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Abstract

We study Hamiltonian diffeomorphisms of closed symplectic manifolds with non-
contractible periodic orbits. In a variety of settings, we show that the presence of one
non-contractible periodic orbit of a Hamiltonian diffeomorphism of a closed toroidally
monotone or toroidally negative monotone symplectic manifold implies the existence of
infinitely many non-contractible periodic orbits in a specific collection of free homotopy
classes. The main new ingredient in the proofs of these results is a filtration of Floer
homology by the so-called augmented action. This action is independent of capping
and, under favorable conditions, the augmented action filtration for toroidally (negative)
monotone manifolds can play the same role as the ordinary action filtration for atoroidal
manifolds.
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1. Introduction

In this paper, focusing on closed symplectic manifolds, we study Hamiltonian diffeomorphisms
with non-contractible periodic orbits. We show that in a variety of settings the presence of
one non-contractible one-periodic orbit of a Hamiltonian diffeomorphism of a closed symplectic
manifold guarantees the existence of infinitely many non-contractible periodic orbits.

More specifically, we concentrate on closed symplectic manifolds (M2n, ω) which are
toroidally monotone or toroidally negative monotone and Hamiltonians with at least one non-
contractible one-periodic orbit x. Then we prove that under minor assumptions on the free
homotopy class f of x and under certain dynamical and Floer theoretic conditions on x and M ,
the Hamiltonian has infinitely many simple periodic orbits in the collection of free homotopy
classes fN := {fk | k ∈ N}; see Theorems 2.1 and 2.2. The conditions on f are automatically
satisfied when the homology class [f] is non-zero in H1(M ;Z)/Tor or when f 6= 1 and π1(M)
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is hyperbolic and torsion free. These theorems partially extend the main result of [Gü13] from
atoroidal symplectic manifolds to toroidally monotone or negative monotone manifolds. (We
show in the next section that there are numerous manifolds and Hamiltonians meeting the
requirements of the theorems.) The phenomenon we consider here is C∞-generic. To be more
precise, we show in Theorem 2.7 that the presence of one non-contractible periodic orbit x in a
class f such that 1 6∈ fN implies C∞-generically the existence of infinitely many non-contractible
periodic orbits in fN. Finally, we also refine the results from [Gü13] for atoroidal symplectic
manifolds; see Theorem 2.4.

All these results are manifestations of the same underlying phenomenon that the presence
of a periodic orbit which is geometrically or homologically unnecessary forces a Hamiltonian
system to have infinitely many periodic orbits. (On a closed symplectic manifold non-contractible
periodic orbits are clearly unnecessary. For example, a C2-small autonomous Hamiltonian has
only constant one-periodic orbits.) This phenomenon of ‘forced existence’ of infinitely many
periodic orbits is very general and has been observed in a variety of other settings. For instance,
the celebrated theorem of Franks [Fra92, Fra96], asserting that a Hamiltonian diffeomorphism
(or, even, an area-preserving homeomorphism) of S2 with at least three fixed points must have
infinitely many periodic orbits, is a prototypical result along these lines; see also [LC06] for further
refinements and [CKRTZ12, Ker12] for a symplectic topological proof. Another instance is a
theorem from [GG14] that for a certain class of closed monotone symplectic manifolds including
CPn any Hamiltonian diffeomorphism with a hyperbolic fixed point must necessarily have
infinitely many periodic orbits. Yet, the specific question of forced existence for non-contractible
periodic orbits considered here is largely unexplored except for [Gü13] focusing on symplectically
atoroidal manifolds. We refer the reader to, e.g., [Gü14] for some other related results and to
[GG15] for a detailed discussion of the phenomenon and further references.

The proofs of our main theorems rely on the machinery of Floer homology for non-contractible
periodic orbits. In the course of the last two decades, this version of Floer homology has been
studied and used in a number of papers, but usually in a more topological context and focusing
on Hamiltonians on open manifolds such as twisted or ordinary cotangent bundles; see, e.g.,
[BPS03, BH01, GL00, Lee03, Nic06, SW12, Web06, Xue14]. (The recent works [Bat15b, PS14]
are closer to the setting considered in this paper, which on the conceptual level can be thought
of as a continuation of [Gü13].) The main difficulty in applying the technique to closed manifolds
is that the global Floer homology for non-contractible orbits vanishes and, moreover, already for
closed surfaces, a Hamiltonian may have no non-contractible periodic orbits of any period. (As a
consequence, the Floer complex can be trivial for all iterations.) Thus, to infer that a Hamiltonian
has a number of periodic orbits, e.g., infinitely many, an additional input is required. In our case,
this is one non-contractible periodic orbit of the Hamiltonian, which serves as a seed generating
infinitely many offsprings. The new periodic orbits are detected by analyzing the change in certain
filtered Floer homology groups under the iteration of the Hamiltonian and using the ‘stability
of the filtered homology’. This argument shares many common elements with the reasoning in,
e.g., [GG10, Gü13, Gü14]. We feel that it can also be cast in the framework of the barcode and
persistent homology theory for Floer homology (cf. [PS14, UZ15]) and it would be interesting to
see if a systematic use of this theory would lead to new results in this class of questions.

There are three key ingredients to the proofs in this paper.
The main new component is the observation, perhaps of independent interest, that under

favorable circumstances the Floer homology for a toroidally monotone or toroidally negative
monotone manifold is filtered by the so-called augmented action. The augmented action ÃH is
the difference AH−(λ/2)∆H between the standard symplectic action AH and the (renormalized)
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mean index ∆H of an orbit, where λ is the monotonicity constant; cf. [GG09a, § 1.4]. The key

feature of the augmented action is that it is independent of capping and hence is assigned to the

orbit itself. When the augmented action gap is sufficiently large, the Floer differential does not

increase the augmented action, and the augmented action filtration is defined. In this case, the

filtration behaves similarly to the ordinary action filtration in the aspherical or atoroidal case and

can be used in the same way. (One essential difference, which is a source of several complications,

is that the augmented action filtration is not strict: in general, the Floer differential can connect

orbits with equal augmented action even if the gap is large.)

The other two ingredients are the stability of the filtered homology already mentioned above

and the ball-crossing theorem [GG14, Theorem 3.1] used in one of the proofs. This theorem

gives an iteration-independent lower bound on the energy of a Floer trajectory asymptotic to a

hyperbolic orbit.

The paper is organized as follows. In § 2, we set our conventions and notation, introduce

the necessary notions, state the main results of the paper, and discuss in detail the classes

of manifolds and Hamiltonians these results apply to. In § 3, we define the augmented action

filtration and establish its key properties. Finally, in § 4, we prove the main theorems of the

paper.

2. Main results

2.1 Conventions and notation

To state the main results of the paper, let us first introduce some relevant definitions and set

our conventions and notation.

Throughout the paper, we assume that (M2n, ω) is a closed toroidally monotone or toroidally

negative monotone symplectic manifold unless explicitly stated otherwise. To be more specific,

recall that a cohomology class w is atoroidal if for every map v : T2
→ M the integral of w

over v vanishes: 〈w, [v]〉 = 0. A symplectic manifold (M,ω) is said to be toroidally monotone

(respectively, toroidally negative monotone) when for some constant λ > 0 (respectively, λ < 0)

the class w = [ω]−λc1(TM) is atoroidal. The constant λ is referred to as the toroidal monotonicity

constant. Note that the case λ = 0 corresponds to an atoroidal class [ω]. Toroidally (negative)

monotone manifolds are automatically spherically (negative) monotone. We refer the reader to

§ 2.2 for examples of toroidally monotone or negative monotone manifolds. We call the positive

generator NT of the group generated by the integrals 〈c1(TM), [v]〉 for all tori the minimal

toroidal first Chern number of M . We set NT = ∞ when this group is {0}, i.e., c1(TM) is

atoroidal. For a toroidally monotone or negative monotone manifold, this implies that [ω] is also

atoroidal.

We denote by π̃1(M) the set of homotopy classes of free loops in M . The free homotopy class

of a loop x and its integer homology class (modulo torsion) are denoted by JxK and, respectively,

by [x]. Likewise, we write [f] ∈ H1(M ;Z)/Tor for the homology class modulo torsion of a free

homotopy class f ∈ π̃1(M).

All Hamiltonians H are assumed to be one-periodic in time, i.e., H : S1 ×M → R, and

we set Ht = H(t, ·) for t ∈ S1 = R/Z. The Hamiltonian vector field XH of H is defined by

iXH
ω = −dH. The (time-dependent) flow of XH is denoted by ϕtH and its time-one map by

ϕH . Such time-one maps are called Hamiltonian diffeomorphisms. For the sake of brevity, we

will refer to the periodic orbits of ϕH or, equivalently, the periodic orbits of ϕtH with integer

period as the periodic orbits of H. For a Hamiltonian H and a collection of free homotopy classes
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c ⊂ π̃1(M), we set Pk(H, c) to be the set of k-periodic orbits of H in c. For instance, Pk(H, γ),
where γ ∈ H1(M ;Z)/Tor, comprises the k-periodic orbits of H in the homology class γ.

For a class f ∈ π̃1(M), let us fix a reference loop z ∈ f. A capping of x : S1
→ M with free

homotopy class f is a cylinder (i.e., a homotopy) Π : [0, 1]× S1
→ M connecting x and z taken

up to a certain equivalence relation. Namely, two cappings Π and Π′ are equivalent if the integral
of c1(TM), and hence of ω, over the torus obtained by attaching Π′ to Π is equal to zero.

The action of H on a capped loop x̄ = (x,Π) is

AH(x̄) = −
∫

Π
ω +

∫
S1

Ht(x(t)) dt.

Clearly, AH(x̄) is well defined. Moreover, the critical points of AH are exactly the capped one-
periodic orbits of H in the homotopy class f. The action spectrum S(H, f) is the set of critical
values of AH . It has zero measure; see, e.g., [HZ94].

Furthermore, let us fix a trivialization of TM along the reference loop z. Then, to a capped
one-periodic orbit x̄ with x ∈ f, one can associate the mean index ∆H(x̄) in a standard way.
Namely, we extend the trivialization of TM |z to the capping of x and then use the resulting
trivialization of TM |x to turn the linearized flow dϕtH |x along x into a path in the group Sp(2n).
The mean index ∆H(x̄) is by definition the mean index of the resulting path; see, e.g., [Lon02,
SZ92]. The mean index measures, roughly speaking, the total rotation number of certain unit
eigenvalues of the linearized flow along x. The mean index ∆H(x) of a non-capped orbit x is well
defined as an element of R/2NTZ.

By analogy with the case of contractible orbits (see [GG09a]), we define the augmented action
of a one-periodic orbit x to be

ÃH(x) = AH(x̄)− λ

2
∆H(x̄).

The action and the mean index change under recapping in the same way, up to the factor λ/2,
and hence the augmented action of x is well defined, i.e., independent of the capping. Note,
however, that the augmented action depends on the choices of the reference loop z and the
trivialization. When λ = 0, i.e., [ω] is atoroidal, the augmented action turns into the ordinary
action.

The augmented action spectrum S̃(H, f) is the collection of the augmented action values for
all one-periodic orbits of H in the class f, i.e.,

S̃(H, f) = {ÃH(x) | x ∈ P1(H, f)}.
In contrast with the ordinary action spectrum, S̃(H, f) need not have zero measure; in fact, it
can contain whole intervals, unless, of course, H has finitely many periodic orbits in f. However,
S̃(H, f) is a compact set, which depends continuously on H. To be more precise, as is easy to
see, for any open set U ⊃ S̃(H, f), we have U ⊃ S̃(K, f) when K is sufficiently C1-close to H.

Assume now that all one-periodic orbits of H in the class f with augmented action in an
open interval I are isolated. Then we set χ(H, I, f) to be the sum of the Poincaré–Hopf indices
of their return maps. This definition extends by continuity to all Hamiltonians H with possibly
non-isolated orbits as long as the end points of I are outside S̃(H, f). For instance, χ(H, I, f) 6= 0
when I ∩ S̃(H, f) contains only one point a and H is non-degenerate and has an odd number of
one-periodic orbits (e.g., one) in the class f with augmented action a.

The above definitions generalize in an obvious way to the setting where one-periodic orbits
are replaced by k-periodic orbits or where one class f ∈ π̃1(M) is replaced by a collection of
classes c ⊂ π̃1(M). In the latter case, a reference loop z and a trivialization of TM |z must be
fixed for every f ∈ c.
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2.2 Results

Now we are in a position to state our main results. We recall that all manifolds considered in this

paper are assumed to be toroidally monotone or toroidally negative monotone unless specifically

stated otherwise. Furthermore, since the proofs heavily depend on Hamiltonian Floer homology,

we need to either assume throughout the paper that M is weakly monotone or rely on the

machinery of virtual cycles. To be more precise, recall that a manifold M2n is said to be weakly

monotone if one of the following conditions is satisfied: M is (not necessarily strictly) monotone,

i.e., [ω]|π2(M) = λc1(TM)|π2(M) with λ > 0, or c1(TM)|π2(M) = 0, or N > n− 2, where N is the

minimal Chern number. Under any of these conditions, the Floer homology is defined and has

standard properties; see [HS95, MS12, Ono95] and references therein. We refer the reader to,

e.g., [FO99, HWZ11, LT98, Par16] for various incarnations of the technique of virtual cycles.

Our first result asserts that under certain additional assumptions on M the presence of

one non-contractible hyperbolic one-periodic orbit implies the existence of infinitely many non-

contractible periodic orbits; cf. [GG14].

Theorem 2.1. Assume that NT > n/2+1, where 2n = dimM , and that a Hamiltonian H on M

has a hyperbolic one-periodic orbit x such that all homotopy classes in the set JxKN = {JxKk | k ∈
N} are distinct and non-trivial. (This is the case, e.g., when [x] 6= 0 in H1(M ;Z)/Tor.) Then H

has infinitely many simple periodic orbits with homotopy class in JxKN. In particular, if all such

orbits are isolated, there are simple non-contractible periodic orbits of arbitrarily large period.

The condition that NT > n/2 + 1 appears to be purely technical even though it plays an

essential role in the proof. As we will show below, there are numerous symplectic manifolds M

and Hamiltonians H meeting the requirements of the theorem. For instance, the theorem applies

to M = Σg × CPm, where Σg is a closed surface of genus g > 2.

The second result is more accurate and covers a broader range of manifolds and maps,

although it still relies on some additional topological assumptions about the flow of H; cf. [Gü13].

Theorem 2.2. Assume that P1(H, [f]) is finite and χ(H, I, f) 6= 0 for some interval I with end

points outside S̃(H, f), where f ∈ π̃1(M) and [f] 6= 0 in H1(M ;Z)/Tor. Then, for every sufficiently

large prime p, the Hamiltonian H has a simple periodic orbit in the homotopy class fp and

with period either p or p′, where p′ is the first prime greater than p. Moreover, when π1(M)

is hyperbolic and torsion free, the condition [f] 6= 0 can be replaced by f 6= 1 and no finiteness

requirement is needed.

Remark 2.3. We emphasize that in these theorems we impose no non-degeneracy conditions

on H. An interesting new point in the second part of Theorem 2.2 is that, in contrast with

many other results of this type, we do not need to require P1(H, f) to be finite to have simple

periodic orbits with arbitrarily large period. It is immediate to see that, if H is non-degenerate,

χ(H, I, f) 6= 0 for a short interval I centered at a ∈ S̃(H, f) when the one-periodic orbits of H in

the class f have different augmented action values.

Also note that by passing to an iteration one can replace in both of the theorems one-periodic

orbits by k-periodic ones. Then the first theorem remains correct as stated. In the second theorem,

after replacing H by the iterated Hamiltonian H\k (see § 3.1), we can only conclude that H has

infinitely many simple periodic orbits in fN. (Of course, the theorem still applies literally to H\k

in place of H, but simple periodic orbits of H\k are not necessarily simple as periodic orbits of H.)
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Let us now further discuss the conditions of Theorems 2.1 and 2.2, beginning with those
concerning the manifold and then moving on to the Hamiltonian.

The manifolds M meeting the requirements of these theorems exist in abundance. To
construct specific examples, let us start with a symplectically atoroidal manifold (M1, ω1),
i.e., a closed symplectic manifold such that [ω1] and c1(TM1) are atoroidal. Among these are,
for instance, surfaces of genus g > 2 and, more generally, all Kähler manifolds with negative
sectional curvature. (See, e.g., [Gü13] for further references and a discussion of such manifolds.)
Next, let (M0, ω0) be a closed spherically monotone or negative monotone symplectic manifold.
There are numerous examples of such manifolds including, in the negative monotone case, those
with arbitrarily large minimal (spherical) Chern number NS . For instance, let M0 be a smooth
complete intersection in CPm+k given by k homogeneous polynomials of degrees d1, . . . , dk. Then
M0 is monotone or negative monotone with NS = |m + k − d|, where d = d1 + · · · + dk, unless
NS = 0 (see, e.g., [LM89, p. 88]). To be more precise, M0 is monotone when m + k − d > 0,
negative monotone when m+ k− d < 0, and c1(TM0) = 0 when m+ k− d = 0. Now it is easy to
see that M = M0 ×M1 is toroidally monotone or toroidally negative monotone (when NS 6= 0)
with NT = NS .

Furthermore, π1(M) = π1(M0) × π1(M1). In particular, H1(M ;Z)/Tor 6= 0 when
H1(M1;Z)/Tor 6= 0. Moreover, when M0 is a complete intersection and M1 is a Kähler manifold
with negative sectional curvature, π1(M) is hyperbolic and torsion free. Indeed, in this case,
π1(M) = π1(M1) since complete intersections are simply connected (see, e.g., [Sha94, ch. IX,
§ 4.1]).

Next, note that for any symplectic manifold M and f ∈ π̃1(M) there exists a Hamiltonian H :
S1×M → R with a hyperbolic one-periodic orbit in the class f; see, e.g., [Bat15a, Proposition 1.3].
(In fact, one can prescribe arbitrarily a periodic orbit and the linearization of the flow along it.)
Thus, whenever M satisfies the conditions of Theorem 2.1 and H1(M ;Z)/Tor 6= 0 or π1(M)
is hyperbolic and torsion free, there exists a C∞-open, non-empty set of Hamiltonians this
theorem applies to. Furthermore, in the setting of Theorem 2.2, the collection of Hamiltonians
with one-periodic orbits in f is non-empty and, as one can easily see, has a locally non-empty
interior, i.e., the intersection of this collection with a neighborhood of any of its points has a
non-empty interior. It is also not hard to show that the Hamiltonians meeting the requirements
of the theorem form a C∞-open and dense subset in this collection. (Indeed, non-degenerate
Hamiltonians form a C∞-open and dense subset, and one can further ensure by a C∞-small
perturbation of H that all one-periodic orbits have distinct augmented actions.)

It is worth pointing out that it is not clear how large this open subset is, i.e., how common
the Hamiltonians with at least one non-contractible periodic orbit are. This is an interesting
question and to the best of our understanding very little is known about this problem. Consider,
for instance, time-dependent Hamiltonians on a closed surface M of positive genus. Then a
bump function with small support or, as Paul Seidel pointed out to us, a self-indexing Morse
function are examples of Hamiltonians without non-contractible periodic orbits of any period.
Furthermore, a simple KAM argument shows that for a C∞-generic autonomous Hamiltonian H
on M = T2 such that one of the components of the level {H = 0} is a parallel, no Hamiltonian
sufficiently C∞-close to H has periodic orbits in the free homotopy class collinear to the class of
the meridian. (This observation is due to Leonid Polterovich.) However, as far as we know there
are no counterexamples to the conjecture that a C1-generic (or even C∞-generic) Hamiltonian
on M has a non-contractible periodic orbit. In fact, as has been pointed out to us by Patrice Le
Calvez and Andrés Koropecki, the conjecture holds for M = T2 for C∞-generic Hamiltonians
[LCT15, Proposition J]. (See also [Tal15] for some possibly relevant results.)
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Our next theorem is a minor refinement of [Gü13, Theorem 1.1]. This is a result stronger
than Theorems 2.1 and 2.2, but applicable to a much more narrow class of manifolds.

Theorem 2.4. Assume that the class [ω] is atoroidal and let H be a Hamiltonian having a
non-degenerate one-periodic orbit x with homotopy class f such that [f] 6= 0 in H1(M ;Z)/Tor
and P1(H, [f]) is finite. Then, for every sufficiently large prime p, the Hamiltonian H has a simple
periodic orbit in the homotopy class fp and with period either p or p′, where p′ is the first prime
greater than p. Moreover, when π1(M) is hyperbolic and torsion free, the condition [f] 6= 0 can
be replaced by f 6= 1.

Remark 2.5. Here, as in [Gü13, Theorem 3.1], the requirement that x is non-degenerate can
be replaced by a much less restrictive condition that x is isolated and has non-trivial local
Floer homology; see Theorem 4.1. The key difference between Theorems 2.4 and 2.2 is that a
non-degenerate Hamiltonian H can, at least hypothetically, have several one-periodic orbits in
the class f, yet χ(H, I, f) = 0 for any interval I. (The reason why in Theorem 2.2, in contrast with
Theorem 2.4 or [Gü13], it is not sufficient to assume that H has a non-contractible periodic orbit
is that, as has already been mentioned in the introduction, the augmented action filtration is not
strict. We will come back to this issue in § 3.3.) The new points of Theorem 2.4 as compared with
the results from [Gü13] are the ‘moreover’ part of the theorem and the control of the homotopy
classes of the orbits rather than the homology classes.

Among symplectic manifolds with atoroidal class [ω] are the Kähler manifolds with negative
sectional curvature mentioned above and also some other classes of symplectic manifolds; see,
e.g., [BK08, Kęd09].

Remark 2.6 (Growth). In the settings of Theorems 2.2 and 2.4, the number of simple non-
contractible periodic orbits with period less than or equal to k, or the number of distinct
homotopy classes represented by such orbits, is bounded from below by const · k/ln k. An
immediate consequence of the theorems is that H has infinitely many simple periodic orbits
with homology class in N[f] regardless of whether or not the set of one-periodic orbits (in the
class [f]) is finite.

The simplest manifold the above theorems do not apply to is the standard symplectic
torus T2n with 2n > 4. In dimension two, it is easy to see that for strongly non-degenerate
Hamiltonian diffeomorphisms the presence of one non-contractible orbit in a homotopy class
f implies the existence of infinitely many simple periodic orbits with homotopy class in fN.
(Recall that a diffeomorphism is said to be strongly non-degenerate if all its periodic orbits
are non-degenerate.) The proof of this fact amounts to the observation that in dimension two
the mean index determines the Conley–Zehnder index and is similar to the proofs of [Abb01,
Theorem 5.1.9] or [GG09b, Theorem 1.7]. However, somewhat surprisingly, it is not clear at all
whether the non-degeneracy condition here can be replaced as in, e.g., [Gü13, Gü14] by the
requirement that the orbit has non-vanishing local Floer homology. When 2n > 4, no results
along these lines have been established for T2n.

It is interesting to contrast the previous theorems with the following, admittedly superficial,
C∞-generic existence result. Namely, C∞-generically, the existence of one non-contractible
one-periodic orbit is sufficient to infer the existence of infinitely many simple non-contractible
periodic orbits under no conditions on M and with only very minor assumptions about f;
cf. [GG09b]. To be more precise, denote by Ff the collection of strongly non-degenerate
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Hamiltonian diffeomorphisms with a one-periodic orbit in f. Clearly, Ff is C∞-open in the group
of Hamiltonian diffeomorphisms. As has been pointed out above, this set is non-empty by, e.g.,
[Bat15a, Proposition 1.3]. Recall also that a subset is called residual, or second Baire category,
when it is the intersection of a countable collection of open and dense subsets.

Theorem 2.7. Assume that fk 6= 1 for all k ∈ N. Then the subset F∞f of Ff formed by

Hamiltonian diffeomorphisms with infinitely many simple periodic orbits in fN is C∞-residual.

It is essential that in this theorem the ambient manifold M is not required to be toroidally
monotone or negative monotone. In fact, no condition on M , other than compactness, is
necessary. However, as in the case of other results of this paper, the proof makes use of the
Hamiltonian Floer homology, and we need to either assume that M is weakly monotone or rely
on the machinery of virtual cycles.

A consequence of Theorem 2.7 in the spirit of an observation in [PS14] is that non-autonomous
Hamiltonian diffeomorphisms (i.e., Hamiltonian diffeomorphisms that cannot be generated by
autonomous Hamiltonians) form a C∞-residual subset of Ff. In fact, every ϕ ∈ F∞f is necessarily
non-autonomous. Indeed, when k > 1, simple k-periodic orbits of an autonomous Hamiltonian
diffeomorphism are never isolated and, hence, in particular, never non-degenerate.

3. Augmented action filtration

Our goal in this section is to show that when the augmented action gap is sufficiently large the
Floer homology for non-contractible periodic orbits is filtered by the augmented action, and to
analyze the behavior of this filtration under continuation maps. As in the rest of the paper, we
assume that (M2n, ω) is a closed, toroidally monotone or toroidally negative monotone symplectic
manifold. However, the construction of the Floer homology (but not of the augmented action
filtration) goes through in general for any compact manifold M , at least when M is weakly
monotone or via the technique of virtual cycles.

3.1 Preliminaries: iterated Hamiltonians
Let H : S1 ×M → R be a one-periodic in time Hamiltonian on M . The augmented action of
H is homogeneous under the iterations of ϕH . To make this more precise, let us recall a few
standard definitions.

Let K and H be two one-periodic Hamiltonians. The ‘composition’ K\H is, by definition,
the Hamiltonian

(K\H)t = Kt +Ht ◦ (ϕtK)−1,

and the flow of K\H is ϕtK ◦ϕtH . We set H\k = H\ . . . \H (k times). Abusing terminology, we will
refer to H\k as the kth iteration of H. (Note that the flow ϕt

H\k = (ϕtH)k, t ∈ [0, 1], is homotopic
with fixed end points to the flow ϕtH , t ∈ [0, k].)

In general, H\k is not one-periodic, even when H is. However, H\k becomes one-periodic
when, for example, H0 ≡ 0 ≡ H1. The latter condition can always be met by reparametrizing the
Hamiltonian as a function of time without changing the time-one map. This procedure does not
affect the Hofer norm, and actions and indices of the periodic orbits. Thus, in what follows, we
usually treat H\k as a one-periodic Hamiltonian. Alternatively, the Hamiltonian diffeomorphism
ϕkH can be obtained as the time-k flow of H. Thus, in some instances such as the proof of
Lemma 4.2, it is more convenient to treat H\k as the k-periodic Hamiltonian Ht with t ∈ R/kZ.
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We will always state specifically when this is the case. Clearly, these two Hamiltonians, both

denoted by H\k, have canonically isomorphic filtered Floer homology.

The kth iteration of a one-periodic orbit x of H is denoted by xk. More specifically, xk is the

k-periodic orbit x(t), t ∈ [0, k], of H. There is an action- and mean-index-preserving one-to-one

correspondence between the one-periodic orbits of H\k and the k-periodic orbits of H. Thus, we

can also think of xk as the one-periodic orbit xk(t) = ϕt
H\k(x(0)) of H\k.

Assume now that all iterated homotopy classes fk, k ∈ N, are distinct and non-trivial. As

above, we have a reference loop z ∈ f fixed together with a trivialization of TM |z. Let us choose

the iterated loop zk with the ‘iterated trivialization’ as the reference loop for fk. Then the action

and the mean index are both homogeneous with respect to the iteration and, as a consequence,

ÃH\k(xk) = kÃH(x).

3.2 Floer homology for non-contractible periodic orbits

The key tool used in the proofs of Theorems 2.1 and 2.2 is the Floer homology for non-contractible

periodic orbits of Hamiltonian diffeomorphisms. Various flavors of Floer homology in this case for

both open and closed manifolds have been considered in several other works; see, e.g., [BPS03,

GL00, GG14, Gü13, Lee03, Nic06, Web06]. Below we assume that M2n is closed and toroidally

monotone or toroidally negative monotone. In the latter case, to have the Floer homology defined,

one must either rely on the machinery of multivalued perturbations (and set the coefficient ring

to be Q) or require in addition that NS > n to ensure that M is weakly monotone, where NS is

the minimal spherical Chern number; cf. [LO96].

Let us now briefly describe the elements of the construction of the Floer homology relevant

to our argument. Fix f ∈ π̃1(M). Let H be a Hamiltonian such that all one-periodic orbits of

H in f are non-degenerate. (Here x is said to be non-degenerate if the linearized return map

dϕH : Tx(0)M → Tx(0)M does not have one as an eigenvalue.) The Floer complex CF(H, f)

is generated, over some fixed coefficient ring, by these orbits. The Floer differential is defined

in the standard way. With this definition, the complex CF(H, f) is neither graded nor does it

carry an action filtration. The homology HF(H, f) of CF(H, f) is equal to zero when f 6= 1.

Indeed, by the standard continuation argument, HF(H, f) is independent of H (cf. § 3.4) and,

since all one-periodic orbits of a C2-small autonomous Hamiltonian H are contractible, we have

HF(H, f) = 0. As is well known, HF(H, 1) = H∗(M) at least over Q; see, e.g., [MS12] for further

references.

To give the complex CF(H, f) some more structure, let us fix a reference loop z ∈ f and a

trivialization of TM |z. Using this trivialization, we can define the Conley–Zehnder index µCZ

(H, x̄)∈ Z of a capped non-degenerate orbit x̄ as in, e.g., [MS12, SZ92]. For future reference, note

that

|∆H(x̄)− µCZ(x̄)| 6 n. (3.1)

Similarly to the contractible case, the Conley–Zehnder index µCZ(H,x) of an orbit without

capping is defined only modulo 2NT . As a result, we obtain a Z2NT
-grading of the complex

CF(H, f) and of the homology HF(H, f) and, in particular, a Z2-grading. Replacing the one-

periodic orbits of H by the capped one-periodic orbits, one could define the Floer complex and

the homology of H as a module over a suitably chosen Novikov ring and, as in the contractible

case, this complex and the homology would be Z-graded and filtered by the action. However,

for our purposes it is more convenient to work with the homology HF(H, f) and the complex

CF(H, f) generated by the non-capped orbits and defined as above.
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The constructions from this section readily carry over to the case where a single free homotopy
class f is replaced by a collection of free homotopy classes. For instance, one can specify the
collection of free homotopy classes of loops by prescribing a homology class.

3.3 Filtration
Let, as above, M2n be a toroidally monotone or toroidally negative monotone closed symplectic
manifold with monotonicity constant λ. In what follows, we have a free homotopy class f or a
collection of such classes together with the reference loops and trivializations fixed and suppressed
in the notation. Thus, we write CF(H) for CF(H, f), etc. With these auxiliary data fixed, the
augmented action spectrum S̃(H) := S̃(H, f) is defined for any Hamiltonian H on M .

The augmented action gap is the infimum of the distance between two distinct points in the
augmented action spectrum S̃(H), i.e.,

gap(H) = inf |s− s′| ∈ [0,∞], where s and s′ 6= s are in S̃(H).

We emphasize that gap(H) is defined even when H is degenerate. It is also worth pointing out
that gap(H) is neither upper nor lower semicontinuous in H.

Set

c0(M) = |λ|2n± 1

2
, (3.2)

where the sign ± is sign(λ). We say that the gap condition is satisfied whenever

gap(H) > c0(M). (3.3)

Proposition 3.1. Assume that all one-periodic orbits of H in f are non-degenerate and (3.3)
holds. Then the complex CF(H), and hence the homology HF(H), is filtered by the augmented
action. In other words,

ÃH(y) 6 ÃH(x) (3.4)

whenever y enters ∂x =
∑
ayy with non-zero coefficient.

Remark 3.2. In contrast with the standard action filtration, the augmented action filtration is
not necessarily strict, i.e., equality in (3.4) can occur. Note also that in this proposition it suffices
to have a non-strict inequality in the gap condition (3.3).

Proof. Throughout the proof, let us assume that λ > 0, i.e., M is toroidally monotone. The
negative monotone case is dealt with by a similar (up to some signs) calculation.

To establish (3.4), let us fix a capping of x. Then an orbit y entering ∂x with non-zero
coefficient inherits a capping from x̄. We have

ÃH(y) = AH(ȳ)− λ

2
∆H(ȳ)

< AH(x̄)− λ

2
(µCZ(ȳ)− n)

= AH(x̄)− λ

2
(µCZ(x̄)− n− 1)

6 AH(x̄)− λ

2
(∆H(x̄)− 2n− 1)

= ÃH(x) + c0(M).
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Here we used (3.1) and the facts that µCZ(ȳ) = µCZ(x̄)−1 and that ∂ is action decreasing. Thus,

we have shown that ∂ does not increase the augmented action by more than c0(M). Now the

required inequality (3.4) follows once the augmented action gap is greater than c0(M), i.e., when

the gap condition (3.3) holds. 2

With Proposition 3.1 in mind, we can define the augmented action filtration on the homology

exactly in the same way as for the ordinary action. Thus, assume that (3.3) is satisfied and

a 6∈ S̃(H) and denote by C̃F(−∞, a)(H) the subcomplex of CF(H) generated by the orbits with

augmented action below a. Let H̃F(−∞, a)(H) be the homology of this subcomplex. Furthermore,

when I = (a, b) is an interval with end points outside S̃(H), we set

C̃FI(H) = C̃F(−∞, b)(H)/C̃F(−∞, a)(H).

In other words, C̃FI(H) is the complex generated by the orbits with augmented action in I,

equipped with the naturally defined differential. We denote the homology of this complex by

H̃FI(H). (The role of the tilde here is to emphasize that we use the augmented action rather

than the ordinary action and that I is an augmented action range.) We have the long exact

sequence

· · ·→ H̃F(−∞, a)(H) → H̃F(−∞, b)(H) → H̃FI(H) → · · ·

and a similar exact sequence for three intervals

· · ·→ H̃F(c, a)(H) → H̃F(c, b)(H) → H̃F(a, b)(H) → · · · . (3.5)

Our next goal is to show that the construction of the augmented action filtered Floer

homology extends by continuity to all, not necessarily non-degenerate, Hamiltonians.

Proposition 3.3. Let H be a Hamiltonian on M , not necessarily non-degenerate, such that the

gap condition (3.3) is satisfied and let a 6∈ S̃(H). Then, for any non-degenerate Hamiltonian K

sufficiently C1-close to H, the subspace C̃F(−∞, a)(K) ⊂ CF(K) is a subcomplex.

This result is not an immediate consequence of Proposition 3.1. Since the augmented action

gap is not lower semicontinuous in the Hamiltonian, we cannot guarantee that (3.3) holds for K

if it holds for H, and thus a priori Proposition 3.1 need not apply to K.

Proof. Let x be a one-periodic orbit of K with ÃK(x) < a and let y be an orbit entering ∂x with

non-zero coefficient. We need to show that ÃK(y) < a.

The orbits x and y are C1-small perturbations of one-periodic orbits x′ and y′ of H with

augmented actions close to those of x and y. By continuity of the augmented action spectrum,

we necessarily have ÃH(x′) < a when K is C1-close to H.

If ÃH(y′) > ÃH(x′), we have ÃH(y′) − ÃH(x′) > c0(M) by (3.3), and therefore ÃK(y) −
ÃK(x) > c0(M). This is impossible because, as we have seen from the proof of Proposition 3.1,

the differential cannot increase the augmented action by more than c0(M). Thus, ÃH(y′) 6
ÃH(x′). Then

ÃK(y) ≈ ÃH(y′) 6 ÃH(x′) < a,

and hence ÃK(y) < a when K is C1-close to H. 2
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Now, for any Hamiltonian H, when the end points of an interval I are outside S̃(H) and

(3.3) holds, we can, utilizing Proposition 3.3, set H̃FI(H) := H̃FI(K), where K is a C1-small
non-degenerate perturbation of H. Using standard continuation arguments (cf. § 3.4), it is easy
to see that the resulting homology is well defined, i.e., independent of K.

Example 3.4. The setting we are interested in where the gap condition (3.3) is satisfied is when
H is a high prime order iteration of some Hamiltonian F , i.e., H = F \k and k is a large prime. In
this case, either F has simple k-periodic orbits or gap(H) = k gap(F ). Thus, either new periodic
orbits are created or the gap grows linearly under the iterations of F and eventually becomes
greater than c0(M).

It is clear that all these constructions respect the Z2NT
-grading (and hence the Z2-grading)

of the complexes and the homology. Thus, for instance, (3.5) is an exact sequence of graded
complexes and the connecting map has degree −1.

For degenerate Hamiltonians with isolated one-periodic orbits, one can, similarly to the case
of the standard action filtration, view the local Floer homology as building blocks for the Floer
homology filtered by the augmented action. For instance, assume that S̃(H) ∩ I = {c} and all
one-periodic orbits x with augmented action c are isolated. Then it is not hard to see that there
exists a spectral sequence with E1 =

⊕
x HF(x) converging to H̃FI(H), where HF(x) stands

for the local Floer homology of x. (We refer the reader to, e.g., [Gin10, GG10, McL12] for the
definition and a discussion of the local Floer homology.) In contrast with the case of the ordinary

action filtration, we do not necessarily have E1 = H̃FI(H) even when H is non-degenerate. The
reason is that the augmented action filtration is not strict and the Floer differential, or more
generally Floer trajectories, can connect orbits with equal augmented action.

However, as is easy to see, for any interval I with end points outside S̃(H), we have

χ(H, I) = (−1)n[dim H̃FIeven(H)− dim H̃FIodd(H)]. (3.6)

In particular, H̃FI(H) 6= 0 if χ(H, I) 6= 0. (Here, as everywhere in this section, we have suppressed
the class f in the notation.)

3.4 Homotopy and continuation
The behavior of the augmented action under homotopies is similar to that of the ordinary action.
Namely, recall that a continuation map shifts the action filtration upward by a certain constant;
see, e.g., [Gin07, § 3.2.2]. This is still true for the augmented action, although the size of the shift
is slightly different. Furthermore, when the homotopy is monotone decreasing, the action shift is
zero, and the induced map in homology preserves the action filtration. This fact does not have a
direct analogue for the augmented action, but the augmented action filtration is preserved when
the augmented action gaps for the Hamiltonians are large enough.

To be more precise, consider a homotopy Hs from a Hamiltonian H0 to a Hamiltonian H1

on M , and set

ca(H
s) =

∫ ∞
−∞

∫
S1

max
M

∂sH
s dt ds.

For instance,

ca(H
s) =

∫
S1

max
M

(H1 −H0) dt

when Hs is a linear homotopy from H0 to H1. The augmented action shift is governed by the
constant

ch(Hs) = max{0, ca(Hs)}+ |λ|n > 0. (3.7)
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Proposition 3.5. Assume that both Hamiltonians H0 and H1 satisfy (3.3), i.e.,

gap(H0) > c0(M) and gap(H1) > c0(M). (3.8)

Then a homotopy Hs from H0 to H1 induces a map in the Floer homology shifting the action
filtration upward by ch(Hs):

H̃FI(H0) → H̃Fch(Hs)+I(H1),

where ch(Hs) + I stands for the interval I moved to the right by ch(Hs). Furthermore, if

gap(H0) > ch(Hs) and gap(H1) > ch(Hs)

in addition to (3.8), the map induced by the homotopy preserves the augmented action filtration,

i.e., we have H̃FI(H0) → H̃FI(H1).

Note that here the shift ch(Hs) can be replaced by any constant a > ch(Hs). The proof of
the proposition is standard and we omit it. Here we only mention that the first term in (3.7)
is the maximal action shift induced by the homotopy (see, e.g., again [Gin07, § 3.2.2]) and the
second term is the maximal mean index shift, as can be seen from an argument similar to the
proof of Proposition 3.1.

Remark 3.6. The arguments from this section carry over to contractible periodic orbits, i.e.,
to the case where f = 1, with some simplifications and straightforward modifications. Namely,
in this case, it is enough to assume that M is monotone or negative monotone to have the
augmented action defined; see [GG09a]. An analogue of (3.3) is still sufficient to ensure that the
Floer complex and the homology are filtered by the augmented action and Propositions 3.1, 3.3,
and 3.5 still hold.

4. Proofs

With the action filtration introduced, we are now in a position to prove the main results of the
paper.

4.1 Proofs of Theorems 2.2 and 2.4

Proof of Theorem 2.2: the case [f] 6= 0. Since P1(H, [f]) is finite, only finitely many distinct free
homotopy classes fi ∈ π̃1(M) occur as the free homotopy classes of one-periodic orbits of H in
the homology class [f]. We claim that then, for a sufficiently large prime p, the classes fpi are also
distinct.

To see this, first note that for any two elements g 6= h in any group there is at most one
prime p such that gp = hp. Indeed, assume that there are two such distinct primes p and q. Then,
since p and q are relatively prime, ap+ bq = 1 for some integers a and b. Hence,

g = (gp)a(gq)b = (hp)a(hq)b = h,

which is impossible since g 6= h. Clearly, the same is true for conjugacy classes. As a consequence,
for any finite collection of distinct conjugacy classes, their large prime powers are also distinct.

Throughout the proof we will always require p to be a sufficiently large prime to satisfy
the above condition for the collection fi. (Later we will need to impose additional lower bounds
on p.)
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Let us assume that H has no simple p-periodic orbits in the class fp. Our goal is to show
that it has a simple p′-periodic orbit, where p′ is the first prime greater than p, in the homotopy
class fp.

Then all p-periodic orbits in fp are the pth iterations of one-periodic orbits, since p is prime.
Furthermore, by the above requirement on p, these one-periodic orbits are necessarily in the free
homotopy class f. Thus, we have

S̃(H\p, fp) = p S̃(H, f) (4.1)

with respect to the pth iteration of the reference loop z ∈ f and of the trivialization of TM |z. As
a consequence,

gap(H\p, fp) = p gap(H, f), (4.2)

and the augmented action filtration on the Floer homology H̃F(H\p, fp) is defined once p is so
large that p gap(H, f) > c0(M); see (3.2) and § 3.3. We also have

S̃(H\p, fp) ∩ pI = p(S̃(H, f) ∩ I). (4.3)

Here pI = (pa, pb) for I = (a, b).
Next we claim that, when p is sufficiently large,

χ(H\p, pI, fp) = χ(H, I, f). (4.4)

To see this, denote by xi the one-periodic orbits of H in the class f and with augmented
action in I. This is a finite collection of orbits since P1(H, [f]) is finite. Then all sufficiently large
primes p are admissible in the sense of [GG10] for all orbits xi, i.e., 1 has the same multiplicity
as a generalized eigenvalue of the linearized return maps dϕH and dϕpH at xi and the two maps
have the same number of eigenvalues in (−1, 0). (Indeed, it suffices to require p to be larger than
2 and larger than the degree of any root of unity among the eigenvalues of dϕH at xi.) By the
Shub–Sullivan theorem (see [CMPY83, SS74]), the orbits xi and xpi have the same Poincaré–Hopf
index. The orbits xpi are the only p-periodic orbits of H in fp with augmented action in pI, and
(4.4) follows. Alternatively, one can argue as in the proof of the case f 6= 1 of the theorem; see
below.

By (3.6) and since χ(H, I, f) 6= 0, we conclude that

H̃FpI(H\p, fp) 6= 0.

Now we are in a position to show that H must have at least one p′-periodic orbit in the class
fp, where p′ is the first prime greater than p, provided again that p is sufficiently large. Then, as
the last step of the proof, we will show that this p′-periodic orbit is necessarily simple.

Arguing by contradiction, assume that there are no such orbits. Then

gap(H\p′ , fp) =∞

and, obviously, the augmented action filtration is defined on the Floer homology for H\p′

and fp. (Of course, the resulting complex and the homology are zero for any augmented action
interval, but this is not essential at this point.) By roughly following the line of reasoning from
[Gü13, Gü14] and relying on the fact that the filtered homology is defined, we will show that the
homology is non-trivial for a certain augmented action interval and thus arrive at a contradiction
with the assumption that H has no p′-periodic orbits in the class fp.
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Set

e+ = max

{∫
S1

max
M

Ht dt, 0

}
and

e− = max

{
−
∫
S1

min
M

Ht dt, 0

}
.

Then

a± := (p′ − p)e± + |λ|n > c±,

where the constants c± = ch(Hs) are defined by (3.7) for the linear homotopies from H\p to H\p′

and from H\p′ to H\p.

Furthermore, recall that p′−p= o(p) as p→∞; see, e.g., [BHP01]. Thus, when p is sufficiently

large, we have

gap(H\p, fp) = p gap(H, f) > a± > c±.

Hence, the conditions of Proposition 3.5 are satisfied, and the continuation maps

H̃FpI(H\p, fp) → H̃FpI+a+(H\p′ , fp)

and

H̃FpI+a+(H\p′ , fp) → H̃FpI+a++a−(H\p, fp)

are defined.

Now consider the following commutative diagram.

H̃FpI(H\p, fp)

��

∼=
**

H̃FpI+a+(H\p′ , fp) // H̃FpI+a++a−(H\p, fp)

Here the diagonal map is an isomorphism. To see this, denote by δ > 0 the distance from the

end points of I to S̃(H, f). Then the distance from the end points of pI to S̃(H\p, fp) is pδ and,

when p is large,

pδ > a+ + a−

again because p′−p = o(p). Hence, the intervals (pI+a+ +a−)\pI and pI\(pI+a+ +a−) contain

no points of S̃(H\p, fp), and the diagonal map is indeed an isomorphism. (In fact, this argument

shows that, as in the second part of Proposition 3.5, one can eliminate the shifts a± and a+ +a−
in the continuation maps when p is sufficiently large.)

Moreover, as we have shown above, H̃FpI(H\p, fp) 6= 0. Therefore, the middle group

H̃FpI+a+(H\p′ , fp) in the diagram is also non-trivial, and thus H must have a p′-periodic orbit

in the homotopy class fp.

It remains to show that this orbit is necessarily simple. However, otherwise, it would be the

p′th iteration of a one-periodic orbit in the homology class p[f]/p′. This is impossible because

p[f]/p′ is not an integer homology class when p, and hence p′, are large since [f] 6= 0. This

completes the proof of the case [f] 6= 0 of the theorem. 2
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Proof of Theorem 2.2: the case f 6= 1. The proof follows the same path as in the case where

[f] 6= 0, and here we only indicate the necessary changes in the argument.

The key to the proof is the fact that when π1(M) is a torsion-free hyperbolic group and f 6= 1

in π̃1(M), there exists a constant r(f) ∈ N such that the equation

fp = hq

in π̃1(M), where p and q are primes greater than r(f) and h ∈ π̃1(M), is satisfied only when h = f

and p = q.

To see this, we first note that it is sufficient to prove this fact for π1(M) rather than π̃1(M).

In other words, given f ∈ π1(M), f 6= 1, we need to show that fp = hq for sufficiently large

primes p and q (depending on f) only when h = f and p = q. To this end, recall that for any

hyperbolic group G, every element f ∈ G of infinite order is contained in a unique maximal

virtually cyclic subgroup E(f) and

E(f) = {g ∈ G | g−1f lg = f±l for some l ∈ N};

see [Ols93] (and also [Gro87]). Applying this to f 6= 1 in G = π1(M), which is also assumed

to be torsion free, and using the fact that a torsion-free and virtually cyclic group is cyclic, we

conclude that E(f) is infinite cyclic, i.e., Z. Furthermore, h ∈ E(f) as a consequence of the

condition fp = hq. Indeed,

h−1fph = h−1hqh = hq = fp.

This reduces the question to the case where f and h belong to the infinite cyclic group E(f),

and in this case the result is obvious.1

From now on, we require that p > r(f). (Later we will need to introduce additional lower

bounds for p.) As in the proof of the first case of the theorem, assume that H has no simple

p-periodic orbits in the class fp. Then every p-periodic orbit is the pth iteration of a one-periodic

orbit and, by the above observation (with p = q), this one-periodic orbit must also be in the

class f. Clearly, (4.1), (4.2), and (4.3) still hold.

Furthermore, (4.4) also holds, i.e., χ(H\p, pI, fp) = χ(H, I, f), although now the reason is

slightly different. Consider the set F of the initial conditions x(0) for all one-periodic orbits of

H in the class f and with augmented action in I. Since the end points of I are outside S̃(H, f),

the set F is closed. Under a small non-degenerate perturbation H̃ of H, the set F splits into

a finite collection of the initial conditions of the orbits x̃i of H̃ in f with augmented action in

I, and χ(H, I, f) is the sum of the Poincaré–Hopf indices of the orbits x̃i. We can furthermore

ensure that there are no roots of unity among the Floquet multipliers of these orbits. By our

assumptions, F is also the set of the initial conditions for all p-periodic orbits of H in the class

fp with augmented action in pI. If H̃ is sufficiently close to H, the only p-periodic orbits of H̃

in fp with augmented action in pI are x̃pi . Hence, χ(H\p, pI, fp) is the sum of the Poincaré–Hopf

indices of the orbits x̃pi . When p > 2, the orbits x̃i and x̃pi have the same Poincaré–Hopf index

due to the assumption that none of the Floquet multipliers is a root of unity. As a consequence,

we have (4.4).

The rest of the proof is identical to the argument in the case where [f] 6= 0 except for the

very last step. Thus, we have proved the existence of a p′-periodic orbit x in the class fp and

1 The authors are grateful to Denis Osin for this argument.
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now need to show that this orbit is simple. Assume the contrary. Then, since p′ is prime, x is
necessarily the p′th iteration of a one-periodic orbit in some class h. We have

fp = hp
′
,

and hence p′ = p when p > r(f). This is impossible since p′ is the first prime greater than p. 2

Turning to Theorem 2.4, note that, as in [Gü13], a more general result holds. Namely, recall
that the local Floer homology HF(x) is associated to an isolated periodic orbit x of H. The
group HF(x), already mentioned in § 3.3, is roughly speaking the homology of the Floer complex
generated by the orbits which x splits into under a non-degenerate perturbation; see, e.g., [GG10]
for more details. In particular, when x is non-degenerate, HF(x) is equal to the ground ring and
concentrated in degree µCZ(x). We have the following generalization of Theorem 2.4.

Theorem 4.1. Assume that the class [ω] is atoroidal and let H be a Hamiltonian having an
isolated one-periodic orbit x with homotopy class f such that HF(x) 6= 0 and that [f] 6= 0 in
H1(M ;Z)/Tor and P1(H, [f]) is finite. Then, for every sufficiently large prime p, the Hamiltonian
H has a simple periodic orbit in the homotopy class fp and with period either p or p′, where
p′ is the first prime greater than p. Moreover, when π1(M) is hyperbolic and torsion free, the
condition [f] 6= 0 can be replaced by f 6= 1.

The main new point here is the ‘moreover’ part of the theorem. The case of the theorem where
[f] 6= 0, proved in [Gü13], is included for the sake of completeness. The proof of the ‘moreover’
part is a combination of the proof of [Gü13, Theorem 3.1] and the proof of the case f 6= 1 of
Theorem 2.2. Here we only briefly touch upon this argument.

On the proof of Theorem 4.1. The key difference between the settings of Theorems 2.4 and 4.1
and that of Theorem 2.2 is that now the class [ω] is atoroidal and thus we have the standard action
filtration HFI(H; f) on the Floer homology of H rather than the augmented action filtration. On
the level of complexes, the action filtration is strictly monotone, i.e., the differential is strictly
action decreasing. (In contrast, the augmented action is only non-increasing; see the discussion
in § 3.3.) As a consequence, HFI(H; f) 6= 0 when I is a small interval centered at the action
AH(x) whenever x and AH(x) are isolated and HF(x) 6= 0. Furthermore, when H has no simple
p-periodic orbits in the class fp, we have HFpI(H\p; fp) 6= 0 by the persistence of the local Floer
homology results from [GG09a]. With this in mind, one argues essentially word-for-word as in
the proof of Theorem 2.2, with some straightforward simplifications. We omit the details. 2

4.2 Proof of Theorem 2.1
Arguing by contradiction, assume that H has only finitely many simple periodic orbits with
homotopy class in fN = {fk | k ∈ N}, where f = JxK. We denote these orbits by xj and let kj be

the period of xj . Set F = H\2k0 and yj = x
2k0/kj
j , where k0 is the least common multiple of the

periods kj . The orbits yj are the one-periodic orbits of F .
We claim that for all k ∈ N every k-periodic orbit z of F in the collection of the homotopy

classes fN is the kth iteration of one of the orbits yj . Indeed, then z is also a 2kk0-periodic orbit

of H in fN. Hence, z = x
2kk0/kj
j = ykj for some j.

Thus, we have a collection of free homotopy classes fN generated by f ∈ π̃1(M), and a
Hamiltonian F with finitely many one-periodic orbits yj in fN and no other simple periodic
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orbits in fN. One of these orbits, h, is an even iteration of the original hyperbolic orbit. Hence,
h is hyperbolic with an even number of eigenvalues in (−1, 0).

From now on we focus on the Hamiltonian F and its periodic orbits. Set h = JhK; clearly,
hN ⊂ fN.

Let us fix reference curves and trivializations for the collection hN. Namely, it is convenient
to take h as a reference curve for h. Then the reference trivialization is fixed by the condition
that ∆F (h̄) = 0, where h̄ stands for h equipped with the ‘identity’ capping. (Such a trivialization
exists since h is hyperbolic and has an even number of eigenvalues in (−1, 0), and hence the
mean index of h with respect to any trivialization is an even integer.) The class hk is then
given the iterated reference curve hk and the ‘iterated’ trivialization. We fix cappings of the
orbits yj , suppressed in the notation, and equip the iterated orbits with ‘iterated’ cappings. As
a consequence, the action, the mean index, and the augmented action are homogeneous under
iterations for periodic orbits in hN. (It is essential here that all free homotopy classes in hN are
distinct and non-trivial, and hence the reference curve and the trivialization are well defined.)

Without loss of generality, by adding if necessary a constant to F , we can ensure that
ÃF (h) = 0.

By our assumptions, we have

S̃(F \k, hk) = kS̃(F, h)

and
gap(F \k, hk) = k gap(F, h).

It follows that the augmented action filtered Floer homology of F \k is defined when k is large
enough.

Furthermore, let I be an interval such that 0 = ÃF (h) is the only point in S̃(F, h) ∩ I, and
the end points of I are not in S̃(F, h). Then we also have

S̃(F \k, hk) ∩ kI = {0} (4.5)

and the end points of kI are outside S̃(F \k, hk).

Lemma 4.2. H̃FkiI(F \ki , hki) 6= 0 for some sequence ki →∞.

Assuming the lemma, let us finish the proof of the theorem. Similarly to the proof of
Theorem 2.2, set

a+ = max

{∫
S1

max
M

Ft dt, 0

}
+ |λ|n

and

a− = max

{
−
∫
S1

min
M

Ft dt, 0

}
+ |λ|n.

These constants are greater than or equal to the constants ch given by (3.7) for the linear
homotopies from F \k to F \(k+1) and from F \(k+1) to F \k, and denoted again by c±. Thus, when
k is sufficiently large,

gap(F \k, hk) = k gap(F, h) > a± > c±.

Hence, by Proposition 3.5, the continuation maps

H̃FkI(F \k, hk) → H̃FkI+a+(F \(k+1), hk)
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and
H̃FkI+a+(F \(k+1), hk) → H̃FkI+a++a−(F \k, hk)

are defined.
Let δ > 0 be the distance from the end points of I to S̃(F, h). Then the distance from the end

points of kI to S̃(H\k, hk) is kδ. When k is large, kδ > a++a−, and the intervals (kI+a++a−)\kI
and kI\(kI+a+ +a−) contain no points of S̃(F \k, hk). Thus, the natural quotient-inclusion map

H̃FkI(F \k, hk) → H̃FkI+a++a−(F \k, hk)

is an isomorphism.
Let now k be one of the sufficiently large entries in the sequence ki from Lemma 4.2. Consider

the following commutative diagram.

H̃FkI(F \k, hk)

��

∼=
++

H̃FkI+a+(F \(k+1), hk) // H̃FkI+a++a−(F \k, hk)

Here the diagonal map is an isomorphism and, by Lemma 4.2, H̃FkI(F \k, hk) 6= 0. Therefore, the

middle group H̃FkI+a+(F \(k+1), hk) in the diagram is also non-trivial, and F has a (k+1)-periodic
orbit z in the homotopy class hk.

We have z = yk+1
j for some j. Furthermore, h = fa and JyjK = fb for some a and b in N. Thus,

fak = fb(k+1). Since all homotopy classes in fN are distinct, we infer that ak = b(k + 1), where a
is independent of k. This is clearly impossible for k > a since k and k + 1 are relatively prime,
and we have arrived at a contradiction. To finish the proof of the theorem, it remains to prove
the lemma.

Proof of Lemma 4.2. Throughout the proof, it is convenient to interpret the iterated
Hamiltonian F \k as the k-periodic Hamiltonian Ft with t ∈ R/kZ. Furthermore, without loss of
generality, we can ensure that λ/2 = 1 by rescaling ω, and thus ÃF = AF −∆F . Since ÃF (h) = 0
and ∆F (h̄) = 0, we also have

AF (h̄) = 0 = ∆F (h̄). (4.6)

Recall that, by our assumptions, 0 is the only point of the action spectrum S̃(F \k, hk) in the
interval kI (see (4.5)) and that ykj are the only k-periodic orbits of F .

Fix a neighborhood U of h which does not intersect any of the other orbits yj and a small
parameter ε > 0, depending on U , to be specified later. There exists a sequence ki → ∞ such
that for all j and ki, we have

‖∆F \ki (y
ki
j )‖2NT

< ε, (4.7)

where ‖a‖2NT
stands for the distance from a ∈ S1

2NT
= R/2NTZ to 0 or, equivalently, from a ∈ R

to the nearest point in the lattice 2NTZ ⊂ R. Here we can treat the mean index

∆F \ki (y
ki
j ) = ki∆F (yj)

as a real number when yj is capped or as a point in S1
2NT

when the capping is discarded.

To prove (4.7), consider the torus Tm = (S1
2NT

)m, where m is the number of the orbits yj ,
and set

∆ = (∆F (y1), . . . ,∆F (ym)) ∈ Tm.
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The closure Γ of the orbit {k∆ | k ∈ Z} is a subgroup in Tm and, for every k0, the set {k∆ | k > k0}
is dense in Γ. Hence, the point k∆ is within the ε-neighborhood of 0 ∈ Γ for infinitely many
values of k.

From now on k will stand for one of the entries in the sequence ki.
Let G be a C∞-small, non-degenerate perturbation of F \k equal to F \k on the neighborhood

U . The orbits ykj , other than hk, split into a finite collection of non-degenerate orbits of G in the

class hk. Among these we are interested exclusively in the orbits with augmented action in kI.
These orbits can only come from the orbits ykj with action in kI, i.e., by (4.5), from the orbits yj

with ÃF (yj) = 0. We denote the resulting orbits of G by zj . (The number of the orbits zj may
be different from the number of the orbits yj .) It is clear that the orbits zj do not enter U and
that

|ÃG(zj)| 6 η, (4.8)

where η = O(‖F \k −G‖C1).
It suffices now to show that when ε > 0 is sufficiently small the orbit hk of G is closed (i.e.,

a cycle), but not exact, in the Floer complex C̃FkI(G, hk). To this end, we will prove that hk

cannot be connected to any of the orbits zj by a Floer trajectory of relative index ±1.
By (4.6), we have

∆G(h̄k) = k∆F (h̄) = 0 and AG(h̄k) = kAF (h̄) = 0.

In particular, µCZ(hk) = ∆G(hk) = 0.
Let now z̄ be one of the capped orbits z̄j . Our goal is to show that every Floer trajectory u

connecting the capped orbits z̄ and h̄k has relative index different from ±1. Since µCZ(h̄k) = 0
and by (3.1), it is enough to prove that

|∆G(z̄)| > n+ 1. (4.9)

The orbit z does not enter U . Thus, by [GG14, Theorem 3.1], there exists a constant e > 0,
depending on U , but not on k, such that the energy of u is bounded from below by e. In other
words, using the fact that AG(h̄k) = 0, we have

|AG(z̄)| > e.

Set ε < e.
By (4.7), ∆G(z̄) ∈ (`− ε, `+ ε) for some ` ∈ Z. If ` = 0, and hence |∆G(z̄)| < ε, we also have

|AG(z̄)| < ε+ η

by (4.8). This is impossible when η > 0 is smaller than |e−ε|, i.e., when G is sufficiently C1-close
to F \k, since ε < e. Thus, ` 6= 0, and therefore

|∆G(z̄)| > 2NT − ε.

Recall that NT > n/2 + 1 by the assumptions of the theorem. Hence, when ε < 1, we have

|∆G(z̄)| > n+ 2− ε > n+ 1.

This proves (4.9), completing the proofs of the lemma and of the theorem. 2
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4.3 Proof of Theorem 2.7
The argument is quite standard; it follows the same line of reasoning as the proof of [GG09b,
Proposition 1.6], which, in turn, has a lot of similarities with, e.g., an argument in [Hin84].

Proof. It suffices to show that a Hamiltonian diffeomorphism ϕH ∈ Ff has a non-hyperbolic
periodic orbit in some homotopy class fk or ϕH has infinitely many periodic orbits in fN.
Indeed, the presence of a non-hyperbolic periodic orbit x implies, by the Birkhoff–Lewis–Moser
fixed-point theorem (see [Mos77]), the existence of infinitely many periodic orbits in a tubular
neighborhood of x C∞-generically for Hamiltonian diffeomorphisms close to ϕH .

To this end, observe that since HF(H, f) = 0 due to the condition f 6= 1, the Hamiltonian H
necessarily has one-periodic orbits in the class f with odd and with even Conley–Zehnder indices.
As a consequence, it has either a non-hyperbolic one-periodic orbit or a hyperbolic orbit with
an odd number of real Floquet multipliers in the interval (−1, 0). In the former case, the proof
is finished.

In the latter case, let us apply this argument to ϕ2
H . By the assumptions of the theorem,

f2 6= 1 and thus HF(H\2, f2) = 0. Hence, H has two-periodic orbits in the class f2 with odd and
with even Conley–Zehnder indices. The second iterations of one-periodic orbits from the class
f are necessarily positive hyperbolic. Therefore, there exists a simple two-periodic orbit in f2,
which is either non-hyperbolic or hyperbolic with an odd number of real Floquet multipliers in
the interval (−1, 0). In the former case, the proof is finished, and in the latter we repeat this
process for ϕ4 and so forth.

As a result, we will either find a non-hyperbolic orbit in some class fk or construct a sequence
of simple periodic orbits in fN. 2

Remark 4.3. As is clear from the proof, it is sufficient to assume only that fk 6= 1 when k is a
power of 2. In this case, the result asserts the generic existence of infinitely many periodic orbits
in the set of homotopy classes fN, although these orbits may now be contractible.
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