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Abstract

We present a study of the joint distribution of both the state of a level-dependent
quasi-birth–death (QBD) process and its associated running maximum level, at a fixed
time t: more specifically, we derive expressions for the Laplace transforms of tran-
sition functions that contain this information, and the expressions we derive contain
familiar constructs from the classical theory of QBD processes. Indeed, one important
takeaway from our results is that the distribution of the running maximum level of a
level-dependent QBD process can be studied using results that are highly analogous to
the more well-established theory of level-dependent QBD processes that focuses pri-
marily on the joint distribution of the level and phase. We also explain how our methods
naturally extend to the study of level-dependent Markov processes of M/G/1 type, if we
instead keep track of the running minimum level instead of the running maximum level.

Keywords: Markov process of M/G/1 type; quasi-birth–death process; time-dependent
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1. Introduction and preliminary results

Given a real-valued stochastic process {X(t); t ≥ 0}, we can define both the running max-
imum process {X(t); t ≥ 0} and the running minimum process {X(t); t ≥ 0}, where, for each
t ≥ 0,

X(t) := sup
s∈[0,t]

X(s), X(t) := inf
s∈[0,t]

X(s).

The marginal distributions of these processes are very tractable when {X(t); t ≥ 0} represents
Brownian motion, and they are also well known to play a prominent role in the theory of
Lévy processes; see e.g. Kyprianou [13] for an accessible introduction to the theory of Lévy
processes.

In the recent work of Mandjes and Taylor [15], the authors present a recursive procedure
that can be used to calculate the joint distribution of both the state (which tracks both the
level and the phase) of a level-dependent quasi-birth–death (QBD) process (see Bright and
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Running min and max level of QBDs 15

Taylor [3]) and its running maximum level, at an independent exponential time; once these
distributions can be calculated efficiently, Erlangization can be used to further study, numer-
ically, the joint distribution of the running maximum level, the level, and the phase at each
fixed time t. The results contained in [15] were derived ‘from scratch’ by making clever use
of first-step analysis and censoring arguments, as well as sample-path properties satisfied by
level-dependent QBD processes. Our objective is to build further on the work of [15] by show-
ing how alternative formulas can be derived in an arguably more straightforward manner from
theory that has been developed in the matrix-analytic literature. In fact, not only will we ana-
lyze level-dependent QBD processes, we will also explain how our results and ideas apply
to level-dependent Markov processes of M/G/1 type, assuming of course that we replace the
running maximum level process with a running minimum level process.

An important ingredient needed in our analysis is a formula that can be found at the top
of page 124 of Latouche and Ramaswami [14], but before we state this formula we first need
to introduce some notation. Suppose {Y(t); t ≥ 0} is a continuous-time Markov chain (CTMC)
having state space S and generator (transition rate matrix) Q := [q(x, y)]x,y∈S, where, for each
x ∈ S,

q(x) := −q(x, x) ≥ 0

denotes the sojourn rate associated with each exponential sojourn spent in state x by
{Y(t); t ≥ 0}. We assume throughout that {Y(t); t ≥ 0}—as well as every other CTMC we
analyze—satisfies the property that q(x) < ∞ for each x ∈ S, and∑

y �=x

q(x, y) = −q(x, x)

for each x ∈ S.
Further associated with {Y(t); t ≥ 0} is a collection of transition functions {px,y}x,y∈S, where,

for each x, y ∈ S,

px,y(t) := Px(Y(t) = y), t ≥ 0,

where Px(·) represents a conditional probability, given Y(0) = x. Each transition function px,y

has associated with it a Laplace transform πx,y : C+ →C, which is defined on C+ := {α ∈
C : Re(α) > 0}—the set of all complex numbers having positive real part—as

πx,y(α) :=
∫ ∞

0
e−αtpx,y(t)dt, α ∈C+.

Readers should recall that two continuous functions defined on [0, ∞) are equal if and only if
their Laplace transforms are equal on C+ (in fact the functions are equal if and only if their
Laplace transforms are equal on (0, ∞)), and once we can numerically calculate a Laplace
transform at each point in C+, we can use one of many numerical transform inversion algo-
rithms, such as that found in [1], to calculate the value of the underlying continuous function
at various points of [0, ∞).

For each subset T ⊂ S, we define

τT := inf{t ≥ 0 : Y(t−) �= Y(t) ∈ T},
which represents the first time {Y(t); t ≥ 0} makes a transition to a state contained in T . Readers
should note that τT > 0 with probability one, even if X(0) ∈ T , as τT represents the first time
the chain makes a transition to a state in T , which could be made from a state x ∈ T if X(0) = x.
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16 K. JAVIER AND B. FRALIX

Theorem 1. ([14, p. 124].) Suppose T is a nonempty subset of S, where T �= S. Then for each
x ∈ Tc and each y ∈ T,

px,y(t) =
∑
z∈Tc

∑
w∈T

∫ t

0
px,z(s)q(z, w)Pw(Y(t − s) = y, τTc > t − s)ds, t ≥ 0. (1)

While this result is obviously known, in [14] the formula appears to be given only with the
intention of using it as a tool for deriving the stationary distribution of QBD processes, but we
feel this result deserves its own theorem. The authors of [14] appear to establish the result with
a Markov renewal argument, but here is an alternative argument that follows from ideas found
in [9]. Even though we will not use point process arguments anywhere else in this paper, we
feel that the following proof is worth providing here, especially since the main idea behind the
proof simplifies a great deal in the discrete-time context.

Proof. We prove Theorem 1 via the framework found in Chapter 9 of Brémaud [2], where a
CTMC is thought of as being governed by a countable collection of independent, homogeneous
Poisson processes.

Here is a rough sketch of the construction: for each ordered pair (x, y) ∈ S × S where x �= y,
we construct a Poisson process {Nx,y(t); t ≥ 0} with rate q(x, y). Now setting Y(0) = y0—an
arbitrarily chosen state—we define the first transition time T1 of {Y(t); t ≥ 0} as

T1 := inf
y∈S

inf{t ≥ 0 : Ny0,y(t) = 1},

and we set Y(t) = y0 for 0 ≤ t < T1, with Y(T1) = y1 for that state y1 that attains the infimum
(such a state both exists, and is unique with probability one). Next, given y1 = Y(T1), set

T2 := inf
y∈S

inf{t ≥ 0:Ny1,y(t + T1) − Ny1,y(T1) = 1},

and again define Y(t) = y1 for T1 ≤ t < T2 and set Y(T2) = y2, where y2 is the state that attains
the infimum. From here, one can define {Y(t); t ≥ 0} inductively over the entire line. Readers
should note that it is possible for {Y(t); t ≥ 0} to have infinitely many transitions in a finite time
interval, meaning

T∞ := lim
n→∞ Tn < ∞;

in this case we construct an extra ‘cemetery state’ ∂ that is not a member of S, and assume the
process stays at this cemetery state from the explosion time T∞ onward. Readers should find
it clear, at least on an intuitive level, that {Y(t); t ≥ 0} is a CTMC with transition rate matrix Q,
but we refer those interested in seeing a rigorous description of this procedure to Chapter 9,
Sections 1 and 2, of [2].

Thinking of {Y(t); t ≥ 0} in this manner, we can observe that for each x ∈ Tc and each y ∈ T ,
if Y(0) = x we have

1(Y(t) = y) =
∑
z∈Tc

∑
w∈T

∫ t

0
1(Y(s−) = z, τTc(s) > t, Y(t) = y)Nz,w(ds),

where Y(s−) is the left-hand limit of Y at s, and for each C ⊂ S,

τC(s) := inf{u ≥ s : Y(u−) �= Y(u) ∈ C}.
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Clearly τC := τC(0). Taking the expectation of both sides, while further applying the
Campbell–Mecke formula to the right-hand side, as is done in [9], gives

Px(Y(t) = y) =
∑
z∈Tc

∑
w∈T

∫ t

0
Px(Y(s) = z)q(z, w)Pw(τTc > t − s, Y(t − s) = y)ds,

which proves the claim. �

Remark 1. It is also possible to establish Theorem 1 via the random-product technique; see [4,
7, 12, 11]. Even though the random-product technique requires less of a technical background
in measure-theoretic probability, when using this technique one has to specially treat absorbing
states, as well as states that cannot be reached from any other state (meaning the only way the
CTMC can visit such a state is if it starts there). Such states may appear in a few places in our
analysis, so we decided to present a proof of Theorem 1 with the line of reasoning given in [9],
which uses the point process framework of [2].

The next result is a simple corollary of Theorem 1.

Corollary 1. Fix a nonempty subset T ⊂ S where T �= S. Then for each x ∈ Tc and each
y ∈ T,

πx,y(α) =
∑
z∈Tc

πx,z(α)(q(z) + α)Ez

[∫ τTc

0
e−αt1(Y(t) = y)dt

]
, α ∈C+. (2)

Proof. Given α ∈C+, multiply both sides of (1) by e−αt, and integrate with respect to t over
[0, ∞): this yields

πx,y(α) =
∑
z∈Tc

πx,z(α)
∑
w∈T

q(z, w)Ew

[∫ τTc

0
e−αt1(Y(t) = y)dt

]
, (3)

and this is equivalent to (2), since for each z ∈ Tc,

(q(z) + α)Ez

[∫ τTc

0
e−αt1(Y(t) = y)dt

]
= (q(z) + α)Ez

[∫ τTc

T1

e−αt1(Y(t) = y)dt

]

= (q(z) + α)
∑
w∈T

q(z, w)

q(z) + α
Ew

[∫ τTc

0
e−αt1(Y(t) = y)dt

]

=
∑
w∈T

q(z, w)Ew

[∫ τTc

0
e−αt1(Y(t) = y)dt

]
.

�

2. Level-dependent QBD processes

Suppose {Y(t); t ≥ 0} is a level-dependent QBD process, whose state space S is expressed
in terms of a countable union of levels:

S :=
∞⋃

n=0

Ln,
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18 K. JAVIER AND B. FRALIX

where, for each integer n ≥ 0, level n is the set Ln, defined as

Ln := {(n, 1), (n, 2), . . . , (n, dn − 1), (n, dn)}
with dn being a fixed positive integer that is allowed to vary with n. Given the structure of S, it
helps, for each t ≥ 0, to express Y(t) as

Y(t) = (X(t), J(t)),

where X(t) denotes the current level of the process—meaning X(t) = n if and only if Y(t) ∈
Ln—and J(t) represents the current phase of the process. We follow the notation scheme from
[15] by letting Q denote the transition rate matrix of {Y(t); t ≥ 0}, where the rows and columns
of Q are ordered in a manner that corresponds to the states of S being ordered lexicographically,
so that

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q(0) �(0) 0d0×d2 0d0×d3 0d0×d4 · · ·
M(1) Q(1) �(1) 0d1×d3 0d1×d4 · · ·
0d2×d0 M(2) Q(2) �(2) 0d2×d4 · · ·
0d3×d0 0d3×d1 M(3) Q(3) �(3) . . .

0d4×d0 0d4×d1 0d4×d2 M(4) Q(4) . . .

...
...

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where 0m×n represents the zero matrix with m rows and n columns.
From this description of Q, we can see that the dimensions of Q(0) and �(0) are d0 × d0

and d0 × d1, respectively, while for each integer n ≥ 1, the dimensions of M(n), Q(n), and �(n)

are dn × dn−1, dn × dn, and dn × dn+1, respectively. Each matrix �(n) contains transition rates
corresponding to transitions made from a state in Ln to a state in Ln+1, while each matrix
M(n) contains transition rates corresponding to transitions made from a state in Ln to a state in
Ln−1. In the interest of avoiding ‘nuisance states’, we assume throughout that each state x ∈ S
satisfies the following condition: there exist two states y, z ∈ S (which may depend on x) such
that q(x, y) > 0 and q(z, x) > 0. This is a more general condition than irreducibility, as we are
assuming that {Y(t); t ≥ 0} has no absorbing states, nor are there states that are not accessible
from any other state in S. This simple assumption will allow us to apply the random-product
technique featured in [4, 7, 8] without further comment. Readers should note that in [15], the
authors assume the structure of Q is such that {Y(t); t ≥ 0} is an irreducible CTMC.

A very important family of matrices associated with {Y(t); t ≥ 0} is the family of
‘R-matrices’ {Rk+1,k(α)}k≥0 defined as follows: for each integer k ≥ 0,

(Rk+1,k(α))i,j := (−(Q(k+1))i,i + α)E(k+1,i)

[∫ τDc
k+1

0
e−αt1(Y(t) = (k, j))dt

]
,

where, for each k ≥ 1,

Dk =
k−1⋃
n=0

Ln.
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More generally, we can define the R-matrices {Rn,m(α)}n≥1,0≤m<n, where

(Rn,m(α))i,j := (−(Q(n))i,i + α)E(n,i)

[∫ τDc
n

0
e−αt1(Y(t) = (m, j))dt

]
.

Matrices similar to these R-matrices have been used many times in other studies; see e.g.
Naoumov [16] as well as Bright and Taylor [3].

The next result, Proposition 1, shows that each Rn,m(α) matrix, n > m ≥ 0, can be expressed
in terms of products of matrices from the sequence {Rk+1,k(α)}k≥0. Readers should carefully
note our usage of both the product symbol

∏
and the coproduct symbol

∐
: we use both to

better emphasize the order in which we apply matrix multiplication. Given a collection of
matrices {Hk}k≥0, we write

n∏
k=m

Hk := HmHm+1 · · · Hn

when m ≤ n, while we instead write

n∐
k=m

Hk := HmHm−1 · · · Hn

when m ≥ n.

Proposition 1. For each integer n ≥ 1 and each integer m ∈ {0, 1, 2, . . . , n − 1},

Rn,m(α) =
m+1∐
k=n

Rk,k−1(α).

Proof. This result can be established using the random-product technique discussed
in [11]. �

The next result provides us with a way of numerically calculating the Rk+1,k(α) matrices.

Proposition 2. The matrices Rk+1,k(α), for k ≥ 0, satisfy the following recursion: for each
integer k ≥ 1,

Rk+1,k(α) =M(k+1)[αI(k) − Q(k) − Rk,k−1(α)�(k−1)]−1,

where R1,0(α) =M(1)(αI(0) − Q(0))−1.

Together, Propositions 1 and 2 provide us with a simple method for numerically computing
all Rn,m(α) matrices, for 0 ≤ m < n.

Proof. One can use the random-product technique, as is done in [12], to show that

αRk+1,k(α) =M(k+1) + Rk+1,k(α)Q(k) + Rk+1,k(α)Rk,k−1(α)�(k−1),

meaning we can express Rk+1,k(α) in terms of Rk,k−1(α), thus proving the result. �

We are now ready to discuss the main results of this section. Further associated with
{Y(t); t ≥ 0} is a stochastic process {X(t); t ≥ 0}, where, for each real t ≥ 0,

X(t) := sup
0≤s≤t

X(s),
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which represents the maximum level achieved by {Y(t); t ≥ 0} over the interval [0, t]; in [15],
the authors refer to {X(t); t ≥ 0} as the running maximum process. We can further combine X(t)
and Y(t) by defining the stochastic process Z(t) := (X(t), X(t), J(t)), which is clearly also a
CTMC, whose state space S is

S =
∞⋃

n=0

n⋃
m=0

Ln,m,

where, for each integer n ≥ 0 and each integer m ∈ {0, 1, 2, . . . , n},
Ln,m := {([n, m], 1), ([n, m], 2), . . . , ([n, m], dm − 1), ([n, m], dm)}.

Observe that the state ([n, m], k) has level [n, m] and phase k, where k ∈ {1, 2, . . . , dm}.
In Theorem 2 we study the marginal distributions of {Z(t); t ≥ 0} by applying Corollary 1

in various ways. Throughout both this section and the next, we let �[n1,m1],[n2,m2](α) denote a
matrix in C

dm1×dm2 which is of the form

�[n1,m1],[n2,m2](α) = [π([n1,m1],i),([n2,m2],j)(α)]i∈{1,2,...,dm1 },j∈{1,2,...,dm2 }.

This matrix contains Laplace transforms of transition functions associated with the CTMC
{Z(t); t ≥ 0}; i.e.

π([n1,m1],i1),([n2,m2],i2)(α) =
∫ ∞

0
e−αt

P([n1,m1],i1)(Z(t) = ([n2, m2], i2))dt.

This is a slight abuse of notation, as πx,y refers to the Laplace transform of the transition func-
tion of {Y(t); t ≥ 0} or {Z(t); t ≥ 0}, but it will be clear from the context which process is being
used whenever we use this notation. Likewise, readers should note that we will occasionally
write Px when we want to express a conditional probability given Z(0) = x, just as we wrote
Px to denote a conditional probability given Y(0) = x. It will always be clear from the context
what is being conditioned on when we write Px, so we will use this notation throughout the
rest of the paper without further comment.

Theorem 2. For each m0 ≥ 0,

�[m0,m0],[m0,m0](α) = [αI(m0) − Q(m0) − Rm0,m0−1(α)�(m0−1)]−1. (4)

Furthermore, for each n ≥ m0 + 1,

�[m0,m0],[n,n](α) = �[m0,m0],[m0,m0](α)
n∏

�=m0+1

�(�)[αI(�) − Q(�) − R�,�−1(α)�(�−1)]−1. (5)

Finally, for each n ≥ m0 and each m ∈ {0, 1, 2, . . . , n − 1},

�[m0,m0],[n,m](α) = �[m0,m0],[n,n](α)
m+1∐
�=n

R�,�−1(α). (6)

Proof. We first prove (6), where we assume Z(0) = ([m0, m0], i0) for some fixed (yet
arbitrarily chosen) state in Lm0 . Applying (2) to {Z(t); t ≥ 0} while choosing

T =
n−1⋃
k=0

Ln,k
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yields, for each state ([n, m], j) ∈ T ,

π([m0,m0],i0),([n,m],j)(α) (7)

=
dn∑

i=1

π([m0,m0],i0),([n,n],i)(α)(q([n, n], i) + α)E([n,n],i)

[∫ τTc

0
e−αt1(Z(t) = ([n, m], j))dt

]
. (8)

Next, observe that for each i ∈ {1, 2, . . . , dn}, a simple comparison between the transition
structures of {Y(t); t ≥ 0} and {Z(t); t ≥ 0} reveals

(−(Q(n))i,i + α)E([n,n],i)

[∫ τTc

0
e−αt1(Z(t) = ([n, m], j))dt

]
= (Rn,m(α))i,j, (9)

and after combining this observation with (7) we obtain, upon further simplification,

�[m0,m0],[n,m](α) = �[m0,m0],[n,n](α)Rn,m(α),

proving (6).
The next step of the proof is to establish Equation (4). When we prove this equality, we will

simultaneously show that for each integer n ≥ 1, the matrix (αI(n) − Q(n) − Rn,n−1(α)�(n−1))
is invertible.

Using the Kolmogorov forward equations associated with {Z(t); t ≥ 0}, we see that for each
α ∈C+,

α�[m0,m0],[m0,m0](α) − I(m0) = �[m0,m0],[m0,m0]Q(m0) + �[m0,m0],[m0,m0−1]�
(m0−1)

= �[m0,m0],[m0,m0]Q(m0) + �[m0,m0],[m0,m0]Rm0,m0−1(α)�(m0−1),

and after rearranging the matrices, we find

�[m0,m0],[m0,m0](α)
[
αI(m0) − Q(m0) − Rm0,m0−1(α)�(m0−1)

]
= I(m0),

which establishes (4).
Equation (5) can be established in a similar manner. Again, from the Kolmogorov forward

equations associated with {Z(t); t ≥ 0}, we see that for each integer n > m0,

α�[m0,m0],[n,n](α)

= �[m0,m0],[n−1,n−1](α)�(n−1) + �[m0,m0],[n,n](α)Q(n) + �[m0,m0],[n,n−1](α)�(n−1)

= �[m0,m0],[n−1,n−1](α)�(n−1) + �[m0,m0],[n,n](α)Q(n) + �[m0,m0],[n,n]Rn,n−1(α)�(n−1),

and after rearranging terms, we get

�[m0,m0],[n,n](α)
[
αI(n) − Q(n) − Rn,n−1(α)�(n−1)

]
= �[m0,m0],[n−1,n−1](α)�(n−1),

i.e.

�[m0,m0],[n,n](α) = �[m0,m0],[n−1,n−1](α)�(n−1)
[
αI(n) − Q(n) − Rn,n−1(α)�(n−1)

]−1
,

proving (5). This completes the proof of Theorem 2. �
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TABLE 1. Values of C and Rmax.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

C 700 750 800 850 900
Rmax 90 85 80 75 70

A number of different numerical transform inversion algorithms can be used to numerically
invert the transforms we have derived. We will make use of the well-known method of Abate
and Whitt [1], but we also refer readers to the algorithms of Den Iseger [5] as well as the very
recently established method of Horváth et al. [10].

The numbers below were generated by applying the Abate–Whitt transform inversion algo-
rithm to the Laplace transforms of the following model. We assume customers arrive at an
infinite-server queueing system in accordance with a Poisson process with rate λ = 100, and
each customer brings with it to the system an amount of work that is exponentially distributed
with parameter 1/f , where f = 6. When there are i customers present in the system, the service
rate allocated to each customer is min(C, Rmaxi), where both C and Rmax vary in accordance
with a finite-state CTMC having state space E = {1, 2, 3, 4, 5} and generator S := [si,j]i,j∈S.
This model was studied in [15], and it is an extension of a model studied in Ellens et al. [6]. In
[15], the generator matrix S is given by⎛

⎜⎜⎜⎜⎜⎜⎝

−25.6921 9.9979 0.4890 5.5337 9.6715

10.5165 −31.4895 8.4180 6.9109 5.6441

9.9951 1.9202 −29.5037 14.7246 2.8639

8.0869 14.9862 10.0376 −39.5345 6.4238

10.4716 2.5668 2.8565 12.8328 −28.7277

⎞
⎟⎟⎟⎟⎟⎟⎠

(these numbers were generated randomly by the authors), and the possible values of both C
and Rmax are given below in Table 1 (this was taken from [15, p. 221]).

Readers should observe that the values we calculated in Table 2 are consistently within
0.0015 of the corresponding values in [15]; it is interesting that our values are consistently
slightly smaller than those given in Table 2 of [15]. The values found in [15] were calculated
with the Erlangization technique.

3. Markov processes of M/G/1 type

We close by studying the joint distribution of the running minimum level, the level, and the
phase of a level-dependent Markov process of M/G/1 type at a fixed time t. Suppose now that
{Y(t); t ≥ 0} represents a level-dependent Markov process of M/G/1 type whose state space S
can be expressed in terms of a countable union of levels:

S =
∞⋃

n=0

Ln,

where for each integer n ≥ 0,

Ln := {(n, 1), (n, 2), . . . , (n, dn − 1), (n, dn)},

https://doi.org/10.1017/jpr.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.22


Running min and max level of QBDs 23

TABLE 2. Probability that the number of customers exceeds 15 in the interval [0, 1], as a function of the
initial number of customers X(0) and the initial phase J(0).

X(0) Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

0 0.4221 0.4222 0.4225 0.4226 0.4233
1 0.4260 0.4261 0.4264 0.4267 0.4275
2 0.4302 0.4304 0.4309 0.4312 0.4323
3 0.4352 0.4354 0.4360 0.4364 0.4377
4 0.4409 0.4412 0.4418 0.4424 0.4441
5 0.4477 0.4480 0.4488 0.4495 0.4515
6 0.4562 0.4562 0.4571 0.4581 0.4604
7 0.4670 0.4666 0.4673 0.4686 0.4713
8 0.4815 0.4799 0.4802 0.4818 0.4848
9 0.5018 0.4981 0.4971 0.4988 0.5020
10 0.5294 0.5236 0.5199 0.5213 0.5241
11 0.5665 0.5586 0.5523 0.5516 0.5531
12 0.6157 0.6059 0.5972 0.5939 0.5920
13 0.6803 0.6691 0.6583 0.6528 0.6460
14 0.7639 0.7525 0.7409 0.7339 0.7240
15 0.8699 0.8610 0.8518 0.8454 0.8363

where each dn is a positive integer that varies with n. Readers should observe that the analysis
we provide in this section also carries though when the number of levels is finite; what is most
important is the M/G/1-type structure, i.e. that {Y(t); t ≥ 0} is downward-skip-free with respect
to level transitions.

Just as before, we express Y(t) as (X(t), J(t)), where X(t) and J(t) respectively denote the
current level and phase of the process at time t. We express the transition rate matrix Q of
{Y(t); t ≥ 0} in block-partitioned form as

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0,0 A0,1 A0,2 A0,3 A0,4 · · ·
A1,0 A1,1 A1,2 A1,3 A1,4 · · ·

0d2×d0 A2,1 A2,2 A2,3 A2,4 · · ·
0d3×d0 0d3×d1 A3,2 A3,3 A3,4

. . .

...
...

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that for each integer i ≥ 0 and each j ≥ i − 1, Ai,j ∈R
di×dj contains the transition rates

corresponding to transitions from states in Li to states in Lj. Again we assume that for each
state x ∈ S there exist two states y, z ∈ S (which may depend on x) such that q(x, y) > 0 and
q(z, x) > 0.

Just as in Section 2, there is an important family of ‘R-matrices’ {R�,m(α)}m≥1,0≤�<m such
that for each integer m ≥ 1 and each integer � ∈ {0, 1, . . . , m − 1},

(R�,m(α))i,j(α) := (−(A�,�)i,i + α)E(�,i)

[∫ τCm−1

0
e−αt1(Y(t) = (m, j))dt

]
,
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where, for each integer m ≥ 1,

Cm =
m⋃

n=0

Ln.

Our analysis of Markov processes of M/G/1 type also involves a close study of a
family of ‘G-matrices’ {Gn,m(α)}0≤m<n, where for each integer n ≥ 1 and each integer
m ∈ {0, 1, . . . , n − 1},

(Gn,m(α))i,j =E(n,i)
[
1(Y(τLm ) = (m, j))e−ατLm

]
.

Our next proposition, Proposition 3, shows how to express all R-matrices in terms of
G-matrices.

Proposition 3. For each integer m ≥ 1 and each integer � ∈ {0, 1, 2, . . . , m − 1}, we have

R�,m(α) =
∞∑

k=m

A�,kGk,m(α)

[
αI(m) −

∞∑
n=m

Am,nGn,m(α)

]−1

, (10)

where we follow the convention that Gm,m(α) := I(m). Furthermore, for each m ≥ 0 and each
k > m,

Gk,m(α) =
m+1∐
�=k

G�,�−1(α) := Gk,k−1(α)Gk−1,k−2(α) · · · Gm+1,m(α), (11)

and the family of G-matrices {Gk+1,k(α)} satisfy the following recursive scheme: for each
integer k ≥ 1,

Gk,k−1(α) =
⎡
⎣αI(k) − Ak,k −

∞∑
i=k+1

Ak,i

k+1∐
j=i

Gj,j−1(α)

⎤
⎦

−1

Ak,k−1. (12)

Proof. We follow the line of reasoning given in the unpublished manuscript [11]. First, we
define the collection of matrices {Nm(α)}m≥1, where, for each integer m ≥ 1 and each integer
i, j ∈ {1, 2, . . . , dm} (where possibly i = j),

(Nm(α))i,j := E(m,i)

[∫ τLm−1

0
e−αt1(Y(t) = (m, j))dt

]
.

Applying a first-step analysis argument shows that

(Nm(α))i,j = 1(i = j)

q((m, i)) + α
+

∑
k �=i

q((m, i), (m, k))

q((m, i)) + α
(Nm(α))k,j

+
∞∑

k=m+1

dk∑
n=1

q((m, i), (k, n))

q((m, i)) + α
E(k,n)

[∫ τLm−1

0
e−αt1(Y(t) = (m, j))dt

]
. (13)
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We can use the strong Markov property at the stopping time τLm to further simplify the
remaining expectations found in (13): indeed,

E(k,n)

[∫ τLm−1

0
e−αt1(Y(t) = (m, j))dt

]
(14)

=
dm∑
�=1

E(k,n)[1(Y(τLm ) = (m, �))e−ατLm ]E(m,�)

[∫ τLm−1

0
e−αt1(Y(t) = (m, j))dt

]

=
dm∑
�=1

(Gk,m(α))n,�(Nm(α))�,j.

Plugging (14) into (13), then expressing (13) (while remembering that Gm,m(α) = I(m)),
we get

αNm(α) = I(m) +
∞∑

k=m

Am,kGk,m(α)Nm(α), (15)

which implies [
αI(m) −

∞∑
k=m

Am,kGk,m(α)

]
Nm(α) = I(m),

meaning

Nm(α) =
[
αI(m) −

∞∑
k=m

Am,kGk,m(α)

]−1

. (16)

We are now ready to derive (10). From the definition of R�,m(α), we can see from applying
both first-step analysis and the strong Markov property that

R�,m(α) =
∞∑

k=m

A�,kGk,m(α)Nm(α). (17)

Plugging (16) into (17) yields (10).
The next step is to establish (11). Fix an integer m ≥ 0 and an integer k > m. Again using

the strong Markov property, we get

Gk,m(α) = Gk,k−1(α)Gk−1,m(α),

and by a simple induction argument, we get

Gk,m(α) =
m+1∐
�=k

G�,�−1(α),

which establishes (11).
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It remains to derive (12). Fixing i ∈ {1, 2, . . . , dk} and j ∈ {1, 2, . . . , dk−1}, we have

(Gk,k−1(α))i,j = q((k, i), (k − 1, j))

q((k, i)) + α
+

∑
� �=i

q((k, i), (k, �))

q((k, i)) + α
(Gk,k−1(α))�,j

+
∞∑

m=k+1

dm∑
�=1

q((k, i), (m, �))

q((k, i)) + α
(Gm,k−1(α))�,j

or, in matrix form,

αGk,k−1(α) = Ak,k−1 +
∞∑

m=k

Ak,mGm,k−1(α). (18)

Applying (11) to (18) shows that

αGk,k−1(α) = Ak,k−1 + Ak,kGk,k−1(α) +
∞∑

i=k+1

Ak,i

⎛
⎝k+1∐

j=i

Gj,j−1(α)

⎞
⎠ Gk,k−1(α), (19)

and solving for Gk,k−1(α) in (19) gives

Gk,k−1(α) =
⎡
⎣αI(k) − Ak,k −

∞∑
i=k+1

Ak,i

k+1∐
j=i

Gj,j−1(α)

⎤
⎦

−1

Ak,k−1,

which proves (12). �

While Proposition 3 is theoretically interesting, it is only practically useful if the G-matrices
can be calculated numerically. It is not clear in general whether there is a way to calculate
these matrices, but they can be calculated if we impose additional assumptions on {Y(t); t ≥ 0}.
Suppose, for instance, that there exists an integer n0 ≥ 1 large enough so that An,k = Ak−n for
all n ≥ n0 and k ≥ n − 1. Under this additional assumption, one can see that Gn,n−1(α) = G(α)
for each n ≥ n0, where

G(α) := Gn0,n0−1(α).

As explained in [11], the matrix G(α) is the pointwise limit of a sequence of matrices
{G(N, α)}N≥0, where G(0, α) = 0dn0×dn0

, and for each integer N ≥ 0,

G(N + 1, α) = (αI(dn0 ) − A0)−1

[
A−1 +

∞∑
n=1

AnG(N, α)n

]
.

The G-matrices can also be calculated numerically if there are only finitely many lev-
els L0, L1, . . . , LC, i.e. if Ak,� = 0 for each k ∈ {0, 1, 2, . . . , C} and each � ≥ C + 1, and if
Ak,� = 0 for each k ≥ C + 1 and each � ≥ 0. In this case, our analysis can be used to show that

GC,C−1(α) = (αI(C) − AC,C)−1AC,C−1,

and all other one-step G-matrices Gk,k−1(α), 1 ≤ k ≤ C − 1, can be calculated recursively
using (12).
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We are now ready to set up and establish the main result of this section. We associate with
{Y(t); t ≥ 0} the stochastic process {X(t); t ≥ 0} where for each t ≥ 0,

X(t) := inf
0≤s≤t

X(s),

which represents the running minimum level achieved by {Y(t); t ≥ 0} over the interval [0, t].
Next, for each t ≥ 0 we define Z(t) := (X(t), X(t), J(t)), and just as was the case in the previous
section, {Z(t); t ≥ 0} is a CTMC with state space

S =
∞⋃

n=0

∞⋃
m=n

Ln,m,

where for each integer n ≥ 0 and each integer m ≥ n,

Ln,m := {([n, m], 1), ([n, m], 2), . . . , ([n, m], dm − 1), ([n, m], dm)}.

In our next result, Theorem 3, we show how to derive the Laplace transforms of the transition
functions associated with {Z(t); t ≥ 0}.
Theorem 3. For each integer m0 ≥ 0,

�[m0,m0],[m0,m0](α) = [αI(m0) − Am0,m0 − Rm0,m0+1(α)Am0+1,m0 ]−1. (20)

Furthermore, for each integer n ∈ {0, 1, . . . , m0 − 1},

�[m0,m0],[n,n](α) = �[m0,m0],[m0,m0](α)
n∐

�=m0−1

A�+1,�

[
αI(�) − A�,� − R�,�+1(α)A�+1,�

]−1
.

(21)

Finally, for each integer n ∈ {0, 1, . . . , m0 − 1, m0} and each integer m ≥ n,
�[m0,m0],[n,m+1](α) satisfies the recursion

�[m0,m0],[n,m+1](α) =
m∑

k=n

�[m0,m0],[n,k](α)Rk,m+1(α). (22)

Proof. Theorem 3 can be established using virtually the same argument we used to establish
Theorem 2, so we give only a brief outline of the argument. First, Corollary 1 can be used to
show that for each integer n ∈ {0, 1, . . . , m0 − 1, m0} and each integer m ≥ n,

�[m0,m0],[n,m+1](α) =
m∑

k=n

�[m0,m0],[n,k](α)Rk,m+1(α),

which establishes (22).
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TABLE 3. Probability that the number of customers falls below 2 in the interval [0, 1], as a function of
the initial number of customers X(0) and the initial phase J(0), with a queue limit of 25.

X(0) Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

2 0.3551 0.3450 0.3340 0.3257 0.3121
3 0.1934 0.1867 0.1795 0.1747 0.1659
4 0.1351 0.1309 0.1263 0.1236 0.1881
5 0.1082 0.1054 0.1024 0.1007 0.0969
6 0.0931 0.0913 0.0892 0.0880 0.0855
7 0.0833 0.0822 0.0807 0.0798 0.0777
8 0.0760 0.0756 0.0746 0.0738 0.0721
9 0.0699 0.0701 0.0696 0.0690 0.0674
10 0.0646 0.0653 0.0653 0.0649 0.0639
11 0.0601 0.0609 0.0613 0.0612 0.0605
12 0.0560 0.0568 0.0575 0.0576 0.0574
13 0.0524 0.0532 0.0505 0.0541 0.0543
14 0.0490 0.0498 0.0473 0.0508 0.0513
15 0.0459 0.0466 0.0444 0.0477 0.0484

Next, we use the forward equations associated with {Z(t); t ≥ 0}, combined with (22),
to get

α�[m0,m0],[m0,m0](α) − I(m0) = �[m0,m0],[m0,m0](α)Am0,m0 + �[m0,m0],[m0,m0+1](α)Am0+1,m0

= �[m0,m0],[m0,m0](α)Am0,m0

+ �[m0,m0],[m0,m0](α)Rm0,m0+1(α)Am0+1,m0 ,

from which we get (20).
Finally, again using the forward equations associated with {Z(t); t ≥ 0}, as well as (22),

yields, for each n < m0,

α	[m0,m0],[n,n](α) = π [m0,m0],[n,n](α)An,n + �[m0,m0],[n,n+1](α)An+1,n

+ �[m0,m0],[n+1,n+1]An+1,n+1

= π [m0,m0],[n,n](α)An,n + �[m0,m0],[n,n](α)Rn,n+1(α)An+1,n

+ �[m0,m0],[n+1,n+1]An+1,n+1,

from which we get

�[m0,m0],[n,n](α) = �[m0,m0],[n+1,n+1](α)An+1,n[αI(n) − An,n − Rn,n+1(α)An+1,n]−1,

and repeated iterations of the same equality yield (21). �

In order to further illustrate the applicability of our results, we consider a slight generaliza-
tion of the example considered at the end of Section 2. Suppose now that our queueing system
has a finite capacity of C = 25 customers, while customers arrive at the queueing system in
the following manner: single customers arrive in accordance with a Poisson process with rate
100, batches containing two customers arrive in accordance with a Poisson process with rate
10, and batches of three customers arrive in accordance with a Poisson process with rate 1. We
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further assume that if a batch of customers arrives at the system, but not all customers from the
batch can enter the system together because of capacity constraints, the entire arriving batch
leaves the system.

Table 3 gives the probability that the number of customers goes below 2 in the interval
[0, 1], as a function of the initial number of customers and the initial phase. Again, these
numbers were generated using our results, combined with the transform inversion algorithm
from [1].
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