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A TOPOMETRIC EFFROS THEOREM

ITAÏ BEN YAACOV AND JULIEN MELLERAY

Abstract. Given a continuous and isometric action of a Polish group G on an adequate Polish
topometric space (X, �, �) and x ∈ X , we find a necessary and sufficient condition for Gx� to be co-
meagre; we also obtain a criterion that characterizes when such a point exists. This work completes a
criterion established in earlier work of the authors.

§1. Introduction. Our work in this article is concerned with Polish topometric
spaces, namely objects of the form (X, �, �), where (X, �) is a Polish topological
space and � is a lower semi-continuous distance which refines �. Type spaces in
continuous logic provide fundamental examples, though our main motivation comes
from another direction: given a Polish group (G, �), and a left-invariant distance
d inducing �, there is a natural topometric structure obtained by setting �(g, h) =
supk∈G d (gk, hk). The triplet (G, �, �) is then a Polish topometric group, i.e., a Polish
space enriched with a topometric structure for which the distance is translation-
invariant. These objects played an important part in [2], and some of their properties
were further studied in [3].

An interesting phenomenon was observed in [2]: given an action of a Polish group
G on a Polish topometric space (X, �, �), it might happen that each G-orbit is meagre
(in the sense of Baire category), yet there exists x ∈ X such that the �-closure Gx

�

is co-meagre. When Gx
�

is co-meagre, we say that x is a metrically generic element.
It is of interest, in some concrete cases, to determine precisely what these elements
are; see, for instance, the recent work [4] which interweaves some model theory and
ergodic theory. Under the additional hypothesis of adequacy (see Definition 2.3;
this assumption is satisfied by both kinds of Polish topometric spaces we mentioned
above), it was proved in [3] that metrically generic elements form a G� subset of X,
and a characterization of these elements in the spirit of a classical theorem of Effros
(e.g., [5, Theorem 3.2.4]) was provided.

The Effros theorem is a cornerstone in the study of the structure of orbits for
Polish group actions, particularly when one needs to determine whether there exist
co-meagre orbits. The topometric version obtained in [3] left open the question
of whether a weaker condition on x was sufficient to establish that x is metrically
generic, as well as the issue of giving a criterion for the existence of metrically
generic elements. The purpose of this note is to address those two points, proving

Received October 24, 2022.
2020 Mathematics Subject Classification. Primary 22A05.
Key words and phrases. Polish group, topometric space, Effros theorem.

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic.
0022-4812/00/0000-0000

DOI:10.1017/jsl.2023.5

1

https://doi.org/10.1017/jsl.2023.5 Published online by Cambridge University Press

www.doi.org/10.1017/jsl.2023.5
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2023.5&domain=pdf
https://doi.org/10.1017/jsl.2023.5


2 ITAÏ BEN YAACOV AND JULIEN MELLERAY

the following (we refer the reader to the beginning of the next section for a reminder
of topometric conventions and notations).

Theorem (see Theorems 3.7 and 3.9). Let (X, �, �) be an adequate Polish
topometric space, and G be a Polish group acting continuously and isometrically on X.
Assume that the action G � X is topologically transitive. Then:

• An element x ∈ X is metrically generic if, and only if, (Ux)�<ε is somewhere-
dense for each open U � 1 and each ε > 0.

• There exists a metrically generic element if, and only if, for any neighbourhood
V of 1, any ε > 0 and any nonempty open U ⊆ X , there exists a nonempty
open U ′ ⊆ U such that for any nonempty open W1,W2 ⊆ U ′ one has
�(VW1,W2) ≤ ε.

§2. Adequate distance and generic elements. We allow distances to take the value
∞, with the convention that r + ∞ = ∞ for all r ∈ [0,∞].

Convention 2.1. When X is a set endowed with a topology � and a metric �, the
vocabulary of general topology refers to (X, �), unless explicitly qualified, while the
vocabulary of metric spaces refers to (X, �). Thus, for example, (X, �, �) is Polish if
(X, �) is, and complete if (X, �) is. Similarly, a continuous and isometric action of a
group G on (X, �, �) is a continuous action of G on (X, �) such that each map x �→ gx
is an isometry for (X, �).

We denote the (topological ) closure, as usual, by A, and the metric closure by the
(qualified ) variant A

�
.

Definition 2.2. Given a distance � on a set X, U a subset of X, and r > 0, we let

(U )�<r =
{
x ∈ X : �(x,U ) < r

}
, (U )�≤r =

{
x ∈ X : �(x,U ) ≤ r

}
.

We call these sets thickenings (open and closed, respectively) of U. We mention the
distance � in the subscript, since several distances on X may be considered at the
same time.

Definition 2.3. Let (X, �) be a Polish space and � a distance on X (possibly
incompatible with the topology �).

(i) The distance � is adequate if for every open set O ⊆ X and r > 0, the
thickening (O)�<r is again open.

(ii) An open setW ⊆ X is ε-small if for every open non-emptyW1,W2 ⊆W we
have �(W1,W2) < ε.

(iii) A point x ∈ X is �-generic if for every ε > 0, the set (x)�<ε is somewhere-
dense.

Remark 2.4. Assume that W ⊆ X is open and ε-small. Then for every non-
empty open O ⊆W , the (relative) thickeningW ∩ (O)�<ε is dense in W.

Indeed, let x ∈W and let U � x be an open neighbourhood. We may assume
that U ⊆W . Then �(O,U ) < ε, so (O)�<ε ∩U 
= ∅.

Example 2.5. Assume that (X, �, �) is a topometric space (i.e., � refines � and is
lower semi-continuous). Then � is adequate if and only if (X, �, �) is adequate in the
sense of [3].
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A TOPOMETRIC EFFROS THEOREM 3

In the topometric case, we observe that for an open setW ⊆ X :

• if diam� W < ε, then W is ε-small and
• if W is ε-small, then diam� W ≤ ε.

Indeed, one implication is immediate from the definition of ε-smallness. For the
opposite direction, assume that x, y ∈W and �(x, y) > ε. By lower semi-continuity
of�, there exist open neighbourhoodsx ∈W1 andy ∈W2 such that�(W1,W2) > ε,
and we may freely assume thatWi ⊆W .

Further, in that case x is �-generic if and only if it is topometrically isolated, that
is, x belongs to the interior of (x)�<ε for all ε > 0 (see [1]; for a more general version
of this fact, valid also for non-topometric spaces, see Lemma 2.9).

Definition 2.6. Let G be a group. A norm on G is a function ‖·‖ : G → [0,∞]
such that:

• For all g ∈ G , ‖g‖ = 0 ⇔ g = 1.
• For all g ∈ G ‖g‖ = ‖g–1‖.
• For all g, h ∈ G ‖gh‖ ≤ ‖g‖ + ‖h‖.

Norms correspond to left-invariant (or right-invariant, depending on the choice
of convention) metrics on G, via the equality ‖g‖ = d (g, 1) (or d (g, h) = ‖h–1g‖).
This left-invariant distance always defines a group topology, and we say that the
norm is compatible with that topology. Equivalently, a norm is compatible with a
group topology if the family of sets

Ur =
{
g ∈ G : ‖g‖ < r

}
(1)

is a basis of neighbourhoods for the identity. The Birkhoff–Kakutani theorem asserts
that a topological group is metrisable if and only if it admits a compatible norm
(equivalently, a compatible left-invariant distance). In what follows, all norms (on
topological groups) are implicitly assumed to be compatible.

Example 2.7. Assume that G is a metrisable topological group (e.g., a Polish
group) acting continuously on X. Let ‖·‖ be a compatible norm on G, and define

�(x, y) = inf
{
‖g‖ : gx = y

}
,

where inf ∅ = ∞.
Then � is an adequate distance. Indeed, (A)�<r = UrA, where Ur is as in (1).

Moreover, since ‖·‖ is compatible and G acts continuously on X, � refines the
topology of X.

In general, the distance � of Example 2.7 need not be lower semi-continuous. For
instance, assume that G is the permutation group of the integers, acting on itself by
conjugation and endowed with the norm ‖�‖ = inf{2–n : ∀i ≤ n �(i) = i}. Let G0

denote the subgroup of all permutations which map 0 to itself, and fix a permutation
� with a dense conjugacy class in G0; fix also � ∈ G0 which is not in the conjugacy
class of �. One can pick (�n) which are conjugate to � and converge to �; for all n one
has �(�n, �) ≤ 1 (they are conjugate by an element which fixes 0) yet �(�, �) = ∞.

If � denotes the greatest lower semi-continuous function below �, we do not know
if there are any reasonable conditions under which �, or something equivalent to it
in some reasonable sense, is an adequate distance function.
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4 ITAÏ BEN YAACOV AND JULIEN MELLERAY

Example 2.8. Examples 2.5 and 2.7 can be joined as follows. Let (X, �, �) be
an adequate topometric space, and let G be a metrisable topological group acting
continuously and isometrically on X. Let ‖·‖ be a norm on G, and define (we use ∨
as infix notation for the maximum function):

�′(x, y) = inf
{
‖g‖ ∨ �(gx, y) : g ∈ G

}
.

Thus, if Ur = {g ∈ G : ‖g‖ < r}, then (A)�′<r = Ur(A)�<r = (UrA)�<r . Then �′ is
an adequate distance refining the topology.

If G is trivial, we obtain Example 2.5, and if � is the discrete 0/∞ distance,
Example 2.7.

The distance �′ in this example plays an essential role in our approach here,
because it combines the group topology and the metric on X : �′(x, y) is small iff
there exists g close to 1 (for the topology of G) which maps x close to y (according to
�). As we saw above, even for discrete � this distance �′ is not lower semi-continuous
in general, which is why we allow non-topometric spaces in our setup here.

We now state two lemmas concerning �-generic elements for adequate distances.
We do not assume any compatibility between � and � besides adequacy. These will
prove useful in the proof of our topometric version of Effros’s theorem.

Lemma 2.9. Let � be an adequate distance on (X, �).

(i) For every A ⊆ X we have (A)�<ε ⊆ (A)�<ε and (A
◦
)�<ε ⊆ (A)�<ε

◦
.

(ii) If x is �-generic thenx ∈ (x)�<ε
◦

for every ε > 0. Moreover, for every ε > � > 0

there exists an open neighbourhoodW � x such that (W )�<� ⊆ (x)�<ε
◦
.

Proof. For (i), let U = X \ (A)�<ε . Since � is adequate, (U )�<ε is open and
disjoint from A, hence also from A, so U is disjoint from (A)�<ε , proving the first
inclusion. For the second inclusion, observe that (A

◦
)�<ε is open and contained in

(A)�<ε , hence in (A)�<ε , so it is contained in the interior.

Assume now that x is �-generic. For ε > 0, let V = (x)�<ε
◦
, which is non-

empty by assumption on x. Then V ∩ (x)�<ε 
= ∅, so x ∈ (V )�<ε . By (i), (V )�<ε ⊆(
(x)�<ε

)
�<ε

⊆ (x)�<2ε . Since (V )�<ε is open, x ∈ (x)�<2ε
◦
.

For the moreover part, letW = (x)�<ε–�
◦
. Then x ∈W , and by (i),

(W )�<� ⊆
(
(x)�<ε–�

)
�<�

◦
⊆ (x)�<ε

◦
. �

Lemma 2.10. Let X be a Polish space and� an adequate distance. Then the following
are equivalent:

(i) For every ε > 0, the union of ε-small open subsets of X is dense.
(ii) The set of �-generic x ∈ X is co-meagre.

(iii) The set of �-generic x ∈ X is dense.

Proof. (i) =⇒ (ii). This argument is inspired by a similar one in unpublished
lecture notes of Christian Rosendal.

Let {On} be a basis of (non-empty) open sets for X and let �m → 0. For each n,m,
letWn,m ⊆ On be open, non-empty and �m-small. ThenWm =

⋃
n Wn,m is open and

dense in X for all m.
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For any k such thatOk ⊆Wn,m, the thickeningWn,m ∩ (Ok)�<�m is dense inWn,m
(see Remark 2.4). It follows that the set

Dn,m =
⋂

Ok⊆Wn,m

(Ok)�<�m

is co-meagre inWn,m. Thus Dm =
⋃
n Dn,m is co-meagre inWm and therefore in X.

Therefore D =
⋂
m Dm is co-meagre in X.

Assume now that x ∈ D. For each m we have x ∈ Dn,m for some n, and if
Ok ⊆Wn,m, then (x)�<�m ∩Ok 
= ∅. It follows thatWn,m ⊆ (x)�<�m . Thus (x)�<�m
is somewhere-dense for every m, i.e., x is generic.

(ii) =⇒ (iii). Immediate.
(iii) =⇒ (i). Fix ε > 0. If x ∈ X is �-generic, then x ∈ (x)�<ε

◦
by Lemma 2.9. In

addition, ifW1,W2 ⊆ (x)�<ε
◦

are open and non-empty, then both intersect (x)�<ε ,
so �(W1,W2) < 2ε. It follows that the union of all 2ε-small open sets contains the
generic points, and is therefore dense. �

Remark 2.11. When (X, �, �) is a topometric space, the argument is much more
straightforward, namely, it suffices to take the intersection over m of all unions of
all �m-small open sets.

§3. Topometric group action. Recall that a continuous action G � X is topo-
logically transitive if GV ∩W 
= ∅ for any two non-empty open V,W ⊆ X .
Equivalently, if GV is dense for every non-empty open set V ⊆ X .

Lemma 3.1. Assume that (X, �, �) is a Polish topometric space, and G � X
continuously and isometrically. The following are equivalent:

(i) The action G � X is topologically transitive.
(ii) The set of x ∈ X whose orbit is dense, is co-meagre.
(iii) There exists a point x ∈ X such that (Gx)�<ε is dense for all ε > 0.
(iv) For every two non-empty open subsets V,W ⊆ X : �(GV,W ) = 0.
(v) For every non-empty open subset V ⊆ X and every ε > 0: (GV )�<ε is dense

in X.

Proof. (i) =⇒ (ii). This is classical: choose a countable basis {On} and let
Y =

⋂
GOn. Then each GOn is open and dense, so Y is co-meagre, and the orbit

of every x ∈ Y intersects every On.
(ii) =⇒ (iii). Immediate.
(iii) =⇒ (iv). If such an x exists, then for every ε > 0 we may find g, h ∈ G such

that �(gx,V ) + �(hx,W ) < 2ε, so �(GV,W ) < 2ε.
(iv) =⇒ (v). Since �(GV,W ) < ε for every open non-empty W.
(v) =⇒ (i). Let V be a non-empty open subset of X. For any ε > 0 the set (GV )�<ε

is open and dense, so the intersection GV
�

is co-meagre, and in particular, dense.

Since � refines the topology, GV = GV
�

= X . �

From this point onwards, we assume that we have the data of Example 2.8, namely,
(X, �, �) is an adequate topometric Polish space and G a Polish group acting on X
continuously and isometrically. We fix a norm on G, which we assume to be bounded
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6 ITAÏ BEN YAACOV AND JULIEN MELLERAY

by 1, and define �′ as in Example 2.8:

�′(x, y) = inf
{
‖g‖ ∨ �(gx, y) : g ∈ G

}
.

As pointed out above, �′ is an adequate distance refining the topology, but (X, �, �′)
is not necessarily a topometric space. Note also that �′ is not, in general, G-invariant.

Observe that x ∈ X is �′-generic if, and only if, (Ux)�<ε
◦

= ∅ for every open U

and ε > 0, if and only if x ∈ (Ux)�<ε
◦

for every open U and ε > 0.

Lemma 3.2. Assume that x ∈ X is �′-generic. Then G � X is topologically
transitive if and only if (Gx)�<ε is dense for all ε > 0.

Proof. One implication is immediate from Lemma 3.1. For the other, assume
that G � X is topologically transitive. Fix ε > 0.

By Lemma 2.9, x ∈ V = (x)�′<ε
◦
. Then GV is dense, and

GV ⊆ G · (x)�′<ε ⊆ G · (x)�′<ε = (Gx)�<ε.

Therefore, (Gx)�<ε is dense as well. �

Lemma 3.3. Assume thatG � X is topologically transitive. Then the following are
equivalent:

(i) For every ε > 0, the union of (�′, ε)-small open sets in X is dense.
(ii) The set of �′-generic points is co-meagre.

(iii) A �′-generic point exists.

Proof. (i) =⇒ (ii). This is Lemma 2.10.
(ii) =⇒ (iii). Immediate.
(iii) =⇒ (i). Let x be �′-generic, and let ε > 0. On the one hand, the open set

(x)�′<2ε
◦

is (�′, 4ε)-small, as in the proof of the last implication of Lemma 2.10. On

the other hand, by Lemma 2.9, x ∈ (x)�′<ε
◦

and

(x)�<ε ⊆ (x)�′<ε ⊆
(
(x)�′<ε

◦)
�′<ε ⊆ (x)�′<2ε

◦
.

Consequently, (Gx)�<ε = G(x)�<ε is contained in a union of (�′, 4ε)-small open
sets.

Since x is �’-generic and G � X is topologically transitive, (Gx)�<ε is dense (by
Lemma 3.2), completing the proof. �

Notation 3.4. Given x ∈ X , we let [x] = Gx
�
.

Observe that the sets [x] form a partition of X into �-closed sets.

Lemma 3.5. Assume that x is �′-generic and y ∈ [x]. Then y is �′-generic.

Proof. First, fix g ∈ G and ε > 0, then find � such that 0 < � ≤ ε and for all
h ∈ G one has ‖h‖ ≤ � ⇒ ‖ghg–1‖ ≤ ε. Given y ∈ g(x)�′<� there exists h such that
‖h‖ < � and �(g–1y, hx) < �, i.e., �(y, ghg–1gx) < �. It follows that g(x)�′<� ⊆
(gx)�′<ε , hence also g(x)�′<�

◦
⊆ (gx)�′<ε

◦
. Hence gx is �′-generic.

Now, let y ∈ [x] and ε > 0, and find g ∈ G such that �(gx, y) < ε. Then
(gx)�′<ε ⊆ (y)�′<2ε , so (y)�′<2ε

◦

= ∅, and y is generic as well. �
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We are ready to prove our main lemma, describing the structure of �′-generic
elements for a topologically transitive action.

Lemma 3.6. (i) Fix ε > 0. Assume that x, y ∈ X are both �′-generic, and that
y ∈ (Gx)�<ε . Then y ∈ (Gx)�≤ε .

(ii) Assume that G � X is topologically transitive. Then the set of �′-generic
elements in X is either empty, or of the form [x] = Gx

�
(where x is any �′-

generic element).

Proof. For the first item, it is enough to show that y ∈ (Gx)�≤ε′ for any given
ε′ > ε. Let �n = 2–n(ε′ – ε) and εn = ε′ – �n.

We are going to construct a (convergent) sequence (gn) of elements of G, whose
limit will send x close to y.

Before going into the details, recall the notation (1):Ur =
{
h ∈ G : ‖h‖ < r

}
. Let

O0 = G , and once gn has been chosen, let

On+1 = U2–n ∩ gnU2–ng–1
n ∩ g–1

n U2–ngn,

observing that this is a symmetric neighbourhood of 1. Then, if z ∈ X is �′-generic,
we define

Fn(z) = (Onz)�<εn , Wn(z) = (Onz)�<�n
◦
.

By Lemma 2.9, both of them contain z, and
(
Wn+1(z)

)
�<εn

=
(
(On+1z)�<�n+1

◦)
�<εn

⊆ (On+1z)�<�n+1+εn = Fn+1(z). (2)

Now, to the actual construction, which will ensure that:

• For even n we have g–1
n y ∈ Fn(x) and gn+1 ∈ gnOn.

• For odd n we have gnx ∈ Fn(y) and gn+1 ∈ Ongn (equivalently, g–1
n+1 ∈ g–1

n On).

We may start with g0 = 1, observing that, indeed, g–1
0 y = y ∈ (Gx)�<ε = F0(x).

Assume that gn has been chosen, say for some even n. Then

y ∈ gnFn(x) ∩Wn+1(y) =
(
gnOnx

)
�<εn

∩Wn+1(y).

SinceWn+1(y) is open, it intersects (gnOnx)�<εn . Together with (2):

gnOnx ∩ Fn+1(y) ⊇ gnOnx ∩
(
Wn+1(y)

)
�<εn


= ∅.

We may then choose gn+1 ∈ gnOn such that gn+1x ∈ Fn+1(y). The odd step is similar.
We claim that the sequence (gn) is Cauchy for the upper uniformity on G, hence

convergent since G is Polish. Indeed, let us consider an even m ≥ 2, say m = n + 2.
Then gm ∈ gn+1On+1 and gm+1 ∈ On+2gm, so

gm+1g
–1
m ∈ On+2 ⊆ U2–n–1 ,

g–1
m gm+1 ∈ g–1

m On+2gm ⊆On+1 · (g–1
n+1On+2gn+1) ·On+1 ⊆ U2–n ·U2–n–1 ·U2–n .

Therefore ‖gm+1g
–1
m ‖ < 2–m+1 and ‖g–1

m gm+1‖ < 5 · 2–m+1, which is good enough.
The odd case is similar.
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8 ITAÏ BEN YAACOV AND JULIEN MELLERAY

Let g = lim gn ∈ G . For all n we have y ∈ g2n
(
O2nx

)
�<ε2n

, so we may choose
zn ∈ X and un ∈ O2n such that g2nzn → y and

�(g2nzn, g2nunx) = �(zn, unx) < ε2n ≤ ε′.
By continuity of the group action, g2nunx → gx. Since � is, in addition, lower
semi-continuous, we obtain �(y, gx) ≤ ε′, as promised.

For the second item, assume that G � X is topologically transitive and that
x is �′-generic. We know by Lemma 3.5 that any y ∈ [x] is �′-generic as well.
Conversely, since the action is topologically transitive we have (Gx)�<ε = X for
all ε > 0, by Lemma 3.2. By the first item, every �′-generic element belongs to⋂
ε>0 (Gx)�≤ε = [x]. �
We obtain the following topometric version of the Effros theorem.

Theorem 3.7. Let (X, �, �) be an adequate Polish topometric space, and let G be
a Polish group acting on X continuously, isometrically and topologically transitively.
Then, for x ∈ X , the following are equivalent:

(i) The orbit closure [x] = Gx
�

is co-meagre.
(ii) The set (Gx)�<ε is non-meagre for all ε > 0.

(iii) The point x is �′-generic, namely (Ux)�<ε is somewhere-dense for every ε > 0

and open U � 1. Equivalently, x ∈ (Ux)�<ε
◦

for every ε > 0 and open U � 1.

Proof. (i) =⇒ (ii). Immediate since Gx
�

is contained in (Gx)�<ε for all ε > 0.
(ii) =⇒ (iii). For any open U � 1 we can express G as

⋃
n gnU . Since (Gx)�<ε

is not meagre, neither is (Ux)�<ε , so it is somewhere-dense. In other words, x is
�′-generic. The second characterisation is by Lemma 2.9.

(iii) =⇒ (i). Let X0 ⊆ X consist of all �′-generic elements, and assume that
x ∈ X0. By Lemma 3.3, the set X0 is co-meagre. By Lemma 3.6, X0 = [x]. �

Remark 3.8. If we assume that Gx is dense in X, the above conditions are also
equivalent, by [3, Theorem 5.2], to the following conditions:

(iv) Gx
�

is G� .
(v) For any open subset U of G and any ε > 0,

(
Ux

)
�<ε

is open in Gx
�
.

(vi) For any open subset U of G and any ε > 0,
(
Ux

)
�<ε

∩Gx is open in Gx.

The criterion obtained in this paper provides a condition on x that is sufficient
forGx

�
to be co-meagre, but is seemingly weaker than the conditions from [3]. This

approach also enables us to state a criterion for the existence of such points. The
analogous statement for Polish group actions on Polish spaces is due to Rosendal and
part of our arguments here are adaptations of Rosendal’s proof to the topometric
setting.

Theorem 3.9. Let (X, �, �) be an adequate Polish topometric space, and let G be a
Polish group acting on X topologically transitively. Then the following are equivalent:

(i) There exists x ∈ X such that [x] = Gx
�

is co-meagre.
(ii) For any ε > 0 the union of all (�′, ε)-small open sets is dense.

(iii) For any openV � 1, any ε > 0 and any non-empty openU ⊆ X , there exists a
non-empty open U ′ ⊆ U such that for any non-empty openW1,W2 ⊆ U ′ one
has �(VW1,W2) ≤ ε.
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Proof. (i) =⇒ (ii). By Theorem 3.7 there exists x ∈ X such that [x] is co-meagre
iff there exists a �′-generic x, and then Lemma 3.3 states that the two conditions are
equivalent.

(ii) =⇒ (iii). The union of all (�′, ε)-small open sets is dense if and only
if every non-empty open set U contains a (�′, ε)-small one W, namely such
that, if W1,W2 ⊆W are non-empty and open, then (W1)�′<ε ∩W2 
= ∅. Since
(W1)�′<ε = (UεW1)�<ε , where Uε =

{
g ∈ G : ‖g‖ < ε

}
as in (1), we obtain the

alternate formulation. �

Let us give an example of an application of our topometric version of the Effros
theorem. Recall that a Polish topometric group (G, �, �) is a topometric space such
that (G, �) is a topological group, and the distance � is invariant under both left and
right translation (see [2]). Given a Polish topometric group (G, �, �) and n < �, we
turn Gn into an adequate Polish topometric space by endowing it with the product
topology and the metric �(x, y) = maxi<n �(xi , yi). The group G acts on each Gn

by diagonal conjugation. We say that x ∈ Gn is metrically generic if G · x� is co-
meagre in Gn (here we use · to denote the action of G by diagonal conjugation, to
avoid confusion with the product of elements of G), or equivalently, if (G · x)�<ε
is co-meagre for every ε > 0. We say that (G, �, �) has ample metric generics if Gn

admits a metrically generic point for each n.

Proposition 3.10. Let (G, �G , �G) and (H, �H , �H ) be two Polish topometric
groups and ϕ : H → G a group homomorphism such that:

• ϕ : (H, �H ) → (G, �G ) and ϕ : (H, �H ) → (G, �G ) are continuous.
• For any open U in H and any ε > 0, (ϕ(U ))�G<ε is open in G (i.e., ϕ is

topometrically open in the sense of [3]).
• ϕ has dense image.

Assume further that (H, �H , �H ) has ample metric generics.
Then (G, �G , �G) has ample metric generics, and images of metrically generic

elements of Hn are metrically generic elements of Gn.

Proof. Since H has ample generics, each action H � Hn is topologically
transitive. Since ϕ has dense image, each action G � Gn is topologically transitive
as well.

Assume that x ∈ Hn is a metric generic. Let U be an open neighbourhood of 1
in G and ε > 0. Let also y = ϕ(x) ∈ Gn.

Find an open neighbourhood V of 1 in H and � > 0 such that ϕ
(
(V · x)�H<�

)
⊆

(U · y)�G<ε . Using Lemma 2.9 and the continuity of ϕ, we have

(U · y)�G<2ε ⊇
(
ϕ

(
(V · x)�H<�

))
�G<ε

⊇
(
ϕ

(
(V · x)�H<�

))
�G<ε

⊇
(
ϕ

(
(V · x)�H<�

))
�G<ε
.

By the characterization of metric generics we know that (V · x)�H<� contains some

non-empty openW ⊆ Hn. It follows that (U · y)�G<2ε contains (ϕ(W ))�G<ε , and
we are done since ϕ is topometrically open. �
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This in particular recovers the sufficient condition for ample generics in Polish
topometric groups given in [2] (there H is endowed with the discrete metric, H is
a subgroup of G and ϕ is the identity on H). We note, however, that Proposition
3.10 could also be obtained via results obtained in [2] or [3]. The reason why, at
the moment, we cannot present a more convincing application of our topometric
Effros theorem is that we lack examples of adequate topometric spaces, and the
applicability of our result is still quite limited in practice, though we hope this will
change.

We conclude this paper by discussing a potential source of interesting examples.
Fix a homogeneous metric structure M and a countable group Γ (say, generated

by some finite set S for ease of exposition), and consider the space A(Γ,M) of all
actions of Γ on M. One can see A(Γ,M) as a closed subspace of Aut(M)Γ, so the
induced topology � turns A(Γ,M) into a Polish space. The group Aut(M) and the
spaceA(Γ,M) also carry natural metrics, namely, for g, h ∈ G andα, 
 ∈ A(Γ,M):

du(g, h) = sup
{
d
(
g(x), h(x)

)
: x ∈M

}
, �(α, 
) = sup

{
du

(
α(s), 
(s)

)
: s ∈ S

}
.

Note that (A(Γ,M), �, �) is a Polish topometric space; and Aut(M) acts by
conjugation onA(Γ,M), via (g · α)(�) = gα(�)g–1. In some concrete settings (e.g.,
in ergodic theory, see [4]) one would like to know if there exists a privileged action
of Γ on M. In many cases, the orbits for this Aut(M)-action are meagre, and the
next-best thing would be the existence (and description) of a metric generic. Thus it
would be interesting to apply our criterion in this setting, i.e., to know thatA(Γ,M)
is adequate.

Note that when Γ is the free group generated by S, A(Γ,M) is isomorphic, as a
topometric space, to Aut(M)n, hence is adequate.

Question 3.11. Let M be the Urysohn metric space, and Γ a countable group. Is
the space of actions A(Γ,M) an adequate Polish topometric space?

Of course one could replace M by any other homogeneous metric structure and
ask the same question (in particular, one could consider the standard atomless
measure algebra, or the separable Hilbert space).
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