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Dynamical direct methods (DDM) is the analogue to classical crystallographic direct methods for the case of 
strongly dynamical diffraction in which the object to be reconstructed is not real-valued but is a complex 
electron exit wave.  This is a new field, and is still in developmental stages.  We here describe a basic 
problem confronting DDM and one possible approach to solving it.   
 
Classical DM combines measurements of diffraction amplitudes, plus the knowledge that the object to which 
they correspond in real space is mainly flat and ≈0, except at sharp maxima corresponding to atoms.  From 
electron channeling theory, the electron exit wave (specifically ψ(r)-1, where the normalized direct beam 
amplitude is subtracted) also has sharp atom-like peaks.  The peaks oscillate in phase as a function of 
thickness and different peaks oscillate at different rates.  A simulated example of this is shown in Fig. 1.  This 
suggests that DDM might succeed as classical DM does using iterative projections onto sets – by turns 
enforcing the known Fourier amplitudes Ψ(h) in reciprocal space, and implementing a ‘sharpening’ of ψ(r) 
after transforming to real space.  If successful, iteration would converge to a solution ψs(r) ≈ψ(r)-1.   
 
Previous attempts at DDM [1] have used a real space operator given by ψ(r)ln(|ψ(r)|/|<ψ(r)|>), in which <> 
indicates the mean value.  This does not alter or depend on the phase of ψ(r) but operates only on the 
amplitude to perform a sharpening.  One difficulty is that one needs to accurately define the zero or 
background level in the real space domain, which corresponds to knowing the amplitude and phase of the 
direct beam Ψ(0).  If this amplitude origin is badly defined, the peaks may be inverted, and the operator may 
spuriously blow up areas which should correspond to the background in the correct solution.  Severe failure 
to converge results from this.   
 
In the present work, a novel approach was taken, which is possible if it is assumed that the exit wave is 
dominated by two discrete phase branches, and that the phases for these branches are known or can be 
guessed.  In strict terms this will correspond to a 2-atom structure (but it may loosely apply to more complex 
structures if some of the branches have nearly the same phase).  In this approach, the amplitude and initial 
(guessed) phases are transformed to real space, and all the points in the ψ(r) map are projected onto the 
known phase branches, resulting in two real-valued maps, a1(r) and a2(r).  An additional constraint on the 
wave is that intensity on the two branches does not overlap (if it did, this would result in points at phases 
which are linear combinations of the branches, which would destroy the ‘finger-like’ appearance of Fig. 1b).  
Thus, an origin can be found by minimizing the product a1(r)×a2(r) using addition of a constant amplitude to 
each map (in fact ∑(a1(r)×a2(r))2 was minimized).  Following the shift of the origin to the proper position, the 
branches are back-projected to a shifted complex ψ(r), and the real-space sharpening operation is performed.   
 
The availability of two real-valued maps with estimates of the peaks corresponding to the two species in the 
structure also offers a further interesting possibility of performing the sharpening operation on the two 
branches separately, followed by back-projection to the complex ψ(r).  This reverses the final two steps of the 
real-space operation, and its effect is to depress regions of overlap (both a1(r) and a2(r) large) relative to 
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regions of the same amplitude but having less overlap.  In addition to sharpening, this thus enforces 
‘branchedness’ of the real-space phase distribution.   
 
Model experiments were carried out on the same structure shown in Fig. 1, in which all cations were replaced 
by gallium.  A strict two-phase channeling wave was calculated as input, and tests were performed for 
convergence of phase extension.  For the phase extensions, varying numbers of strong beams had phases set 
initially to the correct values (they vary in iteration).  Four cases were tested: 
 
1) Origin estimated using Ψ(0)=∑‘Ψ(h)2, operation using ψ(r)ln(|ψ(r)|/<|ψ(r)|> 
2) Origin determined by minimization of ∑(a1(r)×a2(r))2, operation using ψ(r)ln(|ψ(r)|/<|ψ(r)|> 
3) Origin as in 1), operation as ψ(r)=exp(iφ1)×a1(r)ln(|a1(r)|/<a1(r)>+exp(iφ2)×a2(r)ln(|a2(r)|/<a2(r)> 
4) Origin as in 2), operation as ψ(r)=exp(iφ1)×a1(r)ln(|a1(r)|/<a1(r)>+exp(iφ2)×a2(r)ln(|a2(r)|/<a2(r)> 
 
Options 2 and 4 define the origin by mimimizing ∑(a1(r)×a2(r))2 , options 3 and 4 enforce branchedness by 
reversing the order of sharpening and back-projection, while option 1 is essentially what has been presented 
previously [1].  Table 1 shows the results of phase extensions for the four options in terms of a figure of merit 
which compares the result with the correct calculated wave (0 is perfect agreement, basic features are 
generally well-preserved to values of 0.25).   
 
Interestingly, no improvement is seen from the new origin definition alone.  However, pronounced 
improvement is found if points of intermediate phase, which are not allowed by the channeling model, are 
suppressed.  This provides proof of principle evidence that enforcement of ‘branchedness’ may provide a 
powerful constraint for helping convergence properties in DDM.    

Number option 1 option 2 option 3 option 4 
12 0.260 0.418 0.174 0.400 
18 0.223 0.399 0.107 0.135 
24 0.138 0.199 0.112 0.094 
30 0.135 0.182 0.076 0.093 
36 0.079 0.080 0.020 0.049 
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2 Fig. 1.  Calculated wave 
amplitude (a)          and 
phase (b, as Argand 
diagram) for (Ga,In)2SnO5.  
In b, one can see that 
different peaks of the 
amplitude reside at distinct 
phases and correspond to 
three species of the structure. 
The ‘finger-like’ appearance 
results from little overlap 
(few intermediate phases).  
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