NGC 2359: VLA HI and radio continuum observations

Cristina Cappa^{1,2,4}, W. Miller Goss³, Virpi S. Niemela^{2,5,6}, and Pablo G. Ostrov^{2,5}

¹Instituto Argentino de Radioastronomía, C.C. 5, 1894 Villa Elisa, Argentina
²Facultad de Ciencias Astronómicas y Geofísicas, U.N. La Plata, Paseo del bosque s/n, 1900 La Plata, Argentina
³National Radio Astronomy Observatory, PO Box 0, Socorro, NM 87801, USA

1. Introduction

NGC 2359, a H II region located at a distance of 5 kpc from the Sun (e.g., Goudis et al. 1994), appears as a ring like nebula surrounding HD 56925, a Wolf-Rayet star of type WN4. The nebula consists of a filamentary shell, a southern bar and streamers of diffuse gas (cf. Schneps et al. 1981, SHWB). Here we report the results of H I 21-cm line and radio continuum observations in the direction of NGC 2359.

2. Observations

Our observations were performed with the $NRAO^7$ -VLA synthesis telescope. The radio continuum image, obtained at 1465 MHz using the C-and D-arrays, has an angular resolution of ~ 30" and covers a region of 30". The H I 21-cm line data, obtained with the D-configuration, cover the same region with angular and velocity resolutions of ~ 45" and 1.3 km s⁻¹. In addition, optical CCD images through narrow band filters centered at the nebular emission lines of H α , [OIII] and [SII], were obtained with the Curtis-Schmidt Telescope at *CTIO*, Chile. These images are ~ 30' square.

3. Results

The radio continuum image of NGC 2359 shows an excellent correspondence with the optical features. Table 1 lists the emission measure EM, the electron density n_e and the ionized mass M_i together with the volume filling factor fderived for the filamentary shell, the southern bar, the streamers, and the weak radio continuum emission region (at a level of 1 mJy beam⁻¹) that surrounds the ring nebula. The amount of ionized gas in the filamentary shell indicates that it

⁴Member of Carrera del Investigador, CONICET, Argentina

⁵Visiting Astronomer, CTIO, NOAO, operated by AURA, Inc., under agreement with NSF

⁶Member of Carrera del Investigador, CIC, Prov. Buenos Aires, Argentina

⁷NRAO is a facility of NSF operated under agreement by AUI

component	S	EM	f	n_e	M_i
	(Jy)	$(10^3 \text{ pc cm}^{-6})$		$({\rm cm}^{-3})$	(M_{\odot})
shell	0.85	3.8	0.03	120	70
southern bar	0.58	9.0	0.3 - 0.5	60	95 - 120
streamers	0.78	3.6	1	10 - 50	105 - 280
seak region	0.38	0.3	1	~ 3	~ 600

 Table 1.
 Physical parameters of ionized gas in NGC 2359

Figure 1. Contours of the H 121-cm line emission distribution at 54 km s^{-1} superposed to the grey-scale optical H α image of NGC 2359. The contour lines correspond to 5, 15, 25, 35, 45 and 55 mJy beam⁻¹ or 1.3, 3.9, 6.5, 9.1, 11.7 and 14.3 K. The synthesized beam is $57''.7 \times 40'.6$.

mostly consists of swept-up interstellar gas. The excitation parameter indicates that HD 56925 alone suffices to ionize the gas.

Analysis of the H I 21-cm line images reveals features connected with the ring nebula within the (LSR) velocity range from 46 to $67 \,\mathrm{km}\,\mathrm{s}^{-1}$. Two H I structures appear most clearly related to the nebula. One of them, detected at the systemic velocity of $54 \,\mathrm{km}\,\mathrm{s}^{-1}$ is shown in Fig. 1 overlayed on a H α image (cf. Goudis et al. 1983), This H I feature indicates the location of the ionization front, similar to the optical [NII] emission, and appears also to be related to molecular gas at the same velocity (SHWB). A second H I structure, observed at $63 \,\mathrm{km}\,\mathrm{s}^{-1}$, consists of clumps that surround a major part of the shell and the southern bar of NGC 2359. The dynamics of the nebula are consistent with the momentum conserving case or with an intermediate case between energy and momentum conservation.

Our results are in general agreement with the scenario for NGC 2359 described by Dufour (1989).

References

Dufour, R. 1989, RevMexAA 18, 87
Goudis, C., Hippelein, H., Münch, G. 1983, A&A 117, 127
Goudis, C., Christopoulou, P.E., Meaburn, J., Dyson, J.E. 1994, A&A 285, 631
Schneps, M.H., Haschick, A.D., Wright, E.L., Barrett, A.H. 1981, ApJ 243, 184