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Abstract. It is shown that each finite translation generalized quadrangle (TGQ)
S, which is the translation dual of the point-line dual of a flock generalized quadrangle,
has a line [∞] each point of which is a translation point. This leads to the fact that
the full group of automorphisms of S acts 2-transitively on the points of [∞], and the
observation applies to the point-line duals of the Kantor flock generalized quadrangles,
the Roman generalized quadrangles and the recently discovered Penttila-Williams
generalized quadrangle. Moreover, by previous work of the author, the non-classical
generalized quadrangles (GQ’s) which have two distinct translation points, are precisely
the TGQ’s of which the translation dual is the point-line dual of a non-classical flock
GQ.

We emphasize that, for a long time, it has been thought that every non-classical
TGQ which is the translation dual of the point-line dual of a flock GQ has only
one translation point. There are important consequences for the theory of generalized
ovoids (or eggs) in PG(4n − 1, q), the study of span-symmetric generalized quadrangles,
derivation of flocks of the quadratic cone in PG(3, q), subtended ovoids in generalized
quadrangles, and the understanding of automorphism groups of certain generalized
quadrangles. Several problems on these topics will be solved completely.

2000 Mathematics Subject Classification. 51E12.

1. Introduction.

1.1. Standard preliminaries. A (finite) generalized quadrangle (GQ) of order (s, t)
is an incidence structure S = (P, B, I) in which P and B are disjoint (non-empty) sets
of objects called points and lines respectively, and for which I is a symmetric point-line
incidence relation satisfying the following axioms.

1. Each point is incident with t + 1 lines (t ≥ 1) and two distinct points are
incident with at most one line.

2. Each line is incident with s + 1 points (s ≥ 1) and two distinct lines are incident
with at most one point.

3. If p is a point and L is a line not incident with p, then there is a unique point-line
pair (q, M) such that pIMIqIL.
If s = t, then S is also said to be of order s.

Generalized quadrangles were introduced by Jaques Tits [39] in his celebrated work
on triality. For notations and definitions not explicitly given here, see the monograph
[18] of S. E. Payne and J. A. Thas, denoted FGQ throughout.
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Let S = (P, B, I) be a (finite) thick generalized quadrangle of order (s, t). Then
|P| = (s + 1)(st + 1) and |B| = (t + 1)(st + 1) [18]; also, s ≤ t2 and, dually, t ≤ s2.

There is a point-line duality for GQ’s of order (s, t) for which in any definition or
theorem the words “point” and “line”, and the parameters s and t are interchanged.
Normally, we assume without further notice that the dual of a given theorem or
definition has also been given. If S is a GQ of order (s, 1), then S is also called a
grid with parameters s + 1, s + 1. Let p and q be (not necessarily distinct) points of
the GQ S; we write p ∼ q and say that p and q are collinear, provided that there is
some line L so that pILIq; so p �∼ q means that p and q are not collinear. Dually,
for L, M ∈ B, we write L ∼ M or L �∼ M according as L and M are concurrent or
non-concurrent. If p �= q ∼ p, the line incident with both is denoted by pq, and if
L ∼ M �= L, the point which is incident with both is sometimes denoted by L ∩ M.
For p ∈ P, we put p⊥ = {q ∈ P ‖ q ∼ p}, and we note that p ∈ p⊥. For a pair of distinct
points {p, q}, the trace of {p, q} is defined by p⊥ ∩ q⊥, and we denote this set by
{p, q}⊥. Then |{p, q}⊥| = s + 1 or t + 1, according as p ∼ q or p �∼ q. More generally,
if A ⊂ P, the set A⊥ is defined by A⊥ = ⋂{p⊥ ‖ p ∈ A}. For p �= q, the span of the
pair {p, q} is {p, q}⊥⊥ = {r ∈ P ‖ r ∈ s⊥ for all s ∈ {p, q}⊥}. Then |{p, q}⊥⊥| = s + 1
or |{p, q}⊥⊥| ≤ t + 1 according as p ∼ q or p �∼ q. If p ∼ q, p �= q, or if p �∼ q and
|{p, q}⊥⊥| = t + 1, we say that the pair {p, q} is regular. The point p is regular provided
{p, q} is regular for every q ∈ P \ {p}. One easily proves that either s = 1 or t ≤ s if
S has a regular pair of non-collinear points, see FGQ. Regularity for lines is defined
dually.

A subquadrangle, or also subGQ, S ′ = (P′, B′, I ′) of a GQ S = (P, B, I) of order
(s, t), with s, t > 1, is a GQ for which P′ ⊆ P, B′ ⊆ B, and where I ′ is the restriction
of I to (P′ × B′) ∪ (B′ × P′). An ovoid of S is a set of st + 1 mutually non-collinear
points. Dually, one defines spreads. Suppose S is a GQ of order (s, t), s �= 1 �= t, which
contains a subGQ S ′ of order (s, t′), t′ > 1, and let z be a point of S \ S ′. Then we know
by [18, 2.2.1] that z is collinear with the points of an ovoid Oz of S ′. We say that Oz is
‘subtended by z’, and that Oz is a subtended ovoid.

Suppose S = (P, B, I) is a finite generalized quadrangle of order (s, t), s �= 1 �= t,
and consider a point x. Then S = S (x) is said to be a translation generalized quadrangle
(TGQ) with base point x if there is an abelian group G of collineations of S fixing x
linewise and which acts regularly on the set of points which are not collinear with x
(denoted P \ x⊥). The GQ S will also be denoted by (S (x), G). If the group G is not
necessarily abelian, then (S (x), G) is in general called an elation generalized quadrangle
(EGQ) with base point or elation point x. If (S (x), G) is a TGQ, then the group G is
uniquely defined [18]; for EGQ’s, this is not necessarily the case. Note that a collineation
of a GQ which fixes a point linewise is often called a whorl about that point. Suppose
L is a line of a GQ S of order (s, t), s, t �= 1. A symmetry about L is an automorphism
of the GQ which fixes every line of S which meets L; in the notation of FGQ, this set
is written as L⊥. The line L is called an axis of symmetry if there is a full group H of
symmetries of size s about L; in such a case, if M ∈ L⊥ \ {L}, then H acts regularly
on the points of M not incident with L. A point through which each line is an axis
of symmetry is a translation point. Every line of the classical GQ’s Q(4, s) and Q(5, s)
arising from a nonsingular quadric of Witt index 2 in respectively PG(4, s) and PG(5, s),
see FGQ, is an axis of symmetry. Finally, if x is a translation point of the GQ S of
order (s, t), s �= 1 �= t, then the group G which is generated by the symmetries about
the lines incident with x is abelian and acts regularly on the points of S which are
not collinear with x. Hence S (x) is a TGQ with base point x, see Chapter 8 of FGQ.
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The converse is also true; each line through a translation point of a TGQ is an axis of
symmetry.

1.2. Goal of the paper. Suppose F is a flock of the quadratic cone K in PG(3, q),
that is, a partition of K minus its vertex in q nonsingular conics. Then there is a GQ
S(F)D, with S(F)D the point-line dual of S(F), of order (q, q2) which is associated to
F , see Section 1.4. Suppose S = S(F)D is the GQ which arises from the flock F , and
suppose that S(F)D is a TGQ (that is, suppose that F is derived from a semifield flock).
Let (S(F)D)∗ be the TGQ which is the translation dual (for the definition, see the next
section) of the TGQ S(F)D. Suppose that x is the base point (that is, the translation
point) of (S(F)D)∗. Then there is some ‘special’ line [∞]Ix which is fixed by the full
automorphism group of (S(F)D)∗ if the GQ is not classical, see [19, 3.3]. If q is even,
then it was proved by Johnson [6] that the corresponding TGQ’s S(F)D and (S(F)D)∗

are classical.
It is the main objective in this paper to prove that, for q odd, the point x

of the TGQ (S(F)D)∗ is never fixed by the automorphism group of the GQ; this
observation contradicts a well-established conviction that the flag (x, [∞]) is fixed by
the full automorphism group of (S(F)D)∗. Our result implies that the line [∞] is a
line of translation points, and hence that the automorphism group of (S(F)D)∗ acts
2-transitively on the points of [∞]. So, if yI [∞] is arbitrary, then S (y) is a TGQ with
base point y.

Several important applications are deduced.

1.3. T(n, m, q)’s and translation duals of TGQ’s. In this paragraph, we introduce
the important notion of translation dual of a translation generalized quadrangle.

Suppose H = PG(2n + m − 1, q) is the finite projective (2n + m − 1)-space over
GF(q), and let H be embedded in a PG(2n + m, q), say H ′. Now define a set O =
O(n, m, q) of subspaces as follows: O is a set of qm + 1 (n − 1)-dimensional subspaces
of H, denoted PG(n − 1, q)(i), every three of which generate a PG(3n − 1, q) and such
that for every i = 0, 1, . . . , qm there is a subspace PG(n + m − 1, q)(i) of H of dimension
n + m − 1, which contains PG(n − 1, q)(i) and which is disjoint from any PG(n − 1, q)(j)

if j �= i. If O satisfies all these conditions for n = m, then O is called a pseudo-oval or a
generalized oval or an [n − 1]-oval of PG(3n − 1, q). A generalized oval of PG(2, q) is just
an oval of PG(2, q). For n �= m, O(n, m, q) is called a pseudo-ovoid or a generalized ovoid
or an [n − 1]-ovoid or an egg of PG(2n + m − 1, q). A [0]-ovoid of PG(3, q) is just an
ovoid of PG(3, q). The spaces PG(n + m − 1, q)(i) are the tangent spaces of O(n, m, q),
or just the tangents. Sometimes we will also use the terms “egg” or “generalized ovoid”
for the case n = m. Generalized ovoids were introduced for the case n = m by J. A.
Thas in [23], and generalized by S. E. Payne and J. A. Thas in FGQ, Chapter 8. Then
S. E. Payne and J. A. Thas prove in [24, 18] that from any egg O(n, m, q) there arises a
GQ T(n, m, q) = T(O) which is a TGQ of order (qn, qm), for some special point (∞).
This goes as follows.

The points are of three types.
1. A symbol (∞).
2. The subspaces PG(n + m, q) of H ′ which intersect H in a PG(n + m − 1, q)(i).
3. The points of H ′ \ H.
The lines are of two types.
1. The elements of the egg O(n, m, q).
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2. The subspaces PG(n, q) of PG(2n + m, q) which intersect H in an element of
the egg.

Incidence is defined as follows: the point (∞) is incident with all the lines of
Type (1) and with no other lines; a point of Type (2) is incident with the unique line
of Type (1) contained in it and with all the lines of Type (2) that it contains (as
subspaces), and finally, a point of Type (3) is incident with the lines of Type (2) that
contain it.

Conversely, any TGQ can be seen in this way, that is, as a T(n, m, q) associated
to an egg O(n, m, q) in PG(2n + m − 1, q). Hence, the study of translation generalized
quadrangles is equivalent to the study of generalized ovoids.

For a TGQ of order (s, t), there are natural q, k and n, where k is odd and q is a
prime power, so that either s = t = qn or s = qnk and t = qn(k+1), and if q is even, then
k = 1 [18]. Each TGQ S of order (s, s

k+1
k ) (where s = qn for some prime power q), with

translation point (∞), where k is odd and s �= 1, has a kernel �, which is a field with a
multiplicative group isomorphic to the group of all collineations of S fixing the point
(∞), and any given point not collinear with (∞), linewise. We have |�| ≤ s, see FGQ.
The field GF(q) is a subfield of � if and only if S is of type T(n, m, q) [18]. The TGQ
S is isomorphic to a T3(O) of Tits with O an ovoid of PG(3, s) if and only if |�| = s.
Completely similar remarks can be made for the case s = t, and in that case, the TGQ
is isomorphic to a T2(O) of Tits with O an oval of PG(2, s) if and only if |�| = s.

If n �= m, then by 8.7.2 of [18] the qm + 1 tangent spaces of O(n, m, q) form an egg
O∗(n, m, q) in the dual space of PG(2n + m − 1, q). So in addition to T(n, m, q) there
arises a TGQ T(O∗), also denoted T∗(n, m, q), or T∗(O). The TGQ T∗(O) is called the
translation dual of the TGQ T(O). The GQ’s T3(O) and S(F)D, where F is a Kantor
flock, see Section 4, are the only known TGQ’s of order (qn, qm), n �= m, which are
isomorphic to their translation dual (and probably they are the only such ones). The
TGQ T(O) and its translation dual T(O∗) have isomorphic kernels, see e.g. [35] for a
proof.

A TGQ T(O) with t = s2, s = qn, is called good at an element π ∈ O (or is good
at the corresponding line through (∞) of the TGQ) if for every two distinct elements
π ′ and π ′′ of O \ {π} the (3n − 1)-space ππ ′π ′′ contains exactly qn + 1 elements of O.
In that case, it is easy to see that ππ ′π ′′ is skew to the other elements; use for instance
[18, 8.7.2 (iii)]. If the egg O contains a good element, then the egg is called good.

NOTE. In what follows, if S = T(O) is a TGQ for some translation point x, then
by S∗ we will sometimes denote the translation dual T(O∗) of T(O) (if it is defined).

We shall often use the notation of this section without further notice.

1.4. Flock generalized quadrangles. Suppose (S (p), G) is an EGQ of order (s, t),
s �= 1 �= t, with elation point p and elation group G, and let q be a point of P \ p⊥. Let
L0, L1, . . . , Lt be the lines incident with p, and define ri and Mi by LiIriIMiIq, 0 ≤ i ≤ t.
Put Hi = {θ ∈ G ‖ Mθ

i = Mi}, H∗
i = {θ ∈ G ‖ rθ

i = ri}, and J = {Hi ‖ 0 ≤ i ≤ t}. Then
|G| = s2t and J is a set of t + 1 subgroups of G, each of order s. Also, for each i, H∗

i is
a subgroup of G of order st containing Hi as a subgroup. Moreover, the following two
conditions are satisfied:

(K1) HiHj ∩ Hk = 1 for distinct i, j and k;
(K2) H∗

i ∩ Hj = 1 for distinct i and j.
Conversely, if G is a group of order s2t and J (respectively J ∗) is a set of t + 1

subgroups Hi (respectively H∗
i ) of G of order s (respectively of order st), and if the
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conditions (K1) and (K2) are satisfied, then the H∗
i are uniquely defined by the Hi, and

(J ,J ∗) is said to be a 4-gonal family of type (s, t) in G. Sometimes we will also say that
J is a 4-gonal family of type (s, t) in G if this seems convenient.

Let (J ,J ∗) be a 4-gonal family of type (s, t) in the group G of order s2t, s �= 1 �= t.
Define an incidence structure S(G,J ) as follows.

Points of S(G,J ) are of three kinds:
(i) elements of G;

(ii) right cosets H∗
i g, g ∈ G, i ∈ {0, . . . , t};

(iii) a symbol (∞).
Lines are of two kinds:
(a) right cosets Hig, g ∈ G, i ∈ {0, . . . , t};
(b) symbols [Hi], i ∈ {0, . . . , t}.
Incidence. A point g of Type (i) is incident with each line Hig, 0 ≤ i ≤ t. A point

H∗
i g of Type (ii) is incident with [Hi] and with each line Hih contained in H∗

i g. The
point (∞) is incident with each line [Hi] of Type (b). There are no further incidences.

It is straightforward to check that the incidence structure S(G,J ) is a GQ of
order (s, t). Moreover, if we start with an EGQ (S (p), G) to obtain the family J as
above, then we have that (S (p), G) ∼= S(G,J ); for any h ∈ G let us define θh by gθh =
gh, (Hig)θh = High, (H∗

i g)θh = H∗
i gh, [Hi]θh = [Hi], (∞)θh = (∞), with g ∈ G, Hi ∈ J ,

H∗
i ∈ J ∗. Then θh is an automorphism of S(G,J ) which fixes the point (∞) and all

lines of Type (b). If G′ = {θh ‖ h ∈ G}, then clearly G′ ∼= G and G′ acts regularly on
the points of Type (i). Hence, a group of order s2t admitting a 4-gonal family is an
elation group of a suitable elation generalized quadrangle. This was first noted by
W. M. Kantor [7].

Let � = GF(q), q any prime power, and put G = {(α, c, β) ‖ α, β ∈ �2, c ∈ �}.
Define a binary operation on G by

(α, c, β)(α′, c′, β ′) = (α + α′, c + c′ + βα
′T , β + β ′).

This makes G into a group whose centre is C = {(0, c, 0) ∈ G ‖ c ∈ �}.
Let C = {Au ‖ u ∈ �} be a set of q distinct upper triangular (2 × 2)-matrices over

�. Then C is called a q-clan provided Au − Ar is anisotropic whenever u �= r, i.e. α(Au −
Ar)αT = 0 has only the trivial solution α = (0, 0). For Au ∈ C, put Ku = Au + AT

u . Let

Au =
(

xu yu

0 zu

)
, xu, yu, zu, u ∈ �.

For q odd, C is a q-clan if and only if

− det(Ku − Kr) = (yu − yr)2 − 4(xu − xr)(zu − zr) (1)

is a non-square of � whenever r, u ∈ �, r �= u. For q even, C is a q-clan if and only if

yu �= yr and tr((xu + xr)(zu + zr)(yu + yr)−2) = 1 (2)

whenever r, u ∈ �, r �= u.
Now we can define a family of subgroups of G by

A(u) = {(α, αAuα
T , αKu) ∈ G ‖ α ∈ �2}, u ∈ �,
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and

A(∞) = {(0, 0, β) ∈ G ‖ β ∈ �2}.
Then put J = {A(u) ‖ u ∈ � ∪ {∞}} and J ∗ = {A∗(u) ‖ u ∈ � ∪ {∞}}, with A∗(u) =
A(u)C. So

A∗(u) = {(α, c, αKu) ∈ G ‖ α ∈ �2, c ∈ �}, u ∈ �,

and

A∗(∞) = {(0, c, β) ‖ β ∈ �2, c ∈ �}.
With G, A(u), A∗(u),J and J ∗ as above, the following important theorem is a

combination of results of S. E. Payne and W. M. Kantor.

THEOREM 1. (S. E. Payne [13], W. M. Kantor [7]) The pair (J ,J ∗) is a 4-gonal
family for G if and only if C is a q-clan.

Let F be a flock of the quadratic cone K with vertex v of PG(3, q), that is, a
partition of K \ {v} into q disjoint irreducible conics.

In his celebrated paper on flocks [25], J. A. Thas notes that (1) and (2) are exactly
the conditions for the planes of PG(3, q) with equation

xuX0 + zuX1 + yuX2 + X3 = 0

to define a flock of the quadratic cone K with equation X0X1 = X2
2 .

THEOREM 2. (J. A. Thas [25]) To any flock of the quadratic cone of PG(3, q)
corresponds an EGQ of order (q2, q).

DEFINITION. We say that a TGQ arises from a flock if it is the point-line dual of a
flock GQ.

In 1976 it was shown independently by J. A. Thas and M. Walker [40] that with
any flock F of the quadratic cone K of PG(3, q) there corresponds an affine translation
plane of order q2. The flock is called a semifield flock if the corresponding plane is a
semifield plane. In such a case the point-line dual of the corresponding GQ S(F) is a
TGQ; if S(F) is not classical, then the point (∞) of the GQ S(F) is a line of Type (b)
of the TGQ, that is, an element of the corresponding generalized ovoid. To each
semifield flock of the quadratic coneK in PG(3, q), q odd, there corresponds a so-called
translation ovoid of Q(4, q) [3], and conversely, see J. A. Thas [27] and G. Lunardon
[12].

2. Proof of the main theorem. Suppose that f̂ is a biadditive and symmetric map
of �2 × �2 onto �, where � = GF(q), q odd. Suppose ĝt is a map of �2 onto � so that,
for all d, t, u ∈ � and α, γ ∈ �2, the following conditions are satisfied:

1. ĝt(α + γ ) − ĝt(α) − ĝt(γ ) = f̂ (tα, γ ) = f̂ (tγ, α);
2. ĝt+u(α) = ĝt(α) + ĝu(α);
3. ĝt(γ ) = 0, where t is nontrivial, implies that γ = (0, 0);
4. Condition (10) of [18, Section 10.4] holds.
Put G = �4 = {(r, c, b, d) ‖ r, c, b, d ∈ �} with coordinatewise addition. Define

subgroups in the following way: B(∞) = {(r, 0, 0, 0) ∈ G ‖ r ∈ �}; B∗(∞) = {(r, 0, γ ) ∈

https://doi.org/10.1017/S0017089503001381 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001381


TRANSLATION GENERALIZED QUADRANGLES 463

G ‖ r ∈ �, γ ∈ �2}. For γ ∈ �2, write B(γ ) = {(−ĝc(γ ), c,−cγ ) ∈ G ‖ c ∈ �}. Put γ =
(g1, g2) ∈ �2. Define B∗(γ ) in the usual way (see [15, Section VI]; this will be inessential
for the sequel). Then (J ,J ∗) is a 4-gonal family for G [18], with J = {B(γ ) ‖ γ ∈
�2 ∪ {∞}} and J ∗ = {B∗(γ ) ‖ γ ∈ �2 ∪ {∞}}. In the usual way, we then have a TGQ
S = (S (∞), G) = S(G,J ) (which satisfies some additional properties, see further) of
order (q, q2). Moreover, any TGQ which is the translation dual of the point-line dual
of a flock GQ can be represented in this way, see S. E. Payne [15] for the case of the
Roman GQ’s (cf. Section 4), and M. Lavrauw and T. Penttila [11] for the general case.
Actually, we will show that the TGQ’s as defined above are precisely the TGQ’s for
which the translation dual is the point-line dual of a flock GQ.

For convenience, we will work with the point-line dual SD of S. This GQ
can be represented [15] by the 4-gonal familyJ = {A(t) ‖ t ∈ � ∪ {∞}} in the group H =
{(α, c, β) ‖ α, β ∈ �2, c ∈ �}, where A(t) ={(α, ĝt(α), tα) ‖ α ∈ �2}, A(∞) = {(0, 0, β) ‖
β ∈ �2}, and where the group operation of H is defined by

(α, c, β)(α′, c′, β ′) = (α + α′, c + c′ + f̂ (β, α′), β + β ′).

The corresponding groups A∗(t), with t ∈ � ∪ {∞}, are defined by A∗(t) = {(α, c, αt) ‖
α ∈ �2, c ∈ �} and A∗(∞) = {(0, c, β) ‖ β ∈ �2, c ∈ �}. With this representation, SD is
a TGQ with base line [A(∞)] [15].

THEOREM 3. Suppose that S =S (∞) is a TGQ with base point (∞), which is the
translation dual of the point-line dual of a flock GQ of order (q2, q), q odd. Then there is
a line LI(∞) so that every point on L is a translation point. In particular, the group of
automorphisms of S acts 2-transitively on the points of L.

Proof. As noted before, any TGQ S of order (q, q2), q odd, which is the translation
dual of the point-line dual of a flock GQ, can be represented in the aforementioned
way. Dualize to obtain SD, and use the 4-gonal family J = {A(t) ‖ t ∈ � ∪ {∞}} in the
group H = {(α, c, β) ‖ α, β ∈ �2, c ∈ �}, as above. For arbitrary v ∈ �, v �= 0, define a
collineation θv of SD as follows:

(α, c, β) −→ (α + v−1β, c + ĝv−1 (β), β).

It is easily checked that θv is indeed a nontrivial collineation of SD (first note that
θv induces a nontrivial automorphism of H, and observe that A(t) is mapped onto
A( t

1 + t/v ) if t �= −v, that A(−v) is mapped onto A(∞), and that A(∞) is mapped onto
A(v)), and θv fixes any point of (A∗(0))⊥. An easy way to see this is the following: each
point on [A(0)] is fixed, the point (0̄, 0, 0̄) is fixed, and since clearly the order of θv is
p where q = ph for the prime p, at least one line through A∗(0) different from [A(0)]
and (0̄, 0, 0̄)A∗(0) is fixed. Also, any point of (∞)⊥ is well-known to be regular; see
Remark 5 (iii) for an easy proof. Then apply the result of K. Thas [34] to obtain that
θv indeed is a symmetry about A∗(0). Hence θv is a nontrivial symmetry about A∗(0),
and A∗(0) is a centre of symmetry. Since SD is a TGQ with base line [A(∞)] (so every
point on [A(∞)] is a centre of symmetry), there easily follows that any point of (∞)⊥ is
a centre of symmetry, and hence SD is a TGQ for every base line through (∞). There
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follows that there is some line L through (∞) in S (∞) so that each point on L is a
translation point, and the theorem easily follows.

NOTE. The fact that each point of (∞)⊥ is regular in the proof of Theorem 3 is
inessential for that proof. Without this information, it still follows that θv, v �= 0, is a
collineation of SD which does not fix [A(∞)].

As a direct corollary, we obtain the following representation method for TGQ’s of
which the translation dual arises from a flock.

THEOREM 4. Suppose that f̂ is a biadditive and symmetric map of �2 × �2 onto �,
where � = GF(q), q odd. Suppose ĝt is a map of �2 onto � so that, for all d, t, u ∈ � and
α, γ ∈ �2, the Conditions (1)–(4) are satisfied. If the GQ S arises from the 4-gonal family
(J ,J ∗) as above, then the TGQ S of order (q, q2) is the translation dual of the point-line
dual of a flock GQ of order (q2, q), and conversely, any (non-classical) TGQ of which the
translation dual arises from a flock arises in this way.

Proof. By Theorem 3, we know that S has a line of translation points. The theorem
now follows from the main theorem of [37].

REMARK 5. (i) If a GQ has non-collinear translation points, then it is well-known
that it is classical, see e.g. [38].

(ii) In Theorem 3, we could also have stated that S (∞) = T(O) is a TGQ which is
good at some element π ∈ O (which corresponds to the line LI(∞)). Since q is odd, by
the main theorem of J. A. Thas [28] (which is stated there in a more general way), S (∞) is
then the translation dual of the point-line dual of a semifield flock GQ of order (q2, q).
The converse is ‘trivially’ true. Below, we will therefore make no distinction between
TGQ’s in odd characteristic which are good at some line containing the translation
point (∞), and TGQ’s which are the translation dual of a TGQ of order (q, q2) arising
from a flock.

(iii) There is also a purely geometrical proof without the use of coordinates, as
was noted to us by J. A. Thas, which uses recent developments in the study of nets and
GQ’s. We give a sketch of that proof. Suppose S (∞) is a TGQ of order (q, q2) which
is good at its line LI(∞). Then by J. A. Thas [26], there are q3 + q2 subGQ’s of order
q, all isomorphic to Q(4, q), which contain the flag ((∞), L). It follows immediately
that L is regular, as S (∞) is a TGQ. Now suppose M ∼ L �= MImIL. It is clear that if
N ∼ L �= N and N �∼ M, then {M, N} is a regular pair of lines (M and N are contained
in one of the classical subGQ’s). Now suppose U �∼ M is not a line of L⊥. Consider
an arbitrary point u of L different from m, and let V be the unique line of S for which
uIV ∼ U . Since there are q3 + q2 classical subGQ’s of S which contain L, it follows
that there is a (necessarily) unique such classical subGQ of S of order q which contains
L, M, V and U (this is also immediate by representing S (∞) as T(O), with T(O) good
at L). Hence the pair {M, V} is regular, and M is a regular line. It follows that every
point on L is coregular. Consider any such coregular point pIL. From the regular line
L there arises a net NL, see [18, Chapter 1], and NL is a P-net as in [29] with P the
parallel class of NL defined by p, since the dual of NL satisfies the Axiom of Veblen [32]
(and so NL is the dual of a H3

s by [30]). Hence by [29], every point on L is a translation
point, and so every line of L⊥ is an axis of symmetry.

(iv) In some sense, Theorem 3 explains the intrinsic difference between a TGQ
which arises from a flock and its translation dual, if the flock is not a Kantor flock (see
below).

(v) A proof of Theorem 3 is also implicitly contained in K. Thas [38].
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3. TGQ’s for which the translation dual arises from a flock, and span-symmetric
generalized quadrangles. Theorem 3 implies that if S and L are as in Theorem 3, then
every line of L⊥ is an axis of symmetry, and then for every two non-concurrent lines
U and V in L⊥, the GQ S is span-symmetric (see below) with base-span {U, V}⊥⊥. We
start with an introduction to span-symmetric generalized quadrangles.

3.1. Span-symmetric generalized quadrangles. Suppose S is a GQ of order (s, t),
s �= 1 �= t, and suppose L and M are distinct non-concurrent axes of symmetry. Then
it is easy to see (by transitivity) that every line of {L, M}⊥⊥ is an axis of symmetry, and
S is called a span-symmetric generalized quadrangle (SPGQ) with base-span {L, M}⊥⊥.

Let S be a span-symmetric GQ of order (s, t), s, t �= 1, with base-span {L, M}⊥⊥.
In this paper, we will use the following notation.
First of all, the base-span is denoted by L. The group which is generated by

the symmetries about the lines of L is G, and sometimes G is called the base-group.
This group clearly acts 2-transitively on the lines of L (recall that s > 1), and fixes
every line of L⊥. The set of all the points which are on lines of L (or L⊥) is denoted
by �, and we will refer to � = (�,L ∪ L⊥, I ′), with I ′ being the restriction of I to
[� × (L ∪ L⊥)] ∪ [(L ∪ L⊥) × �], as being the base-grid. In W. M. Kantor [8]; see also
K. Thas [37], it is shown that if S is a span-symmetric generalized quadrangle of order
(s, t), s �= 1 �= t, then t ∈ {s, s2} and s is a power of a prime. The following result is the
solution of a longstanding conjecture, and completely determines the SPGQ’s of order
s. It was independently obtained by W. M. Kantor [8] and K. Thas [36].

THEOREM 6. (W. M. Kantor [8], K. Thas [36]) LetS be a span-symmetric generalized
quadrangle of order s, where s �= 1. Then S is classical, that is, isomorphic to Q(4, s).

As a nice group-theoretical analogue, we have that a group of order s3 − s has a
4-gonal basis (see FGQ, or [36]) if and only if it is isomorphic to SL(2, s).

Finally, the following strong theorem shows that SPGQ’s of order (s, s2) always
have classical subGQ’s of order s. It is an important tool in the classification of GQ’s
which have axes of symmetry, see [37, 38].

THEOREM 7. (K. Thas [37, 38]) Suppose S is a span-symmetric generalized
quadrangle of order (s, s2), s �= 1, with base-grid � = (�,L ∪ L⊥, I ′) and base-group
G. Then S contains s + 1 subquadrangles isomorphic to the classical GQ Q(4, s)
which mutually intersect in �. Also, G acts semi-regularly on S \ �, |G| = s3 − s and
G ∼= SL(2, s).

REMARK 8. Note that if N is the kernel of the action of G on L, then G/N ∼=
PSL(2, s).

3.2. Generalized quadrangles with two translation points. In [37], we focussed on a
particular class of SPGQ’s of order (s, s2), namely those having a line M for which each
line of M⊥ is an axis of symmetry. The following result was obtained (using Theorem 7,
other work of the author, results of Blokhuis et al. [4], and of J. A. Thas [28]).

THEOREM 9. (K. Thas [37]) Suppose S is a generalized quadrangle of order (s, t), s �=
1 �= t, with two distinct collinear translation points. Then we have one of the following:

(i) s = t, s is a prime power and S ∼= Q(4, s);
(ii) t = s2, s is even, s is a prime power and S ∼= Q(5, s);
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(iii) t = s2, s = qn with q odd, where GF(q) is the kernel of the TGQ S = S (∞) with
(∞) an arbitrary translation point of S, q ≥ 4n2 − 8n + 2 and S is the point-line dual of
a flock GQ S(F) where F is a Kantor flock;

(iv) t = s2, s = qn with q odd, where GF(q) is the kernel of the TGQ S = S (∞) with
(∞) an arbitrary translation point of S, q < 4n2 − 8n + 2 and S is the translation dual
of the point-line dual of a flock GQ S(F) for some flock F .

If a thick GQ S has two non-collinear translation points, then S is always of classical
type, i.e. isomorphic to one of Q(4, s), Q(5, s).

As a direct corollary of Theorem 3 and Theorem 9, we obtain the following
important result, which states that the generalized quadrangles of order (s, t), s �= t,
with two distinct translation points are exactly the TGQ’s of which the translation
dual is the point-line dual of a flock GQ.

THEOREM 10. A generalized quadrangle S of order (s, t), s �= 1 �= t �= s, has two
distinct collinear translation points if and only if S is a TGQ which is the translation dual
of the point-line dual of a flock GQ. In particular, if s is even, then S ∼= Q(5, s). If S has
non-collinear translation points, then S is always of classical type.

4. The known examples. In this section, we review the known examples of
(nonclassical) TGQ’s of order (s, s2), s > 1, which are the translation dual of the point-
line dual of a flock GQ. There are two infinite classes and there is one sporadic example.
Every observation made in this paper is valid for these examples.

KANTOR GENERALIZED QUADRANGLES. LetK be the quadratic cone with equation
X0X1 = X2

2 of PG(3, q), q odd. Then the q planes πt with equation tX0 − mtσ X1 +
X3 = 0, t ∈ GF(q), m a given non-square in GF(q) and σ a given automorphism of
GF(q), define a flock F of K; see [25]. All the planes πt contain the exterior point
(0, 0, 1, 0) of K. The flock is linear, that is, all the planes πt contain a common line,
if and only if σ = 1. Conversely, every nonlinear flock F of K for which the planes
of the q conics share a common point, is of the type just described, see [25]. The
corresponding GQ S(F) was first discovered by W. M. Kantor, and is called a Kantor
(flock) generalized quadrangle. The kernel � is the fixed field of σ , see [22]. The
described quadrangle is a TGQ for some base line, and the following was shown by
Payne in [15].

THEOREM 11. (S. E. Payne [15]) Suppose a TGQ S = T(O) is the point-line dual of a
flock GQ S(F), F a Kantor flock. Then T(O) is isomorphic to its translation dual T∗(O).

In the sequel, Kantor quadrangles will be assumed to be nonclassical, and hence
σ �= 1.

ROMAN GENERALIZED QUADRANGLES. Let K be the quadratic cone with equation
X0X1 = X2

2 of PG(3, q), with q = 3r and r > 2. Then the q planes πt with equation
tX0 − (mt + m−tt9)X1 + t3X2 + X3 = 0, t ∈ GF(q), m a given non-square in GF(q),
define a flock F of K which is called the Ganley flock; see [15]. The corresponding GQ
S(F) is a TGQ for some base line, and so the dual S(F)D of S(F) is isomorphic to
some T(O). By [22], the kernel � is isomorphic to GF(3). Payne [15] shows that T(O)
is not isomorphic to its translation dual T(O∗). Also, he proves that T(O∗) is a TGQ
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which does not arise from a flock. The GQ’s T(O∗) were called by Payne the Roman
generalized quadrangles.

THE PENTTILA-WILLIAMS GENERALIZED QUADRANGLE. Let q = 35. The q planes
πt with equation tX0 + 2t9X1 + t27X2 + X3 = 0, t ∈ GF(q), define a flock of the
quadratic cone with equation X0X1 = X2

2 of PG(3, q). This flock was constructed by
L. Bader, G. Lunardon and I. Pinneri in [1], starting from the Penttila-Williams ovoid
of Q(4, 35) [21], and relying on the construction of semifield flocks from translation
ovoids of Q(4, q) (and conversely) as described in J. A. Thas [27], and G. Lunardon in
[12]. Hence the ‘corresponding’ GQ (that is, the translation dual of S(F)D) is therefore
referred to as the Penttila-Williams generalized quadrangle. The kernel of the Penttila-
Williams GQ is isomorphic to GF(3) and S(F)D is not isomorphic to (S(F)D)∗, see
e.g. [38].

THEOREM 12. The automorphism groups of the dual Kantor GQ’s, the Roman GQ’s
and the Penttila-Williams GQ act 2-transitively on the points incident with the line of
translation points.

Proof. This follows immediately by Theorem 3.

NOTE. For the dual Kantor GQ’s, this observation was already made by S. E.
Payne in [16].

5. Consequences of the main result.

5.1. Isomorphisms of subtended ovoids in the TGQ’s (S(F)D)∗, F a semifield flock.
Suppose that S is a GQ of order (s, t), s �= 1 �= t, which contains a subGQ S ′ of order
(s, t′), t′ > 1, and let z be a point of S \ S ′. Then it is well known that z is collinear with
the points of an ovoid Oz of S ′. See § 1.1. We say that Oz is subtended by z, and Oz is a
subtended ovoid.

THEOREM 13. (M. Lavrauw [9, 10]) Let O be an egg of PG(4n − 1, q) which is good
at the element π , q odd, and consider the TGQ S (∞) = T(O). Then all the ovoids of a
fixed (arbitrary) subGQ Q(4, qn) through the flag ((∞), [∞]) which are subtended by a
point of Type (2) are isomorphic translation ovoids. Moreover, these ovoids are isomorphic
to the ovoid of Q(4, qn) arising from the semifield flock which corresponds to the egg O.

Consider the TGQ S (∞) = T(O) as in Theorem 13. Then there is a line [∞]I(∞)
which is a line of translation points by Theorem 3. Fix the subGQ S ′ = Q(4, qn) as
before. Suppose that x is a point of Type (3) not in S ′ in the TGQ T(O) (that is,
x �∼ (∞)). Consider two non-concurrent lines U, V in [∞]⊥ ∩ S ′. Then U and V are
axes of symmetry of S, and the group G generated by all the symmetries about U and V
fixes S ′ and [∞], and acts transitively on the points of [∞]. Since there is a collineation
in G which maps (∞) onto the unique point on [∞] which is collinear with x, there
readily follows that x subtends an ovoid which is isomorphic to the translation ovoid
subtended by the points of Type (2). We obtain the following result, which completely
solves the isomorphism problem for subtended ovoids in classical subGQ’s of order qn

which contain the flag ((∞), [∞]) (that is, ((∞), π )), in TGQ’s of order (qn, q2n) with a
good element, q odd.
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THEOREM 14. Let O be an egg of PG(4n − 1, q) which is good at the element π , q
odd, and consider the TGQS (∞) = T(O). Then all subtended ovoids of a fixed (arbitrary)
subGQ Q(4, qn) through the flag ((∞), [∞]) are isomorphic translation ovoids. Moreover,
these ovoids are isomorphic to the ovoid of Q(4, qn) arising from the semifield flock which
corresponds to the egg O.

As an easy corollary, Theorem 5.4 of M. R. Brown [5] follows (this is the
‘isomorphism part’ of Theorem 14 for the Kantor GQ’s).

NOTE. Using Theorem 3, it is also easy to prove the ‘isomorphism part’ of
Theorem 13.

As the subGQ Q(4, qn) through [∞] in Theorem 14 is arbitrary, we have the
following result.

THEOREM 15. Two TGQ’s S (∞) = T(O) and (S ′)(∞)′ = T(O′) of order (qn, q2n), q
odd, with O and O′ good at π and π ′, are isomorphic if and only if the subtended ovoids of
a fixed subGQ Q(4, qn) of S through [∞], where [∞] corresponds to π , and the subtended
ovoids of a fixed subGQ Q(4, qn) of S ′ through [∞]′, where [∞]′ corresponds to π ′, are
isomorphic translation ovoids of Q(4, qn).

COROLLARY 16. The Penttila-Williams TGQ S = T(OPW ) is new.

Proof. For the Penttila-Williams TGQ S = T(OPW ), we have that OPW is good at
some element. But the Penttila-Williams ovoid, which is isomorphic to the ovoid of
Q(4, 35) arising from the Penttila-Williams flock which corresponds to the egg OPW , is
not isomorphic to any other known ovoid of Q(4, 35) [21]; so by Theorem 15 the result
follows.

COROLLARY 17. The Penttila-Williams flock FPW is new.

6. Translation generalized quadrangles with isomorphic translation duals.

THEOREM 18. Suppose that S (x) is a non-classical TGQ which is the point-line dual
of a flock GQ S(F) of order (q2, q). So q is odd. Then the full automorphism group of
S (x) does not fix x if and only if S (x) is the point-line dual of a non-classical Kantor flock
GQ.

Proof. Suppose that the translation point x of S is not fixed by Aut(S). Then as S
is non-classical, all the translation points of S are incident with the same line [∞]Ix.
By [37], there are q3 + q2 classical subGQ’s of S of order q which contain [∞]. That
line [∞] is thus fixed by the full automorphism group of S (and it is the only line with
that property), and hence it follows that [∞] corresponds to the special point (∞) of
S(F), as (∞) is fixed by each automorphism of S(F), see [19]. But by [32], it then
follows that F is a Kantor flock, as the dual net N ∗

(∞) satisfies the Axiom of Veblen,
contradiction.

The following corollary characterizes the Kantor flock GQ’s.

THEOREM 19. Suppose that f̂ is a biadditive and symmetric map of �2 × �2 to �,
where � = GF(q), q odd. Suppose ĝt is a map of �2 to � so that, for all d, t, u ∈ � and
α, γ ∈ �2, the following conditions are satisfied:

1. ĝt(α + γ ) − ĝt(α) − ĝt(γ ) = f̂ (tα, γ ) = f̂ (tγ, α);
2. ĝt+u(α) = ĝt(α) + ĝu(α);
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3. ĝt(γ ) = 0, where t is nontrivial, implies that γ = (0, 0);
4. ĝt(γ (t − d)−1) − ĝd(γ (t − d)−1) + ĝd(−γ (d − u)−1) − ĝu(−γ (d − u)−1) = 0

implies γ = 0 if t, d, u are distinct (this is Condition (10) of [18, Section 10.4]).
Assume also the following additional condition:

(5) If for α1, α2, β1, β2 ∈ �2 we have that

0 = f̂ (α1(t − u), β1) = f̂ (α1(t − u), β2) = f̂ (α2(t − u), β1),

then f̂ (α2(t − u), β2) = 0 (this is Condition V.2 of [15]).
Let S be the GQ which arises from the 4-gonal family (J ,J ∗) as before. Then

SD ∼= S(F) with F a Kantor flock, and conversely.

Proof. By Section 2 and Theorem 3, S is a TGQ for which (S∗)D is a flock GQ,
say S(F). Condition (5) is exactly the condition for SD to be a flock GQ, see [15] (in
fact, Condition (5) infers that S satisfies Property (G) at its point (∞), and then the
main theorem of [28] implies that SD is a flock GQ). The theorem now follows from
Theorems 3 and 18.

Another corollary of Theorem 18 is the following result.

THEOREM 20. Suppose T(O) is a TGQ of order (q, q2), q odd, where O is good at
some element. Then T(O) is the point-line dual of a flock GQ S(F) if and only if F is a
Kantor flock.

Proof. This follows immediately by Theorem 3, Theorem 18 and the fact that as O
is good at some element, T(O)∗ is the point-line dual of a flock GQ.

There are some immediate corollaries, which we state as theorems.

THEOREM 21. (i) Suppose S = T(O) is a TGQ of order (q, q2), q odd, where O is
good at some element. Then T(O) ∼= T(O∗) if and only if S is the point-line dual of a
Kantor flock GQ.

(ii) Suppose S = T(O) is a TGQ of order (q, q2), q odd, which is the point-line dual
of a flock GQ S(F). Then S is isomorphic to its translation dual if and only if F is a
Kantor flock.

Proof. Immediate.

THEOREM 22. The point-line dual of S(FPW ), which is the translation dual of
T(OPW ), is new.

Proof. This follows from the fact that T(OPW ) is new, that for the point-line dual
T(O) of S(FPW ), O is good at no element (by Theorem 20), and that for two TGQ’s
T(O1) and T(O2), we have that T(O1) ∼= T(O2) if and only if T(O∗

1) ∼= T(O∗
2) by [31].

6.1. First notes on automorphism groups. The following theorem is taken from
[31].

THEOREM 23. (J. A. Thas and K. Thas [31]) Suppose S = T(O) is a TGQ of order
(qn, qm) with base point (∞), where q is odd if n = m, and suppose that G(∞) is the
stabilizer of (∞) in the automorphism group G of S. Furthermore, suppose (∞)′ is the
base point of T(O∗) = S∗, and let G′

(∞)′ be the stabilizer of (∞)′ in the automorphism
group G′ of S∗. Then |G(∞)| = |G′

(∞)′ |.
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The following theorem is a nice corollary.

COROLLARY 24. (1) Suppose S = T(O) is a TGQ of order (qn, q2n), where q is even
and where O is good at some element, and suppose that Aut(S) is the automorphism
group of S. Suppose (∞) is the base point. Let S∗ = T(O∗) be the translation dual of
S = T(O) with base point (∞)′, and let Aut(S∗) be the automorphism group of S∗. Then
|Aut(S)| = |Aut(S∗)|.

(2) Suppose S = T(O) is a TGQ of order (qn, q2n), q odd and O good at some
element, which is not the point-line dual of a Kantor flock GQ, and suppose that Aut(S)
is the automorphism group of S. Suppose (∞) is the base point. Let S∗ = T(O∗) be the
translation dual of S = T(O) with base point (∞)′, and let Aut(S∗) be the automorphism
group of S∗. Then |Aut(S)| = (qn + 1)|Aut(S∗)|.

Proof. Suppose we are in Case (1). If S is classical, then the result is obvious, hence
suppose this is not the case. As q is even, Theorem 9 asserts that the translation points
of both S and S∗ are fixed by their respective automorphism group. The result then
follows from Theorem 23.

Suppose we are in Case (2). As S = T(O) is not a dual Kantor flock GQ, there
follows that the translation point of S∗ is fixed by Aut(S∗) (see Theorem 18). The
assertion follows from Theorem 3 and Theorem 23.

We emphasize at this point that Corollary 24 implies that the size of the
automorphism group of a TGQ in the even characteristic case always equals that of
the automorphism group of its translation dual. There is another interesting corollary.

COROLLARY 25. Suppose that S is the Roman GQ of order (q, q2), q = 3h, h > 3 (so
that S is the translation dual of the point-line dual of the flock GQ S(F) with F a Ganley
flock). If Aut(S) is the full automorphism group of S, then

|Aut(S)| = q6(q + 1)(q − 1)2h.

Proof. This follows immediately by Corollary 24 and the fact that the full auto-
morphism group of S(F) with F a Ganley flock has size q6(q − 1)2h when q > 27 [16].

For q = 27, |Aut(S(F))| = 4(q − 1)q62h (Maska Law, private communication) so
that |Aut(S)| = 4(q + 1)(q − 1)q62h.

6.2. Automorphism groups revisited. In this section, it is our objective to obtain a
lower bound for the size of the full automorphism group of a nonclassical TGQ which
is the translation dual of a TGQ that arises from a flock. The bound will be sharp,
since equality will hold for the Roman GQ’s.

Suppose that S is a nonclassical TGQ of order (q, q2), q odd, which is the
translation dual of a TGQ of order (q, q2) arising from a flock. By Theorem 3, S
has a line [∞] of translation points, and there are q3 + q2 classical subGQ’s of order q
all containing [∞] [26]. Consider a fixed subGQ S ′ ∼= Q(4, q) of order q through the
line [∞], and note that each symmetry of S about a line of S ′ ∩ [∞]⊥ fixes S ′. It is then
clear that Aut(S)S ′ =: H (that is, the stabilizer of S ′ in the automorphism group of S)
acts transitively on the ordered pairs (x, y) of points in S ′ \ [∞] for which x ∼ y, xy
not intersecting [∞]. Hence we obtain that

q4(q + 1) divides |H|.

https://doi.org/10.1017/S0017089503001381 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001381


TRANSLATION GENERALIZED QUADRANGLES 471

Note that H fixes [∞]. Fix an ordinary quadrangle A in S ′ which contains [∞] as
a side, and suppose [∞], U, V, W are the lines of A, so that U �∼ [∞]. Consider the
action of the elementwise stabilizer H(A) of A in H on the lines of X := {U, [∞]}⊥⊥ \
{U, [∞]}. By Theorem 3, V and W are axes of symmetry of S (and S ′), and the group
G generated by the symmetries about V and W fixes S ′ and every line of {V, W}⊥,
and is isomorphic to SL(2, q) by [37]. Hence the kernel of the action of H(A) on the
lines of X has a subgroup of order q − 1 (recall that the action of G on S ′ \ {V, W}⊥⊥

is faithful). Hence

q4(q + 1)(q − 1) divides |H|.
Let v = V ∩ [∞] and w = W ∩ U . Then, as noted before, the group W(v,w) of

whorls about v and w has size |�| − 1, where � is the kernel of the TGQ, see [18,
8.6.5]. This group clearly fixes S ′, and acts semi-regularly on X , see [18, 8.1.1]. Thus
(|�| − 1)q4(q + 1)(q − 1) divides |H|.

It is also clear that each subGQ of order q of S which contains [∞] has an Aut(S)-
orbit of size at least q2, since Aut(S) acts transitively on the pairs of non-concurrent
lines in [∞]⊥, and hence

|Aut(S)| ≥ q6(q + 1)(q − 1)(|�| − 1).

Recall at this point that, if x1, x2, x3, x4 are four collinear points of PG(n, q), with
|{x1, x2, x3, x4}| ≥ 3, then by (x1, x2; x3, x4) we denote the usual cross-ratio given by

r3 − r1

r3 − r2
:

r4 − r1

r4 − r2
,

where the ri, i = 1, 2, 3, 4, are non-homogeneous coordinates of the xi on the line
through x1, x2, x3, x4.

We also recall that, if a semilinear automorphism θ of PG(n, q) (i.e. θ ∈ P�L(n +
1, q)) preserves the cross-ratio of all 4-tuples of points on at least one line, then θ is
a linear automorphism of PG(n, q) (i.e. θ ∈ PGL(n + 1, q)). Note that if a semilinear
automorphism θ of PG(n, q) fixes some PG(k, q) in PG(n, q), k > 0, elementwise, then
θ preserves the cross-ratio, and hence θ ∈ PGL(n + 1, q).

By [31], we can consider Aut(S)(∞), for any fixed point (∞)I [∞], as a group of
automorphisms of PG(4n, q) which fixes the corresponding egg O ⊂ PG(4n − 1, q),
and moreover, as the groups from the previous arguments, if restricted to P�L(4n +
1, q)O, all fix at least one line of PG(4n − 1, q) pointwise, it is clear that

∣∣Aut(S)(∞) ∩ PGL(4n + 1, q)
∣∣ ≥ q6(q − 1)(|�| − 1).

We now show that the latter bound is sharp. Suppose that (S(F)D)∗, with F a
Ganley flock, is a Roman GQ of order (q, q2), q > 27. Then

∣∣Aut((S(F)D)∗)(∞) ∩ PGL(4n + 1, q)
∣∣ = q6(q − 1)2,

by the previous section and the preceding arguments, [16] and [31].

REMARK 26. (On a special involution.) Let S be a span-symmetric generalized
quadrangle of order (s, s2), s > 1 and s odd, with base-span L and base-group G. Then
there is an involution θ in G which acts trivially on the points of the lines of L and
which acts semiregularly on the other points (as the kernel of G ∼= SL(2, s) on L).
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Now suppose O is an egg of PG(4n − 1, q) ⊆ PG(4n, q), q odd, which is good at its
element π . Then by Theorem 3, T(O) is an SPGQ for every span {L, M}⊥⊥ in π⊥ (with
the obvious notation), L �∼ M. Hence [31] implies that for arbitrary π ′ ∈ O \ {π} and
p ∈ PG(4n, q)\PG(4n − 1, q), there is an involution of PG(4n, q) (which is an element
of PGL(4n + 1, q)) which fixes ππ ′p pointwise and O as a set, and which acts faithfully
as an involution on the elements of O \ {π, π ′}.

6.3. Derivation of semifield flocks, BLT-sets and automorphisms. Let q be an odd
prime power, and let F = {C1, . . . , Cq} be a flock of the quadratic cone K in PG(3, q)
with vertex v. Let K be embedded in a nonsingular quadric Q of a PG(4, q) containing
PG(3, q) as a hyperplane so that K = PG(3, q) ∩ Q. There are unique points p1, . . . , pq

of Q for which Ci = v⊥ ∩ p⊥
i , 1 ≤ i ≤ q, where ‘⊥’ is relative to Q. Then the condition

that C1, . . . , Cq are disjoint is precisely the condition that V = {v, p1, . . . , pq} is a set of
q + 1 points of Q such that for 1 ≤ i < j ≤ q, (v, pi, pj) is a triad (that is, a set of three
mutually non-collinear points) on the GQ Q, and for which {v, pi, pj}⊥ = ∅. The main
theorem of [2] is that given such a set V , it is also true that for each triple (pi, pj, pk),
0 ≤ i < j < k ≤ q (where p0 = v), no point of Q is collinear (in Q) with all three of the
points. It follows that each point of Q \ V is collinear with 0 or 2 points of V . Such a
set V of q + 1 points of Q is called a BLT-set of Q. L. Bader, G. Lunardon and J. A.
Thas have showed in [2] that by using the BLT-set V , the flock F of the quadratic cone
K may be interpreted as one of a set of q + 1 flocks (also called a BLT-set) — recall
that q is odd [2]. Each of these flocks corresponds to a line of the GQ S(F) through
(∞); each of the q ‘new’ flocks is obtained by recoordinatizing the GQ S(F) so as to
interchange the line [A(∞)] and some other line through (∞). It follows that two flocks
of a BLT-set are projectively equivalent if and only if the corresponding pair of lines
of S(F) is in the same orbit of the automorphism group of S(F) [20].

We directly obtain the following theorem, which solves the isomorphism problem
of derivation for the flocks of a BLT-set in the semifield case.

THEOREM 27. Suppose that S (∞) is a TGQ which is the point-line dual of a flock GQ
S(F) of order (q2, q). Suppose {F0 = F ,F1, . . . ,Fq} is the BLT-set of q + 1 flocks which
is derived from F . Then all these flocks are isomorphic if and only if F is a Kantor flock.
If F is not a Kantor flock, then F1, . . . ,Fq are all isomorphic, but non-isomorphic to F .

Proof. If all these flocks are isomorphic, then this implies that Aut(S(F)D) acts
transitively on the points of the line [∞] which corresponds to the point (∞) of S(F).
Hence [∞] is a line of translation points, and so F is a Kantor flock by Theorem 18.
The theorem easily follows.

COROLLARY 28. Suppose that S (∞) is the point-line dual of the flock GQ S(F) of
order (q2, q), F the Penttila-Williams flock. Suppose {F0 = F ,F1,F2, . . . ,Fq} is the
BLT-set of q + 1 flocks which is derived from F . Then F1,F2, . . . ,Fq are all isomorphic,
but non-isomorphic to F . Hence F1 is a new flock.

Proof. The fact that F1 is new follows from the fact that F1 is non-isomorphic to
F , that both flocks give rise to the same generalized quadrangle, and that the latter is
new by Theorem 22.

REMARK 29. Some of the results just obtained are also contained in L. Bader,
G. Lunardon and I. Pinneri [1], although they continuously use the Lemma 1 of that
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paper, for which the proof seems to be rather terse; see J. A. Thas and K. Thas [31] for
an alternative approach. It was preferred to give new proofs of these results.
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