined as follows: for each
1 ≤ 𝑖 ≤ 𝑛 − 1,

𝜋𝑖 · 𝑣𝛼 =

{
0 𝑖 ∈ set(𝛼),
𝑣𝛼 𝑖 ∉ set(𝛼).

Let 𝐻𝑛 (0)-mod be the category of finite dimensional left 𝐻𝑛 (0)-modules and R(𝐻𝑛 (0)) the Z-span
of the set of (representatives of) isomorphism classes of modules in 𝐻𝑛 (0)-mod. We denote by [𝑀]

the isomorphism class corresponding to an 𝐻𝑛 (0)-module M. The Grothendieck group G0 (𝐻𝑛 (0)) of
𝐻𝑛 (0)-mod is the quotient of R(𝐻𝑛 (0)) modulo the relations [𝑀] = [𝑀 ′] + [𝑀 ′′] whenever there
exists a short exact sequence 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0. The equivalence classes of the irreducible
𝐻𝑛 (0)-modules form a Z-basis for G0 (𝐻𝑛 (0)). Let

G :=
⊕
𝑛≥0

G0 (𝐻𝑛 (0)).

Let us review the connection between G and the ring QSym of quasisymmetric functions. For the
definition of quasisymmetric functions, see [35, Section 7.19]. For a composition 𝛼, the fundamental
quasisymmetric function 𝐹𝛼, which was firstly introduced in [16], is defined by

𝐹∅ = 1 and 𝐹𝛼 =
∑

1≤𝑖1≤𝑖2≤···≤𝑖𝑛
𝑖 𝑗<𝑖 𝑗+1 if 𝑗∈set(𝛼)

𝑥𝑖1𝑥𝑖2 · · · 𝑥𝑖𝑛 if 𝛼 ≠ ∅.

It is known that {𝐹𝛼 | 𝛼 is a composition} is a Z-basis for QSym. When M is an 𝐻𝑚 (0)-module and N
is an 𝐻𝑛 (0)-module, we write 𝑀 � 𝑁 for the induction product of M and N; that is,

𝑀 � 𝑁 := 𝑀 ⊗ 𝑁 ↑
𝐻𝑚+𝑛 (0)
𝐻𝑚 (0) ⊗𝐻𝑛 (0)

.

Here, 𝐻𝑚(0) ⊗𝐻𝑛 (0) is viewed as the subalgebra of 𝐻𝑚+𝑛 (0) generated by {𝜋𝑖 | 𝑖 ∈ [𝑚 +𝑛−1] \ {𝑚}}.
The induction product induces a multiplication on G. It was shown in [12] that the linear map

ch : G → QSym, [F𝛼] ↦→ 𝐹𝛼,

called quasisymmetric characteristic, is a ring isomorphism. Indeed, it turns out to be a Hopf algebra
isomorphism when G has the comultiplication induced from restriction.
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It is well known that 𝐻𝑛 (0) has the automorphisms θ and ϕ, as well as the anti-automorphism χ,
defined in the following manner:

ϕ : 𝐻𝑛 (0) → 𝐻𝑛 (0), 𝜋𝑖 ↦→ 𝜋𝑛−𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1,
θ : 𝐻𝑛 (0) → 𝐻𝑛 (0), 𝜋𝑖 ↦→ −𝜋𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1,
χ : 𝐻𝑛 (0) → 𝐻𝑛 (0), 𝜋𝑖 ↦→ 𝜋𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1

(for instance, see [13, 22, 24, 25]). These maps commute with each other.
Note that an automorphism 𝜇 of 𝐻𝑛 (0) induces a covariant functor

T+
𝜇 : 𝐻𝑛 (0)-mod → 𝐻𝑛 (0)-mod

called the 𝜇-twist. Similarly, an anti-automorphism 𝜈 of 𝐻𝑛 (0) induces a contravariant functor

T−
𝜈 : 𝐻𝑛 (0)-mod → 𝐻𝑛 (0)-mod

called the 𝜈-twist. For the precise definitions of T+
𝜇 and T−

𝜈 , see [19, Subsection 3.4]. In [13, Proposition
3.3.], it was shown that

T+
ϕ (F𝛼) = F𝛼r , T+

θ (F𝛼) = F𝛼c , and T−
χ (F𝛼) = F𝛼

for 𝛼 |= 𝑛. Let ρ and ψ be the automorphisms of QSym defined by

ρ(𝐹𝛼) = 𝐹𝛼r and ψ (𝐹𝛼) = 𝐹𝛼c

for every composition 𝛼. For a finite dimensional 𝐻𝑛 (0)-module M, it holds that

ch([T+
ϕ (𝑀)]) = ρ ◦ ch([𝑀]), ch([T+

θ (𝑀)]) = ψ ◦ ch([𝑀]),

and ch([T−
χ (𝑀)]) = ch([𝑀]).

(2.2)

2.5. Modules arising from posets and weak Bruhat interval modules

Let 𝑃 ∈ P𝑛. In [11, Definition 3.18], Duchamp, Hivert and Thibon defined a right 𝐻𝑛 (0)-module 𝑀𝑃

associated with P. In this paper, we are primarily concerned with left modules, so we introduce a left
𝐻𝑛 (0)-module, denoted as M𝑃 , associated with P.

Definition 2.8. Let 𝑃 ∈ P𝑛. Define M𝑃 to be the left 𝐻𝑛 (0)-module with CΣ𝐿 (𝑃) as the underlying
space and with the 𝐻𝑛 (0)-action defined by

𝜋𝑖 · 𝛾 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛾 if 𝑖 ∈ Des𝐿 (𝛾),
0 if 𝑖 ∉ Des𝐿 (𝛾) and 𝑠𝑖𝛾 ∉ Σ𝐿 (𝑃),

𝑠𝑖𝛾 if 𝑖 ∉ Des𝐿 (𝛾) and 𝑠𝑖𝛾 ∈ Σ𝐿 (𝑃).

(2.3)

One can see that the 𝐻𝑛 (0)-action provided in Equation (2.3) is well-defined through a slight
modification of the proof in [11, Subsection 3.9] that 𝑀𝑃 is a well-defined right 𝐻𝑛 (0)-module. Indeed,
there is a close connection between M𝑃 and 𝑀𝑃 . Let mod-𝐻𝑛 (0) be the category of finite dimensional
right 𝐻𝑛 (0)-modules. In [9, Subsection 4.3], the authors introduced a contravariant functor

F𝑛 : 𝐻𝑛 (0)-mod → mod-𝐻𝑛 (0)
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that preserves quasisymmetric characteristics.2 Using this functor, it is not difficult to see that

M𝑃 � T+
θ ◦ T−

χ ◦ F−1
𝑛 (𝑀𝑃).

Since the underlying set of P is [𝑛], we can regard P as the labeled poset (𝑃, 𝜔) with the labeling
𝜔 : 𝑃 → [𝑛] given by 𝜔(𝑖) = 𝑖. Under this consideration, a map 𝑓 : [𝑛] → Z≥0 is called a P-partition
if it satisfies the following conditions:

(1) If 𝑖 �𝑃 𝑗 , then 𝑓 (𝑖) ≤ 𝑓 ( 𝑗).
(2) If 𝑖 �𝑃 𝑗 and 𝑖 > 𝑗 , then 𝑓 (𝑖) < 𝑓 ( 𝑗).

We define the P-partition generating function 𝐾𝑃 of P by

𝐾𝑃 :=
∑

𝑓 :𝑃-partition
𝑥
| 𝑓 −1 (1) |
1 𝑥

| 𝑓 −1 (2) |
2 · · · .

Theorem 2.9. For 𝑃 ∈ P𝑛, the following hold.

(1) ch([M𝑃]) = ψ (𝐾𝑃).
(2) If 𝑃 ∈ SP(𝜆/𝜇) for a skew partition 𝜆/𝜇, then ch([M𝑃]) = 𝑠𝜆/𝜇.

Proof. (1) It was shown in [11, Theorem 3.21(i)] that the (right) quasisymmetric characteristic of 𝑀𝑃

is given by 𝐾𝑃 . Since M𝑃 � T+
θ ◦ T−

χ ◦ F−1
𝑛 (𝑀𝑃), the assertion follows from Equation (2.2).

(2) In the same manner as in [35, Subsection 7.19], one can see that 𝐾𝑃 = 𝑠𝜆t/𝜇t . Here, 𝜆t and 𝜇t are
the transposes of 𝜆 and 𝜇, respectively. Now the assertion can be derived from the well-known identity
ψ (𝑠𝜆/𝜇) = 𝑠𝜆t/𝜇t (for instance, see [26, Subsection 3.6]). �

Next, let us introduce weak Bruhat interval modules, which were introduced by Jung, Kim, Lee and
Oh [19] to provide a unified method for dealing with 𝐻𝑛 (0)-modules constructed using tableaux.

Definition 2.10 [19, Definition 1]. For each left weak Bruhat interval [𝜎, 𝜌]𝐿 in𝔖𝑛, define B([𝜎, 𝜌]𝐿)
(simply, B(𝜎, 𝜌)) to be the 𝐻𝑛 (0)-module with C[𝜎, 𝜌]𝐿 as the underlying space and with the 𝐻𝑛 (0)-
action defined by

𝜋𝑖 · 𝛾 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛾 if 𝑖 ∈ Des𝐿 (𝛾),
0 if 𝑖 ∉ Des𝐿 (𝛾) and 𝑠𝑖𝛾 ∉ [𝜎, 𝜌]𝐿 ,

𝑠𝑖𝛾 if 𝑖 ∉ Des𝐿 (𝛾) and 𝑠𝑖𝛾 ∈ [𝜎, 𝜌]𝐿 .

This module is called the weak Bruhat interval module associated to [𝜎, 𝜌]𝐿 .

We can deduce from Theorem 2.4 that for every [𝜎, 𝜌]𝐿 ∈ Int(𝑛), there exists a unique poset 𝑃 ∈ P𝑛

such that Σ𝐿 (𝑃) = [𝜎, 𝜌]𝐿 . Since both B(𝜎, 𝜌) and M𝑃 share [𝜎, 𝜌]𝐿 as their basis and exhibit identical
𝐻𝑛 (0)-actions on this set, we can conclude that B(𝜎, 𝜌) is indeed equal to M𝑃 .

Remark 2.11. The weak Bruhat interval modules are equipped with the structure of semi-combinatorial
𝐻𝑛 (0)-modules due to Hivert, Novelli and Thibon [17] and also that of diagram modules due to Searles
[33]. More precisely,

(1) B(𝜎, 𝜌) is the semi-combinatorial 𝐻𝑛 (0)-module associated to the Yang-Baxter interval
[𝑌𝜎 (id), 𝑌𝜌 (id)], and

(2) it was shown in [33, Subsection 7.3] that B(𝜎, 𝜌) is isomorphic to a diagram module N̂StdTab(𝐷) .

2In [9, Subsection 4.3], the authors considered both left and right quasisymmetric characteristics because they were simultane-
ously working with two categories, 𝐻𝑛 (0)-mod and mod-𝐻𝑛 (0) .
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3. The weak Bruhat interval structure of Σ𝐿 (𝑃) for 𝑃 ∈ RSP𝑛

Let 𝑃 ∈ RSP𝑛. In this section, we explicitly describe the left weak Bruhat interval Σ𝐿 (𝑃) in terms of
reading words of standard Young tableaux. To begin with, we introduce readings for bijective tableaux.

Definition 3.1. Let 𝜏 be a bijective tableau of shape 𝜆/𝜇. The 𝜏-reading is the map

read𝜏 : {bijective tableaux of shape 𝜆/𝜇} →𝔖𝑛, 𝑇 ↦→ read𝜏 (𝑇),

where read𝜏 (𝑇) is the permutation in 𝔖𝑛 given by read𝜏 (𝑇) (𝑘) = 𝑇𝜏−1 (𝑘) for 1 ≤ 𝑘 ≤ 𝑛. We call
read𝜏 (𝑇) the 𝜏-reading word of T.

Given a bijective tableaux T of shape 𝜆/𝜇, the permutation read𝜏 (𝑇) in one-line notation can be
obtained by reading the entries of T in the order given by 𝜏−1 (1), 𝜏−1(2), . . . , 𝜏−1(𝑛). For instance,

if 𝜏 = 4 2 3
5 1

and 𝑇 = 1 3 4
2 5

, then read𝜏 (𝑇) = 53412. With this definition, we have the

following lemma.

Lemma 3.2. For any bijective tableau 𝜏 of shape 𝜆/𝜇, Σ𝐿 (poset(𝜏)) = read𝜏 (SYT(𝜆/𝜇)).

Proof. We first show that read𝜏 (SYT(𝜆/𝜇)) ⊆ Σ𝐿 (poset(𝜏)). To do this, take any 𝑇 ∈ SYT(𝜆/𝜇) and
𝑖, 𝑗 ∈ [𝑛] with 𝑖 �𝜏 𝑗 (for the definition of �𝜏 , see Equation (2.1). Let 𝐵1 and 𝐵2 be the boxes in yd(𝜆/𝜇)
such that 𝜏𝐵1 = 𝑖 and 𝜏𝐵2 = 𝑗 . Since 𝑖 �𝜏 𝑗 , 𝐵1 is weakly upper-left of 𝐵2 in yd(𝜆/𝜇). This implies that

read𝜏 (𝑇) (𝑖) = 𝑇𝐵1 ≤ 𝑇𝐵2 = read𝜏 (𝑇) ( 𝑗).

Therefore, read𝜏 (𝑇) ∈ Σ𝐿 (poset(𝜏)).
To complete the proof, let us show that |Σ𝐿 (poset(𝜏)) | = |read𝜏 (SYT(𝜆/𝜇)) |. Note that

ch([Mposet(𝜏𝜆/𝜇0 )
]) =

∑
𝛾∈Σ𝐿 (poset(𝜏𝜆/𝜇0 ))

𝐹comp(Des𝐿 (𝛾))c and ch([Mposet(𝜏𝜆/𝜇0 )
]) = 𝑠𝜆/𝜇,

where the second equality follows from Theorem 2.9(2). Putting these together with the well-known
equality 𝑠𝜆/𝜇 =

∑
𝑇 ∈SYT(𝜆/𝜇) 𝐹comp(𝑇 ) , we have∑

𝛾∈Σ𝐿 (poset(𝜏𝜆/𝜇0 ))

𝐹comp(Des𝐿 (𝛾))c =
∑

𝑇 ∈SYT(𝜆/𝜇)

𝐹comp(𝑇 ) . (3.1)

Here, comp(𝑇) = comp({𝑖 ∈ [𝑛 − 1] | 𝑖 is weakly right of 𝑖 + 1 in 𝑇}). As a consequence of Equation
(3.1), we have

|Σ𝐿 (poset(𝜏)) | = |Σ𝐿 (poset(𝜏𝜆/𝜇0 )) | = |SYT(𝜆/𝜇) | = |read𝜏 (SYT(𝜆/𝜇)) |. �

The purpose of the remainder of this section is to describe the minimum and maximum of Σ𝐿 (𝑃)
with respect to �𝐿 .

As a first step, we deal with a characterization of regular Schur labeled skew shape posets. For this
purpose, the following definition is necessary.

Definition 3.3. Let 𝜆/𝜇 be a skew partition of size n. A Schur labeling 𝜏 of shape 𝜆/𝜇 is said to be
distinguished if 𝜏𝐵 ≥ 𝜏𝐵′ whenever B is weakly below and weakly left of 𝐵′ for boxes 𝐵, 𝐵′ ∈ yd(𝜆/𝜇).
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Example 3.4. Consider the Schur labelings of shape (3, 2, 2)/(1)

𝜏 (3,2,2)/(1)
0 =

1
3 2
5 4

, 𝜏 (3,2,2)/(1)
1 =

1
4 2
5 3

, and 𝜏 =

2
3 1
5 4

.

One sees that 𝜏 (3,2,2)/(1)
0 and 𝜏 (3,2,2)/(1)

1 are distinguished, whereas 𝜏 is non-distinguished since 1
appears weakly below and weakly left of 2 in 𝜏.

Let DS(𝜆/𝜇) be the set of all distinguished Schur labelings of shape 𝜆/𝜇. For any Schur labeling 𝜏,
let cnt𝑖 (𝜏) be the set of entries in the ith connected component of 𝜏 from the top. For each 𝑃 ∈ SP𝑛,
there exists a unique Schur labeling 𝜏 such that

(i) sh(𝜏) is basic,
(ii) poset(𝜏) = 𝑃, and (3.2)
(iii) min(cnt𝑖 (𝜏)) < min(cnt 𝑗 (𝜏)) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, where 𝑘 is the number of connected components

of 𝑃.

We denote this Schur labeling as 𝜏𝑃 . One can easily see that for 𝑃 ∈ SP𝑛, 𝜏𝑃 is distinguished if and
only if every connected component of 𝜏𝑃 is filled with consecutive integers.

Example 3.5. Given two Schur labeled skew shape posets

𝑃 = 3
4

5

6 1

2
and 𝑄 = 4

1

3

5 2

6
,

we have that

𝜏𝑃 =

2 1
3

5 4
6

and 𝜏𝑄 =

3 1
5

6 2
4

.

Lemma 3.6. For 𝑃 ∈ SP𝑛, P is regular if and only if 𝜏𝑃 is distinguished.

Proof. To prove the ‘only if’ part, assume that P is a regular Schur labeled skew shape poset and
𝜆/𝜇 is the shape of 𝜏𝑃 . We claim that every connected component of 𝜏𝑃 is filled with consecutive
integers. Take an arbitrary connected component C of 𝜏𝑃 . Let 𝐵1 be the box at the top of the rightmost
column of C and 𝐵2 the box at the bottom of the leftmost column of C. Then, we may choose boxes
𝐴0 := 𝐵1, 𝐴2, 𝐴3, . . . , 𝐴𝑘 := 𝐵2 satisfying that for all 1 ≤ 𝑖 ≤ 𝑘 − 1, 𝐴𝑖+1 is weakly below and weakly
left of 𝐴𝑖 and 𝐴𝑖 , 𝐴𝑖+1 are in the same row or in the same column. Let 𝑚 ∈ [(𝜏𝑃)𝐵1 , (𝜏𝑃)𝐵2]. Then,
there exists a unique index 1 ≤ 𝑖 ≤ 𝑘 − 1 such that (𝜏𝑃)𝐴𝑖 ≤ 𝑚 ≤ (𝜏𝑃)𝐴𝑖+1 . Since P is regular, one of
the following holds:

(i) If (𝜏𝑃)𝐴𝑖 �𝑃 (𝜏𝑃)𝐴𝑖+1 , then (𝜏𝑃)𝐴𝑖 �𝑃 𝑚 or 𝑚 �𝑃 (𝜏𝑃)𝐴𝑖+1 .
(ii) If (𝜏𝑃)𝐴𝑖+1 �𝑃 (𝜏𝑃)𝐴𝑖 , then (𝜏𝑃)𝐴𝑖+1 �𝑃 𝑚 or 𝑚 �𝑃 (𝜏𝑃)𝐴𝑖 .
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It follows that (𝜏𝑃)𝐴𝑖 , m and (𝜏𝑃)𝐴𝑖+1 appear in the same connected component; that is, m appears in C.
Thus, 𝜏𝑃 is distinguished.

Next, to prove the ‘if’ part, assume that 𝜏𝑃 is a distinguished Schur labeling and 𝜆/𝜇 is the shape
of 𝜏𝑃 . Let 𝐵1, 𝐵2 ∈ yd(𝜆/𝜇) with (𝜏𝑃)𝐵1 ≺𝜏𝑃 (𝜏𝑃)𝐵2 . By the definition of ≺𝜏𝑃 , 𝐵1 and 𝐵2 are in
the same connected component. In order to establish the regularity of P, we need to prove that either
(𝜏𝑃)𝐵1 �𝜏𝑃 (𝜏𝑃)𝐶 or (𝜏𝑃)𝐶 �𝜏𝑃 (𝜏𝑃)𝐵2 for all 𝐶 ∈ yd(𝜆/𝜇) satisfying (𝜏𝑃)𝐵1 < (𝜏𝑃)𝐶 < (𝜏𝑃)𝐵2 or
(𝜏𝑃)𝐵1 > (𝜏𝑃)𝐶 > (𝜏𝑃)𝐵2 .

Assume that there exists 𝐶 ∈ yd(𝜆/𝜇) such that (𝜏𝑃)𝐵1 < (𝜏𝑃)𝐶 < (𝜏𝑃)𝐵2 . Since 𝜏𝑃 is a Schur
labeling and (𝜏𝑃)𝐵1 ≺𝜏𝑃 (𝜏𝑃)𝐵2 , the inequality (𝜏𝑃)𝐵1 < (𝜏𝑃)𝐵2 implies that 𝐵2 is strictly below 𝐵1. In
addition, since 𝜏𝑃 is distinguished and (𝜏𝑃)𝐵1 , (𝜏𝑃)𝐵2 appear in the same connected component in 𝜏𝑃 ,
(𝜏𝑃)𝐶 appears in the same connected component with them in 𝜏𝑃 . Suppose for the sake of contradiction
that (𝜏𝑃)𝐵1 �𝜏𝑃 (𝜏𝑃)𝐶 and (𝜏𝑃)𝐶 �𝜏𝑃 (𝜏𝑃)𝐵2 . Then C satisfies one of the following conditions:
(i) C is strictly above 𝐵1 and strictly right of 𝐵2.

(ii) C is strictly left of 𝐵1 and strictly below 𝐵2.
However, since 𝜏𝑃 is a Schur labeling and (𝜏𝑃)𝐵1 < (𝜏𝑃)𝐶 , C cannot satisfy (i). Similarly, since
𝜏𝑃 is a Schur labeling and (𝜏𝑃)𝐶 < (𝜏𝑃)𝐵2 , C cannot satisfy (ii). Therefore, (𝜏𝑃)𝐵1 �𝜏𝑃 (𝜏𝑃)𝐶
or (𝜏𝑃)𝐶 �𝜏𝑃 (𝜏𝑃)𝐵2 . In a similar way, one can show that if there exists 𝐶 ∈ yd(𝜆/𝜇) such that
(𝜏𝑃)𝐵1 > (𝜏𝑃)𝐶 > (𝜏𝑃)𝐵2 , then (𝜏𝑃)𝐵1 �𝜏𝑃 (𝜏𝑃)𝐶 or (𝜏𝑃)𝐶 �𝜏𝑃 (𝜏𝑃)𝐵2 . Thus, P is regular. �

Note that 𝜏poset(𝜏) = 𝜏 for any 𝜏 ∈ DS(𝜆/𝜇). Considering this property together with Lemma 3.6,
one can see that the map

Φ : RSP𝑛 →
⋃

|𝜆/𝜇 |=𝑛

DS(𝜆/𝜇), 𝑃 ↦→ 𝜏𝑃 (3.3)

is a bijection and its inverse is given by 𝜏 ↦→ poset(𝜏).
As a second step, we provide a lemma that will be used throughout this paper.

Lemma 3.7. For 𝑇 ∈ SYT(𝜆/𝜇), {read𝜏 (𝑇) | 𝜏 ∈ DS(𝜆/𝜇)} = [read𝜏0 (𝑇), read𝜏1 (𝑇)]𝑅.
Proof. Let us show the inclusion {read𝜏 (𝑇) | 𝜏 ∈ DS(𝜆/𝜇)} ⊆ [read𝜏0 (𝑇), read𝜏1 (𝑇)]𝑅. This can be
done by proving read𝜏0 (𝑇) �𝑅 read𝜏 (𝑇) and read𝜏 (𝑇) �𝑅 read𝜏1 (𝑇) for all 𝜏 ∈ DS(𝜆/𝜇). Since the
method of proof for the latter inequality is essentially the same as that for the former one, we omit
the proof for the latter inequality. Let 𝜏 ∈ DS(𝜆/𝜇) and (𝑖, 𝑗) ∈ Inv𝑅 (read𝜏0 (𝑇)). Since 𝑖 > 𝑗 and
read𝜏0 (𝑇)

−1 (𝑖) < read𝜏0 (𝑇)
−1 ( 𝑗), the box 𝑇−1 ( 𝑗) is placed strictly left and weakly below 𝑇−1 (𝑖). This,

together with the definition of distinguished Schur labeling, implies that 𝜏𝑇 −1 (𝑖) < 𝜏𝑇 −1 ( 𝑗) ; equivalently,
read𝜏 (𝑇)

−1 (𝑖) < read𝜏 (𝑇)
−1( 𝑗). It follows that (𝑖, 𝑗) ∈ Inv𝑅 (read𝜏 (𝑇)). Since we chose an arbi-

trary (𝑖, 𝑗) ∈ Inv𝑅 (read𝜏0 (𝑇)), we have the inclusion Inv𝑅 (read𝜏0 (𝑇)) ⊆ Inv𝑅 (read𝜏 (𝑇)). Therefore,
read𝜏0 (𝑇) �𝑅 read𝜏 (𝑇).

Let us show the opposite inclusion {read𝜏 (𝑇) | 𝜏 ∈ DS(𝜆/𝜇)} ⊇ [read𝜏0 (𝑇), read𝜏1 (𝑇)]𝑅. Since
{read𝜏 (𝑇) | 𝜏is a bijective tableau of shape𝜆/𝜇} is equal to𝔖𝑛 as a set, the inclusion can be obtained
by proving that read𝜏 (𝑇) ∉ [read𝜏0 (𝑇), read𝜏1 (𝑇)]𝑅 for all bijective tableaux 𝜏 of shape 𝜆/𝜇 with
𝜏 ∉ DS(𝜆/𝜇). To prove it, choose an arbitrary bijective tableau 𝜏 of shape 𝜆/𝜇 with 𝜏 ∉ DS(𝜆/𝜇). Since
𝜏 ∉ DS(𝜆/𝜇), there exists 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 such that i is weakly below and weakly left of j in 𝜏. Set
𝑥 := 𝑇𝜏−1 (𝑖) and 𝑦 := 𝑇𝜏−1 ( 𝑗) . Then, x appears left of y in read𝜏 (𝑇). However, since 𝜏0, 𝜏1 ∈ DS(𝜆/𝜇),
we have (𝜏0)𝜏−1 (𝑖) > (𝜏0)𝜏−1 ( 𝑗) and (𝜏1)𝜏−1 (𝑖) > (𝜏1)𝜏−1 ( 𝑗) , which implies that x appears right of y in
both read𝜏0 (𝑇) and read𝜏1 (𝑇). If 𝑥 < 𝑦, then (𝑦, 𝑥) ∈ Inv𝑅 (read𝜏0 (𝑇)) and (𝑦, 𝑥) ∉ Inv𝑅 (read𝜏 (𝑇)),
thus Inv𝑅 (read𝜏0 (𝑇)) � Inv𝑅 (read𝜏 (𝑇)). Similarly, if 𝑥 > 𝑦, then Inv𝑅 (read𝜏 (𝑇)) � Inv𝑅 (read𝜏1 (𝑇)).
Hence, read𝜏 (𝑇) ∉ [read𝜏0 (𝑇), read𝜏1 (𝑇)]𝑅. �

As a last step, we define two specific standard Young tableaux. For a skew partition 𝜆/𝜇 of size n,
let 𝑇𝜆/𝜇(resp. 𝑇 ′

𝜆/𝜇
) be the standard Young tableau obtained by filling yd(𝜆/𝜇) by 1, 2, . . . , 𝑛 from left

to right starting with the top row (resp. from top to bottom starting with leftmost column).
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Example 3.8. Let 𝜆/𝜇 = (2, 2) ★ (3, 2)/(1). Then

𝑇𝜆/𝜇 =

1 2
3 4

5 6
7 8

and 𝑇 ′
𝜆/𝜇 =

5 7
6 8

2 4
1 3

.

Now, we are ready prove the main theorem of this section.

Theorem 3.9. Let 𝑃 ∈ RSP𝑛 and 𝜆/𝜇 = sh(𝜏𝑃). Then

Σ𝐿 (𝑃) = [read𝜏𝑃 (𝑇𝜆/𝜇), read𝜏𝑃 (𝑇
′
𝜆/𝜇)]𝐿 .

Proof. Due to Theorem 2.4 and Lemma 3.2, it suffices to show that read𝜏𝑃 (𝑇𝜆/𝜇) is minimal and
read𝜏𝑃 (𝑇

′
𝜆/𝜇

) is maximal in read𝜏𝑃 (SYT(𝜆/𝜇)) with respect to �𝐿 . Let 𝑇 ∈ SYT(𝜆/𝜇). In the case
where 𝜏𝑃 = 𝜏0, one can easily see that

Inv𝐿 (read𝜏0 (𝑇𝜆/𝜇)) ⊆ Inv𝐿 (read𝜏0 (𝑇)) ⊆ Inv𝐿 (read𝜏0 (𝑇
′
𝜆/𝜇)). (3.4)

In the case where 𝜏𝑃 ≠ 𝜏0, we consider the equality

read𝜏𝑃 (𝑇) = read𝜏0 (𝑇)read𝜏0 (𝜏𝑃)
−1 (3.5)

which follows from Definition 3.1. By Lemma 3.6, we have 𝜏𝑃 ∈ DS(𝜆/𝜇); therefore, combining
Lemma 3.7 with Equation (3.5) yields that

ℓ(read𝜏𝑃 (𝑇)) = ℓ(read𝜏0 (𝑇)) + ℓ(read𝜏0 (𝜏𝑃)
−1).

Now, we have that

ℓ(read𝜏𝑃 (𝑇)) − ℓ(read𝜏𝑃 (𝑇𝜆/𝜇)) = ℓ(read𝜏0 (𝑇)) − ℓ(read𝜏0 (𝑇𝜆/𝜇))

= ℓ(read𝜏0 (𝑇)read𝜏0 (𝑇𝜆/𝜇)
−1) by Equation (3.4)

= ℓ(read𝜏𝑃 (𝑇)read𝜏𝑃 (𝑇𝜆/𝜇)
−1) by Definition 3.1.

Therefore, read𝜏𝑃 (𝑇𝜆/𝜇) �𝐿 read𝜏𝑃 (𝑇). In the same manner, we can prove that read𝜏𝑃 (𝑇) �𝐿

read𝜏𝑃 (𝑇
′
𝜆/𝜇

). �

4. An equivalence relation on Int(𝑛)

Recall that Int(𝑛) denotes the set of nonempty left weak Bruhat intervals in𝔖𝑛; that is,

Int(𝑛) = {[𝜎, 𝜌]𝐿 | 𝜎, 𝜌 ∈ 𝔖𝑛 and 𝜎 �𝐿 𝜌}.

For 𝐼1, 𝐼2 ∈ Int(𝑛), a poset isomorphism 𝑓 : (𝐼1, �𝐿) → (𝐼2, �𝐿) is called descent-preserving if
Des𝐿 (𝛾) = Des𝐿 ( 𝑓 (𝛾)) for all 𝛾 ∈ 𝐼1. In this section, we study the classification of left weak Bruhat in-
tervals in Int(𝑛) up to descent-preserving poset isomorphism. In particular, in the case where 𝑃 ∈ RSP𝑛,
we explicitly describe the isomorphism class of Σ𝐿 (𝑃).

We begin by explaining the reason why we consider descent-preserving poset isomorphisms. Note
that every interval 𝐼 ∈ Int(𝑛) can be represented by the colored digraph whose vertices are given by the
permutations in I and {1, 2, . . . , 𝑛 − 1}-colored arrows are given by
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𝛾
𝑖
→ 𝛾′ if and only if 𝛾 �𝐿 𝛾′ and 𝑠𝑖𝛾 = 𝛾′.

For intervals 𝐼1, 𝐼2 ∈ Int(𝑛), a map 𝑓 : 𝐼1 → 𝐼2 is called a colored digraph isomorphism if f is bijective
and satisfies that for all 𝛾, 𝛾′ ∈ 𝐼1 and 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝛾
𝑖
→ 𝛾′ if and only if 𝑓 (𝛾)

𝑖
→ 𝑓 (𝛾′).

If there exists a descent-preserving colored digraph isomorphism between two intervals 𝐼1 and 𝐼2, then
B(𝐼1) is isomorphic to B(𝐼2). Motivated by this fact, in [19, Subsection 3.1], the authors posed the
classification problem of weak Bruhat intervals up to descent-preserving colored digraph isomorphism.

A colored digraph isomorphism between 𝐼1 and 𝐼2 is a poset isomorphism with respect to �𝐿 , but
a poset isomorphism 𝑓 : 𝐼1 → 𝐼2 may not be a colored digraph isomorphism. For instance, the poset
isomorphism 𝑓 : [1234, 2134]𝐿 → [1234, 1324]𝐿 defined by 𝑓 (1234) = 1234 and 𝑓 (2134) = 1324 is
not a colored digraph isomorphism since

1234
1

2134

𝑓
−→

1234
2

1324
.

However, if a poset isomorphism between left weak Bruhat intervals is descent-preserving, it indeed
proves to be a colored digraph isomorphism.
Proposition 4.1. Let 𝐼1, 𝐼2 ∈ Int(𝑛). Every descent-preserving poset isomorphism 𝑓 : 𝐼1 → 𝐼2 is a
colored digraph isomorphism.
Proof. Let 𝛾, 𝛾′ ∈ 𝐼1 with 𝛾 �𝑐

𝐿 𝛾′. Since f is a poset isomorphism, we have 𝑓 (𝛾) �𝑐
𝐿 𝑓 (𝛾′). Let

𝑖, 𝑗 ∈ [𝑛 − 1], satisfying 𝛾′ = 𝑠𝑖𝛾 and 𝑓 (𝛾′) = 𝑠 𝑗 𝑓 (𝛾). For the assertion, it suffices to show that 𝑖 = 𝑗 .
Let 𝐷1 := Des𝐿 (𝛾) and 𝐷2 := Des𝐿 (𝛾′). Since 𝛾′ = 𝑠𝑖𝛾, we have

{𝑖} ⊆ (𝐷1 ∪ 𝐷2) \ (𝐷1 ∩ 𝐷2) ⊆ {𝑖 − 1, 𝑖, 𝑖 + 1}.

In addition, since 𝐷1 = Des𝐿 ( 𝑓 (𝛾)), 𝐷2 = Des𝐿 ( 𝑓 (𝛾′)) and 𝑓 (𝛾′) = 𝑠 𝑗 𝑓 (𝛾), we have 𝑗 ∈ 𝐷2 \ 𝐷1,
and it follows that j is one of 𝑖 − 1, i, and 𝑖 + 1.

If 𝑗 = 𝑖 − 1, then 𝑖 − 1, 𝑖 ∈ 𝐷2. It follows that

𝛾′ = · · · 𝑖 + 1 · · · 𝑖 · · · 𝑖 − 1 · · · in one-line notation;

equivalently,

𝛾 = · · · 𝑖 · · · 𝑖 + 1 · · · 𝑖 − 1 · · · in one-line notation.

This implies that 𝑗 = 𝑖 − 1 ∈ 𝐷1, which is a contradiction to 𝑗 ∉ Des𝐿 ( 𝑓 (𝛾)). Therefore, 𝑗 ≠ 𝑖 − 1.
In a similar manner, one can show that 𝑗 ≠ 𝑖 + 1. Hence, 𝑗 = 𝑖, as required. �

Proposition 4.1 says that classifying weak Bruhat intervals up to descent-preserving colored di-
graph isomorphism is equivalent to classifying weak Bruhat intervals up to descent-preserving poset
isomorphism. With this equivalence in mind, we introduce an equivalence relation, whose reflexivity,
symmetricity and transitivity are obvious.

Definition 4.2. We define an equivalence relation 𝐷

 on Int(𝑛) by 𝐼1

𝐷

 𝐼2 if there is a descent-preserving

(poset) isomorphism between (𝐼1, �𝐿) and (𝐼2, �𝐿).
For each equivalence class C, we define

𝜉𝐶 := 𝜌𝜎−1 for any [𝜎, 𝜌]𝐿 ∈ 𝐶.
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By Proposition 4.1, 𝜉𝐶 does not depend on the choice of [𝜎, 𝜌]𝐿 ∈ 𝐶. We also define

min(𝐶) := {𝜎 | [𝜎, 𝜌]𝐿 ∈ 𝐶} and max(𝐶) := {𝜌 | [𝜎, 𝜌]𝐿 ∈ 𝐶}.

From now on, we always regard min(𝐶) and max(𝐶) as subposets of (𝔖𝑛, �𝑅).
The following lemma is the initial step in the proof of the main result of this section (Theorem 4.6).

Lemma 4.3. Let C be an equivalence class under 𝐷

 with ℓ(𝜉𝐶 ) = 1. Then, min(𝐶) is a right weak

Bruhat interval in (𝔖𝑛, �𝑅).

Before proving the lemma, we provide an outline of the proof for the reader’s understanding. We
first classify the equivalence classes under consideration according to the set X in Equation (4.2). Then,
case by case, we show that min(𝐶) has a unique minimal element 𝜎0. In particular, in Case 3, we
introduce a specific permutation w0 and show that it is the unique minimal element of min(𝐶). Using
these results, we next show that min(𝐶) has the unique maximal element 𝜎1. Finally, we show that
[𝜎0, 𝜎1]𝑅 ⊆ min(𝐶).

Proof. From the condition ℓ(𝜉𝐶 ) = 1, it follows that 𝜉𝐶 = 𝑠𝑖0 for some 𝑖0 ∈ [𝑛 − 1].
First, let us prove that there exists a unique minimal element in min(𝐶). Let

𝐷1 := Des𝐿 (𝜎) and 𝐷2 := Des𝐿 (𝑠𝑖0𝜎) for any [𝜎, 𝑠𝑖0𝜎]𝐿 ∈ 𝐶 (4.1)

and

𝑋 := (𝐷1 ∪ 𝐷2) \ (𝐷1 ∩ 𝐷2). (4.2)

One sees that {𝑖0} ⊆ 𝑋 ⊆ {𝑖0 − 1, 𝑖0, 𝑖0 + 1}, and therefore, X can be one of the following:

{𝑖0 − 1, 𝑖0, 𝑖0 + 1}, {𝑖0}, {𝑖0 − 1, 𝑖0}, and {𝑖0, 𝑖0 + 1}.

Case 1: 𝑋 = {𝑖0 − 1, 𝑖0, 𝑖0 + 1}. Since 𝑖0 − 1, 𝑖0 + 1 ∈ 𝐷1 and 𝑖0 ∉ 𝐷1,

𝑤0 (𝐷1) = · · · 𝑖0 𝑖0 − 1 · · · 𝑖0 + 2 𝑖0 + 1 · · ·

in one-line notation. Considering this equality, one can see that [𝑤0 (𝐷1), 𝑠𝑖0𝑤0 (𝐷1)]𝐿 ∈ 𝐶. By
Lemma 2.2, 𝑤0 (𝐷1) �𝑅 𝜎 for all 𝜎 ∈ 𝔖𝑛 with Des𝐿 (𝜎) = 𝐷1. Thus, 𝑤0 (𝐷1) is a unique minimal
element in min(𝐶).

Case 2: 𝑋 = {𝑖0}. In this case, we have

𝑤0 (𝐷2) = · · · 𝑖0 + 1 𝑖0 · · ·

in one-line notation. Considering this equality, one can see that [𝑠𝑖0𝑤0 (𝐷2), 𝑤0 (𝐷2)]𝐿 ∈ 𝐶. Again, by
Lemma 2.2, 𝑤0 (𝐷2) �𝑅 𝜎 for all 𝜎 ∈ 𝔖𝑛 with Des𝐿 (𝜎) = 𝐷2. Thus, 𝑠𝑖0𝑤0 (𝐷2) is a unique minimal
element in min(𝐶).

Case 3: 𝑋 = {𝑖0 − 1, 𝑖0}. When 𝑖0 + 1 ∉ 𝐷1, following the way as in Case 1, one can see that 𝑤0 (𝐷1)
is a unique minimal element in min(𝐶).

From now on, assume that 𝑖0 + 1 ∈ 𝐷1. We begin by introducing necessary notation. Let

m1 := min{𝑚 ∈ [𝑛 − 1] | [𝑚, 𝑖0 − 1] ⊆ 𝐷1} and m2 := max{𝑚 ∈ [𝑛 − 1] | [𝑖0 + 1, 𝑚] ⊆ 𝐷1}.

And set

𝑝1 := m1 − 1, 𝑝2 := m2 − 𝑖0, 𝑝3 := 𝑖0 − m1, and 𝑝4 := 𝑛 − (m2 + 1).
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Let

◦ w(1) be the longest element of the subgroup𝔖𝐷1∩[𝑝1−1] of𝔖𝑝1 ,
◦ w(2) be the longest element of𝔖𝑝2 ,
◦ w(3) be the longest element of𝔖𝑝3 , and
◦ w(4) be the longest element of the subgroup𝔖𝐷1∩[𝑝4−1] of𝔖𝑝4 .

With this notation, we define w0 to be the permutation given by

w0 (𝑘) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(1) (𝑘) if 𝑘 ∈ [𝑝1],

w(2) (𝑘 − 𝑝1) + (𝑖0 + 1) if 𝑘 ∈ [𝑝1 + 1, 𝑝1 + 𝑝2],

𝑖0 if 𝑘 = 𝑝1 + 𝑝2 + 1,
w(3) (𝑘 − (𝑝1 + 𝑝2 + 1)) + (m1 − 1) if 𝑘 ∈ [𝑝1 + 𝑝2 + 2, 𝑝1 + 𝑝2 + 𝑝3 + 1],
𝑖0 + 1 if 𝑘 = 𝑝1 + 𝑝2 + 𝑝3 + 2,
w(4) (𝑘 − (𝑝1 + 𝑝2 + 𝑝3 + 2)) + (m2 + 1) if 𝑘 ∈ [𝑝1 + 𝑝2 + 𝑝3 + 3, 𝑛] .

It should be remarked that

w0 ([1, 𝑝1]) = [1, m1 − 1],
w0([𝑝1 + 1, 𝑝1 + 𝑝2]) = [𝑖0 + 2, m2 + 1],

w0 (𝑝1 + 𝑝2 + 1) = 𝑖0,

w0 ([𝑝1 + 𝑝2 + 2, 𝑝1 + 𝑝2 + 𝑝3 + 1]) = [m1, 𝑖0 − 1],
w0 (𝑝1 + 𝑝2 + 𝑝3 + 2) = 𝑖0 + 1, and

w0([𝑝1 + 𝑝2 + 𝑝3 + 3, 𝑛]) = [m2 + 2, 𝑛] .

From the definition of w0, it follows that [w0, 𝑠𝑖0 w0]𝐿 ∈ 𝐶; equivalently, w0 ∈ min(𝐶). We claim that
w0 is a unique minimal element in min(𝐶). This can be verified by showing that every minimal element
in min(𝐶) is equal to w0. Let 𝜎0 be a minimal element in min(𝐶). Set

IL := {𝜎0(𝑘) | 1 ≤ 𝑘 < 𝜎−1
0 (𝑖0)},

IC := {𝜎0(𝑘) | 𝜎
−1
0 (𝑖0) < 𝑘 < 𝜎−1

0 (𝑖0 + 1)},
IR := {𝜎0(𝑘) | 𝜎

−1
0 (𝑖0 + 1) < 𝑘 ≤ 𝑛}.

To begin with, we establish the equalities

IL = [m1 − 1] ∪ [𝑖0 + 2, m2 + 1], IC = [m1, 𝑖0 − 1], and IR = [m2 + 2, 𝑛] . (4.3)

These equalities are derived by verifying the following claims.

Claim 1. IC = [m1, 𝑖0 − 1]. Let us show IC ⊆ [m1, 𝑖0 − 1]. First, to prove IC ⊆ [𝑖0 − 1], we assume
that there exists 𝑖 ∈ IC such that 𝑖 ≥ 𝑖0. Let

𝑘1 := max{𝑘 ∈ [𝑛] | 𝜎0(𝑘) ∈ IC and 𝜎0(𝑘) ≥ 𝑖0}.

By the definition of IC, 𝑖0, 𝑖0 + 1 ∉ IC. If 𝑖0 + 2 ∈ IC, then 𝑖0 + 1 ∈ 𝐷1 \ 𝐷2, which contradicts the
assumption that 𝑖0 + 1 ∉ 𝑋 . Since 𝜎0(𝑘1) ∈ IC, it follows that 𝜎0(𝑘1) ≥ 𝑖0 + 3. And, by the choice of 𝑘1,
we have 𝜎0(𝑘1 + 1) ≤ 𝑖0 + 1. Putting these together yields that [𝜎0𝑠𝑘1 , 𝑠𝑖0𝜎0𝑠𝑘1]𝐿

𝐷

 [𝜎0, 𝑠𝑖0𝜎0]𝐿 and

𝜎0𝑠𝑘1 ≺𝑅 𝜎0. This contradicts the minimality of 𝜎0 in min(𝐶); therefore, IC ⊆ [𝑖0 − 1]. Next, to prove
IC ⊆ [m1, 𝑛], we assume that there exists 𝑖 ∈ IC such that 𝑖 < m1. Let

𝑘2 := min{𝑘 ∈ [𝑛] | 𝜎0(𝑘) ∈ IC and 𝜎0(𝑘) < m1}.
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By the choice of 𝑘2, we have 𝜎0(𝑘2)+1 ≤ m1 ≤ 𝜎0(𝑘2−1). In addition, if 𝜎0(𝑘2)+1 = m1 = 𝜎0(𝑘2−1),
then m1−1 ∈ Des𝐿 (𝜎0), which cannot happen by the definition of m1. Therefore, 𝜎0(𝑘2)+1 < 𝜎0(𝑘2−1),
which implies that [𝜎0𝑠𝑘2−1, 𝑠𝑖0𝜎0𝑠𝑘2−1]𝐿

𝐷

 [𝜎0, 𝑠𝑖0𝜎0]𝐿 and 𝜎0𝑠𝑘2−1 ≺𝑅 𝜎0. This contradicts the

minimality of 𝜎0 in min(𝐶). Thus, IC ⊆ [m1, 𝑖0 − 1].
Let us show IC ⊇ [m1, 𝑖0 − 1]. Assume for the sake of contradiction that there exists 𝑖 ∈ [m1, 𝑖0 − 1]

such that 𝑖 ∉ IC. Let j be the maximal element in [m1, 𝑖0 − 1] such that 𝑗 ∉ IC. Since 𝑖0 − 1 ∈ 𝑋 , we
have 𝑖0 − 1 ∈ IC. It follows that 𝑗 < 𝑖0 − 1, so 𝑗 + 1 ∈ [m1, 𝑖0 − 1]. Combining this with the maximality
of j, we have 𝑗 + 1 ∈ IC. And, by the definition of m1, we have 𝑗 ∈ 𝐷1. Putting these together yields
that 𝑗 ∈ IR. Let

𝑘3 := min{𝑘 ∈ [𝑛] | 𝜎0(𝑘) ∈ IR and 𝜎0(𝑘) ≤ 𝑗}.

If 𝜎0(𝑘3 − 1) ≤ 𝜎0(𝑘3) + 1, then 𝜎0(𝑘3 − 1) ≤ 𝑗 + 1 < 𝑖0. So, 𝜎0(𝑘3 − 1) ≠ 𝑖0 + 1, which implies
𝜎0(𝑘3 − 1) ∈ IR. This, together with the minimality of 𝑘3, yields that 𝑗 + 1 ≤ 𝜎0(𝑘3 − 1). It follows
that 𝜎0(𝑘3 − 1) = 𝑗 + 1, which is a contradiction because 𝜎0(𝑘3 − 1) ∈ IR, but 𝑗 + 1 ∈ IC. Therefore,
we have 𝜎0(𝑘3) + 1 < 𝜎0(𝑘3 − 1). In addition, since 𝑗 < 𝑖0 − 1, we have 𝜎0(𝑘3) < 𝑖0 − 1. Putting these
together yields that [𝜎0𝑠𝑘3−1, 𝑠𝑖0𝜎0𝑠𝑘3−1]𝐿

𝐷

 [𝜎0, 𝑠𝑖0𝜎0]𝐿 and 𝜎0𝑠𝑘3−1 ≺𝑅 𝜎0, which contradicts the

minimality of 𝜎0 in min(𝐶). Thus, IC ⊇ [m1, 𝑖0 − 1].

Claim 2. [m1 − 1] ∪ [𝑖0 + 2, m2 + 1] ⊆ IL. By the definition of m2, we have [𝑖0 + 1, m2] ⊆ Des𝐿 (𝜎0).
Since 𝑖0 + 2 ∉ IC, we have [𝑖0 + 2, m2 + 1] ⊆ IL. To prove [m1 − 1] ⊆ IL, suppose that there exists
𝑖 ∈ [m1 − 1] such that 𝑖 ∉ IL. Let

𝑘4 := min{𝑘 ∈ [𝑛] | 𝜎0(𝑘) ∈ [m1 − 1] and 𝜎0(𝑘) ∉ IL}.

Since 𝜎0(𝑘4) ∉ IL and 𝜎0(𝑘4) < m1, we have 𝜎0(𝑘4) ∈ IR. This implies that 𝜎0(𝑘4−1) ∉ IL∪{𝑖0}∪IC.
In addition, the minimality of 𝑘4 gives 𝜎0(𝑘4 − 1) ≥ m1. Since [m1, 𝑖0 − 1] = IC, we have 𝜎0(𝑘4 − 1) ≥
𝑖0 + 1. Putting the above inequalities together, we have

𝜎0(𝑘4) < m1 ≤ 𝑖0 − 1 < 𝑖0 + 1 ≤ 𝜎0(𝑘4 − 1),

and so 𝜎0(𝑘4)+2 < 𝜎0(𝑘4−1). It follows that [𝜎0𝑠𝑘4−1, 𝑠𝑖0𝜎0𝑠𝑘4−1]𝐿
𝐷

 [𝜎0, 𝑠𝑖0𝜎0]𝐿 and 𝜎0𝑠𝑘4−1 ≺𝑅 𝜎0.

This contradicts the minimality of 𝜎0 in min(𝐶); thus, [m1 − 1] ⊆ IL.

Claim 3. [m2 + 2, 𝑛] ⊆ IR. Suppose that there exists 𝑖 ∈ [m2 + 2, 𝑛] such that 𝑖 ∉ IR. Let

𝑘5 := max{𝑘 ∈ [𝑛] | 𝜎0(𝑘) ∉ IR and 𝜎0(𝑘) ∈ [m2 + 2, 𝑛]}.

Since 𝑘5 ∉ IR and 𝜎0(𝑘5) > 𝑖0 + 1, we have 𝜎0(𝑘5) ∈ IL, which implies that 𝜎0(𝑘5 + 1) ∉ IR. By the
maximality of 𝑘5, we have 𝜎0(𝑘5 + 1) ≤ m2 + 1. If 𝜎0(𝑘5 + 1) < m2 + 1, then

𝜎0(𝑘5 + 1) + 1 < m2 + 2 ≤ 𝜎0(𝑘5).

If 𝜎0(𝑘5 + 1) = m2 + 1, then 𝜎−1
0 (m2 + 2) > 𝑘5 + 1 due to the maximality of m2, so 𝜎0(𝑘5) ≠ m2 + 2,

which implies

𝜎0(𝑘5 + 1) + 1 < 𝜎0(𝑘5).

Putting these together with the inequalities 𝜎0(𝑘5) ≥ m2 + 2 > 𝑖0 + 2 yields that [𝜎0𝑠𝑘5 , 𝑠𝑖0𝜎0𝑠𝑘5]𝐿
𝐷



[𝜎0, 𝑠𝑖0𝜎0]𝐿 and 𝜎0𝑠𝑘5 ≺𝑅 𝜎0. This contradicts the minimality of 𝜎0 in min(𝐶); thus, [m2 + 2, 𝑛] ⊆ IR.
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Now, we are ready to show that 𝜎0 = w0. Let

I (1)
L := {𝜎0(𝑘) ∈ IL | 1 ≤ 𝑘 ≤ m1 − 1} and I (2)

L := {𝜎0(𝑘) ∈ IL | m1 ≤ 𝑘 < 𝜎−1
0 (𝑖0)}.

We claim that I (1)
L = [m1 − 1] and I (2)

L = [𝑖0 + 2, m2 + 1]. We may assume that m1 > 1; otherwise, the
claim is obvious. To prove our claim, suppose that there exists 𝑖 ∈ I (1)

L such that 𝑖 ∈ [𝑖0 + 2, m2 + 1].
Then, there exists 1 ≤ 𝑘 < 𝜎−1

0 (𝑖0) − 1 such that 𝜎0(𝑘) ∈ [𝑖0 + 2, m2 + 1] and 𝜎0(𝑘 + 1) ∈ [m1 − 1].

It follows that [𝜎0𝑠𝑘 , 𝑠𝑖0𝜎0𝑠𝑘 ]𝐿
𝐷

 [𝜎0, 𝑠𝑖0𝜎0]𝐿 and 𝜎0𝑠𝑘 ≺𝑅 𝜎0. Again, this contradicts the minimality

of 𝜎0 in min(𝐶), so

I (1)
L = [m1 − 1] and I (2)

L = [𝑖0 + 2, m + 1] . (4.4)

Putting Lemma 2.2, Equation (4.3), Equation (4.4) and the minimality of 𝜎0 together, we conclude that
𝜎0 = w0.

Case 4: 𝑋 = {𝑖0, 𝑖0+1}. Take [𝜎, 𝑠𝑖0𝜎]𝐿 ∈ 𝐶 and let 𝐶 ′ be the equivalence class of [𝜎𝑤0 , (𝑠𝑖0𝜎)
𝑤0]𝐿 .

By mimicking Equation (4.1) and Equation (4.2), we define

𝐷 ′
1 := Des𝐿 (𝜎𝑤0), 𝐷 ′

2 := Des𝐿 ((𝑠𝑖0𝜎)
𝑤0), and 𝑋 ′ := (𝐷 ′

1 ∪ 𝐷 ′
2) \ (𝐷

′
1 ∩ 𝐷 ′

2).

Since 𝐷 ′
1 = {𝑛 − 𝑖 | 𝑖 ∈ 𝐷1} and 𝐷 ′

2 = {𝑛 − 𝑖 | 𝑖 ∈ 𝐷2}, we have

𝑋 ′ = {𝑛 − 𝑖0, (𝑛 − 𝑖0) + 1}.

Following the proof of Case 3, we see that min(𝐶 ′) has a unique minimal element w′
0. And one can

easily see that the map 𝑓 : min(𝐶) → min(𝐶 ′), 𝛾 ↦→ 𝛾𝑤0 is a well-defined bijection and that for
𝛾1, 𝛾2 ∈ min(𝐶), 𝛾1 �𝑅 𝛾2 if and only if 𝑓 (𝛾1) �𝑅 𝑓 (𝛾2). Thus, (w′

0)
𝑤0 is a unique minimal element

in min(𝐶 ′).
Second, we will show that min(𝐶) has a unique maximal element. Recall that we take [𝜎, 𝑠𝑖0𝜎]𝐿 ∈ 𝐶.

Let 𝐶 ′′ be the equivalence class of [𝑠𝑖0𝜎𝑤0, 𝜎𝑤0]𝐿 . Due to the previous arguments, we know that there
is a unique minimal element 𝛾0 in min(𝐶 ′′). One can easily see that the map 𝑔 : min(𝐶) → min(𝐶 ′′),
𝛾 ↦→ 𝛾𝑤0 is a well-defined bijection and that for 𝛾1, 𝛾2 ∈ min(𝐶), 𝛾1 �𝑅 𝛾2 if and only if 𝑔(𝛾1) �𝑅

𝑔(𝛾2). Therefore, 𝛾0𝑤0 is the unique maximal element in min(𝐶).
Finally, we will show that min(𝐶) is a right weak Bruhat interval in (𝔖𝑛, �𝑅). Let 𝜎0 and 𝜎1 be

the minimal and maximal elements in min(𝐶), respectively. Let 𝛾 ∈ [𝜎0, 𝜎1]𝑅. Since Des𝐿 (𝜎0) =
Des𝐿 (𝜎1), we have Des𝐿 (𝛾) = Des𝐿 (𝜎0) by Lemma 2.2. Next, let us examine Des𝐿 (𝑠𝑖0𝛾). Since
Des𝐿 (𝜎0) = Des𝐿 (𝛾), it follows that 𝛾 �𝐿 𝑠𝑖0𝛾. By Lemma 2.1, we have that 𝑠𝑖0𝛾 ∈ [𝑠𝑖0𝜎0, 𝑠𝑖0𝜎1]𝑅.
Since Des𝐿 (𝑠𝑖0𝜎0) = Des𝐿 (𝑠𝑖0𝜎1), we have Des𝐿 (𝑠𝑖0𝛾) = Des𝐿 (𝑠𝑖0𝜎0) by Lemma 2.2. Thus,
𝛾 ∈ min(𝐶). �

Example 4.4. Let 𝐶 ⊆ Int(4) be the equivalence class of [2134, 2143]𝐿 . One sees that

𝐶 = {[2134, 2143]𝐿 , [2314, 2413]𝐿 , [2341, 2431]𝐿}.

So, min(𝐶) = {2134, 2314, 2341} and max(𝐶) = {2143, 2413, 2431} which are equal to [2134, 2341]𝑅
and [2143, 2431]𝑅, respectively. For the readers’ convenience, we draw the left weak Bruhat intervals
in C within the left weak Bruhat graph of𝔖4 on the left-hand side of Figure 1. We also draw the right
weak Bruhat intervals min(𝐶) and max(𝐶) within the right weak Bruhat graph of𝔖4 on the right-hand
side of Figure 1.

Lemma 4.5. The intersection of two right weak Bruhat intervals in 𝔖𝑛 is again a right weak Bruhat
interval.
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Figure 1. The left weak Bruhat intervals in C on (𝔖4, �𝐿) and the right weak Bruhat intervals min(𝐶)
and max(𝐶) on (𝔖4, �𝑅) in Example 4.4.

Proof. It is well known that (𝔖𝑛, �𝑅) is a lattice; that is, every two-element subset {𝛾1, 𝛾2} ⊆ 𝔖𝑛 has
the least upper bound and greatest lower bound (for example, see [6, Section 3.2]). Combining this with
the fact |𝔖𝑛 | < ∞, we derive the desired result. �

The following theorem provides significant information regarding equivalence classes under 𝐷

.

Theorem 4.6. Let C be an equivalence class under 𝐷

. Then min(𝐶) and max(𝐶) are right weak Bruhat

intervals in (𝔖𝑛, �𝑅).

Proof. Note that 𝜎 �𝐿 𝜉𝐶𝜎 for any 𝜎 ∈ min(𝐶) and that max(𝐶) = 𝜉𝐶 · min(𝐶). If we prove that
min(𝐶) is a right weak Bruhat interval, then Lemma 2.1 implies that max(𝐶) is also a right weak Bruhat
interval. So we will only prove that min(𝐶) is a right weak Bruhat interval.

When ℓ(𝜉𝐶) = 0, the assertion follows from Lemma 2.2. From now on, assume that ℓ(𝜉𝐶) ≥ 1. We
will prove the assertion by using mathematical induction on ℓ(𝜉𝐶 ). When ℓ(𝜉𝐶) = 1, the assertion is
true by Lemma 4.3. Let k be an arbitrary positive integer and suppose that the assertion holds for every
equivalence class 𝐶 ∈ 𝒞(𝑛) with ℓ(𝜉𝐶) ≤ 𝑘 . Let 𝐶 ∈ 𝒞(𝑛) with ℓ(𝜉𝐶) = 𝑘 + 1. Set

A := {𝑖 ∈ [𝑛 − 1] | 𝑠𝑖 ∈ [id, 𝜉𝐶 ]𝐿}.

Given 𝑖 ∈ A and 𝜎 ∈ min(𝐶), note that

[𝜎, 𝑠𝑖𝜎]𝐿
𝐷

 [𝜎′, 𝑠𝑖𝜎

′]𝐿 and [𝑠𝑖𝜎, 𝜉𝐶𝜎]𝐿
𝐷

 [𝑠𝑖𝜎

′, 𝜉𝐶𝜎′]𝐿

for all 𝜎′ ∈ min(𝐶). This says that the equivalence classes of [𝜎, 𝑠𝑖𝜎]𝐿 and [𝑠𝑖𝜎, 𝜉𝐶𝜎]𝐿 do not depend
on 𝜎 ∈ min(𝐶). For each 𝑖 ∈ A, we set

𝐸𝑖 := the equivalence class of [𝜎, 𝑠𝑖𝜎]𝐿 ,

𝐸 ′
𝑖 := the equivalence class of [𝑠𝑖𝜎, 𝜉𝐶𝜎]𝐿

for any 𝜎 ∈ min(𝐶). Then, we set

𝐽𝑖 := max(𝐸𝑖) ∩ min(𝐸 ′
𝑖 ) for 𝑖 ∈ A, and 𝐽 :=

⋂
𝑖∈A

𝑠𝑖 · 𝐽𝑖 .

Now, the desired assertion can be achieved by proving the following claims:

(i) min(𝐶) = 𝐽.
(ii) J is a right weak Bruhat interval.
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First, let us prove min(𝐶) = 𝐽. By the definition of 𝐽𝑖 , we have 𝑠𝑖𝜎 ∈ 𝐽𝑖 for all 𝑖 ∈ A and 𝜎 ∈ min(𝐶).
It follows that min(𝐶) ⊆ 𝐽. To prove the opposite inclusion min(𝐶) ⊇ 𝐽, take 𝜎 ∈ 𝐽. By the definition
of J, we have

[𝜎, 𝑠𝑖𝜎]𝐿 ∈ 𝐸𝑖 and [𝑠𝑖𝜎, 𝜉𝐶𝜎]𝐿 ∈ 𝐸 ′
𝑖 for all 𝑖 ∈ A.

And Lemma 2.1 implies that

{𝑠𝑖𝜎 | 𝑖 ∈ A} = {𝛾 ∈ [𝜎, 𝜉𝐶𝜎]𝐿 | 𝜎 ≺c
𝐿 𝛾}.

Putting these together yields that [𝜎, 𝜉𝐶𝜎]𝐿 ∈ 𝐶; therefore, 𝜎 ∈ min(𝐶).
Next, let us prove that J is a right weak Bruhat interval. Due to Lemma 4.5, it suffices to show that

𝑠𝑖 · 𝐽𝑖 is a right weak Bruhat interval for 𝑖 ∈ A. Let us fix 𝑖 ∈ A. Since ℓ(𝜉𝐸𝑖 ) = 1 and ℓ(𝜉𝐸′
𝑖
) = 𝑘 ,

max(𝐸𝑖) and min(𝐸 ′
𝑖 ) are right weak Bruhat intervals by the induction hypothesis. Combining this with

Lemma 4.5 yields that 𝐽𝑖 is a right weak Bruhat interval. In addition, we have 𝑠𝑖𝛾 �𝐿 𝛾 for all 𝛾 ∈ 𝐽𝑖 .
Therefore, by Lemma 2.1, 𝑠𝑖 · 𝐽𝑖 is a right weak Bruhat interval. �

According to Theorem 4.6, every equivalence class C can be expressed as follows:

𝐶 = {[𝛾, 𝜉𝐶𝛾]𝐿 | 𝛾 ∈ [𝜎0, 𝜎1]𝑅},

where 𝜎0 and 𝜎1 represent the minimal and maximal elements in min(𝐶), respectively. In particular,
when C is the equivalence class of Σ𝐿 (𝑃) for 𝑃 ∈ RSP𝑛, we can provide an explicit description of it.

Theorem 4.7. Let 𝑃 ∈ RSP𝑛 and C the equivalence class of Σ𝐿 (𝑃) under 𝐷

. Then

𝐶 = {Σ𝐿 (𝑄) | 𝑄 ∈ RSP𝑛 with sh(𝜏𝑄) = sh(𝜏𝑃)}.

Proof. Let 𝜆/𝜇 = sh(𝜏𝑃). Combining Equation (3.3) with Theorem 3.9 yields that

{Σ𝐿 (𝑄) | 𝑄 ∈ RSP𝑛 with sh(𝜏𝑄) = 𝜆/𝜇} = {[read𝜏 (𝑇𝜆/𝜇), read𝜏 (𝑇
′
𝜆/𝜇)]𝐿 | 𝜏 ∈ DS(𝜆/𝜇)}.

Therefore, for the assertion, we have only to show the equality

𝐶 = {[read𝜏 (𝑇𝜆/𝜇), read𝜏 (𝑇
′
𝜆/𝜇)]𝐿 | 𝜏 ∈ DS(𝜆/𝜇)}.

First, let us show that {[read𝜏 (𝑇𝜆/𝜇), read𝜏 (𝑇
′
𝜆/𝜇

)]𝐿 | 𝜏 ∈ DS(𝜆/𝜇)} ⊆ 𝐶. This can be done by
proving that for 𝜏 ∈ DS(𝜆/𝜇), the map

𝑓𝑃;𝜏 : [read𝜏𝑃 (𝑇𝜆/𝜇), read𝜏𝑃 (𝑇
′
𝜆/𝜇)]𝐿 → [read𝜏 (𝑇𝜆/𝜇), read𝜏 (𝑇

′
𝜆/𝜇)]𝐿

read𝜏𝑃 (𝑇) ↦→ read𝜏 (𝑇) (𝑇 ∈ SYT(𝜆/𝜇))

is a descent-preserving isomorphism. Let us fix 𝜏 ∈ DS(𝜆/𝜇). The definition of 𝜏-reading implies that
for any 𝑇1, 𝑇2 ∈ SYT(𝜆/𝜇),

read𝜏 (𝑇1) �
c
𝐿 read𝜏 (𝑇2) if and only if read𝜏𝑃 (𝑇1) �

c
𝐿 read𝜏𝑃 (𝑇2),

and therefore, 𝑓𝑃;𝜏 is a poset isomorphism. To show that 𝑓𝑃;𝜏 is descent-preserving, choose arbitrary
𝑇 ∈ SYT(𝜆/𝜇) and 𝑖 ∈ Des𝐿 (read𝜏𝑃 (𝑇)). Combining the conditions𝑇 ∈ SYT(𝜆/𝜇) and 𝜏𝑃 ∈ DS(𝜆/𝜇)
with 𝑖 ∈ Des𝐿 (read𝜏𝑃 (𝑇)) yields that 𝑖 + 1 appears weakly above and strictly right of i in T. It follows
that 𝑖 ∈ Des𝐿 (read𝜏 (𝑇)), so Des𝐿 (read𝜏𝑃 (𝑇)) ⊆ Des𝐿 (read𝜏 (𝑇)). In the same manner, one can show
that Des𝐿 (read𝜏 (𝑇)) ⊆ Des𝐿 (read𝜏𝑃 (𝑇)). Therefore, 𝑓𝑃;𝜏 is a descent-preserving isomorphism.
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Next, let us show 𝐶 ⊆ {[read𝜏 (𝑇𝜆/𝜇), read𝜏 (𝑇
′
𝜆/𝜇

)]𝐿 | 𝜏 ∈ DS(𝜆/𝜇)}. In the previous paragraph,
we prove that [read𝜏 (𝑇𝜆/𝜇), read𝜏 (𝑇

′
𝜆/𝜇

)]𝐿 ∈ 𝐶 for any 𝜏 ∈ DS(𝜆/𝜇). This implies that read𝜏 (𝑇
′
𝜆/𝜇

) =
𝜉𝐶 read𝜏 (𝑇𝜆/𝜇), and so it suffices to show that

min(𝐶) ⊆ {read𝜏 (𝑇𝜆/𝜇) | 𝜏 ∈ DS(𝜆/𝜇)}.

Due to Lemma 3.7, this inclusion can be obtained by proving

𝛾 ∈ [read𝜏0 (𝑇𝜆/𝜇), read𝜏1 (𝑇𝜆/𝜇)]𝑅 for any 𝛾 ∈ min(𝐶).

Let 𝛾 ∈ min(𝐶). Since read𝜏0 (𝑇𝜆/𝜇) ∈ min(𝐶), we have Des𝐿 (read𝜏0 (𝑇𝜆/𝜇)) = Des𝐿 (𝛾). In addition, by
the definitions of 𝜏0 and 𝑇𝜆/𝜇, we have read𝜏0 (𝑇𝜆/𝜇) = 𝑤0 (𝛼

c), where 𝛼 = (𝜆1 − 𝜇1, 𝜆2 − 𝜇2, . . . , 𝜆ℓ (𝜆) −

𝜇ℓ (𝜆) ). Putting these equalities together with Lemma 2.2 yields that read𝜏0 (𝑇𝜆/𝜇) �𝑅 𝛾. Similarly, we
have

Des𝐿 (read𝜏1 (𝑇
′
𝜆/𝜇)) = Des𝐿 (𝜉𝐶𝛾) and read𝜏1 (𝑇

′
𝜆/𝜇) = 𝑤0 (𝛽

c)𝑤0,

where 𝛽 = (𝜆t
1 − 𝜇t

1, 𝜆
t
2 − 𝜇t

2, . . . , 𝜆
t
ℓ (𝜆t)

− 𝜇t
ℓ (𝜆t)

). This, together with Lemma 2.2, yields that 𝜉𝐶𝛾 �𝑅

read𝜏1 (𝑇
′
𝜆/𝜇

). Since read𝜏1 (𝑇𝜆/𝜇) �𝐿 read𝜏1 (𝑇
′
𝜆/𝜇

) = 𝜉𝐶 read𝜏1 (𝑇𝜆/𝜇), we have 𝛾 �𝑅 read𝜏1 (𝑇𝜆/𝜇).
Therefore, 𝛾 ∈ [read𝜏0 (𝑇𝜆/𝜇), read𝜏1 (𝑇𝜆/𝜇)]𝑅, as desired. �

Theorem 4.7 tells us that {Σ𝐿 (𝑃) | 𝑃 ∈ RSP𝑛} is closed under 𝐷

 and the equivalence classes inside

it are parametrized by the skew partitions of size n. Given a skew partition 𝜆/𝜇 of size n, let 𝐶𝜆/𝜇 be
the equivalence class parametrized by 𝜆/𝜇; that is,

𝐶𝜆/𝜇 = {Σ𝐿 (𝑃) | 𝑃 ∈ RSP𝑛 with sh(𝜏𝑃) = 𝜆/𝜇}.

Corollary 4.8. With the above notation, we have

{Σ𝐿 (𝑃) | 𝑃 ∈ RSP𝑛} =
⊔

|𝜆/𝜇 |=𝑛

𝐶𝜆/𝜇 (disjoint union).

5. The classification of M𝑃’s for 𝑃 ∈ RSP𝑛

Let 𝑃,𝑄 ∈ RSP𝑛. By combining Proposition 4.1 with Theorem 4.7, we can see that if 𝜏𝑃 and 𝜏𝑄 have
the same shape, then the 𝐻𝑛 (0)-modules M𝑃 and M𝑄 are isomorphic. The purpose of this section is to
demonstrate that the converse of this implication also holds. Let us briefly explain our strategy. First,
we provide both a projective cover and an injective hull of M𝑃 for every 𝑃 ∈ RSP𝑛. We discover that
these modules are completely determined by the shape of 𝜏𝑃 , as demonstrated in Lemma 5.4. Then,
we establish that if 𝜏𝑃 and 𝜏𝑄 have different shapes, M𝑃 and M𝑄 have either nonisomorphic projective
covers or nonisomorphic injective hulls, as proven in Theorem 5.5.

To begin with, we present a brief overview of the background knowledge concerning projective
modules and injective modules of the 0-Hecke algebras. In [11, Proposition 4.1], it was shown that 𝐻𝑛 (0)
is a Frobenius algebra. It is well known that every Frobenius algebra is self injective, and for a finitely
generated module M of a self injective algebra, M is projective if and only if it is injective (for instance,
see [3, Proposition 1.6.2]). In [30], a complete list of non-isomorphic projective indecomposable 𝐻𝑛 (0)-
modules was provided.

In the work [19], it was shown that this list can also be expressed in terms of weak Bruhat interval
modules, specifically as {P𝛼 | 𝛼 |= 𝑛}, where

P𝛼 := B(𝑤0 (𝛼
c), 𝑤0𝑤0 (𝛼)) for 𝛼 |= 𝑛.
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We note that P𝛼/rad P𝛼 is isomorphic to F𝛼, where rad P𝛼 is the radical of P𝛼, the intersection of
maximal submodules of P𝛼.

In the following, we recall the definition of a projective cover and an injective hull. Let M be a finitely
generated 𝐻𝑛 (0)-module. A projective cover of M is a pair (𝑷, 𝑓 ) consisting of a projective 𝐻𝑛 (0)-
module 𝑷 and an 𝐻𝑛 (0)-module epimorphism 𝑓 : 𝑷 → 𝑀 such that ker( 𝑓 ) ⊆ rad(𝑷). An injective
hull of M is a pair (𝑰, 𝜄), where 𝑰 is an injective 𝐻𝑛 (0)-module and 𝜄 : 𝑀 → 𝑰 is an 𝐻𝑛 (0)-module
monomorphism satisfying 𝜄(𝑀) ⊇ soc(𝑰). Here, soc(𝑰) is the socle of 𝑰, the sum of all irreducible
submodules of 𝑰. A projective cover and an injective hull of M always exist, and they are unique up to
isomorphism. For more information, refer to [1, 23].

The projective modules introduced by Huang [18] play an important role in describing the projective
cover and injective hull of M𝑃 for 𝑃 ∈ RSP𝑛. We briefly review these projective modules from the
viewpoint of weak Bruhat interval modules. A generalized composition 𝛂 of n is a formal expression
𝛼 (1) ★ 𝛼 (2) ★ · · · ★ 𝛼 (𝑘) , where 𝛼 (𝑖) |= 𝑛𝑖 for positive integers 𝑛𝑖’s with 𝑛1 + 𝑛2 + · · · + 𝑛𝑘 = 𝑛. For
compositions 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ (𝛼) ) and 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽ℓ (𝛽) ), let

𝛼 · 𝛽 = (𝛼1, 𝛼2, . . . , 𝛼ℓ (𝛼) , 𝛽1, 𝛽2, . . . , 𝛽ℓ (𝛽) ) and 𝛼 � 𝛽 = (𝛼1, 𝛼2, . . . , 𝛼ℓ (𝛼) + 𝛽1, 𝛽2, . . . , 𝛽ℓ (𝛽) ).

For a generalized composition 𝛂 = 𝛼 (1) ★ 𝛼 (2) ★ · · ·★𝛼 (𝑘) , let

𝛂• := 𝛼 (1) · 𝛼 (2) · · · · · 𝛼 (𝑘) , 𝛂� := 𝛼 (1) � 𝛼 (2) � · · · � 𝛼 (𝑘)

and let

𝛂c := (𝛼 (1) )c ★ (𝛼 (2) )c ★ · · ·★ (𝛼 (𝑘) )c, 𝛂r := (𝛼 (𝑘) )r ★ (𝛼 (𝑘−1) )r ★ · · ·★ (𝛼 (1) )r,

and 𝛂c·r := (𝛂c)r. Normally, (𝛂•)
c ≠ (𝛂c)• and (𝛂�)

c ≠ (𝛂c)� for a generalized composition 𝛂. Despite
the potential for confusion, for the sake of brevity, we denote (𝛂•)

c and (𝛂�)
c as 𝛂c

• and 𝛂c
�, respectively.

Then, we define

P𝛂 := B(𝑤0(𝛂
c
•), 𝑤0𝑤0 (𝛂�)).

Huang decomposed P𝛂 into projective indecomposable modules, and thus showed that it is projective.
To be precise, the following lemma was shown.

Lemma 5.1 [18, Theorem 3.3]. For a generalized composition 𝛂 = 𝛼 (1) ★ 𝛼 (2) ★ · · ·★𝛼 (𝑘) of n,

P𝛂 � P𝛼(1) � P𝛼(2) � · · · � P𝛼(𝑘) �
⊕
𝛽∈[𝛂]

P𝛽 ,

where [𝛂] := {𝛼 (1) � 𝛼 (2) � · · · � 𝛼 (𝑘) | � = · or �}.

It is clear from Lemma 5.1 that if 𝛂 and 𝛃 are distinct generalized compositions of n, then P𝛂 and
P𝛃 are nonisomorphic. Let 𝛂 be a generalized composition of n. For 𝜌 ∈ [𝑤0 (𝛂c

�), 𝑤0𝑤0 (𝛂�)]𝐿 , let
Υ𝛂;𝜌 : P𝛂 → B(𝑤0(𝛂c

•), 𝜌) be a C-linear map given by

𝛾 ↦→

{
𝛾 if 𝛾 ∈ [𝑤0 (𝛂c

•), 𝜌]𝐿 ,

0 if 𝛾 ∈ [𝑤0 (𝛂c
•), 𝑤0𝑤0 (𝛂�)]𝐿 \ [𝑤0 (𝛂c

•), 𝜌]𝐿 .

Clearly, Υ𝛂;𝜌 is an 𝐻𝑛 (0)-module epimorphism. In addition, it follows from [20, Lemma 6.2] that
ker(Υ𝛂;𝜌) ⊆ rad(P𝛂). Consequently, we have the following lemma.

Lemma 5.2. [(cf. [20, Lemma 6.2])] For a generalized composition 𝛂 of n and 𝜌 ∈

[𝑤0 (𝛂c
�), 𝑤0𝑤0 (𝛂�)]𝐿 , the pair (P𝛂,Υ𝛂;𝜌) is a projective cover of B(𝑤0(𝛂c

•), 𝜌).
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Let us provide notation and a lemma needed to describe a projective cover and an injective hull of
M𝑃 for 𝑃 ∈ RSP𝑛. For a connected skew partition 𝜆/𝜇 of size n, define

𝛂proj(𝜆/𝜇) := (𝜆1 − 𝜇1, 𝜆2 − 𝜇2, . . . , 𝜆ℓ (𝜆) − 𝜇ℓ (𝜆) ).

And, for a disconnected skew partition 𝜆/𝜇 of size n, define

𝛂proj(𝜆/𝜇) := 𝛂proj(𝜆
(1) /𝜇 (1) ) ★ 𝛂proj(𝜆

(2) /𝜇 (2) ) ★ · · ·★ 𝛂proj(𝜆
(𝑘) /𝜇 (𝑘) ),

where 𝜆/𝜇 = 𝜆 (1) /𝜇 (1) ★ 𝜆 (2) /𝜇 (2) ★ · · · ★ 𝜆 (𝑘) /𝜇 (𝑘) with connected skew partitions 𝜆 (𝑖) /𝜇 (𝑖) ’s (1 ≤

𝑖 ≤ 𝑘).

Lemma 5.3. Let 𝜆/𝜇 be a skew partition of size n.

(1) read𝜏0 (𝑇𝜆/𝜇) = 𝑤0 (𝛂proj(𝜆/𝜇)
c
•).

(2) read𝜏0 (𝑇
′
𝜆/𝜇

) ∈ [𝑤0 (𝛂proj(𝜆/𝜇)
c
�), 𝑤0𝑤0 (𝛂proj(𝜆/𝜇)�)]𝐿 .

Proof. By the definition of 𝛂proj(𝜆/𝜇), the assertion (1) is clear. In addition, one can easily see that
Des𝑅 (read𝜏0 (𝑇

′
𝜆/𝜇

)) = set(𝛂proj(𝜆/𝜇)
c
�). So, by Lemma 2.2, the assertion (2) follows. �

Let 𝑃 ∈ RSP𝑛 and 𝜆/𝜇 = sh(𝜏𝑃). By Theorem 3.9, M𝑃 = B(read𝜏𝑃 (𝑇𝜆/𝜇), read𝜏𝑃 (𝑇
′
𝜆/𝜇

)). Further-
more, by Theorem 4.7, we have an 𝐻𝑛 (0)-module isomorphism

𝑓𝑃 : Mposet(𝜏0) → M𝑃 , read𝜏0 (𝑇) ↦→ read𝜏𝑃 (𝑇) (𝑇 ∈ SYT(𝜆/𝜇)).

Set

𝜂𝑃 := 𝑓𝑃 ◦ Υ𝛂proj (𝜆/𝜇);read𝜏0 (𝑇
′
𝜆/𝜇

) .

Combining Lemma 5.2 and Lemma 5.3 implies that the pair
(
P𝛂proj (𝜆/𝜇) , 𝜂𝑃

)
is a projective cover of M𝑃 .

To find an injective hull of M𝑃 , we note that

read𝜏1 (𝑇𝜆t/𝜇t )𝑤0 = read𝜏0 (𝑇
′
𝜆/𝜇) and read𝜏1 (𝑇

′
𝜆t/𝜇t )𝑤0 = read𝜏0 (𝑇𝜆/𝜇).

Combining these equalities with [19, Theorem 4] yields the following 𝐻𝑛 (0)-module isomorphism:

𝑔1 : T−

θ̂

(
M

poset(𝜏𝜆
t/𝜇t

1 )

)
→ Mposet(𝜏𝜆/𝜇0 )

,

𝛾∗ ↦→ (−1)ℓ (𝛾 read𝜏1 (𝑇
′

𝜆t/𝜇t )
−1)

𝛾𝑤0,

where 𝛾 ∈ [read𝜏1 (𝑇𝜆t/𝜇t ), read𝜏1 (𝑇
′
𝜆t/𝜇t )]𝐿 and 𝛾∗ denotes the dual of 𝛾 with respect to the basis

[read𝜏1 (𝑇𝜆t/𝜇t ), read𝜏1 (𝑇
′
𝜆t/𝜇t )]𝐿 for M

poset(𝜏𝜆
t/𝜇t

1 )
. Set

𝛂inj(𝜆/𝜇) := 𝛂proj(𝜆
t/𝜇t)c·r.

Again, by [19, Theorem 4], we have the 𝐻𝑛 (0)-module isomorphism

𝑔2 : T−

θ̂

(
P𝛂proj (𝜆t/𝜇t)

)
→ P𝛂inj (𝜆/𝜇) ,

𝛾∗ ↦→ (−1)ℓ (𝛾 (𝑤0𝑤0 (𝛂inj (𝜆/𝜇)�))
−1)𝛾𝑤0,
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where 𝛾 ∈ [𝑤0 (𝛂proj(𝜆
t/𝜇t)c

•), 𝑤0𝑤0 (𝛂proj(𝜆
t/𝜇t)�)]𝐿 and 𝛾∗ denotes the dual of 𝛾 with re-

spect to the basis [𝑤0 (𝛂proj(𝜆
t/𝜇t)c

•), 𝑤0𝑤0 (𝛂proj(𝜆
t/𝜇t)�)]𝐿 for P𝛂proj (𝜆t/𝜇t) . Set 𝜂

poset(𝜏𝜆
t/𝜇t

1 )
:=

𝑓
poset(𝜏𝜆

t/𝜇t
1 )

◦Υ𝛂proj (𝜆t/𝜇t);read𝜏0 (𝑇
′

𝜆t/𝜇t )
. As above, the pair

(
P𝛂proj (𝜆t/𝜇t) , 𝜂poset(𝜏𝜆

t/𝜇t
1 )

)
is a projective cover

of M
poset(𝜏𝜆

t/𝜇t
1 )

. And since T−

θ̂
is contravariant,

(
T−

θ̂

(
P𝛂proj (𝜆t/𝜇t)

)
, T−

θ̂

(
𝜂

poset(𝜏𝜆
t/𝜇t

1 )

))
is an injective hull

of T−

θ̂
(M

poset(𝜏𝜆
t/𝜇t

1 )
) (for the definition of T−

θ̂
, see Section 2.4). Consequently, the pair

(
P𝛂inj (𝜆/𝜇) , 𝜄𝑃

)
is

an injective hull of M𝑃 , where

𝜄𝑃 = 𝑔2 ◦ T−

θ̂

(
𝜂

poset(𝜏𝜆
t/𝜇t

1 )

)
◦ 𝑔−1

1 ◦ 𝑓 −1
𝑃 .

To summarize, we can state the following lemma.

Lemma 5.4. Let 𝑃 ∈ RSP𝑛 and 𝜆/𝜇 = sh(𝜏𝑃).

(1)
(
P𝛂proj (𝜆/𝜇) , 𝜂𝑃

)
is a projective cover of M𝑃 .

(2)
(
P𝛂inj (𝜆/𝜇) , 𝜄𝑃

)
is an injective hull of M𝑃 .

Now, we are ready to state the classification of M𝑃’s for 𝑃 ∈ RSP𝑛 up to 𝐻𝑛 (0)-module isomorphism.

Theorem 5.5. Let 𝑃,𝑄 ∈ RSP𝑛. Then

M𝑃 � M𝑄 if and only if sh(𝜏𝑃) = sh(𝜏𝑄).

Proof. The ‘if’ part follows from Proposition 4.1 and Theorem 4.7. To prove the ‘only if’ part, suppose
that M𝑃 � M𝑄. For simplicity, let 𝜆/𝜇 = sh(𝜏𝑃) and 𝜈/𝜅 = sh(𝜏𝑄). By Lemma 5.4, P𝛂proj (𝜆/𝜇) �
P𝛂proj (𝜈/𝜅) and P𝛂inj (𝜆/𝜇) � P𝛂inj (𝜈/𝜅) , and therefore, 𝛂proj(𝜆/𝜇) = 𝛂proj(𝜈/𝜅) and 𝛂inj(𝜆/𝜇) = 𝛂inj(𝜈/𝜅).
Since 𝛂proj(𝜆/𝜇) = 𝛂proj(𝜈/𝜅), the number of boxes in the same row of yd(𝜆/𝜇) and yd(𝜈/𝜅) are the
same. Similarly, since 𝛂inj(𝜆/𝜇) = 𝛂inj(𝜈/𝜅), the number of boxes in the same column of yd(𝜆/𝜇) and
yd(𝜈/𝜅) are same. Thus, we have 𝜆/𝜇 = 𝜈/𝜅. �

Note that Theorem 5.5 is the classification theorem concerning the class of 𝐻𝑛 (0)-modules {M𝑃 |

𝑃 ∈ RSP𝑛}. Consequently, a natural question arises: can this theorem be extended to the classes
{M𝑃 | 𝑃 ∈ RP𝑛} or {M𝑃 | 𝑃 ∈ SP𝑛}? This question appears to be highly nontrivial, as it involves the
investigation of a broader set of modules. As a specific instance, let us examine the characterization
of posets 𝑄 ∈ RP𝑛 such that M𝑄 � M𝑃 when 𝑃 ∈ RSP𝑛. This problem can be readily addressed by
assuming the validity of the following conjecture due to Stanley.

Conjecture 5.6 [34, p. 81]. For 𝑃 ∈ P𝑛, if 𝐾𝑃 is symmetric, then 𝑃 ∈ SP𝑛.

In more detail, by combining Stanley’s conjecture with Theorem 2.9(1), we can deduce that ch([M𝑄])

is not symmetric, and as a consequence, M𝑄 � M𝑃 unless 𝑄 ∈ SP𝑛. This observation leads to the
following conclusion from Theorem 5.5:

{𝑄 ∈ RP𝑛 | M𝑄 � M𝑃} = {𝑄 ∈ RSP𝑛 | sh(𝜏𝑃) = sh(𝜏𝑄)}.

If the shape of 𝜏𝑃 is non-skew, it is indeed possible to derive this conjectural identity without depending
on the validity of Stanley’s conjecture (see Proposition 7.1). However, tackling the general case remains
beyond our current comprehension. For further discussions on classifications, refer to Section 7.1.
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6. A characterization of regular Schur labeled skew shape posets P and distinguished filtrations
of M𝑃

In this section, we prove that a poset 𝑃 ∈ P𝑛 is a regular Schur labeled skew shape poset if and only if
Σ𝐿 (𝑃) is dual plactic closed (Theorem 6.4). Then, by considering the dual plactic closedness of Σ𝐿 (𝑃),
we construct filtrations

0 =: 𝑀0 � 𝑀1 � 𝑀2 � · · · � 𝑀𝑙 := M𝑃

such that ch([𝑀𝑘/𝑀𝑘−1]) is a Schur function for all 1 ≤ 𝑘 ≤ 𝑙 (Theorem 6.7).

6.1. A characterization of regular Schur labeled skew shape posets

Let 𝑃 ∈ P𝑛 and let Σ𝑅 (𝑃) := {𝛾−1 | 𝛾 ∈ Σ𝐿 (𝑃)}. In [27, Fact 1], it was stated that if 𝑃 ∈ SP𝑛,
then Σ𝑅 (𝑃) is plactic-closed. This, however, is not true. For instance, considering the case where

𝜆/𝜇 = (3, 2)/(2) and 𝜏 = 2
3 1

∈ S(𝜆/𝜇), we have

Σ𝑅 (poset(𝜏)) = {312, 231, 321},

which is not plactic-closed.
The purpose of this subsection is to prove that 𝑃 ∈ RSP𝑛 if and only if Σ𝑅 (𝑃) is plactic-closed. We

begin by providing background knowledge relevant to the plactic congruence. For instance, see [6, 14,
31, 35].

For 𝜎 ∈ 𝔖𝑛 and 1 < 𝑖 < 𝑛, we write 𝜎
1
� 𝜎𝑠𝑖 if

𝜎(𝑖) < 𝜎(𝑖 − 1) < 𝜎(𝑖 + 1) or 𝜎(𝑖 + 1) < 𝜎(𝑖 − 1) < 𝜎(𝑖).

And we write 𝜎
2
� 𝜎𝑠𝑖−1 if

𝜎(𝑖 − 1) < 𝜎(𝑖 + 1) < 𝜎(𝑖) or 𝜎(𝑖) < 𝜎(𝑖 + 1) < 𝜎(𝑖 − 1).

The Knuth equivalence (or plactic congruence) is an equivalence relation
𝐾
� on𝔖𝑛 defined by 𝜎

𝐾
� 𝜌 if

and only if there are 𝛾1, 𝛾2, . . . , 𝛾𝑘 ∈ 𝔖𝑛 such that

𝜎 = 𝛾1
𝑎1
� 𝛾2

𝑎2
� · · ·

𝑎𝑘−1
� 𝛾𝑘 = 𝜌,

where 𝑎1, 𝑎2, . . . 𝑎𝑘−1 ∈ {1, 2}. A subset S of𝔖𝑛 is called plactic-closed if for any 𝜎 ∈ 𝑆, every 𝜌 ∈ 𝔖𝑛

with 𝜌
𝐾
� 𝜎 is also an element of S; in other words, S is a union of equivalence classes under

𝐾
�.

The dual Knuth equivalence (or dual plactic congruence) is an equivalence relation
𝐾 ∗

� on𝔖𝑛 defined
by

𝜎
𝐾 ∗

� 𝜌 if and only if 𝜎−1 𝐾
� 𝜌−1.

A subset S of 𝔖𝑛 is called dual plactic-closed if for any 𝜎 ∈ 𝑆, every 𝜌 ∈ 𝔖𝑛 with 𝜌
𝐾 ∗

� 𝜎 is also an
element of S; in other words, S is a union of equivalence classes under

𝐾 ∗

� .
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The Knuth and dual Knuth equivalences are closely related to the Robinson–Schensted correspon-
dence, which is a one-to-one correspondence between 𝔖𝑛 and

⋃
𝜆𝑛 SYT(𝜆) × SYT(𝜆). For 𝜎 ∈ 𝔖𝑛,

we use the notation (ins(𝜎), rec(𝜎)) to represent the image of 𝜎 under this bijection. We call ins(𝜎)
and rec(𝜎) as the insertion tableau and recording tableau of 𝜎, respectively. It is well known that
ins(𝜎) = rec(𝜎−1) and

𝜎
𝐾
� 𝜌 if and only if ins(𝜎) = ins(𝜌) for 𝜎, 𝜌 ∈ 𝔖𝑛.

Putting these together, one can easily derive that

𝜎
𝐾 ∗

� 𝜌 if and only if rec(𝜎) = rec(𝜌) for 𝜎, 𝜌 ∈ 𝔖𝑛.

For a subset S of 𝔖𝑛, S is plactic-closed if and only if {𝛾−1 | 𝛾 ∈ 𝑆} is dual plactic-closed. Based
on this fact, we will consider the claim that Σ𝑅 (𝑃) is plactic-closed and the claim that Σ𝐿 (𝑃) is dual
plactic-closed to be identical.

Let us collect the terminologies and lemmas necessary for the proof of the main result of this
subsection. Let T be a standard Young tableau of skew shape. Denote by Rect(𝑇) the rectification of T
– that is, the unique standard Young tableau of partition shape obtained by applying jeu de taquin slides
to T (see [14, Section 1.2]). Then

Rect(𝑇) = ins(read𝜏0 (𝑇)𝑤0) for any 𝑇 ∈ SYT(𝜆/𝜇). (6.1)

Define 𝑇 t to be the tableau obtained from T by flipping it along its main diagonal.

Lemma 6.1. Let 𝜆/𝜇 be a skew partition and 𝑇 ∈ SYT(𝜆/𝜇). Then

ins(read𝜏 (𝑇)) = Rect(𝑇)t for any 𝜏 ∈ DS(𝜆/𝜇).

Proof. It is well known that

ins(𝜎𝑤0) = ins(𝜎)
t for any 𝜎 ∈ 𝔖𝑛 (6.2)

(for instance, see [31, Theorems 3.2.3]). Therefore, due to Equation (6.1), the assertion can be verified
by showing that

ins(read𝜏 (𝑇)) = ins(read
𝜏
𝜆/𝜇
0

(𝑇)) for any 𝜏 ∈ DS(𝜆/𝜇). (6.3)

Applying Taşkin’s result [36, Proposition 3.2.5] to the weak order3 on SYT𝑛 given in [36, Definition
3.1.3], we derive that for 𝜎, 𝜌 ∈ 𝔖𝑛 with 𝜎 �𝑅 𝜌,

ins(𝜎) = ins(𝜌) or sh(ins(𝜌)) ⊳ sh(ins(𝜎)). (6.4)

Here, � denotes the dominance order on the set of partitions of n. And, Lemma 3.7 says that

read
𝜏
𝜆/𝜇
0

(𝑇) �𝑅 read𝜏 (𝑇) �𝑅 read
𝜏
𝜆/𝜇
1

(𝑇) for 𝜏 ∈ DS(𝜆/𝜇). (6.5)

Note that

ins(read
𝜏
𝜆t/𝜇t
0

(𝑇 t)𝑤0) =
𝐸𝑞.(6.1)

Rect(𝑇 t) = Rect(𝑇)t =
𝐸𝑞.(6.1)

ins(read
𝜏
𝜆/𝜇
0

(𝑇)𝑤0)
t.

3This order was originally defined in [29, 2.5.1], where it is called the induced Duflo order.
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Since read
𝜏
𝜆/𝜇
1

(𝑇) = read
𝜏
𝜆t/𝜇t
0

(𝑇 t)𝑤0, it follows from Equation (6.2) that

ins(read
𝜏
𝜆/𝜇
1

(𝑇)) = ins(read
𝜏
𝜆/𝜇
0

(𝑇)). (6.6)

Now, the equality in Equation (6.3) is obtained by combining Equation (6.4), Equation (6.5) and
Equation (6.6). �

We introduce two important results due to Malvenuto [27].
Lemma 6.2 [27, Theorem 1]. For 𝑃 ∈ P𝑛, if Σ𝑅 (𝑃) is plactic-closed, then P is a Schur labeled skew
shape poset.

For 𝑃 ∈ P𝑛, we say a subposet Q of P is convex if Q satisfies the property that for any 𝑥 ∈ 𝑃 if there
exist 𝑦1, 𝑦2 ∈ 𝑄 such that 𝑦1 �𝑃 𝑥 �𝑃 𝑦2, then 𝑥 ∈ 𝑄. For a subposet 𝑄 = {𝑖1 < 𝑖2 < · · · < 𝑖 |𝑄 | } of
𝑃 ∈ P𝑛, the standardization of Q, denoted by st(𝑄), is the poset obtained from Q by replacing 𝑖 𝑗 with j
for 1 ≤ 𝑗 ≤ |𝑄 |.
Lemma 6.3 [27, Corollary 1]. Let 𝑃 ∈ P𝑛 such that Σ𝑅 (𝑃) is plactic-closed. For any convex subposet
Q of P, Σ𝑅 (st(𝑄)) is plactic-closed.

Now, we are ready to prove the main result of this subsection.
Theorem 6.4. For 𝑃 ∈ P𝑛, P is a regular Schur labeled skew shape poset if and only if Σ𝐿 (𝑃) is dual
plactic-closed.
Proof. To establish the ‘only if’ part, let 𝑃 ∈ RSP𝑛 and 𝜆/𝜇 = sh(𝜏𝑃). Due to Lemma 3.2, we have that

Σ𝐿 (𝑃) = read𝜏𝑃 (SYT(𝜆/𝜇)).

We claim that read𝜏𝑃 (SYT(𝜆/𝜇)) is dual plactic-closed.
As mentioned in [15, Property A], one can easily see that read𝜏0 (SYT(𝜆/𝜇)) is dual plactic-closed.4

In addition, by Lemma 6.1, we have

ins(read𝜏𝑃 (𝑇)) = ins(read𝜏0 (𝑇)) for all 𝑇 ∈ SYT(𝜆/𝜇). (6.7)

Therefore, given 𝑇 ∈ SYT(𝜆/𝜇), if we show that

read𝜏𝑃 (𝑇)
𝐾 ∗

� read𝜏𝑃 (𝑈) for all 𝑈 ∈ SYT(𝜆/𝜇) with read𝜏0 (𝑇)
𝐾 ∗

� read𝜏0 (𝑈),

then we have

{𝛾 ∈ 𝔖𝑛 | 𝛾
𝐾 ∗

� read𝜏𝑃 (𝑇)} ⊆ read𝜏𝑃 (SYT(𝜆/𝜇)).

Let𝑇,𝑈 ∈ SYT(𝜆/𝜇) with read𝜏0 (𝑇)
𝐾 ∗

� read𝜏0 (𝑈). Since read𝜏0 (SYT(𝜆/𝜇)) is dual plactic-closed,
there exist standard Young tableaux 𝑇0 := 𝑇, 𝑇1, . . . , 𝑇𝑙 := 𝑈 of shape 𝜆/𝜇 such that for any 1 ≤ 𝑘 ≤ 𝑙,

read𝜏0 (𝑇𝑘 )
𝐾 ∗

� read𝜏0 (𝑇) and read𝜏0 (𝑇𝑘 ) = 𝑠𝑖𝑘 read𝜏0 (𝑇𝑘−1) for some 𝑖𝑘 ∈ [𝑛 − 1] .

Combining Equation (6.7) with the equality sh(ins(read𝜏0 (𝑇𝑘 ))) = sh(ins(read𝜏0 (𝑇))), we have

sh(ins(read𝜏𝑃 (𝑇𝑘 ))) = sh(ins(read𝜏𝑃 (𝑇))) for all 1 ≤ 𝑘 ≤ 𝑙. (6.8)

4[15, Property A] is stated as ‘For any skew diagram D the collection 𝑊 −1 (𝐷) is a union of Knuth equivalence classes’.
Following the notation of this paper, 𝑊 −1 (yd(𝜆/𝜇)) = {(read𝜏0 (𝑇 )𝑤0)

−1 | 𝑇 ∈ SYT(𝜆/𝜇) }. So, [15, Property A] says that
the set read𝜏0 (SYT(𝜆/𝜇))𝑤0 := {read𝜏0 (𝑇 )𝑤0 | 𝑇 ∈ SYT(𝜆/𝜇) } is dual plactic-closed. Although read𝜏0 (SYT(𝜆/𝜇)) is
different from read𝜏0 (SYT(𝜆/𝜇))𝑤0, the dual plactic closedness of read𝜏0 (SYT(𝜆/𝜇)) can be proved in the same way as that
of read𝜏0 (SYT(𝜆/𝜇))𝑤0.
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Note that Equation (6.4) is equivalent to the statement that for 𝜎, 𝜌 ∈ 𝔖𝑛 with 𝜎 �𝐿 𝜌,

𝜎
𝐾 ∗

� 𝜌 or sh(rec(𝜌)) ⊳ sh(rec(𝜎)). (6.9)

Putting Equation (6.8) together with Equation (6.9), we have read𝜏𝑃 (𝑇)
𝐾 ∗

� read𝜏𝑃 (𝑈). Since we chose
arbitrary 𝑇,𝑈 ∈ SYT(𝜆/𝜇), we conclude that read𝜏𝑃 (SYT(𝜆/𝜇)) is dual plactic-closed.

To establish the ‘if’ part of the assertion, we prove the contraposition; that is, if P is not a regular
Schur labeled skew shape poset, then Σ𝐿 (𝑃) is not dual plactic-closed. If P is not a Schur labeled skew
shape poset, then Lemma 6.2 says that Σ𝐿 (𝑃) is not dual plactic-closed. So, we assume that 𝑃 ∈ P𝑛 is
a non-regular Schur labeled skew shape poset.

One can easily check that if 𝑛 = 1, 2, 3, then Σ𝐿 (𝑃) is not dual plactic-closed. Suppose 𝑛 > 3. Then,
by Lemma 3.6, 𝜏𝑃 is a non-distinguished Schur labeling. This implies that there exists 𝑘 ∈ Z>0 such
that cnt𝑘 (𝜏𝑃) is not filled with consecutive integers. Let 𝑘0 be the minimum among these integers and
let 𝑚0 be the minimum element among 𝑚 ∈ cnt𝑘0 (𝜏𝑃) such that 𝑚 + 1 ∉ cnt𝑘0 (𝜏𝑃). Since cnt𝑘0 (𝜏𝑃) is
not filled with consecutive integers, we can choose

𝑚1 = min{𝑚 ∈ cnt𝑘0 (𝜏𝑃) | 𝑚 > 𝑚0}.

Since 𝑚0 and 𝑚1 are in the same connected component of the Schur labeling 𝜏𝑃 and 𝑚0 < 𝑚1, we
can take 𝑚−1 ∈ cnt𝑘0 (𝜏𝑃) such that 𝑚−1 < 𝑚1 and 𝑚−1 is adjacent to 𝑚1. Here, the sentence ‘𝑚−1 is
adjacent to 𝑚1’ means that the box containing 𝑚−1 and that containing 𝑚1 share an edge. We note that
𝑚−1 can be 𝑚0. Because of the choice of 𝑚1, we have 𝑚−1 < 𝑚0 + 1 < 𝑚1. Let Q be the subposet of P
whose underlying set is {𝑚−1, 𝑚0 + 1, 𝑚1}. In P, 𝑚1 covers 𝑚−1 and 𝑚0 + 1 is incomparable with both
𝑚1 and 𝑚−1. This implies that Q is a convex subposet of P. In addition, since 𝑚−1 < 𝑚0 + 1 < 𝑚1, we
have Σ𝐿 (st(𝑄)) = {123, 132, 213} or Σ𝐿 (st(𝑄)) = {312, 231, 321}. Thus, Σ𝐿 (st(𝑄)) is not dual plactic
closed. Combining this with Lemma 6.3 yields that Σ𝐿 (𝑃) is not dual plactic closed, as desired. �

6.2. Distinguished filtrations of M𝑃 for 𝑃 ∈ RSP𝑛

We begin by introducing the definition of distinguished filtrations.

Definition 6.5. Let B = {B𝛼 | 𝛼 ∈ 𝐼} be a linearly independent subset of QSym𝑛 with the property that
B𝛼 is F-positive for all 𝛼 ∈ 𝐼, where I is an index set. Given a finite dimensional 𝐻𝑛 (0)-module M, a
distinguished filtration of M with respect to B is an 𝐻𝑛 (0)-submodule series of M

0 =: 𝑀0 ⊂ 𝑀1 ⊂ 𝑀2 ⊂ · · · ⊂ 𝑀𝑙 := 𝑀

such that for all 1 ≤ 𝑘 ≤ 𝑙, ch([𝑀𝑘/𝑀𝑘−1]) = B𝛼 for some 𝛼 ∈ 𝐼.

As seen in Example 6.6, a distinguished filtration of M with respect to B may not exist even if
ch([𝑀]) expands positively in B. This is because the category 𝐻𝑛 (0)-mod is neither semisimple nor
representation-finite when 𝑛 > 3 ([10, 11]).

Example 6.6. Let B = {𝑠𝜆 | 𝜆  4}. For 𝐵 = {2314, 1423, 3214, 2413, 1432, 3412}, let M be the
𝐻4 (0)-module with underlying space C𝐵 and with the 𝐻4(0)-action defined by

𝜋𝑖 · 𝛾 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛾 if 𝑖 ∈ Des𝐿 (𝛾),
0 if 𝑖 ∉ Des𝐿 (𝛾) and 𝑠𝑖𝛾 ∉ 𝐵,

𝑠𝑖𝛾 if 𝑖 ∉ Des𝐿 (𝛾) and 𝑠𝑖𝛾 ∈ 𝐵.
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The 𝐻4 (0)-action on 𝐵 ∪ {0} is illustrated in the following figure:

3412

24133214 1432

2314 1423

𝜋2

𝜋1 , 𝜋2 𝜋1 , 𝜋3 𝜋2 , 𝜋3

𝜋1 𝜋3

𝜋2

𝜋2 𝜋3 𝜋2𝜋1

0
𝜋1 , 𝜋3

0

𝜋3

0

𝜋1

One sees that

ch([𝑀]) = 𝑠 (3,1) + 𝑠 (2,1,1) = (𝐹(3,1) + 𝐹(2,2) + 𝐹(1,3) ) + (𝐹(2,1,1) + 𝐹(1,2,1) + 𝐹(1,1,2) ).

So, if there exists a distinguished filtration of M with respect to B, then there exists a three-dimensional
𝐻4 (0)-submodule N of M such that ch([𝑁]) is equal to either 𝑠 (3,1) or 𝑠 (2,1,1) . We claim that such a
submodule N does not exist.

Note that

𝑀 = C{2314 − 3214, 1423 − 1432, 2413, 3412} ⊕ C{3214} ⊕ C{1432}. (6.10)

Here, C{3214} and C{1432} are irreducible. And C{2314 − 3214, 1423 − 1432, 2413, 3412} is inde-
composable since it is isomorphic to a submodule of the injective indecomposable module P(1,2,1) .
Therefore, Equation (6.10) is a decomposition of M into indecomposables. The 𝐻4(0)-action on
{2314 − 3214, 1423 − 1432, 2413, 3412, 3214, 1432} ∪ {0} is illustrated in the following figure:

3412

24133214 1432

2314 − 3214 1423 − 1432

0
𝜋2

0
𝜋2

𝜋2

𝜋1 , 𝜋2 𝜋1 , 𝜋3 𝜋2 , 𝜋3

𝜋1 𝜋3

𝜋2

𝜋3 𝜋1

0
𝜋1 , 𝜋3

0
𝜋3

0
𝜋1

⊕ ⊕

The injective hulls ofC{2314−3214, 1423−1432, 2413, 3412},C{3214} andC{1432} are P(1,2,1) , P(1,3)
and P(3,1) , respectively. This implies that the socle of M is C{3412} ⊕ C{3214} ⊕ C{1432}. It follows
that for every three-dimensional submodule N of M, 1 ≤ dim soc(𝑁) ≤ 3. We list all three-dimensional
submodules N of M in Table 1. Based on this, we conclude that there are no 𝐻4 (0)-submodules N of M
such that ch([𝑁]) = 𝑠 (3,1) or 𝑠 (2,1,1) .

Let 𝑓 ∈ QSym𝑛 and B = {B𝛼 | 𝛼 ∈ 𝐼} be the linearly independent set given in Definition 6.5. When
f expands positively in B, that is,

𝑓 =
∑
𝛼∈𝐼

𝑐𝛼B𝛼 (𝑐𝛼 ∈ Z≥0), (6.11)
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Table 1. The complete list of three-dimensional submodules of M in Example 6.6..

Three-dimensional submodules N of M dim soc(𝑁 ) ch( [𝑁 ])

C{3214, 1432, 3412} 3 𝐹(3,1) + 𝐹(1,3) + 𝐹(1,2,1)
C{3214, 1423 − 1432 − 2413, 3412} 2 𝐹(3,1) + 𝐹(1,1,2) + 𝐹(1,2,1)
C{3214, 2314 − 3214 − 2413, 3412} 2 𝐹(3,1) + 𝐹(2,1,1) + 𝐹(1,2,1)
C{3214, 2413, 3412} 2 𝐹(3,1) + 𝐹(2,2) + 𝐹(1,2,1)
C{1432, 1423 − 1432 − 2413, 3412} 2 𝐹(1,3) + 𝐹(1,1,2) + 𝐹(1,2,1)
C{1432, 2314 − 3214 − 2413, 3412} 2 𝐹(1,3) + 𝐹(2,1,1) + 𝐹(1,2,1)
C{1432, 2413, 3412} 2 𝐹(1,3) + 𝐹(2,2) + 𝐹(1,2,1)
C{2314 − 3214, 2413, 3412} 1 𝐹(2,1,1) + 𝐹(2,2) + 𝐹(1,2,1)
C{1423 − 1432, 2413, 3412} 1 𝐹(1,1,2) + 𝐹(2,2) + 𝐹(1,2,1)

finding an 𝐻𝑛 (0)-module M such that

(C1) ch([𝑀]) = 𝑓 ,
(C2) it is not a direct sum of irreducible modules, yet it possesses a combinatorial model that can be

effectively handled, and
(C3) it has a distinguished filtration with respect to B
is a very important problem in the sense that this filtration can be considered as a nice representation
theoretic interpretation of Equation (6.11).

In this subsection, we focus on the above problem in the case where B is S := {𝑠𝜆 | 𝜆  𝑛} and
𝑓 = 𝑠𝜆/𝜇 for a skew partition 𝜆/𝜇 of size n. Note that for all 𝑃 ∈ RSP𝑛 with sh(𝜏𝑃) = 𝜆/𝜇, M𝑃 satisfies
(C1) and (C2) because ch([M𝑃]) = 𝑠𝜆/𝜇 by Theorem 2.9(2) and it has a combinatorial model Σ𝐿 (𝑃).
In the following, we show that M𝑃 satisfies (C3).

Theorem 6.7. For every 𝑃 ∈ RSP𝑛, M𝑃 has a distinguished filtration with respect to S .

Proof. To begin with, we choose any total order � on SYT𝑛 subject to the condition that

𝑇 � 𝑆 whenever sh(𝑇) ⊳ sh(𝑆). (6.12)

Write {rec(𝛾) | 𝛾 ∈ Σ𝐿 (𝑃)} as

{𝑇1 � 𝑇2 � · · · � 𝑇𝑙}.

For 0 ≤ 𝑘 ≤ 𝑙, set

𝐵𝑘 := {𝛾 ∈ 𝔖𝑛 | rec(𝛾) = 𝑇𝑖 for some 1 ≤ 𝑖 ≤ 𝑘}.

It is clear that ∅ = 𝐵0 ⊂ 𝐵1 ⊂ 𝐵2 ⊂ · · · ⊂ 𝐵𝑙 . And, by Theorem 6.4, we have 𝐵𝑙 = Σ𝐿 (𝑃). We claim that

0 = C𝐵0 ⊂ C𝐵1 ⊂ C𝐵2 ⊂ · · · ⊂ C𝐵𝑙 = M𝑃 (6.13)

is a distinguished filtration of M𝑃 with respect to S .
First, we show that for 1 ≤ 𝑘 ≤ 𝑙,

𝜋𝑖 · 𝛾 ∈ 𝐵𝑘 ∪ {0} for all 𝑖 ∈ [𝑛 − 1] and 𝛾 ∈ 𝐵𝑘 .

Take any 𝑖 ∈ [𝑛 − 1] and 𝛾 ∈ 𝐵𝑘 . If 𝜋𝑖 · 𝛾 = 0 or 𝛾, then there is nothing to prove. Assume that
𝜋𝑖 · 𝛾 = 𝑠𝑖𝛾. Then, by the definition of 𝐻𝑛 (0)-action on M𝑃 , we have 𝛾 �𝐿 𝑠𝑖𝛾. Combining this
inequality with Equation (6.9) yields that

𝛾
𝐾 ∗

� 𝑠𝑖𝛾 or sh(rec(𝑠𝑖𝛾)) ⊳ sh(rec(𝛾)).

This implies that 𝑠𝑖𝛾 ∈ 𝐵𝑘 , as desired.
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Next, we show that the filtration given in Equation (6.13) is distinguished with respect to S . For
1 ≤ 𝑘 ≤ 𝑙, {𝛾+𝑀𝑘−1 | 𝛾 ∈ 𝐵𝑘 \𝐵𝑘−1} is a basis for 𝑀𝑘/𝑀𝑘−1 and 𝐵𝑘 \𝐵𝑘−1 is an equivalence class under
𝐾 ∗

� . It follows that ch([𝑀𝑘/𝑀𝑘−1]) is a Schur function; more precisely, ch([𝑀𝑘/𝑀𝑘−1]) = 𝑠sh(𝑇𝑘 ) t . �

Example 6.8. Let 𝑃 = poset(𝜏 (4,2,1)/(2,1)
0 ). Following the method presented in the proof of Theorem

6.7, we will construct two distinguished filtrations of M𝑃 with respect to {𝑠𝜆 | 𝜆  4} by choosing two
distinct total orders on SYT4.

Note that {rec(𝛾) | 𝛾 ∈ Σ𝐿 (𝑃)} is given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑄1 :=

1
2
3
4

, 𝑄2 :=
1 3
2
4

, 𝑄3 :=
1 4
2
3

, 𝑄4 :=
1 3
2 4

, 𝑄5 :=
1 3 4
2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
and sh(𝑄1) ⊳ sh(𝑄2) = sh(𝑄3) ⊳ sh(𝑄4) ⊳ sh(𝑄5). Choose a total order �1(resp. �2) on SYT4 satisfying
both Equation (6.12) and 𝑄2 �1 𝑄3 (resp. 𝑄3 �2 𝑄2). For 1 ≤ 𝑘 ≤ 5, let

𝐵′
𝑘 := {𝛾 ∈ 𝔖4 | rec(𝛾) = 𝑄𝑘 }.

When we use �1, we let

𝐵𝑘 :=
⊔

1≤𝑙≤𝑘

𝐵′
𝑙 for 0 ≤ 𝑘 ≤ 5,

and when we use �2, we let

𝐵𝑘 :=
⊔

1≤𝑙≤𝑘

𝐵′
𝑙 for 𝑘 = 0, 1, 3, 4, 5 and 𝐵2 := 𝐵′

1 � 𝐵′
3.

Figure 2. The 𝐻4(0)-action on the basis Σ𝐿 (𝑃) = [2134, 4321]𝐿 for M𝑃 and the sets 𝐵′
𝑘 (1 ≤ 𝑘 ≤ 5)

in Example 6.8.
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Then

0 = C𝐵0 ⊂ C𝐵1 ⊂ C𝐵2 ⊂ C𝐵3 ⊂ C𝐵4 ⊂ C𝐵5 = M𝑃

is the desired distinguished filtration of M𝑃 with respect to {𝑠𝜆 | 𝜆  4}.
For the readers’ convenience, we draw the 𝐻4 (0)-action on the basis Σ𝐿 (𝑃) = [2134, 4321]𝐿 for M𝑃

and the sets 𝐵′
𝑘 (1 ≤ 𝑘 ≤ 5) in Figure 2.

7. Further avenues

In this section, we discuss future directions regarding the classification problem, the decomposition
problem, and how to recover M𝑃 for 𝑃 ∈ RSP𝑛 from a module of the generic Hecke algebra 𝐻𝑛 (𝑞) by
specializing q to 0.

7.1. The classification problem

In Theorem 5.5, we successfully classify M𝑃 for 𝑃 ∈ RSP𝑛. To be precise, we show that for 𝑃, 𝑄 ∈ RSP𝑛,

M𝑃 � M𝑄 if and only if sh(𝜏𝑃) = sh(𝜏𝑄). (7.1)

Recall that RSP𝑛 = RP𝑛 ∩ SP𝑛. Hence, it would be natural to consider the classification problem for
{M𝑃 | 𝑃 ∈ SP𝑛} and {M𝑃 | 𝑃 ∈ RP𝑛}.

7.1.1. A remark on the classification problem for {M𝑃 | 𝑃 ∈ SP𝑛}

Since the notion ‘the shape of 𝜏𝑃’ is available for 𝑃 ∈ SP𝑛, one may expect that the classification given in
Equation (7.1) can be extended to {M𝑃 | 𝑃 ∈ SP𝑛}. Unfortunately, this expectation turns out to be false.

Let

𝜏1 :=
2 1

4 3
, 𝜏2 :=

4 2
3 1

and 𝜏3 :=
4 1

3 2
.

Then Mposet(𝜏𝑖) (𝑖 = 1, 2, 3) is decomposed into indecomposables as follows:

Mposet(𝜏1) � P(4) ⊕ P(2,2) ,

Mposet(𝜏2) � F(1,2,1) ⊕ B(4213, 4312) ⊕ F(3,1) ⊕ F(2,2) ⊕ F(4) ,

Mposet(𝜏3) � F(1,2,1) ⊕ B(4213, 4312) ⊕ B(2431, 3421) ⊕ F(4) ,

where B(4213, 4312) and B(2431, 3421) are 2-dimensional indecomposable modules. These decompo-
sitions show that Mposet(𝜏1) , Mposet(𝜏2) and Mposet(𝜏3) are pairwise non-isomorphic although all 𝜏poset(𝜏𝑖) ’s
have the same shape.

7.1.2. A conjecture on the classification problem for {M𝑃 | 𝑃 ∈ RP𝑛}

Note that for 𝑃 ∈ RP𝑛, the notion ‘the shape of 𝜏𝑃’ has not been defined. This leads us to introduce a
classification of {M𝑃 | 𝑃 ∈ RSP𝑛} without using this notion. To be precise, by combining Theorem 4.7
and Theorem 5.5, we derive that for 𝑃,𝑄 ∈ RSP𝑛,

M𝑃 � M𝑄 if and only if Σ𝐿 (𝑃)
𝐷

 Σ𝐿 (𝑄). (7.2)

We expect that this classification can be extended to RP𝑛 in its current form. The validity of this
expectation has been checked for values of n up to 6 with the aid of the computer program SageMath.
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Table 2. Seven pairs (𝐼 (𝑘)
1 , 𝐼 (𝑘)

2 ) in 𝔄6..

𝑘 𝐼 (𝑘)
1 𝐼 (𝑘)

2

1 [123456, 426351]𝐿 [123456, 624153]𝐿
2 [123456, 354612]𝐿 [123456, 561324]𝐿
3 [123456, 356412]𝐿 [123456, 561342]𝐿
4 [123456, 563124]𝐿 [123456, 534612]𝐿
5 [123456, 536412]𝐿 [123456, 563142]𝐿
6 [123456, 465312]𝐿 [123456, 645132]𝐿
7 [123456, 564213]𝐿 [123456, 546231]𝐿

Let us provide an overview of our verification process. We first classify all left weak Bruhat intervals
in 𝔖𝑛 (𝑛 ≤ 6) up to descent-preserving isomorphism and choose a complete list ℑ𝑛 of inequivalent
representatives. Next, we let 𝔄𝑛 be the set of all unordered pairs ([𝜎1, 𝜌1]𝐿 , [𝜎2, 𝜌2]𝐿) of intervals in
ℑ𝑛 satisfying that [𝜎1, 𝜌1]𝐿 ≠ [𝜎2, 𝜌2]𝐿 and

ch([B(𝜎1, 𝜌1)]) = ch([B(𝜎2, 𝜌2)]), Des𝐿 (𝜎1) = Des𝐿 (𝜎2), Des𝐿 (𝜌1) = Des𝐿 (𝜌2). (7.3)

Note that Equation (7.3) is a necessary condition for B(𝜎1, 𝜌1) � B(𝜎2, 𝜌2). Finally, we show that for
all (𝐼1, 𝐼2) ∈ 𝔄𝑛, B(𝐼1) � B(𝐼2). When 𝑛 ≤ 5, there is nothing to prove because 𝔄𝑛 = ∅. When 𝑛 = 6,
𝔄6 has fourteen pairs. Note that if (𝐼1, 𝐼2) ∈ 𝔄6, then (𝑤0 · 𝐼1 · 𝑤0, 𝑤0 · 𝐼2 · 𝑤0) ∈ 𝔄6 and

B(𝐼1) � B(𝐼2) ⇐⇒
[19, Theorem 4]

B(𝑤0 · 𝐼1 · 𝑤0) � B(𝑤0 · 𝐼2 · 𝑤0).

Therefore, it suffices to examine seven pairs (𝐼 (𝑘)1 , 𝐼 (𝑘)2 ) listed in Table 2. For 3 ≤ 𝑘 ≤ 7, using Lemma
5.2, one can see that the projective covers of B(𝐼 (𝑘)1 ) and B(𝐼 (𝑘)2 ) are not isomorphic. Therefore, B(𝐼 (𝑘)1 )

and B(𝐼 (𝑘)2 ) are not isomorphic. For 𝑘 = 1, 2, one can see that B(𝐼 (𝑘)1 ) and B(𝐼 (𝑘)2 ) are not isomorphic
in a brute force manner.

Let us give another evidence for our expectation. Specifically, we show that Equation (7.2) holds
when 𝑃 ∈ RSP𝑛, 𝑄 ∈ RP𝑛, and ch([M𝑃]) is a Schur function. This can be derived from the proposition
presented below.

Proposition 7.1. Let P be a poset in RSP𝑛 such that ch([M𝑃]) is a Schur function.

(1) If 𝑄 ∈ P𝑛 satisfies that M𝑄 � M𝑃 , then 𝑄 ∈ RSP𝑛.
(2) The isomorphism class of M𝑃 within {M𝑄 | 𝑄 ∈ P𝑛} is equal to the isomorphism class of M𝑃 within

{M𝑄 | 𝑄 ∈ RSP𝑛} as sets.

Proof. (1) Suppose that ch([M𝑃]) = 𝑠𝜆 for some 𝜆  𝑛. By [39, Theorem 2.2], sh(𝜏𝑃) is either 𝜆 or 𝜆◦,
where 𝜆◦ denotes the skew partition whose Young diagram is obtained by rotating yd(𝜆) by 180◦.

First, we consider the case where sh(𝜏𝑃) = 𝜆. Let 𝑓 : M𝑃 → M𝑄 be an 𝐻𝑛 (0)-module isomorphism.
By Theorem 3.9, we see that Σ𝐿 (𝑃) = [read𝜏𝑃 (𝑇𝜆), read𝜏𝑃 (𝑇

′
𝜆)]𝐿 , and therefore, read𝜏𝑃 (𝑇𝜆) is a cyclic

generator of M𝑃 . In addition, in view of [32, Lemma 3.12], we have that

Des𝐿 (read𝜏𝑃 (𝑇)) � Des𝐿 (read𝜏𝑃 (𝑇𝜆)) for all 𝑇 ∈ SYT(𝜆) \ {𝑇𝜆}. (7.4)

Combining (7.4) with the equality ch([M𝑃]) = ch([M𝑄]), we can deduce that there exists a unique
𝜎 ∈ Σ𝐿 (𝑄) such that Des𝐿 (𝜎) ⊇ Des𝐿 (read𝜏𝑃 (𝑇𝜆)). This fact implies that 𝑓 (read𝜏𝑃 (𝑇𝜆)) = 𝑐𝜎 for
some nonzero 𝑐 ∈ C. We may assume that 𝑐 = 1 by considering the isomorphism 1

𝑐 𝑓 instead of f. Since
f is an 𝐻𝑛 (0)-module isomorphism, Σ𝐿 (𝑄) is equal to 𝑓 (Σ𝐿 (𝑃)) and therefore is a left weak Bruhat
interval. Furthermore, it holds that
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Des𝐿 ( 𝑓 (𝛾)) = Des𝐿 (𝛾) for all 𝛾 ∈ Σ𝐿 (𝑃).

As a consequence, we obtain a descent-preserving isomorphism 𝑓 |Σ𝐿 (𝑃) : Σ𝐿 (𝑃) → Σ𝐿 (𝑄). Now the
assertion follows from Theorem 4.7.

Next, consider the case where sh(𝜏𝑃) = 𝜆◦. Let 𝑃
∗ and 𝑄

∗
be the posets in P𝑛 whose orders are

defined by

𝑢 �
𝑃
∗ 𝑣 ⇐⇒ 𝑛 + 1 − 𝑣 �𝑃 𝑛 + 1 − 𝑢 and 𝑢 �

𝑄
∗ 𝑣 ⇐⇒ 𝑛 + 1 − 𝑣 �𝑄 𝑛 + 1 − 𝑢,

respectively. Since P is a poset in RSP𝑛 with sh(𝜏𝑃) = 𝜆◦, 𝑃∗ is a poset in RSP𝑛 with sh(𝜏
𝑃
∗ ) = 𝜆. By

[9, Theorem 3.6(a)], we have M
𝑃
∗ � T+

ϕ (M𝑃) and M
𝑄

∗ � T+
ϕ (M𝑄), which implies that M

𝑄
∗ � M

𝑃
∗ . It

follows from the first case that 𝑄
∗
∈ RSP𝑛, thus 𝑄 ∈ RSP𝑛.

(2) It follows from (1). �

Based on these evidences, we propose the following conjecture.

Conjecture 7.2. Let 𝑃,𝑄 ∈ RP𝑛. If M𝑃 � M𝑄, then Σ𝐿 (𝑃)
𝐷

 Σ𝐿 (𝑄).

We remark that the converse of Conjecture 7.2 holds due to Proposition 4.1.

7.2. The decomposition problem of M𝑃 for 𝑃 ∈ RSP𝑛

A Young diagram of skew shape is called a ribbon if it does not contain any 2×2 square. For simplicity,
we call a skew partition a ribbon if the corresponding Young diagram is a ribbon. Note that our ribbons
are not necessarily connected. Consider a skew partition

𝜆/𝜇 = 𝜆 (1) /𝜇 (1) ★𝜆 (2) /𝜇 (2) ★ · · ·★𝜆 (𝑘) /𝜇 (𝑘)

such that 𝜆 (𝑖) /𝜇 (𝑖) is connected for all 1 ≤ 𝑖 ≤ 𝑘 . We say that 𝜆/𝜇 contains a disconnected ribbon if
there exists an index 1 ≤ 𝑗 ≤ 𝑘 − 1 such that both 𝜆 ( 𝑗) /𝜇 ( 𝑗) and 𝜆 ( 𝑗+1) /𝜇 ( 𝑗+1) are ribbons. With this
notation, we state the following proposition.

Proposition 7.3. Let 𝑃 ∈ RSP𝑛.

(1) If sh(𝜏𝑃) is connected, then M𝑃 is indecomposable.
(2) If sh(𝜏𝑃) contains a disconnected ribbon, then M𝑃 is not indecomposable.

Proof. (1) It follows from Lemma 5.4.
(2) Suppose that sh(𝜏𝑃) contains a disconnected ribbon. Let 𝜆/𝜇 = sh(𝜏𝑃). Write 𝜆/𝜇 as 𝜆 (1) /𝜇 (1) ★

𝜆 (2) /𝜇 (2) ★ · · · ★ 𝜆 (𝑘) /𝜇 (𝑘) , where 𝜆 (𝑖) /𝜇 (𝑖) is connected for all 1 ≤ 𝑖 ≤ 𝑘 and both 𝜆 ( 𝑗) /𝜇 ( 𝑗) and
𝜆 ( 𝑗+1) /𝜇 ( 𝑗+1) are ribbons for some 1 ≤ 𝑗 ≤ 𝑘 − 1.

In Appendix A, we constructed an 𝐻𝑛 (0)-module 𝑋𝜆/𝜇 satisfying that 𝑋𝜆/𝜇 � M𝑃 . From now on,
we will prove the assertion for 𝑋𝜆/𝜇 instead of M𝑃 . By Proposition A.2(1), we have the 𝐻𝑛 (0)-module
isomorphism

𝑋𝜆/𝜇 � 𝑋𝜆(1) /𝜇 (1) � · · · � 𝑋𝜆(𝑘) /𝜇 (𝑘) .

Set 𝑋 (1) := 𝑋𝜆(1) /𝜇 (1) � · · · � 𝑋𝜆( 𝑗−1) /𝜇 ( 𝑗−1) and 𝑋 (2) := 𝑋𝜆( 𝑗+2) /𝜇 ( 𝑗+2) � · · · � 𝑋𝜆(𝑘) /𝜇 (𝑘) . Since 𝜆 ( 𝑗) /𝜇 ( 𝑗)

and 𝜆 ( 𝑗+1) /𝜇 ( 𝑗+1) are ribbons, 𝑋𝜆( 𝑗) /𝜇 ( 𝑗) � P𝛼 and 𝑋𝜆( 𝑗+1) /𝜇 ( 𝑗+1) � P𝛽 , where 𝛼 = 𝛂proj(𝜆
( 𝑗) /𝜇 ( 𝑗) ) and

𝛽 = 𝛂proj(𝜆
( 𝑗+1) /𝜇 ( 𝑗+1) ). Therefore,

𝑋𝜆/𝜇 � 𝑋 (1) � P𝛼 � P𝛽 � 𝑋 (2) .
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Combining Lemma 5.1 with the fact that � is distributive over ⊕, we derive the 𝐻𝑛 (0)-module isomor-
phism

𝑋𝜆/𝜇 � (𝑋 (1) � P𝛼 ·𝛽 � 𝑋 (2) ) ⊕ (𝑋 (1) � P𝛼�𝛽 � 𝑋 (2) ).

This shows 𝑋𝜆/𝜇 is not indecomposable. �

The contraposition of Proposition 7.3(2) says that if M𝑃 is indecomposable, then sh(𝜏𝑃) does not
contain any disconnected ribbon. We ask if the converse is true. In the case where sh(𝜏𝑃) is connected,
it is true by Proposition 7.3(1). In the case where sh(𝜏𝑃) is disconnected, we verified its validity when
|𝑃 | ≤ 6. Indeed, this was done by showing that End(M𝑃) has no idempotent except for 0 and id. Refer
to the following example.

Example 7.4. Let 𝜆/𝜇 = (3, 3, 1)/(1, 1) and 𝑃 = poset(𝜏𝜆/𝜇0 ). Then, Σ𝐿 (𝑃) = [21435, 42531]𝐿 is a
basis for M𝑃 . Let 𝑓 ∈ End(M𝑃) be an idempotent and let

𝑓 (21435) =
∑

𝛾∈[21435,42531]𝐿

𝑐𝛾𝛾 (𝑐𝛾 ∈ C).

Note that

{𝛾 ∈ [21435, 42531]𝐿 | Des𝐿 (21435) ⊆ Des𝐿 (𝛾)} = {21435, 21543, 42531}.

Since f is an 𝐻5(0)-module homomorphism, this equality implies that 𝑐𝛾 = 0 for all 𝛾 ∈

[21435, 42531]𝐿 \ {21435, 21543, 42531}. In addition, 𝑐21543 = 0 since

𝜋1𝜋2 · 21435 = 0 and 𝜋1𝜋2 · 𝑓 (21435) = 𝑐21543 32541.

Hence, 𝑓 − 𝑐21435 id is an 𝐻5(0)-module homomorphism such that

( 𝑓 − 𝑐21435id) (𝛾) =

{
𝑐4253142531 if 𝛾 = 21435,
0 if 𝛾 ∈ [21435, 42531]𝐿 \ {21435},

and therefore, ( 𝑓 − 𝑐21435id)2 = 0. Since f is an idempotent, the possible values for 𝑐21435 are 0 or 1.
Using the fact that f is an idempotent again, we have that 𝑐42531 = 0. As a consequence, f is 0 or id.

Based on the above discussion, we propose the following conjecture.

Conjecture 7.5. Let 𝑃 ∈ RSP𝑛. Suppose that sh(𝜏𝑃) is disconnected and does not contain any discon-
nected ribbon. Then, M𝑃 is indecomposable.

7.3. Recovering M𝑃 for 𝑃 ∈ RSP𝑛 from an 𝐻𝑛 (𝑞)-module by specializing q to 0

Let 𝑞 ∈ C. The Hecke algebra 𝐻𝑛 (𝑞) is the associative C-algebra with 1 generated by 𝑇1, 𝑇2, . . . , 𝑇𝑛−1
subject to the following relations:

𝑇2
𝑖 = (𝑞 − 1)𝑇𝑖 + 𝑞 for 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑇𝑖𝑇𝑖+1𝑇𝑖 = 𝑇𝑖+1𝑇𝑖𝑇𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 2,
𝑇𝑖𝑇𝑗 = 𝑇𝑗𝑇𝑖 if |𝑖 − 𝑗 | ≥ 2.

Let 𝑞 ∈ C be generic; that is, q is neither zero nor a root of unity. It is well known that 𝐻𝑛 (𝑞) is
isomorphic to the group algebraC[𝔖𝑛], and thus, the category of left finite dimensional 𝐻𝑛 (𝑞)-modules
is semisimple and there exists a ring isomorphism ([22, Section 3.2])
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ch𝑞 :
⊕
𝑛≥0

G0 (𝐻𝑛 (𝑞)) → Sym, [𝑉𝜆 (𝑞)] ↦→ 𝑠𝜆.

Here,
⊕

𝑛≥0 G0 (𝐻𝑛 (𝑞)) is the Grothendieck ring of the tower of generic Hecke algebras equipped
with addition and multiplication from direct sum and induction product, Sym is the ring of symmetric
functions, and 𝑉𝜆 (𝑞) is the irreducible 𝐻𝑛 (𝑞)-module attached to a partition 𝜆 of size n. The explicit
description of 𝑉𝜆 (𝑞) can be found in [21, p.7].

Let 𝑃 ∈ RSP𝑛. Viewing q as an indeterminate, one may ask if M𝑃 can be obtained from an 𝐻𝑛 (𝑞)-
module by specializing q to 0. However, it should be noted that the process of ‘specializing q to 0’
depends on the choice of bases for the 𝐻𝑛 (𝑞)-module under consideration, as illustrated in the example
below.

Example 7.6. The irreducible 𝐻3 (𝑞)-module 𝑉 (2,1) (𝑞) has the underlying space C{𝑣1, 𝑣2}, and the
𝐻3 (𝑞)-action defined by{

𝑇1 · 𝑣1 = −𝑣1,

𝑇2 · 𝑣1 = 𝑣2,
and

{
𝑇1 · 𝑣2 = −𝑞2𝑣1 + 𝑞𝑣2,

𝑇2 · 𝑣2 = 𝑞𝑣1 + (𝑞 − 1)𝑣2.

By the specialization 𝑞 = 0, we have the 𝐻3 (0)-action on C{𝑣1, 𝑣2} defined by{
𝜋1 · 𝑣1 = −𝑣1,

𝜋2 · 𝑣1 = 𝑣2,
and

{
𝜋1 · 𝑣2 = 0,
𝜋2 · 𝑣2 = −𝑣2.

The resulting module is isomorphic to T+
θ (M𝑃1), where 𝑃1 = poset(𝜏 (2,1)

0 ) ∈ RSP3.
However, if we choose the basis {𝑤1 := 𝑞𝑣1 − 𝑣2, 𝑤2 := (𝑞2 −𝑞)𝑣1 −𝑞𝑣2} for𝑉 (2,1) (𝑞), then we have{

𝑇1 · 𝑤1 = 𝑤2,

𝑇2 · 𝑤1 = −𝑤1,
and

{
𝑇1 · 𝑤2 = 𝑞𝑤1 + (𝑞 − 1)𝑤2,

𝑇2 · 𝑤2 = −𝑞2𝑤1 + 𝑞𝑤2.

By the specialization 𝑞 = 0, we have the 𝐻3 (0)-action on C{𝑤1, 𝑤2} defined by{
𝜋1 · 𝑤1 = 𝑤2,

𝜋2 · 𝑤1 = −𝑤1,
and

{
𝜋1 · 𝑤2 = −𝑤2,

𝜋2 · 𝑤2 = 0.

The resulting module is isomorphic to T+
θ (M𝑃2), where 𝑃2 = poset(𝜏 (2,2)/(1)

0 ) ∈ RSP3. It is worth-
while to remark that while T+

θ (M𝑃1) and T+
θ (M𝑃2) have the same quasisymmetric characteristic

ch𝑞 ([𝑉
(2,1) (𝑞)]), they are not isomorphic.

We expect that for 𝑃 ∈ RSP𝑛, T+
θ (M𝑃) can be obtained from an 𝐻𝑛 (𝑞)-module, whose image under

ch𝑞 equals 𝐾𝑃 , by applying the specialization 𝑞 = 0 to a suitable basis.

A. A tableau description of M𝑃 for 𝑃 ∈ RSP𝑛

Let 𝑃 ∈ RSP𝑛. Note that Σ𝐿 (𝑃) is a basis of M𝑃 consisting of permutations. Here, we construct an
𝐻𝑛 (0)-module that is isomorphic to M𝑃 and has a tableau basis.

For a skew partition 𝜆/𝜇 of size n, consider the bijection

𝑓 : SYT(𝜆/𝜇) → Σ𝐿 (poset(𝜏𝜆/𝜇0 )), 𝑇 ↦→ read𝜏0 (𝑇).

https://doi.org/10.1017/fms.2024.116 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.116


38 Y.-H. Kim, S-Y. Lee and Y-T. Oh

Let �̃� : CSYT(𝜆/𝜇) → Mposet(𝜏𝜆/𝜇0 )
be the C-linear isomorphism obtained by extending f by linearity.

We endow CSYT(𝜆/𝜇) with an 𝐻𝑛 (0)-module structure by letting

ℎ · 𝑥 := �̃� −1(ℎ · �̃� (𝑥)) for ℎ ∈ 𝐻𝑛 (0) and 𝑥 ∈ CSYT(𝜆/𝜇).

One can see that for 𝑇 ∈ SYT(𝜆/𝜇) and 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝜋𝑖 · 𝑇 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑇 if 𝑖 is strictly left of 𝑖 + 1 in 𝑇,

0 if 𝑖 and 𝑖 + 1 are in the same column of 𝑇,

𝑠𝑖 · 𝑇 if 𝑖 is strictly right of 𝑖 + 1 in 𝑇.

Here, 𝑠𝑖 · 𝑇 is the tableau obtained from T by swapping i and 𝑖 + 1. We denote the resulting module by
𝑋𝜆/𝜇. By Theorem 5.5, we have

◦ M𝑃 � 𝑋sh(𝜏𝑃) for 𝑃 ∈ RSP𝑛, and
◦ 𝑋𝜆/𝜇 � 𝑋𝜈/𝜅 for distinct skew partitions 𝜆/𝜇, 𝜈/𝜅 of size n.

Therefore, 𝑋sh(𝜏𝑃) can be viewed as a representative of the isomorphism class of M𝑃 in the category
𝐻𝑛 (0)-mod.

Remark A.1. (1) For a composition 𝛼, Searles [32] constructed an indecomposable 0-Hecke module
X𝛼 whose image under the quasisymmetric characteristic is an extended Schur function. In particular,
when 𝛼 is a partition, our 𝑋𝛼 is identical to X𝛼.

(2) For a generalized composition 𝛂, let 𝜆/𝜇 be a unique skew partition satisfying the conditions that
𝛂proj(𝜆/𝜇) = 𝛂 and 𝜆/𝜇 is a ribbon. Then, 𝑋𝜆/𝜇 � P𝛂.

The following proposition shows how 𝑋𝜆/𝜇’s behave with respect to induction product, restrictions
and (anti-)automorphism twists of ϕ and θ̂.

Proposition A.2. We have the following isomorphisms.

(1) For skew partitions 𝜆/𝜇 of size n and 𝜈/𝜅 of size m,

𝑋𝜆/𝜇 � 𝑋𝜈/𝜅 � 𝑋𝜆/𝜇★𝜈/𝜅 as 𝐻𝑛+𝑚(0)-modules.

(2) For a skew partition 𝜆/𝜇 of size n and 1 ≤ 𝑘 ≤ 𝑛 − 1,

𝑋𝜆/𝜇 ↓𝐻𝑘 (0) ⊗𝐻𝑛−𝑘 (0)�
⊕

|𝜈/𝜇 |=𝑘
𝜇⊂𝜈⊂𝜆

𝑋
𝜈/𝜇

⊗ 𝑋
𝜆/𝜈

as 𝐻𝑘 (0) ⊗ 𝐻𝑛−𝑘 (0)-modules.

Here, 𝜈/𝜇 and 𝜆/𝜈 denote the basic skew partitions whose Young diagrams are obtained from
yd(𝜈/𝜇) and yd(𝜆/𝜈), respectively, by removing empty rows and empty columns.

(3) For a skew partition 𝜆/𝜇 of size n,

T+
ϕ (𝑋𝜆/𝜇) � 𝑋(𝜆/𝜇)◦ and T−

θ̂
(𝑋𝜆/𝜇) � 𝑋𝜆t/𝜇t .

Here, (𝜆/𝜇)◦ is the skew partition whose Young diagram is obtained by rotating yd(𝜆/𝜇) by 180◦.

Proof. The first assertion follows from [19, Lemma 4], the second from [19, Theorem 2] and the third
from [19, Theorem 4]. �

Acknowledgements. The authors are deeply grateful to the anonymous referees for their meticulous reading of the manuscript
and their invaluable advice. We would especially like to express our sincere thanks to the referee for bringing references [24, 25]
and the contents of Section 7.3 to our attention.

Competing interest. The authors have no competing interest to declare.

https://doi.org/10.1017/fms.2024.116 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.116


Forum of Mathematics, Sigma 39

Funding statement. The first author was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korean Government (No. NRF-2020R1A5A1016126) and Basic Science Research Program through NRF funded by the Ministry
of Education (No. RS-2023-00240377). The second author was supported by NRF grant funded by the Korean Government (No.
NRF-2020R1F1A1A01071055), Basic Science Research Program through NRF funded by the Ministry of Education (No. RS-
2023-00271282), NRF grant funded by the Korea government (MSIT) (No. RS-2024-00342349), the Sogang University Research
Grant of 2024 (No. 202412001.01), and the BK21 FOUR program through the NRF under the Department of Mathematics at
Sogang University ‘Nurturing team for creative and convergent mathematical science talents’. The third author was supported
by NRF grant funded by the Korean Government (No. NRF-2020R1F1A1A01071055) and by NRF grant funded by the Korea
government (MSIT) (No. RS-2024-00342349).

References

[1] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras (Cambridge Studies in Advanced Mathe-
matics) vol. 36 (Cambridge University Press, Cambridge, 1995).

[2] J. Bardwell and D. Searles, ‘0-Hecke modules for Young row-strict quasisymmetric Schur functions’, European J. Combin.
102 (2022), 103494, 18. https://doi.org/10.1016/j.ejc.2021.103494.

[3] D. J. Benson, Representations and Cohomology. I (Cambridge Studies in Advanced Mathematics) vol. 30 (Cambridge
University Press, Cambridge, 1991). Basic representation theory of finite groups and associative algebras.

[4] C. Berg, N. Bergeron, F. Saliola, L. Serrano and M. Zabrocki, ‘Indecomposable modules for the dual immaculate basis of
quasi-symmetric functions’, Proc. Amer. Math. Soc. 143(3) (2015), 991–1000. http://doi.org/10.1090/S0002-9939-2014-
12298-2

[5] N. Bergeron and H. Li, ‘Algebraic structures on Grothendieck groups of a tower of algebras’, J. Algebra 321(8) (2009),
2068–2084. http://doi.org/10.1016/j.jalgebra.2008.12.005

[6] A. Björner and F. Brenti, Combinatorics of Coxeter Groups (Graduate Texts in Mathematics) vol. 231 (Springer, New York,
2005).

[7] A. Björner and M. L. Wachs, ‘Generalized quotients in Coxeter groups’, Trans. Amer. Math. Soc. 308(1) (1988), 1–37. http://
doi.org/10.2307/2000946.

[8] A. Björner and M. L. Wachs, ‘Permutation statistics and linear extensions of posets’, J. Combin. Theory Ser. A 58(1) (1991),
85–114. http://doi.org/10.1016/0097-3165(91)90075-R.

[9] S.-I. Choi, Y.-H. Kim and Y.-T. Oh, ‘Poset modules of the 0-Hecke algebras and related quasisymmetric power sum
expansions’, European J. Combin. 120 (2024), Paper No. 103965, 34. https://doi.org/10.1016/j.ejc.2024.103965.

[10] B. Deng and G. Yang, ‘Representation type of 0-Hecke algebras’, Sci. China Math. 54(3) (2011), 411–420. http://doi.org/
10.1007/s11425-010-4145-x

[11] G. Duchamp, F. Hivert and J.-Y. Thibon, ‘Noncommutative symmetric functions. VI. Free quasi-symmetric functions and
related algebras’, Internat. J. Algebra Comput. 12(5) (2002), 671–717. http://doi.org/10.1142/S0218196702001139.

[12] G. Duchamp, D. Krob, B. Leclerc and J.-Y. Thibon, ‘Fonctions quasi-symétriques, fonctions symétriques non commutatives
et algèbres de Hecke à q = 0’, C. R. Acad. Sci. Paris Sér. I Math. 322(2) (1996), 107–112.

[13] M. Fayers, ‘0-Hecke algebras of finite Coxeter groups’, J. Pure Appl. Algebra 199(1–3) (2005), 27–41. http://doi.org/10.
1016/j.jpaa.2004.12.001.

[14] W. Fulton, Young tableaux (London Mathematical Society Student Texts) vol. 35 (Cambridge University Press, Cambridge,
1997). With applications to representation theory and geometry.

[15] A. M. Garsia and J. Remmel, ‘Shuffles of permutations and the Kronecker product’, Graphs Combin. 1(3) (1985), 217–263.
http://doi.org/10.1007/BF02582950.

[16] I. M. Gessel, ‘Multipartite P-partitions and inner products of skew Schur functions’, in Combinatorics and Algebra (Boulder,
Colo., 1983) (Contemp. Math.) vol. 34 (Amer. Math. Soc., Providence, RI, 1984), 289–317. https://doi.org/10.1090/conm/
034/777705.

[17] F. Hivert, J.-C. Novelli and J.-Y. Thibon, ‘Yang-Baxter bases of 0-Hecke algebras and representation theory of 0-Ariki–
Koike–Shoji algebras’, Adv. Math. 205(2) (2006), 504–548. http://doi.org/10.1016/j.aim.2005.07.016.

[18] J. Huang, ‘A tableau approach to the representation theory of 0-Hecke algebras’, Ann. Comb. 20(4) (2016), 831–868. http://
doi.org/10.1007/s00026-016-0338-5.

[19] W.-S. Jung, Y.-H. Kim, S.-Y. Lee and Y.-T. Oh, ‘Weak Bruhat interval modules of the 0-Hecke algebra’, Math. Z. 301(4)
(2022), 3755–3786. http://doi.org/10.1007/s00209-022-03025-4.

[20] Y.-H. Kim and S. Yoo, ‘Weak Bruhat interval modules of the 0-Hecke algebra for genomic Schur functions’, Preprint, 2022,
arXiv:2211.06575 [math.RT].

[21] R. C. King and B. G. Wybourne, ‘Representations and traces of the Hecke algebras 𝐻𝑛 (𝑞) of type 𝐴𝑛−1’, J. Math. Phys.
33(1) (1992), 4–14. http://doi.org/10.1063/1.529925

[22] D. Krob and J.-Y. Thibon, ‘Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at q = 0’,
J. Algebraic Combin. 6(4) (1997), 339–376. http://doi.org/10.1023/A:1008673127310.

[23] T. Y. Lam, Lectures on Modules and Rings (Graduate Texts in Mathematics) vol. 189 (Springer-Verlag, New York, 1999).

https://doi.org/10.1017/fms.2024.116 Published online by Cambridge University Press

https://doi.org/10.1016/j.ejc.2021.103494
http://doi.org/10.1090/S0002-9939-2014-12298-2
http://doi.org/10.1090/S0002-9939-2014-12298-2
http://doi.org/10.1016/j.jalgebra.2008.12.005
http://doi.org/10.2307/2000946
http://doi.org/10.2307/2000946
http://doi.org/10.1016/0097-3165(91)90075-R
https://doi.org/10.1016/j.ejc.2024.103965
http://doi.org/10.1007/s11425-010-4145-x
http://doi.org/10.1007/s11425-010-4145-x
http://doi.org/10.1142/S0218196702001139
http://doi.org/10.1016/j.jpaa.2004.12.001
http://doi.org/10.1016/j.jpaa.2004.12.001
http://doi.org/10.1007/BF02582950
https://doi.org/10.1090/conm/034/777705
https://doi.org/10.1090/conm/034/777705
http://doi.org/10.1016/j.aim.2005.07.016
http://doi.org/10.1007/s00026-016-0338-5
http://doi.org/10.1007/s00026-016-0338-5
http://doi.org/10.1007/s00209-022-03025-4
https://arxiv.org/abs/2211.06575
http://doi.org/10.1063/1.529925
http://doi.org/10.1023/A:1008673127310
https://doi.org/10.1017/fms.2024.116


40 Y.-H. Kim, S-Y. Lee and Y-T. Oh

[24] A. Lascoux, B. Leclerc and J.-Y. Thibon, ‘Flag varieties and the Yang-Baxter equation,’ Lett. Math. Phys. 40(1) (1997),
75–90. http://doi.org/10.1023/A:1007307826670.

[25] A. Lascoux and M. P. Schützenberger, ‘Symmetrization operators on polynomial rings’, Funct. Anal. Appl. 21(4) (1987),
324–326. http://doi.org/10.1007/BF01077811.

[26] K. Luoto, S. Mykytiuk and S. van Willigenburg, An Introduction to Quasisymmetric Schur Functions (SpringerBriefs in
Mathematics) (Springer, New York, 2013).

[27] C. Malvenuto, ‘P-partitions and the plactic congruence’, Graphs Combin. 9(1) (1993), 63–73. http://doi.org/10.1007/
BF01195328

[28] P. McNamara, ‘Cylindric skew Schur functions’, Adv. Math. 205(1) (2006), 275–312. http://doi.org/10.1016/j.aim.2005.07.
011.

[29] A. Melnikov, ‘On orbital variety closures in 𝑠𝑙𝑛. I. Induced Duflo order’, J. Algebra 271(1) (2004), 179–233. http://doi.org/
10.1016/j.jalgebra.2003.09.012.

[30] P. Norton, ‘0-Hecke algebras’, J. Austral. Math. Soc. Ser. A 27(3) (1979), 337–357. http://doi.org/10.1017/
S1446788700012453.

[31] B. E. Sagan, The Symmetric Group - Representations, Combinatorial Algorithms, and Symmetric Functions (Wadsworth &
Brooks/Cole Mathematics Series) (Wadsworth, 1991).

[32] D. Searles, ‘Indecomposable 0-Hecke modules for extended Schur functions’, Proc. Amer. Math. Soc. 148(5) (2020),
1933–1943. http://doi.org/10.1090/proc/14879.

[33] D. Searles, ‘Diagram supermodules for 0-Hecke-Clifford algebras’, Preprint, 2022, arXiv:2202.12022 [math.RT].
[34] R. Stanley, Ordered Structures and Partitions (Memoirs of the American Mathematical Society) no. 119 (American

Mathematical Society, Providence, RI, 1972).
[35] R. Stanley, Enumerative Combinatorics. Vol. 2 (Cambridge Studies in Advanced Mathematics) vol. 62 (Cambridge University

Press, Cambridge, 1999).
[36] M. Taskin, ‘Properties of four partial orders on standard Young tableaux’, ProQuest LLC, Ann Arbor, MI, 2006, PhD

dissertation, University of Minnesota.
[37] V. Tewari and S. van Willigenburg, ‘Modules of the 0-Hecke algebra and quasisymmetric Schur functions’, Adv. Math. 285

(2015), 1025–1065. http://doi.org/10.1016/j.aim.2015.08.012.
[38] V. Tewari and S. van Willigenburg, ‘Permuted composition tableaux, 0-Hecke algebra and labeled binary trees’, J. Combin.

Theory Ser. A 161 (2019), 420–452. http://doi.org/10.1016/j.jcta.2018.09.003.
[39] S. van Willigenburg, ‘Equality of Schur and skew Schur functions’, Ann. Comb. 9(3) (2005), 355–362. http://doi.org/10.

1007/s00026-005-0263-5.

https://doi.org/10.1017/fms.2024.116 Published online by Cambridge University Press

http://doi.org/10.1023/A:1007307826670
http://doi.org/10.1007/BF01077811
http://doi.org/10.1007/BF01195328
http://doi.org/10.1007/BF01195328
http://doi.org/10.1016/j.aim.2005.07.011
http://doi.org/10.1016/j.aim.2005.07.011
http://doi.org/10.1016/j.jalgebra.2003.09.012
http://doi.org/10.1016/j.jalgebra.2003.09.012
http://doi.org/10.1017/S1446788700012453
http://doi.org/10.1017/S1446788700012453
http://doi.org/10.1090/proc/14879
https://arxiv.org/abs/2202.12022
http://doi.org/10.1016/j.aim.2015.08.012
http://doi.org/10.1016/j.jcta.2018.09.003
http://doi.org/10.1007/s00026-005-0263-5
http://doi.org/10.1007/s00026-005-0263-5
https://doi.org/10.1017/fms.2024.116

	1 Introduction
	2 Preliminaries
	2.1 Compositions, Young diagrams and bijective tableaux
	2.2 Weak Bruhat orders on the symmetric group
	2.3 Regular posets and Schur labeled skew shape posets
	2.4 The 0-Hecke algebra and the quasisymmetric characteristic
	2.5 Modules arising from posets and weak Bruhat interval modules

	3 The weak Bruhat interval structure of ΣL(P) for P RSPn
	4 An equivalence relation on Int(n)
	5 The classification of MP's for P RSPn
	6 A characterization of regular Schur labeled skew shape posets P and distinguished filtrations of MP
	6.1 A characterization of regular Schur labeled skew shape posets
	6.2 Distinguished filtrations of MP for P RSPn

	7 Further avenues
	7.1 The classification problem
	7.1.1 A remark on the classification problem for {MP P SPn }
	7.1.2 A conjecture on the classification problem for {MP P RPn }

	7.2 The decomposition problem of MP for P RSPn
	7.3 Recovering MP for P RSPn from an Hn(q)-module by specializing q to 0

	A A tableau description of MP for P RSPn
	References

