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1. Introduction
The Rauzy gasket is a set which lies within the two-dimensional simplex. It is an important
subset of parameter space in numerous dynamical or topological problems (see [9] and
the introductions of [4, 5]), having been discovered independently at least three times in
different contexts.

It was a conjecture of Arnoux [1] that the Hausdorff dimension of this set is smaller than
two, and this was confirmed by [2]. (It is also a special case of a conjecture of Novikov that
this dimension is strictly between one and two.) In this short note, we give a completely
elementary proof of this fact.

Our method of proof is fairly flexible, and we illustrate this by applying it to a family of
higher-dimensional examples Gd (d ≥ 3) which generalise the Rauzy gasket. That is, the
purpose of this note is to give an elementary proof of the following theorem.

THEOREM 1.1. dimH (Gd) < d − 1 for any d ≥ 3.

We note that for the d = 3 case, this result has been strengthened with explicit (albeit
loose) upper bounds [8, 11] and complemented with a lower bound [10].

In §2, we define Gd . In §3, we provide a covering lemma that allows us to reduce to
considerations of volumes of certain simplices, and in §4, we give an explicit formula
for these volumes. In §5, we use the formula to prove some iterative inequalities, which
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combine with the renewal theorem to get our main technical result. We then verify the
assumptions of this technical result in §6 to complete the proof of Theorem 1.1.

2. Definition of Gd

We begin with the general definition of a Rauzy gasket in the standard d-simplex, first
defined in [1]. These were shown to have Hausdorff dimension strictly less than d in [8],
using estimates of [3].

Definition 2.1. Fix d ≥ 3 as the dimension of the ambient space, and let � ⊂ R
d be the

standard d − 1 simplex:

� = {x ∈ [0, 1]d : ‖x‖ = 1},
where ‖x‖ = ‖x‖l1 = ∑d

j=1 vj denotes the usual l1 norm. For j ∈ {1, 2, . . . , d}, define
the matrix Mj ∈ {0, 1}d×d by

(Mj )i,k =
{

1 if i = j or i = k,

0 otherwise,

that is, Mj has ones on the main diagonal and the jth row, and zeros elsewhere.
We define Gd−1 as the attractor of the projectivised maps {Tj }dj=1,

Tj : � → �, Tj (x) = Mj · x

‖Mj · x‖ ,

that is, Gd−1 is the unique non-empty compact subset of � such that

Gd−1 =
d⋃

j=1

Tj (Gd−1)

(see [6] for equivalent definitions).

Example 2.2. (d = 3) The original Rauzy gasket, depicted in Figure 1, corresponds to
d = 3. The three matrices are

M1 =
⎛
⎝ 1 1 1

0 1 0
0 0 1

⎞
⎠, M2 =

⎛
⎝ 1 0 0

1 1 1
0 0 1

⎞
⎠, M3 =

⎛
⎝ 1 0 0

0 1 0
1 1 1

⎞
⎠,

and the first map is

T1(x, y, z) =
(

1
2 − x

,
y

2 − x
,

z

2 − x

)
.

We now introduce some notation to be used throughout. We shall also write |i| = n as
shorthand for i ∈ {1, 2, . . . , d}n.

Notation 2.3. Throughout we write, for i = (i1, . . . , in) ∈ {1, 2, . . . , d}n:
• Mi := Mi1Mi2 · · · Min ;
• Ti := Ti1 ◦ Ti2 ◦ · · · ◦ Tin ; and
• �i := Ti(�).
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FIGURE 1. The Rauzy gasket, G3.

3. Covering lemma
Our first step in the proof of Theorem 1.1 is the following lemma.

LEMMA 3.1. Given δ ∈ (0, 1), dimH (Gd) ≤ d + δ − 2, whenever

Xn :=
∑
|i|=n

vold−1(�i)
δ → 0

as n → ∞, where vold−1(�i) denotes the (d − 1)-dimensional volume of �i .

Note that, where appropriate, we write f � g to mean that there exists a constant C > 0,
depending only on d and δ, such that f ≤ Cg.

Proof. From the definition of Hausdorff dimension [6], to show dimH (Gd) ≤ d + δ − 2
it suffices to exhibit a family of open covers {Cn}∞n=1 of G such that∑

S∈Cn

diam(S)d+δ−2 → 0

as n → ∞ (in particular, this implies maxS∈Cn
diam(S) → 0). To define these covers, it

follows from the definition of Gd , and the fact that Gd ⊂ �, that

Gd ⊂
⋃
|i|=n

�i .

Thereby, providing a cover of each �i by open balls and taking the union gives an open
cover of Gn. For each |i| = n, the construction is as follows.

Since Ti is the projectivization of an injective linear map, �i is a (d − 1)-simplex.
Choose a maximal-volume face Bi of �i as its base, so that hi , its height measured
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FIGURE 2. A collection of balls of diameter hi covering a copy of Bi . The bases of the balls are denoted by dots.
Scaling each ball by a factor of

√
d about its centre gives a cover of �i .

from Bi , is the smallest such height. A simple induction shows that Bi is contained in
a (d − 2)-dimensional hypercuboid, whose side lengths are at least hi and whose volume
is at most (d − 2)vold−2(Bi). It follows that this cuboid and hence Bi can be covered with
ni open balls of radius hi , where

ni �
vold−2(Bi)

hd−2
i

�
vold−2(Bi)

d−1

vold−1(�i)d−2 .

Treating �i ⊂ Bi × [0, hi], taking such a cover of Bi × {hi/2} and enlarging the
balls by a factor of

√
d gives a cover of �i (see Figure 2). Doing this construction

simultaneously for all such |i| = n defines the cover Cn. Then, since

∑
S∈Cn

diam(S)d+δ−1 �
∑
|i|=n

vold−2(Bi)
d−1

vold−1(�i)d−2 ·
(

vold−1(�i)

vold−2(Bi)

)d+δ−2

=
∑
|i|=n

vold−1(�i)
δ vold−2(Bi)

1−δ

and vold−2(Bi) � 1, our assumption gives the required convergence to zero as
n → ∞.

4. Volume formula
We now show that the volume of �i can be expressed simply in terms of the entries of Mi .

LEMMA 4.1. For any tuple i,

vold−1(�i)

vold−1(�)
= ν(Mi),

where for any N ∈ R
d×d ,

ν(N) :=
d∏

j=1

( d∑
k=1

Nk,j

)−1

=
d∏

j=1

‖N · ej‖−1,
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and where ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth standard basis vector in R
d , that is,

vertex of �.

Proof. We define �∗
i := {λv : λ ∈ [0, 1], v ∈ �i}, that is, the d-simplex with vertices

consisting of those of �i plus the origin, and define �∗ analogously. Integrating
appropriately gives

vold−1(�i)

vold−1(�)
= vold(�∗

i )

vold(�∗)
. (1)

The two d-simplices are related by a linear action: �∗
i = M∗

i · �∗, where

M∗
i := (

Ti(e1)
∣∣Ti(e2)

∣∣ · · · ∣∣Ti(ed)
) =

(
Mi · e1

‖Mi · e1‖
∣∣∣∣ Mi · e2

‖Mi · e2‖
∣∣∣∣ · · ·

∣∣∣∣ Mi · ed

‖Mi · ed‖
)

.

That is, M∗
i is Mi with each jth column multiplied by a factor of ‖Mi · ej‖−1. Therefore,

using that det(Mj ) = 1 for each j = 1, . . . , d , the right-hand side of equation (1) is none
other than

det(M∗
i ) = ν(Mi) det(Mi) = ν(Mi),

as required.

5. Renewal theorem
We first give a convenient partition of {1, . . . , d}n and decomposition of Xn. Note that
these are incomplete, and this gives rise to the remainder term rn in Lemma 5.3.

Definition 5.1. For each n > k ≥ 1, let

An,k = {
i = (i1, i2, . . . , in) ∈ {1, 2, . . . , d}n | i1 = · · · = ik �= ik+1

}
and

Xn,k =
∑

i∈An,k

vold−1(�i)
δ .

The following lemma allows us to focus on the convergence of Xn,1 in place of Xn.

LEMMA 5.2. Xn � Xn+2,1.

Proof. By a change of variables, we simply have

Xn+2,1 ≥
∑
|i|=n

vold−1(T1T2(�i))
δ ≥ min

x∈�

(
Jacx T1T2

)δ
∑
|i|=n

vold−1(�i)
δ =: CXn.

This constant C is positive as T1 and T2 are injective.

The next important lemma is our main tool to guarantee that Xn,1 converges to zero.
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LEMMA 5.3. For all n > k ≥ 1,

Xn+1,k+1 ≤ bkXn,k and Xn+1,1 ≤
n−1∑
j=1

akXn,j + rn,

where

bk = max
v∈Rk∩�1

‖M1 · v‖−dδ , ak = max
v∈Rk∩�1

d∑
j=2

‖Mj · v‖−dδ

and rn � n(1−d)δ , and where

Rk := cl
( d⋃

j=1

T k
j (�) \ T k+1

j (�)

)
, that is, Rk ∩ �1 = cl(T k

1 (�) \ T k+1
1 (�)).

Proof. First note that by the definition of An,k , if i = (i1, . . . , in) ∈ An,k , then:
• (i1; i) := (i1, i1, i2, . . . , in) ∈ An+1,k+1; and
• (j ; i) := (j , i1, i2, . . . , in) ∈ An+1,1 for any j �= i1.
A similar statement applies for i ∈ {1}n ∪ {2}n ∪ · · · ∪ {d}n.

From this, i′ ∈ An+1,k+1 if and only if there exists a unique i ∈ An,k such that
i′ = (i1; i). Consequently,

Xn+1,k+1 =
∑

i′∈An+1,k+1

vold−1(�i′)
δ =

∑
i∈An,k

vold−1(Ti1(�i))
δ . (2)

Using the formula in Lemma 4.1 and that

i ∈ An,k �⇒ �i ∈ Rk := cl
( d⋃

j=1

T k
j (�) \ T k+1

j (�)

)

(that is, Ti(ej ) ∈ Rk ∩ �i1
for each j), we have

vold−1(Ti1(�i))
δ

vold−1(�i′)δ
=

d∏
j=1

‖Mi1Mi · ej‖−δ

‖Mi · ej‖−δ
=

d∏
j=1

∥∥∥∥Mi1 · Mi · ej

‖Mi · ej‖
∥∥∥∥

−δ

=
d∏

j=1

‖Mi1 · Ti(ej )‖−δ ≤
d∏

j=1

max
v∈Rk∩�i1

‖Mi1 · v‖−δ

=
d∏

j=1

max
v∈Rk∩�1

‖M1 · v‖−δ = max
v∈Rk∩�1

‖M1 · v‖−dδ

=: bk , (3)

using symmetry and linearity. Applying this estimate to equation (2) gives the required
inequality:

Xn+1,k+1 ≤
∑

i∈An,k

bk vold−1(�i)
δ = bkXn,k .
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The proof of the second inequality in the lemma is slightly more nuanced. From our
first consideration, we have

Xn+1,1 =
∑
|i|=n

∑
1≤ω≤d:
ω �=i1

vold−1(Tω(�i))
δ ,

and we bound the internal sum in two cases.

Case 1. i ∈ An,k for some k. This case is similar to the proof of equation (3), but this
time we also apply the AM-GM inequality:∑

ω �=i1
vold−1(Tω(�i))

δ

vold−1(�i)δ

=
∑
ω �=i1

d∏
j=1

‖MωMi · ej‖−δ

‖Mi · ej‖−δ
=

∑
ω �=i1

d∏
j=1

‖Mω · Ti(ej )‖−δ

≤ 1
d

∑
ω �=i1

d∑
j=1

‖Mω · Ti(ej )‖−dδ = 1
d

d∑
j=1

∑
ω �=i1

‖Mω · Ti(ej )‖−dδ

≤ max
v∈Rk∩�i1

∑
ω �=i1

‖Mω · v‖−dδ = max
v∈Rk∩�1

d∑
j=2

‖Mj · v‖−dδ

=: ak . (4)

Summing over i ∈ An,k hence gives∑
i∈An,k

∑
ω �=i1

vold−1(Tω(�i))
δ ≤

∑
i∈An,k

ak vold−1(�i)
δ = akXn,k .

Case 2. i ∈ {1}n ∪ {2}n ∪ · · · ∪ {d}n. This is an explicit calculation, using that all
(
d
2

)
of the summands for this case are equal:

rn :=
d∑

j=1

∑
ω �=j

vold−1(TωT n
j (�))δ � vold−1(T1T

n
2 (�))δ

= (
21−d(2n + 1)−1(n + 1)2−d

)δ � nδ(1−d),

using the formula in Lemma 4.1 and the explicit form of M1M
n
2 . This case completes the

proof of the second inequality and hence of the lemma.

The only missing piece, before we prove the main technical result of this paper, is to
furnish ak and bk with values. The proof is simple, but for convenience, we defer it to the
appendix.

LEMMA 5.4. For each k ∈ N,

bk =
(

k + 2
k + 3

)dδ

and ak =
(

k + 1
2k + 1

)dδ

+ 2−dδ(d − 2).
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We now use the proof of a particular case of the renewal theorem [7, p. 330] to conclude
the following result from the previous.

THEOREM 5.5. If δ > (d − 1)−1 and
∑∞

k=1 ak

∏k−1
j=1 bj < 1, that is,

3dδ

∞∑
k=1

(
k + 1

2k + 1

)dδ

(k + 2)−dδ + 2−dδ(d − 2)(k + 2)−dδ < 1,

then Xn,1 → 0 as n → ∞. Consequently, dimH (Gd) ≤ d − 2 + δ.

Proof. Applying the first inequality of Lemma 4.3 to the summands of the second gives

Xn+1,1 ≤
n−1∑
k=1

ak

k−1∏
j=1

bj Xn+1−k,1 + rn.

Writing λk = ak

∏k−1
j=1 bj for succinctness, we then have

N∑
n=1

Xn+1,1 ≤
N∑

n=1

n−1∑
k=1

λkXn+1−k,1 +
N∑

n=1

rn =
N−1∑
k=1

λk

N∑
n=k+1

Xn+1−k,1 +
N∑

n=1

rn

≤
N−1∑
k=1

λk

N+1∑
j=1

Xj ,1 +
N∑

n=1

rn,

that is,

N∑
n=1

Xn+1,1 ≤ x1
∑N−1

k=1 λk + ∑N
n=1 rn

1 − ∑N
k=1 λk

.

The right-hand side is bounded in N by our assumptions, and the result follows.

6. Proof of Theorem 1.1
The remainder of the proof of Theorem 1.1 is to show that Theorem 5.5 holds for δ = 1
and any d ≥ 3, since by continuity, it will then apply for any δ < 1 sufficiently close to 1.
More explicitly, we wish to show that

∞∑
k=1

(
3(k + 1)

(2k + 1)(k + 2)

)d

+ (d − 2)

(
3

2(k + 2)

)d

=
∞∑

k=1

(
1

2k + 1
+ 1

k + 2

)d

+ (d − 2)

(
3

2(k + 2)

)d

is strictly less than 1. This uses elementary calculus. Since each term on the right-hand
side is decreasing in d for d ≥ 3, it suffices to show just the d = 3 case, that is, that

27
8

∞∑
k=1

(
2(k + 1)

(2k + 1)(k + 2)

)3

+
(

k + 2
)−3

< 1. (5)
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This follows by simply bounding the tail of the sum by an integral. For any n ∈ N, the
left-hand side of equation (5) is at most

27
8

n∑
k=1

(
2(k + 1)

(2k + 1)(k + 2)

)3

+
(

k + 2
)−3

+ 27
8

∫ ∞

n−1
8(2x + 1)−3 + (x + 2)−3 dx

= 27
8

n∑
k=1

(
2(k + 1)

(2k + 1)(k + 2)

)3

+
(

k + 2
)−3

+ 27
4(2n − 1)2 + 27

16(n + 1)2 ,

and for n = 3, this expression equals

(
2
3

)3

+
(

1
2

)3

+
(

9
20

)3

+
(

3
8

)3

+
(

12
35

)3

+
(

3
10

)3

+ 27
4 × 52 + 27

16 × 42

= 574, 898, 507
592, 704, 000

< 1.

Hence, equation (5) holds, completing the proof of the theorem.

Acknowledgements. The first author is partly supported by ERC-Advanced Grant
833802-Resonances and EPSRC grant EP/T001674/1, and the second by the Alfréd Rényi
Young Researcher Fund.

A. Appendix. Proof of Lemma 5.4
Noting that ‖Mj · v‖ = (2 − vj ) and

Rk ∩ �1 :=
{
v ∈ �

∣∣∣∣ k

k + 1
≤ v1 ≤ k + 1

k + 2

}
,

we have

bk = max
{
(2 − v1)

−dδ

∣∣∣∣ k

k + 1
≤ v1 ≤ k + 1

k + 2

}
=

(
2 − k + 1

k + 2

)−dδ

=
(

k + 2
k + 3

)dδ

.

Regarding the value of ak , we write ak = maxRk∩�1 f , where

f (v) :=
d∑

j=2

(2 − vj )
−dδ .

Here, f is convex (since its summands are convex), so the maximum value it takes on
T

j

1 (�) ⊃ Rk ∩ �1 is obtained at one of its d vertices. By symmetry, this maximum is
either f (e1) or f ((k/(k + 1))e1 + (1/(k + 1))ej ), and we find it is the latter:

f (e1) = 2−dδ(d − 1) ≤
(

k + 1
2k + 1

)dδ

+ 2−dδ(d − 2) = f

(
k

k + 1
e1 + 1

k + 1
ej

)
,

since (k/(k + 1))e1 + (1/(k + 1))e2 lies in Rk ∩ �1, ak takes the claimed value.
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