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Liquid plug formation in thin channels due to the Plateau–Rayleigh instability of a liquid
film is observed in a variety of fields. In this paper, complementarity between theoretical
solutions and direct numerical simulations (DNS) based on a front-tracking algorithm
is explored to evaluate the importance of inertia for the case of a cylindrical capillary.
A linear stability analysis is first performed and DNS results are then used to investigate
the spatial distributions of inertial, convective and viscous terms of the Navier–Stokes
equation. The existence of both viscous and inertial regimes is evidenced with a threshold
given by the film thickness. The presence of the core fluid slows down the instability.
In the viscous regime, predictions of the lubrication theory are verified. An example of
liquid water as the outer fluid film and water vapour as the inner core fluid is simulated
with application to the fuel cells.
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1. Introduction

Two-phase flows in capillary tubes are encountered in a variety of natural and industrial
processes. Despite the consequent number of studies devoted to this field, their behaviour
is still difficult to predict. Among the challenges is the correct understanding and
prediction of the channel occlusion phenomenon, i.e. transition between the annular
regime where a liquid film covers the channel walls and the plug regime where liquid
obstructs the channel. Occlusion of micrometric channels is notably observed in porous
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media related problems, such as oil recovery (Gauglitz & Radke 1990; Beresnev, Li
& Vigil 2009) or carbon storage (Deng, Cardenas & Bennett 2014), in microfluidic
applications (Günther et al. 2004) or in medical applications. Ample studies have notably
been devoted to the understanding of lung airway closure, a phenomenon responsible for
diseases such as pulmonary edema, asthma, emphysema or respiratory distress syndrome
(Halpern et al. 2008). Airway occlusion studies have been able to integrate key aspects
such as airway wall elasticity (Halpern & Grotberg 1992; Rosenzweig & Jensen 2002;
Hazel & Heil 2005), surfactant effects (Halpern, Jensen & Grotberg 1998; Romanò,
Muradoglu & Grotberg 2022) or visco-elastic and visco-plastic properties of the liquid film
layers (Romanò et al. 2021; Erken et al. 2023). While studies have assessed the importance
of inertia in lungs (Fujioka & Grotberg 2004) and have demonstrated it can be significant
in large airways and negligible in smaller ones, the fluid properties and the issues at stake
in that field strongly differ from that of other fields such as fuel cells, where channel
occlusion is also observed (Lu et al. 2011; Cheah, Kevrekidis & Benziger 2013).

Proton exchange membrane fuel cells (PEMFC) is one of the promising technologies
that can be used to decarbonise and electrify the energy system. Electricity is produced by
recombining oxygen and hydrogen that are fed via millimetric gas flow channels (GFCs)
at the two opposite sides of the cell. The operating pressure in GFCs is 1–2 bar. A porous
media, the gas diffusion layer, separates the GFCs from a central membrane, on the
surface of which two catalyst layers are deposited. All chemical reactions occur on these
catalyst layers usually composed of carbon–platinum particles. As it operates at rather
low temperatures (60–80 ◦C), water can be observed both as liquid and vapour, creating
a two-phase flow in the GFCs. Formation of plugs has been experimentally evidenced in
GFCs both in ex-situ (Lu et al. 2011) and in-situ (Hussaini & Wang 2009) studies. While
the GFCs will be modelled in a simplified way in this paper, they have in reality a much
more complex geometry and are subject to a number of physical phenomena (thermal
effects, gas composition changes) outside the scope of this paper.

Considering all these complexities, fully analytical solutions seem insufficient to
predict and manage water evolution in a fuel cell. However, numerical simulations based
on computational fluid dynamics (CFD) methods are able to simulate these complex
phenomena, at the cost of being expensive and requiring validation. This study aims at
demonstrating the relevance and complementarity of numerical and analytical methods.
Relying on both techniques, the role of inertia in the formation of plugs in fuel cell
conditions will be assessed, thus allowing a deeper understanding of two-phase flow in fuel
cells. In the following introduction we proceed with a description of the plug formation
phenomenon and the main approaches to investigate it.

Plug formation is primarily caused by the Plateau–Rayleigh instability, first
experimentally evidenced by Plateau (1873). Subject to surface tension forces, a film of
fluid covering the interior of a tube can be unstable. For a given volume of fluid, the
film tends to minimise its surface energy by deformation, which can eventually lead
to plug formation. One of the key aspects of the Plateau–Rayleigh instability is the
competition between the two components of the film curvature. The film is destabilised
by its radial component and stabilised by its axial one. As a consequence, the plug
periodicity is proportional to the initial radius of the fluid interface. Another consequence
of the Plateau–Rayleigh instability is the breakup of fluid jets into droplets, which has
been thoroughly investigated by Rayleigh (1878). Rayleigh (1878) also developed the
mathematical framework for the linear regime of the instability; this work was later
pursued by Weber (1931), Tomotika (1935) and Christiansen & Hixson (1957). A good
summary of these models can be found in Lee & Flumerfelt (1981). The theory of jet

1001 A15-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
24

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1024


Plateau–Rayleigh instability in a capillary

breakup was later adapted to the breakup of a film covering the interior or exterior of
capillaries by Goren (1962), but only considering the film fluid. All these pioneering works
are however limited to a linear stability analysis.

Based on a purely static analysis, Everett & Haynes (1972) demonstrated that under a
critical value of the film thickness, its breakup is impossible due to volume limitations.
In that case, liquid plugs are replaced by unduloid shapes (called collars by other authors)
that do not obstruct the capillary. This prediction was confirmed by their experiments.
Hammond (1983) proposed a nonlinear lubrication model, where the flow is assumed
laminar, inertialess and fully developed and where the radial scale is small compared with
the axial scale. His model leads to the formation of collars, whose long-term evolution
was studied, notably predicting the apparition and subsequent drainage of secondary
local maxima called satellite lobes. Nevertheless, his model does not lead to plugs for
thick films, contradicting the Plateau–Rayleigh theory. Gauglitz & Radke (1988) used
a better estimate of the curvature, still within the lubrication approach. By numerically
solving their model, they obtained a critical thickness value separating collar and plug
regimes, that was partially confirmed by their experiments. More recently, Lister et al.
(2006a) pursued Hammond (1983) study of the long-term evolution of stable collars. They
predicted the possibility for satellite lobes to exhibit back-and-forth sliding motion between
adjacent collars.

All the previous lubrication developments neglected the effects of both the core fluid
and inertia. Most of the studies attempting to take into account the core fluid were focused
on the effect of an imposed core flow. As first demonstrated by Frenkel et al. (1987)
this flow can prevent channel occlusion. These effects were studied either within the thin
film approximation (Frenkel et al. 1987; Papageorgiou, Maldarelli & Rumschitzki 1990;
Kerchman 1995) or within the frozen-surface approximation (Halpern & Grotberg 2003;
Camassa, Ogrosky & Olander 2017) where the outer liquid velocity is assumed negligible
compared with the core gas one. In the frozen-surface approximation the core gas sees the
interface as a rigid wall. It is also worth noting the work of Hickox (1971) who highlighted
the existence of another instability arising from the viscosity difference between the inner
and outer fluids when an external flow is imposed (either due to gravity or to an imposed
pressure gradient). Hickox (1971) demonstrated that a Poiseuille two-phase flow is always
linearly unstable, although he predicted that it can be stabilised by nonlinear effects in
the form of a wave-propagating state, as later confirmed by Frenkel et al. (1987). In the
absence of an imposed core flow, only a few studies integrated the effect of the core
fluid. This was notably done by Georgiou et al. (1991) in a linear stability analysis of
an electrolyte film-dielectric core system. When considering only mechanical properties
of their liquid–liquid system, they highlighted the role of the viscosity ratio of the core and
outer fluids, also considering inertia, yet assuming identical densities for both fluids.

Including inertial effects outside the linear regime is much trickier, but is achievable
by using integral methods or long-wave expansion techniques. Integral models are based
on the integration of the Navier–Stokes equations over the tube cross-section. Johnson
et al. (1991) were the first ones to use an integral method to obtain a film evolution
equation. They however needed to prescribe base velocity profiles in their equations by
using a constant (inviscid) profile for the inertia term and a Poiseuille (inertialess) profile
for the viscosity term. These approximations restrict their model in the transition regime
where both inertia and viscosity are significant. Recently, more sophisticated models were
developed by Camassa, Ogrosky & Olander (2014) and Dietze & Ruyer-Quil (2015). Both
models are based on a long-wave second-order expansion of the Navier–Stokes equations,
including inertia and streamwise viscous diffusion. The flow is decomposed into a base
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velocity, which is more consistent than that of Johnson et al. (1991), and higher-order
corrections. The models differ on the handling of the correction velocities. While Camassa
et al. (2014) derive each correction from the value of its smaller order, Dietze & Ruyer-Quil
(2015) approach is based on the theory of Ruyer-Quil & Manneville (2002), where the
Navier–Stokes equations are integrated over the channel cross-section. By choosing an
appropriate set of tailored weights, it is possible to eliminate higher-order correction
velocities. Such models require smaller computation times than CFD, so that the long-term
behaviour can be studied similarly. Nevertheless, these models are restricted to relatively
simple geometries and require significant analytical developments.

On the other hand, numerical simulations are more suitable for systems with complex
geometry including numerous physical phenomena that apply either locally or on the
whole domain (Magnini 2022). In the field of two-phase flows where the phases are clearly
separated, CFD simulations are usually performed using direct numerical simulations
(DNS). They provide a good resolution of the interface and do not require subgrid models.
Nevertheless, they are computationally expensive, limiting their ability to provide results
at long physical time. Direct numerical simulations in capillaries have been mostly focused
on the displacement of already formed liquid plugs (Magnini et al. 2017). Few DNS were
however focused on the development of the Plateau–Rayleigh instability in the absence
of imposed flow. Johnson et al. (1991) used a spectral method to solve the Navier–Stokes
equations coupled with an arbitrary-Lagrangian–Eulerian method to track the interface.
They were able to reproduce the evolution of the film maximal thickness that they
previously obtained from a nonlinear integral method. Based on a front-tracking approach
coupling a fixed Eulerian volume mesh and a moving Lagrangian interfacial mesh, Tai
et al. (2011) simulated the early stages of the instability. They obtained velocity fields and
wall shear stress evolution that could be compared with the experimental data of Bian
et al. (2010). By using the volume of fluid technique the same group was able to simulate
the complete plug formation (Romanò et al. 2019). They demonstrated the existence of
a peak in the wall shear stress and wall pressure gradient, right after channel occlusion.
These studies aimed at improving the knowledge of the airway occlusion phenomenon
and were later pursued to study the effects of visco-elasticity (Romanò et al. 2021) and
the presence of surfactants (Romanò et al. 2022). However, the parameters used in these
studies strongly differ from those observed in other systems of industrial importance,
e.g. the liquid water/vapour system used in fuel cell channels. In particular, the role of
inertia is negligible in the highly viscous outer fluid (mucus film in their case).

Experimental observations of the liquid plug formation proves very difficult as
characteristic times and dimensions are small, specifically for the water liquid/vapour
system. Hence, more viscous fluids were used in the experiments to increase the channel
occlusion time. Liquid water is most often used for the core and more viscous silicone
oil or glycerol is used for the outer (film) fluid. With such fluids, plug formation was
observed early by Goldsmith & Mason (1963), with a good picture quality by using an
ordinary reflex camera. However, their experiments were focused on centimetric channels
(between 1 and 4 cm) where gravity can play a role. On the contrary, Aul & Olbricht
(1990) replicated the same experiments on micrometric channels (50 μm). They were
able to observe the formation of both liquid plugs and stable collars depending on the
initial film thickness. More recently, with the help of micro-particle image velocimetry
techniques, Bian et al. (2010) observed not only the interface evolution, but also the flow
velocity distribution. Nevertheless, experimental studies are still limited by the camera
resolution and the acquisition frequency. It is notably difficult to access small amplitude
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Figure 1. Sketch of the problem geometry.

perturbations present at the instability initiation. In this paper a numerical approach is
chosen to more precisely capture its dynamics.

The goal pursued by the authors is to evaluate the role played by inertia in the
Plateau–Rayleigh instability. We target the water liquid/vapour system to improve the
understanding of its behaviour in the PEMFC channels. The paper is structured as follows.
The physical problem is first detailed in § 2. After being introduced (§ 3), the numerical
simulations are validated against well-known analytical and experimental results (§ 4).
Next, they are used as a reference to examine the relative contributions of inertia,
convection and viscous forces to the Plateau–Rayleigh instability, first through a linear
stability analysis (§ 6) and then by spatially mapping these contributions (§ 7). The
analytical models used in the result sections are introduced in § 5.

2. Physical problem

This paper focuses on the development of the Plateau–Rayleigh instability in a cylindrical
capillary. The parameters are chosen to match those of typical PEMFC conditions. The
capillary tube, illustrated by figure 1, has a radius R0 = 0.5 mm and a length L = 2 cm.
All models and simulations developed in this paper use axial symmetry.

The tube wall is completely covered by a thin film of fluid, usually liquid (water in
PEMFC) denoted with the subscript l. It has an initial average thickness h0. This outer fluid
surrounds a core fluid, usually a gas (water vapour in PEMFC), denoted with the subscript
g, with the initial average core radius Ri = R0 − h0. As the tube is small in diameter, the
Bond number Bo = ρlgR2

0/σ is smaller than 0.05 for liquid water, so the gravitational
effects can be neglected. Both fluids are assumed to be incompressible. Interfacial phase
change and thermal effects are also neglected.

Seven physical parameters govern the dynamics of this system: shear viscosities μk,
densities ρk(k = l, g), the surface tension σ , the tube radius R0 and the film initial
thickness h0. The physical parameters are assumed constant. In PEMFC conditions, their
values are taken at a temperature of 100 ◦C (table 1). Water vapour is considered as the core
gas; oxygen and nitrogen present in real PEMFC are ignored here. Such a fluid combination
is used in subsequent sections unless otherwise specified. By scaling times by Riμl/σ ,
lengths by Ri and pressures by σ/Ri, one reduces the problem to four dimensionless
parameters: the dimensionless initial film thickness ε, the viscosity ratio m, the outer fluid
Laplace number Jl and its equivalent for the core fluid Jg. Such parameters were notably
used by Georgiou et al. (1991):

ε = h0

R0
, m = μg

μl
, Jl = ρlσRi

μ2
l

and Jg = ρgσRi

μ2
l
. (2.1a–d)
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Physical quantity Value

μl 280 μPa s
μg 12.3 μPa s
ρl 958.4 kg m−3

ρg 0.597 kg m−3

σ 58.9 mN m−1

Table 1. Physical values for the water vapour (core fluid, subscript g) and liquid water (outer fluid, subscript
l) at saturation at 100 ◦C. These values were found with the CoolProp Python library (Bell et al. 2014).

It should be noted that the Laplace numbers Jl and Jg have been designed so that their
ratio equals the density ratio. However, this implies that both Laplace numbers decrease
with ε. While this is logical for Jg (the higher ε is, the less inertia will be significant in the
core fluid), this does not represent the fact that, in the outer film, inertia actually increases
compared with viscosity for a thicker film.

3. Numerical modelling and CFD software

3.1. Front-tracking method
The numerical study is performed using the open source TrioCFD software within the
TRUST HPC platform (Calvin, Cueto & Emonot 2002; Saikali et al. 2021). Based on
an object oriented design, the code is massively parallel and is written in modern C++
language.

A two-phase flow module, based on a discontinuous front-tracking (DFT) method
(Mathieu 2003), is employed. In this method the interface between two fluid phases
is defined as moving connected-marker points (Lagrangian grid), independent from the
Eulerian grid used to mesh the computational domain. On the Eulerian mesh, one-fluid
velocity and pressure fields are considered for both phases and updated by solving the
Navier–Stokes equations. The markers of the moving Lagrangian grid are, for their part,
advected by the velocity field of the Eulerian mesh as described in du Cluzeau, Bois &
Toutant (2019). The phase indicator function, and thus, the physical properties of each
phase (density and viscosity) are finally updated using the new marker positions.

The discretisation in space is performed by a mixed finite difference/volume method that
is implemented on a staggered Eulerian grid of type marker and cell. Spatial derivatives
are discretised with a classical second-order centred scheme.

A first order semi-implicit time integration scheme (matrix free) is employed where the
diffusion terms are treated implicitly, while the convective terms are explicitly considered.
As a consequence, the time step is dynamically selected at each iteration respecting the
Courant–Friedrichs–Lewy (CFL) criterion, thus ensuring the stability of the numerical
scheme. However, this criterion does not enforce stability for the Lagrangian grid motion
and time steps must be limited by a maximum value, which needs to be chosen following
a convergence study (§ 3.4). The linear system of equations resulting from the implicit
treatment of the diffusion terms is solved (Saad 2003) by the conjugate gradient method
(CGM). The library PETSc (2024) is used for this purpose.

To handle the velocity–pressure coupling, a projection method is used satisfying the
mass conservation equation. The resulting elliptic pressure Poisson equation is solved with
CGM and symmetric successive over-relaxation preconditioning. More technical details
on the algorithm are given by Saikali (2018).
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Plateau–Rayleigh instability in a capillary

3.2. Governing equations for numerical treatment
The one-fluid equations of Kataoka (1986) solved by TrioCFD are

∇ · v = 0, (3.1)

∂ρv

∂t
+ ∇ · (ρv × v) = −∇P + ∇ · [μ(∇v + ∇Tv)] + σκnδi, (3.2)

where the one-fluid variables are obtained from their values in each phase:
φ = χgφg + χlφl with φk either the velocity (vk), pressure (Pk), density (ρk) or viscosity
(μk) of the fluid k = l, g. Here χk is the phase indicator function, equal to 1 in phase k and
0 elsewhere. The gas phase indicator χg is transported through ∂χg/∂t + vi · ∇χg = 0,
where vi = v(Ri) is the interfacial velocity. In the absence of phase change, the velocity
is continuous across the interface. Here σ is the surface tension, κ = −∇ · n the local
curvature and n the interface normal directed towards the core fluid and defined by
∇χl = −nδi, where δi is the Dirac delta function centred at the interface.

3.3. Initial and boundary conditions
Boundary conditions are required for both the Eulerian fixed mesh (pressure or velocity)
and the Lagrangian mesh (interface). For the former, zero velocities are imposed both at
the wall (no-slip) and at the open boundaries (inlet/outlet). At the open boundaries the
interface position is pinned at a user-defined position (the average initial film thickness
h0). This last boundary condition has been specifically developed for this study. Symmetry
conditions (90◦ slope for the interface and zero derivative for the velocity field) are
necessary on the symmetry axis.

The film is initialised as a sinusoidal perturbation around h0. The initial amplitude
is chosen to be negligible compared with h0 (between 1 and 5 μm depending on the
simulation). The wavelength can be modified to cover the dispersion spectrum.

3.4. Mesh and convergence study
A convergence study is first performed on a small sample of cases to select a well-suited
mesh and a correct maximum time step. One should note that the convergence of the
front-tracking algorithm does not follow regular convergence laws. The time step choice
is also a complex task as no reliable criterion (like CFL) exists for the interface remeshing
algorithm. However, CFL criteria are used to determine the convection time step. It is
hence necessary to test the DFT method for several maximum time step values until
reaching convergence for each mesh.

One of the convergence studies is presented in figure 2. Two variables are chosen to
evaluate the convergence: one related to the Lagrangian mesh (the characteristic time of
destabilisation tdestab related to the speed of the instability) and one for the Eulerian mesh
(the average velocity v̄ measured in the central part of the domain in the 10 % physical
time before channel occlusion). Except for the coarsest meshes, convergence in time step
is achieved for all meshes. Moreover, errors smaller than 1 % are obtained when the mesh is
constituted of more than 200 000–400 000 cells. A mesh of 400 000 cells and a maximum
time step 0.5 μm are thus chosen. The mesh is then refined close to the wall (on one tenth
of the radius) with a hyperbolic tangent refinement, in order to be able to simulate thinner
films and, thus, longer times. The mesh size is comprised between 0.5 μm close to the wall
in the radial direction and 5 μm in the axial direction. It contains 488 000 cells. A zoom in
on the mesh on a fraction of the tube is illustrated in figure 3, and the corresponding values
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Figure 2. Mesh and time step convergence studies. Colours indicate the maximum time step. The smaller
maximum time steps for each mesh are depicted by a star and linked together by the plain line. The triangle
point is the value for the refined mesh finally used. The coloured area is the 1 % zone around the converged
value. (a) Characteristic time of destabilisation. (b) Average velocity.
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Figure 3. Locally refined DNS mesh. The interface is displayed in green.

of the convergence variables are reported in figure 2 with triangles. As soon as the liquid
film becomes thinner than 10 mesh cells, the results are discarded as being uncertain due
to film sub-resolution.

The selected mesh and time step are rather conservative choices to ensure the best
results. Although they are small, the computational cost is still reasonable. Nevertheless,
coarser meshes and higher maximum time steps may be more reasonable choices for future
studies, where longer domains and simulation times may be required.

4. Validation of DNS simulations

The DFT method used in TrioCFD was initially developed to study the behaviour of
bubbles. It has not been tested for the particular case of a thin film with open boundaries.
A validation of this method is thus performed with respect to both analytical and
experimental results.

4.1. Collar-plug transition
Results of two simulations, for ε = 0.1 and 0.2, are presented in figure 4. The parameters
from table 1 are used. Although for a sufficiently thick film the Plateau–Rayleigh
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Figure 4. Initial (a,c) and final (b,d) phase distributions inside a capillary caused by the Plateau–Rayleigh
instability for ε = 0.1 (a,b) and ε = 0.2 (c,d), cf. supplementary movies available at https://doi.org/10.1017/
jfm.2024.1024. The lower figures show the channel with the actual aspect ratio.

instability causes the formation of plugs, thin films are not able to completely clog it.
Instead, they form stable collars that do not attain the tube axis and obstruct the tube
only partially. Indeed, as predicted by Everett & Haynes (1972), for a given volume of
liquid, plugs alone (for large volumes), collars alone (small volumes) or a co-existence
of both of them can occur. No collars can exist for volumes higher than � 1.74πR3

0,
which corresponds to a critical value εcr of the thickness close to 0.0980. Everett &
Haynes (1972) also pointed out that one of these two configurations (collar or plug)
is favoured, having a smaller effective interface area or interfacial energy. A hysteresis
(i.e. collar/plug coexistence) is thus possible and plugs may exist for ε ∼ 0.04. In the
present case, as simulations always start from a nearly flat film shape (unduloid with
vanishing eccentricity), this hysteresis cannot be investigated and the study is restricted
to the collar configuration if it exists, to the plug configuration otherwise.

Although, in a thin film approximation, only collar shapes can be observed (Hammond
1983), Gauglitz & Radke (1988) developed a lubrication model to capture the collar-plug
transition, finding εcr � 0.12. They also compared their predictions to experiments, in
which the threshold value was rather 0.09. They explained this discrepancy by the
coalescence of neighbouring collars, that they expect to be responsible of secondary plug
formation for 0.09 ≤ ε < 0.12.

In the present simulations, collars are observed for ε < 0.12, which agrees with Gauglitz
& Radke (1988). However, secondary coalescence of collars could not be simulated
due to mesh resolution limitations when the liquid film between collars thins. When its
thickness decreases below 5–10 cells (which eventually occurs for ε ≤ 0.11) the simulation
is considered to be invalid. However, it is possible to observe neighbouring collars getting
closer for ε = 0.1 and 0.11 (figure 4b) that is not yet observed for smaller ε. Such a process
can eventually lead to their coalescence. Hence, DNS agrees well both with the theory and
the experiments of Gauglitz & Radke (1988). Compared with the Everett & Haynes (1972)
results, our numerical value is slightly higher than their prediction, which is most probably
linked to the existence of satellite lobes between neighbouring collars/plugs. These smaller
satellite lobes can retain a significant volume of fluid, which becomes unavailable for the
main collar. The static critical thickness is probably underestimating its dynamic value,
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Figure 5. Evolution of the maximum film thickness hmax(t) for different ε. (a) Direct numerical simulation
results. (b) Results of Gauglitz & Radke (1988). Triangles indicate the times where hmax/R0 = 0.6 and circle
points indicate particular states with corresponding values of hmax/R0. If stable collars are formed, the final
value of hmax/R0 is indicated. Time scaling t̃ = tσε3/(3μlR0) follows that of Gauglitz & Radke (1988).

although the long-term behaviour of static collars is not perfectly accessible in these
simulations.

The dynamics of the collar growth was also obtained by Gauglitz & Radke (1988) with
their lubrication model. For the DFT validation, their results (figure 5b) are reproduced
using DNS in figure 5(a). The time evolution of the maximum film thickness hmax in
the central part of the simulation domain is plotted for different ε. Because velocities are
initialised at zero in DNS, some time is needed to reach a well-established regime. To
obtain comparable plots, we choose t∗ = 0 when hmax reaches 2h0 in figure 5(a). All the
curves first exhibit an exponential increase. As experimentally observed by Goldsmith &
Mason (1963), an acceleration occurs next for thick films (in blue) that eventually form
plugs. It is due to the cylindrical geometry: for the same change of h, the volume that
needs to be filled to form a plug is reduced as hmax grows. As predicted by Gauglitz
& Radke (1988), this acceleration starts when hmax � 0.6R0. These points are indicated
by triangles in figure 5. On the contrary, for thin films, the interface decelerates. It then
asymptotically reaches the stable collar state of figure 4(b) shown with circle characters.
Finally, the films of initial thickness slightly higher than εcr can first exhibit a deceleration
and then an acceleration. Figure 5(a,b) agrees very well, validating the DNS simulations on
this particular metric. Notably, collar thickness values are identical for similar cases. The
main difference is the behaviour for ε = 0.12 ≈ εcr where the channel becomes clogged
in our DNS but not in the simulations of Gauglitz & Radke (1988) that were probably
not long enough. Similarly, case ε = 0.10 exhibits a sliding motion at long times, which
slightly increases hmax .

4.2. Velocity profiles and wall shear stress
Velocity profiles of the channel occlusion phenomenon were obtained both with particle
image velocimetry measurements (Bian et al. 2010), numerically solved analytical models
(Johnson et al. 1991) and DNS (Tai et al. 2011; Romanò et al. 2019), thus providing suitable
points of comparison. To validate our DNS, we reproduce the results of Tai et al. (2011)
by using the same Laplace number Jl = 0.59, initial thickness ε = 0.23, viscosity ratio
m = 0.01 and density ratio Jg/Jl = 0.95. These parameters only slightly differ from the
Bian et al. (2010) experimental and Romanò et al. (2019) numerical studies concerning the
Laplace number. These parameters are used only in this § 4.2, while those of table 1 are
used in the rest of the paper.
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Figure 6. Velocity field around channel occlusion time obtained with DNS. The physical parameters are those
of Tai et al. (2011). Velocities are scaled by σε3/μl and time by μlR0/σε

3 to conform to Tai et al. (2011).

The velocity fields are presented in figure 6 just before and just after channel occlusion.
Before channel occlusion they qualitatively agree with all aforementioned studies. Liquid
is driven from the film dips to the collars where the flow is directed towards the tube
centre. A motionless zone is observed at the collar centre, close to the wall. The maximum
velocity is encountered at the top of a collar. Few instants before channel occlusion, a
strong radial acceleration is observed, the maximum velocity being doubled between the
two last pictures. Another zone of local maximum velocity is observed at the transition
between the main collar and the thin film, close to the interface. It corresponds to the
area where the draining process occurs. After channel occlusion, patterns do not change
significantly, although a new pivot in the velocity field is obtained at the centre of
the symmetry axis. The liquid pushes the plug axially, increasing its width, which was
called bifrontal plug growth by Romanò et al. (2019). Velocity is maximal just after
channel occlusion. They then decrease until a stationary plug state is reached. In this final
state, velocity is maximal in the draining zone joining the plug and the film. All these
observations were already made by Tai et al. (2011) before channel occlusion and by Bian
et al. (2010), Romanò et al. (2019) after it.

A significant difference is however observed here, as an air bubble is produced in the
middle of the plug. Formation of secondary bubbles (or droplets in the case of a liquid
jet breakup) has already been observed in other experiments such as those by Tjahjadi,
Stone & Ottino (1992). Tjahjadi et al. (1992) also explained the process of satellite droplet
formation and reproduced their own experimental results with the boundary integral
method known for its precision of interface description. Similar bubbles were simulated
by Newhouse & Pozrikidis (1992) and Hagedorn, Martys & Douglas (2004). Obtaining
a bubble in the middle of a plug is thus normal. One should note that in the Romanò
et al. (2019) study, VOF simulations were unable to capture small bubbles during collar
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Figure 7. Evolution of the wall shear stress at several locations. Here z = 0 corresponds to the approximate
location of the maximal film thickness. Time is scaled by μlR0/σε

3 and the wall shear stress by ε3σ/R0 to
follow Tai et al. (2011). (a) The DNS results from this study; (b) DNS results from Tai et al. (2011).

coalescence, probably because of a too large mesh size; Tai et al. (2011) could not simulate
the plug formation at all.

Velocities are quantitatively in agreement with those of Bian et al. (2010), Tai et al.
(2011), Romanò et al. (2019). On the contrary, the channel occlusion time differs
considerably. Indeed, as already discussed by Tai et al. (2011), it is not a suitable validation
metric, as it strongly depends on the initial conditions (amplitude and velocity), which are
not the same in different studies.

In the particular field of lungs airway occlusion, on which previous studies focused
(Bian et al. 2010; Tai et al. 2011; Romanò et al. 2019), a key parameter is the instantaneous
shear stress acting on the channel wall (� μ∂rvz). This parameter is also of significant
importance for PEMFC channels, as viscous friction is the main design parameter of
channel geometry. The wall shear stress is thus extracted from the previous DNS and
plotted in figure 7 at several locations along the tube. Results agree with those of Tai
et al. (2011). After a slow but steady increase, the shear stress explodes a few moments
after channel occlusion. It then reduces even more quickly, as observed by Bian et al.
(2010). All these results confirm that the DFT numerical method used in this paper can be
considered as a reference to investigate the Plateau–Rayleigh instability.

5. Theory

5.1. Governing equations
The previously presented DNS simulations can now be compared with reduced models
where inertial and viscous terms can be switched on and off. The present theoretical
models use equations and boundary conditions similar to the above numerical approach
(cf. § 2). The convective terms v∇v are however neglected in the Navier–Stokes equations.
Thanks to the axial symmetry, the equations and jump conditions reduce to

∂vr

∂t
= − 1

ρ

∂p
∂r

+ ν

(
∂2vr

∂r2 + 1
r
∂vr

∂r
− vr

r2 + ∂2vr

∂z2

)
, (5.1)

∂vz

∂t
= − 1

ρ

∂p
∂z

+ ν

(
∂2vz

∂r2 + 1
r
∂vz

∂r
+ ∂2vz

∂z2

)
, (5.2)

∂vr

∂r
+ vr

r
+ ∂vz

∂z
= 0, (5.3)
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[[v]]r=Ri = 0, (5.4)

[[n · Σ]]r=Ri = σκn, (5.5)

where Σ is the stress tensor and ν is the kinematic viscosity. The double brackets denote
the interfacial jump. A no-slip boundary condition is taken at the wall in r = R0. Finally,
the volume conservation in each phase, in the absence of external flow, results in the
relationships

2πRivi = ∂Ql

∂z
= −∂Qg

∂z
, (5.6)

Ql + Qg = 0, (5.7)

where vi is the interfacial velocity.

5.2. Lubrication model with core fluid
To evaluate the influence of inertia on the development of the Plateau–Rayleigh instability,
a model without inertia is first developed to be compared with the DNS. The lubrication
theory of Gauglitz & Radke (1988) is extended to consider the core fluid (as it can have
significant effects in the plug formation especially when the core radius is small) and
a more rigorous account of the cylindrical geometry. The developments are inspired by
those of Goyeneche, Lasseux & Bruneau (2002).

The main assumptions for this lubrication model is that the flow is considered laminar
and the interface slope is small: ∂zh � 1. The interfacial velocity can thus be expressed as

vi ≈ −2πRi
∂h
∂t

≈ vr(Ri). (5.8)

The magnitude analysis of the continuity equation results in

vr

R0
≈ 1

r
∂(rvr)

∂r
= −∂vz

∂z
≈ vz

λ
. (5.9)

It is well known that the Plateau–Rayleigh instability does not occur for wavelengths
λ smaller than 2πRi. Hence, the assumption λ	 Ri ≈ R0 is valid, leading to vz 	 vr.
A first limit to the lubrication approximation is obtained here, as for Ri � R0, smaller
wavelengths can become unstable. With a similar magnitude analysis, the velocity
derivatives with respect to z can be neglected compared with those with respect to r and
(5.1) and (5.2) reduce to

∂p
∂r

= 0, (5.10)

∂p
∂z

= μ

r
∂

∂r

(
r
∂vz

∂r

)
. (5.11)

Similarly, the jump conditions at the interface become

−[[p]] = σ

(
1
Ri

+ ∂2h
∂z2

)
, (5.12)

[[
μ
∂vz

∂r

]]
= 0. (5.13)
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These equations, coupled to the no-slip boundary condition lead to the thickness
evolution equation (cf. Appendix A)

− 2πRi
∂h
∂t

= σ
∂

∂z

[
β

(
∂3h
∂z3 + 1

R2
i

∂h
∂z

)]
, (5.14)

where

β = −πR4
i

8μl

{
(R2

0 − R2
i )[4m(R2

0 − R2
i )+ (3R2

i − R2
0)]

mR4
0 + (1 − m)R4

i
+ 4 ln

(
Ri

R0

)}
. (5.15)

Equation (5.14) is both analysed in the linear regime (§ 6) and numerically solved outside
(§ 7). In the linear regime, where the film thickness writes

h(z, t) = h0 + A0 exp(iωt + ikz), (5.16)

(5.14) results in the following dimensionless dispersion relation:

ω̂ = x2(x2 − 1)β̂. (5.17)

Here β̂ = βμl/(2πR4
i ) and x = kRi is a dimensionless wavenumber. This number is real,

as well as the instability increment (growth rate) ωi = −iω. The dimensionless growth
rate is defined as ω̂ = ωiμlRi/σ .

5.3. Linear stability models accounting for viscosity and inertia

5.3.1. Previous results
As our starting point, we need to mention several previous results. First, Tomotika (1935),
following Rayleigh (1878), proposed a general theory considering both viscosity and
inertia for both fluids for the case of the fluid jet (R0 → ∞). Tomotika investigated
the cases where viscosity dominates and where the viscosity ratio is neither zero nor
infinite. Tomotika proposed to write the dispersion relation compactly as a matrix M , the
determinant of which is zero. In the present notation, Tomotika’s matrix writes

M =

⎡
⎢⎢⎣

I1(x) I1(xg) K1(x) K1(xl)
xI0(x) xgI0(xg) −xK0(x) −xlK0(xl)

2mx2I1(x) m(x2 + x2
g)I1(xg) 2x2K1(x) (x2 + x2

l )K1(xl)

F1 F2 2x2K′
1(x)+ ω̂JlK0(x) 2xxlK′

1(xl)

⎤
⎥⎥⎦ ,
(5.18)

with

F1 = 2mx2I′
1(x)− ω̂JgI0(x)+ x

x2 − 1
ω̂

I0(x), (5.19)

F2 = 2mxxgI′
1(xg)+ x

x2 − 1
ω̂

I0(xg). (5.20)

Here, Ii and Ki are the ith order modified Bessel functions of the first and second kind,
respectively. The prime denotes a derivative. Here xg and xl are related to x by

x2
g = x2 − ω̂Jg, x2

l = x2 − ω̂Jl. (5.21a,b)

In parallel to these liquid/gas jet studies, Goren (1962) studied the effect of confinement
(finite R0) by neglecting the core fluid. Goren obtained a 4 × 4 matrix with different
coefficients.
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Finally, Georgiou et al. (1991) gathered all these models to consider both the core and
outer fluids for finite R0. Hence, they had to solve the determinant of a 6 × 6 matrix.
However, as their objective was to analyse the impact of electric properties of fluids with
similar densities (the outer liquid was an electrolyte and the core, a dielectric fluid) they
used a single density and Laplace number for the core and outer fluids.

5.3.2. Present model
In the present study, as the densities of water vapour and liquid water are several orders of
magnitude different, the Georgiou et al. (1991) model will be generalised for two different
fluid densities. We describe here briefly how the dispersion relation is derived and present
its final formulation. A more detailed derivation is proposed in Appendix B.

In order to automatically verify the continuity equation (5.3), the radial and axial
velocities are expressed with the streamfunction ψ ,

vr = 1
r
∂ψ

∂z
and vz = −1

r
∂ψ

∂r
. (5.22a,b)

Here vr and vz are then substituted in the Navier–Stokes equations (5.1) and (5.2) and the
pressure terms are eliminated, leading to

(
D − 1

ν

∂

∂t

)
Dψ = 0, (5.23)

where the differential operator D = ∂2/∂r2 − (1/r)(∂/∂r)+ ∂2/∂z2.
It should be noted that in the current linear stability analysis, the convective terms are

automatically negligible as they evolve quadratically with the perturbation and are exactly
zero for the chosen primary flow.

As D and (D − ν−1∂t) are commutative, when ν−1 /= 0, ψ can be written as a linear
combination of ψ1 and ψ2 where

Dψ1 = 0 and
(

D − 1
ν

∂

∂t

)
ψ2 = 0. (5.24a,b)

Expressing ψj( j = 1, 2) as ψj = φj exp(iωt + ikz), φj are solutions of

d2φj

dr2 − 1
r

dφj

dr
− k2

j φj = 0, (5.25)

with k1 = k and k2
2 = k2 + iω/ν. The solutions of (5.25) are linear combinations of I1(kjr)

and K1(kjr). In each fluid, the streamfunction can then be written as a linear combination
of four terms, one for each kj and for each kind of modified Bessel function (I1 and K1).
Hence, eight constants are needed to completely define the velocity profile, four in each
fluid. This number is reduced to six, as the velocity must be finite in r = 0, requiring the
K1 constants in the core fluid to be zero.

The no-slip boundary condition (two equations) and the velocity continuity at the
interface (5.4) (two equations) first give four equations. The continuity of the tangential
and normal stresses ((5.5) projected to the tangential and normal directions) write in the
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small-slope approximation[[
μ

(
∂vz

∂r
+ ∂vr

∂z

)]]
r=Ri

= 0, (5.26)

[[
−p + 2μ

∂vr

∂r

]]
r=Ri

= σ

(
1
Ri

+ ∂2h
∂2z

)
. (5.27)

Equation (5.26) leads to the fifth equation. Finally, combining (5.27) with (5.2), (5.6) and
(5.7), leads to the last equation[[

−iω
ρ

r
∂ψ

∂r
+ μ

r
∂

∂r
Dψ + 2ikμ

∂vr

∂r

]]
= k
ω
σ
(kRi)

2 − 1
R2

i
vr. (5.28)

The set of six equations with six unknowns is homogeneous (Appendix B). Their matrix
can be rearranged as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 K1(ax) K1(axl) I1(ax) I1(axl)

0 0 −K0(ax) − xl

x
K0(axl) I0(ax)

xl

x
I0(axl)

I1(x) I1(xg) −K1(x) −K1(xl) −I1(x) −I1(xl)

I0(x)
xg

x
I0(xg) K0(x)

xl

x
K0(xl) −I0(x) − xl

x
I0(xl)

(m − 1)I1(x)
[
(m − 1)− ω̂Jg

2x2

]
I1(xg) 0

ω̂Jl

2x2 K1(xl) 0
ω̂Jl

2x2 I1(xl)

F′
1 F′

2 ω̂JlK0(x) 0 −ω̂JlI0(x) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(5.29)

with

F′
1 = 2(1 − m)x2I′

1(x)+ ω̂JgI0(x)+ x
x2 − 1
ω̂

I1(x), (5.30)

F′
2 = 2(1 − m)xgxI′

1(xg)+ x
x2 − 1
ω̂

I1(xg). (5.31)

Here, xl,g = kl,gRi are defined by (5.21a,b); a = R0/Ri = (1 − ε)−1 is the radius ratio. We
remind that the dispersion relation reads det M = 0.

In the limit R0 → ∞, the first two rows and the last two columns can be dropped from
M so the velocities do not diverge at r → ∞. The Tomotika (1935) matrix (5.18) is thus
found (with some rearrangements). Similarly, if the core gas is forgotten, the first two
columns (representing the core fluid) and the third and fourth row (velocity continuity)
are dropped leading to the matrix of Goren (1962). Finally, if both fluids have the same
densities (Jl = Jg), the case of Georgiou et al. (1991) without electromagnetic effects is
found. Model (5.29) is called the ‘visco-inertial linear model’ hereafter, as it is designed
for linear stability studies and accounts for both viscous and inertial terms.

5.3.3. Absence of inertia
In the case where inertia is neglected, Jl, Jg → 0 and det M is trivially zero, as the columns
of (5.29) are equal two by two as xl = xg = x. This comes from the simplification of (5.23)
to D2ψ = 0. To solve this issue, ψ2 must be modified to be linearly independent of ψ1,
which is not modified and still verifies Dψ1. Hence, ψ2 is now a solution of Dψ2 = ψ1.
Therefore, ψ2 is a linear combination of r2I0(kr) and r2K0(kr). The velocity expressions
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detailed in Appendix B are modified accordingly. Using the same boundary conditions,
the matrix M is modified and rearranged as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 K1(ax) axK0(ax) I1(ax) axI0(ax)
0 0 −K0(ax) fk(ax) I0(ax) fi(ax)

I1(x) xI0(x) −K1(x) −xK0(x) −I1(x) −xI0(x)
I0(x) fi(x) K0(x) −fk(x) −I0(x) −fi(x)

(m − 1)I1(x)
mI1(x)+ (m − 1)

× xI0(x)
0 K1(x) 0 −I1(x)

G′
1 G′

2 K1(x) 0 I1(x) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(5.32)

with

fk(x) = 2K0(x)− xK1(x), (5.33)

fi(x) = 2I0(x)+ xI1(x), (5.34)

G′
1 = (1 − m)xI0(x)+ (m − 2)I1(x)+ x2 − 1

2ω̂
I1(x), (5.35)

G′
2 = (1 − m)x2I1(x)+ x

x2 − 1
2ω̂

I0(x). (5.36)

As in Tomotika (1935), this matrix can also be obtained by letting Jl, Jg → 0 in (5.29).
Unlike the lubrication theory, our model does not assume the axial and radial velocities to
be independent. All terms of the viscous contribution to the Navier–Stokes equations (5.1)
and (5.2) are considered. Model (5.32) is subsequently referred to as the ‘viscosity-only
linear model’.

5.3.4. Absence of viscosity
In the absence of viscosity, the Navier–Stokes equations reduce to those of Euler. Hence,
ψ now verifies Dψ = 0, leading to ψ = ψ1 only. Hence, the second, fourth and sixth
columns in (5.29) disappear. Moreover, the absence of viscosity removes the tangential
no-slip wall condition and the tangential stress and velocity continuity conditions at the
interface. The second, fourth and fifth rows disappear and (5.29) simplifies to

M =
⎡
⎣ 0 K1(ax) I1(ax)

I1(x) −K1(x) −I1(x)
F′

1 ω̂JlK0(x) −ω̂JlI0(x)

⎤
⎦ , (5.37)

with F′
1 = x((x2 − 1)/ω̂)I1(x)+ ω̂JgI0(x). Note that, although μl is present in the scaling

of both Jl,g and ω̂, it cancels out of the dispersion relation. Model (5.37) is subsequently
referred to as the ‘inertia-only linear model’.

6. Growth rate analysis

Having at hand all the previously developed models, it is now possible to evaluate the
relative contribution of the different effects. The dispersion relation det(M) = 0 is solved
with the SymPy library of Python.
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Figure 8. Impact of the viscosity ratio m on the convergence of the growth rate to the thin film approximation.
Different colours indicate the average film thickness ε. Results are shown for (a) m = 0, inviscid core fluid;
(b) m = 1, equal viscosities of core and outer fluids; (c) m = 10, more viscous core fluid; (d) m = 0.0438
corresponding to the water parameters of table 1. Solid lines: thin film lubrication model (6.1). Dash-dotted
lines: viscosity-only model (5.32). Dotted lines: lubrication model (5.17).

6.1. Influence of the core fluid
While most thin film models in microscopic tubes consider only the outer fluid (Goren
1962; Hammond 1983; Frenkel et al. 1987; Gauglitz & Radke 1988; Johnson et al.
1991; Eggers & Dupont 1994; Lister et al. 2006a), some authors include the effect
of the core, which substantially complicates the theory (Georgiou et al. 1991; Halpern
& Grotberg 2003; Dietze & Ruyer-Quil 2015; Camassa et al. 2017). Nevertheless, a
quantitative evaluation of the core flow effect appears relevant when analysing plug
formation, especially to later investigate the conditions under which the Plateau–Rayleigh
instability can be saturated by an imposed core gas flow. In this section we thus analyse
the influence of the core fluid on the linear stability in two steps. First the analysis will be
restricted to the viscous problem modelled by the viscosity-only linear model (5.32) and
by the lubrication dispersion relationship (5.17). Then a similar analysis will be performed
on the inertial problem modelled by the inertia-only linear model (5.37).

Figure 8 presents the results of several simulations for various values of m and h0 and for
both the lubrication with the core fluid model and the viscous linear one. In order to obtain
similar orders of magnitude for different ε, and thus, to better observe the differences due
to the viscosity ratio, the growth rates are scaled by ε3/3. Indeed, in the thin film limit,
a Taylor expansion of (5.17) at leading order in terms of the dimensionless film thickness
ε = h0/R0 results in

ω̂ = ε3

3
(x2 − x4). (6.1)

Figure 8 shows that, whatever the viscosity ratio is, the curves converge towards the
classical thin film lubrication approximation (6.1) (plotted with a solid line) when ε → 0.
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However, this convergence is much quicker for the particular case of fluids with equal
viscosities (figure 8b). Indeed, the Taylor expansion of (5.17) can be pursued at the next
order with respect to ε giving

ω̂ = ε3

3
(1 + 3(1 − m)ε)(x2 − x4). (6.2)

The second-order term disappears for m = 1. This explains the observation of Georgiou
et al. (1991) that the agreement between their model and the classical lubrication (6.1)
is ‘exceptional even for ε as large as 0.2’. Moreover, in the other cases, (6.2) proves that
the instability is accelerated for thicker films if m < 1 (the core fluid is less viscous than
the outer one; see first and last plots). On the contrary, if the core fluid is more viscous
(figure 8c), the instability slows down for thick films.

Such observations stress the importance of the core fluid effect. Indeed, compared
with the case without core fluid (figure 8a), the growth rate is reduced in the practically
important water case (figure 8d). The core gas slightly slows down the instability in thick
films.

Finally, the lubrication model with core fluid (5.17) appears to agree with the
viscosity-only linear model (5.32) where all viscous contributions to the Navier–Stokes
equations are considered. The agreement is perfect for thin films or highly viscous core
fluids but is still reasonable for thicker films and less viscous core fluids. This validates the
use of the lubrication with the core fluid model (5.14) to predict the nonlinear evolution of
the system in the absence of inertia (see § 7.2).

Concerning the inertial contribution of the core fluid, it is a priori expected to be
negligible as the Laplace number Jg of the core fluid is two orders of magnitude smaller
than that of the liquid film Jl. However, the effect of the density ratio for other fluids can be
studied. When considering the inertia-only problem (5.37), the lubrication reference curve
becomes irrelevant and must be modified by the thin film limit

ω̂ = x
√

1 − x2
√
ε√
Jl

(6.3)

of the inertia-only model (5.37). Figure 9 provides the dispersion curves that come from
(5.37) for several density ratios Jg/Jl. The reference curve in black is (6.3). To obtain
results with similar magnitudes, the growth rates are scaled by

√
ε/Jl.

Similarly to the above viscosity-only analysis, growth rates for the inertia-only model
(5.37) tend towards the thin film limit (6.3) when ε → 0 whatever the density ratio is.
Moreover, an increase in the core fluid density results in a decreasing growth rate, meaning
the Plateau–Rayleigh instability slows down. Indeed, the denser the core fluid, the more
difficult it is to displace. The fastest convergence to the thin film approximation is found
for an intermediate density ratio Jg/Jl = 3/4 (this can be obtained by pursuing the Taylor
expansion of (5.37) at the next order in ε). Finally, as in the above viscosity-only case, no
clear difference between the real case scenario of figure 9(d) and the coreless scenario of
figure 9(a) can be noticed. As expected, the inertial contribution of the core gas can thus
be safely neglected.

6.2. Transition between viscous and inertial regimes
We now consider the practical case of water (table 1) that corresponds to m =
4.38 × 10−2, Jl = 3.6 × 105(1 − ε) and Jg = 224.3(1 − ε). With these parameters, the
viscosity-only, inertia-only and visco-inertial linear stability models (5.32), (5.37) and
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Figure 9. Impact of the density ratio Jg/Jl on the growth rate. Different colours indicate the average film
thickness ε. Results are shown for (a) Jg = 0, no core fluid; (b) Jg = Jl, equal densities of core and outer fluids;
(c) Jg = 10Jl, denser core fluid; (d) Jg = 6.23 × 10−4Jl corresponding to the water parameters of table 1. Solid
lines: inertia-only thin film model (6.3). Dash-dotted lines: inertia-only linear model (5.37).

(5.29) are solved and compared in figure 10 for different ε values. As in figure 8, growth
rates are scaled by ε3/3.

Direct numerical simulations are also performed for different initial perturbation
wavelengths to find the growth rates in the linear regime. Their determination is discussed
in Appendix C. The obtained growth rate is plotted as a function of the wavenumber with
triangle characters in figure 10. Due to the incoherence of initial conditions in DNS and
in the theory (cf. Appendix C), the exponential growth stage does not start at t = 0 and
should thus be identified. This causes uncertainties illustrated with error bars. During this
process, it is particularly important to ensure that the measured growth rate is associated
to the correct wavelength. Indeed, the final wavelength of the perturbation can be different
from the initial one as it is always shifted towards that of the maximal growth rate.
Direct numerical simulations include all the relevant phenomena: viscosity, capillarity,
convection and inertia.

The viscosity-only model (5.32) agrees with DNS for thin films (ε ≤ 0.1),
cf. figure 10(a). Small discrepancies appear only close to the maximum growth rate.
However, significant differences occur for thicker films. While the viscosity-only model
results in a positive deviation from the thin film lubrication approximation, the growth
rate of the instability is actually lower.

On the contrary, the inertia-only model (5.37) agrees with DNS for thick films ε ≥
0.3 (cf. figure 10b) while the model strongly differs at small ε. This clearly indicates a
transition from a viscous regime for ε ≤ 0.1 to an inertial regime for ε ≥ 0.3. In the overall
picture, both terms are essential to capture the instability inception. This is apparent in
figure 10(c) where DNS is compared with the visco-inertial linear model (5.29). Here, the
agreement is of high quality whatever the average film thickness.
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Figure 10. Comparison of the effects of inertia and viscosity on the growth rate. (a–c) Dispersion curves for
the three linear stability models: (a) viscosity-only model, (b) inertia-only model, (c) visco-inertial model.
Different colours indicate the average film thickness ε. Dash-dotted lines: linear stability model. Solid lines on
all graphs: thin film lubrication approximation (6.1). Triangle characters on all graphs: growth rates extracted
from DNS. (d) Maximum growth rate as a function of ε. All curves are from linear stability models, either
viscosity-only (long red dashes), inertia-only (green dashes) or visco-inertial (yellow solid line).

Since the visco-inertial linear model agrees with DNS, it can be used to obtain the
maximum growth rate for several thicknesses. The results are plotted in figure 10(d)
and are compared with the inertia-only and viscosity-only linear models. The cross-over
between these regimes is clear here: while for ε � 0.1, the maximum growth rate follows
the viscosity-only curve, it corresponds to the inertia-only model for ε � 0.25. In the
transition zone 0.1 ≤ ε ≤ 0.25, both viscosity and inertia are important.

The inertial regime validity for thick films shows that the core vapour can be neglected
in the water vapour/liquid water system. Indeed, with the physical parameters of table 1,
the core gas effect was observed only for thick films in the viscosity-only model of figure 8.
However, as demonstrated above, these films actually follow the inertial regime where the
core gas does not affect the growth rates (figure 9). Hence, the core gas has almost no
influence on the linear regime of the Plateau–Rayleigh instability. Such a conclusion can
be verified with the visco-inertial linear model, within which the curves with or without
the core gas perfectly overlap (this was verified by the authors).

Finally, a significant outcome of figure 10(b) is that, for the chosen physical system, the
prediction of the inertial linear model is higher than that of the thin film lubrication for
thin films and lower for thick films. Indeed, in the absence of viscosity, the growth rate
vanishes for ε → 1 while it takes a finite value in the thin film approximation, meaning
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that the ratio diverges accounting for the ε3 lubrication scaling. The ε3 scaling is replaced
in that case by the

√
ε scaling of (6.3).

In the present paper a no-slip condition has been imposed at the wall. This choice is
reasonable for the millimetric film-covered channels studied here, although at small scale
this condition can break down. Zhao, Zhang & Si (2023) studied the effects of slip on
the linear stability of Plateau–Rayleigh instability and demonstrated that it speeds up
its development, notably for thin films and micrometric channels. This enhancement of
the instability equally affects the nonlinear regime, for example, by accelerating the film
thinning (Liao, Li & Wei 2013), which may modify the critical thickness separating stable
collars and plugs due to volume retention in satellite lobes as discussed later in §§ 7.2 and
7.3. Slip is finally expected to increase the wavelength of maximum instability (Zhao et al.
2023).

In this section a transition between an inertial and a viscous regime has been discussed
for small perturbations. In the next section the underlying mechanisms of this transition
will be studied by enlarging the previous temporal study to observe spatial dependencies
of viscous and inertial contributions, both in the linear and nonlinear regimes.

7. Distribution analysis of Navier–Stokes terms and their effects

Direct numerical simulations offer the opportunity to access the evolution and spatial
distribution of any variable. In particular, it is possible to obtain the relative contributions
to the pressure gradient of the inertia ρ∂tv, viscosity μ∇(∇v) and convection ρv · ∇v
terms of the Navier–Stokes equations. Except at the interface where capillary forces
are of course essential, these terms completely define the dynamics. By plotting these
contributions in the outer fluid, we are able to confirm the previous conclusions on the
linear regime and to extend them to the nonlinear evolution of plugs and collars.

7.1. Comparative analysis of forces in the linear regime
We first confirm and refine the previous linear regime results. Figure 11 presents a map
of the magnitudes of the three aforementioned contributions in the linear regime of DNS,
for a mostly viscous case (ε = 0.1) and a transitional visco-inertial case (ε = 0.2). The
colour scales differ between figures to show the spatial variation of each term. The
simulation times have been chosen arbitrarily within the regime of exponential growth.
Results have been checked at twice these times and give very similar results with slightly
higher magnitudes.

First, one can confirm that convection can be neglected in the above linear models. Its
contribution is at least one order of magnitude smaller than those of inertia and viscosity.
Moreover, all contributions are negligible in the core flow, thus supporting results from
§ 6. In the thin film case ε = 0.1, as expected, the viscous contribution largely dominates
that of inertia, being one order of magnitude higher. When ε = 0.2, inertia and viscosity
terms are comparable in agreement with the previous discussion. Inertia is slightly more
important, being present within a larger domain of the liquid.

A clear spatial separation between inertia and viscosity is also observed, the former
acting mostly near the interface while the latter is maximal close to the wall. Such a
separation is present at any time in all simulations, in both linear and nonlinear regimes.
From an energy point of view, the energy can only come from surface tension forces
acting at the interface. This energy is converted into kinetic energy, then transported to
the wall and finally dissipated there by viscosity. In the thin film case, the main kinetic
transport contribution seems to be the viscous diffusion, which does not depend on r
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Figure 11. Spatial dependence of the contribution of viscosity (a,d), inertia (b,e) and convection (c, f ) in the
linear regime obtained by DNS. Data for ε = 0.1 at t = 10 ms are shown in (a–c), while those for ε = 0.2 at
t = 5 ms are presented in (d–f ). Note the different colour scale for different subfigures.

and is everywhere higher than inertia. In the thick film case, however, kinetic energy is
transported mostly by inertial forces; the viscous diffusion is much smaller at the interface.
In practice, the transition between the viscous and the inertial regime is a transition
between a diffusive and a direct inertial transport process of kinetic energy. The inertia,
viscous and convection terms are maximal at the collar edges and minimal inside them.
The dynamics is thus mostly driven by what happens at the collar edges.

7.2. Nonlinear formation of satellite lobes
Extensive studies of the long-term behaviour of thin films were previously carried out,
notably by Hammond (1983) and Lister et al. (2006a). Based on a simple lubrication
model, Hammond (1983) studied the formation and evolution of satellite lobes that appear
between the main collars. Hammond (1983) simulations were restricted to domains where
main collars cannot move. Lister et al. (2006a) extended this study and discovered that
main collars and satellite lobes can exhibit a sliding motion. In both studies, only viscous
lubrication models were used, which underlines the crucial role of viscosity in long-term
thin film dynamics. Satellite lobe formation is explained by the interplay of several effects.
Initially, the film dips as they have a larger interface radius present a higher capillary
pressure. Liquid is thus drained from dips to collars, which is the primary instability
mechanism. It is only valid for long wavelengths where the axial curvature ∂zzh is smaller
than the radial one. However, as the film thins, viscous forces become significant, slowing
down the drainage process. Viscous forces, at first order, are proportional to h−3. Hence,
they are bigger at the dip centre than on the main collar edges. As a consequence, the dip
flattens. In a flat film portion the pressure gradients vanish, thus stopping the drainage.
However, the flow persists close to collars where the film slope is non-zero. This creates
new local minima and satellite lobes. These lobes have a smaller axial extent and are stable
against the Plateau–Rayleigh mechanism as their axial curvature dominates their radial
one, explaining why they are finally drained into the main collars. A similar mechanism is
also observed in the Rayleigh–Taylor instability (Lister, Rallison & Rees 2006b), which is
well described in Dietze, Picardo & Narayanan (2018, figure 2).

1001 A15-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
24

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1024


M. Rykner and others

0

0.3

0.6

0.9

0

0.3

0.6

0.9

0

0.3

0.6

0.9

0

0.3

0.6

0.9

0

0.3

0.6

0.9

0

0.3

0.6

0.9

0 0.2 0.4 0.6 0.8 1.0

z/L
0 0.2 0.4 0.6 0.8 1.0

z/L
0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

z/L

r/R0

r/R0

0 50 000 0 200 0 200

0 100 000 0 80 0 80

‖∇(μ∇v)‖ (N m–3) ‖ρ∂tv‖ (N m–3) ‖ρv · ∇v‖ (N m–3)

‖∇(μ∇v)‖ (N m–3) ‖ρ∂tv‖ (N m–3) ‖ρv · ∇v‖ (N m–3)

(a) (b) (c)

(d) (e) ( f )

Figure 12. Spatial dependence of the contribution of viscosity (a,d), inertia (b,e) and convection (c, f ) at
satellite lobe formation obtained by DNS. Data for ε = 0.1 at t = 100 ms are shown in (a–c), while those
at t = 300 ms are presented in (d–f ). Note the different colour scale for different subfigures.
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Figure 13. Interface shapes obtained with lubrication equation (5.14) for the same parameters as figure 12.

These lobes are observed in our DNS, cf. figure 4(b) (slightly visible e.g. at z = 0.35L)
and figure 12. They can be equally obtained by solving numerically the lubrication
equation (5.14). Figure 13(a) illustrates one time step soon after the satellite lobes
formation obtained with (5.14). The ability of the lubrication approximation to recover
DNS results confirms that satellite lobe formation is only driven by viscous and capillary
forces but not by inertia. This result was already present in the fact that Lister et al.
(2006a); Dietze et al. (2018) found similar results, although the latter model included the
inertial and convective terms while the former considered only the viscosity contribution.
Figure 12(a–c) demonstrates that viscous terms are several orders of magnitude larger
than those of inertia and convection during the satellite lobe development. We note that
the viscous forces on the wall evolve nearly linearly with time, while both inertia and
convection diminish over time; the film evolution becomes quasi-static.

At large time scales, as expected by Lister et al. (2006a), Dietze & Ruyer-Quil (2015),
Dietze et al. (2018), collars start sliding. We observe such an effect both in DNS and
lubrication results, although not identically. In DNS the collars direct themselves to the
domain centre, while within the lubrication approach (figure 13b), they get closer two by
two. One probable explanation for this is that lateral boundary conditions are not exactly
identical in DNS and lubrication simulations. Finally, lobes and collars can collide and
either merge (thus creating bigger collars or even plugs) or rebound without merging, as
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expected by Lister et al. (2006a). It is not possible to know which of these two scenarios
will occur as DNS results become uncertain when the film thins too much. Indeed, DNS
results should be assumed valid only when at least 10 mesh cells are present in the film. An
adaptive mesh would solve this problem but is not yet implemented. Overall, even during
the sliding motion, inertial and convective contributions are negligible compared with
viscous forces, as observed in figure 12 just before (t = 100 ms) and during (t = 300 ms)
sliding.

7.3. Nonlinear plug formation
In this section we examine the nonlinear channel occlusion phenomenon that occurs for
thick films.

7.3.1. Plug formation time
As the lubrication equation has proven to be invalid in the linear regime, it cannot be
used for this case. We first consider the occlusion times for a given ε. Assuming the linear
regime during all the evolution (which is, of course, untrue), the occlusion time is expected
to be defined by the growth rate ωi as

tlinplug = ln
[
(1 − ε)R0

A0

]
1
ωi
, (7.1)

where A0 is the amplitude of the initial perturbation and (1 − ε)R0 = Ri is the initial core
vapour radius. It corresponds to the radius to fill to close the channel. Figure 14 compares
the value of (7.1) and tplug observed in DNS. For thick films (ε ≥ 0.14), tlinplug ∝ tplug and
the occlusion time is regularly overestimated by (7.1). It indicates that the behaviour in the
nonlinear regime is probably similar to the linear regime, but that it is accelerated close to
the tube centre. However, this observation does not stand for films of thickness just above
εcr, where the occlusion is strongly delayed (tplug 	 tlinplug) as already observed in figure 5.
Dietze & Ruyer-Quil (2015) have explained this delay by a ‘viscous-blocking’ mechanism
where the viscous dissipation slows down the instability and allows the formation of
satellite lobes between primary collars (which is discussed in the previous section for thin
films). The liquid volume available for plugs is thus reduced and occlusion is not observed.
It may explain the discrepancy between the critical volume obtained on the one hand by
Gauglitz & Radke (1988) and by us, cf. § 4.1 and on the other hand by Everett & Haynes
(1972).

Figure 15 evaluates the different contributions to the pressure gradient for the case
ε = 0.2 at three stages: well before the channel occlusion, immediately before and after.
Long before channel occlusion, as in the linear regime, viscous and inertial forces have
similar orders of magnitude while being spatially separated. Nevertheless, convection
becomes significant, though still smaller than other contributions. As expected, this regime
is similar to the linear regime.

Just before the channel occlusion, a strong increase of inertial and convective
contributions is observed at the top of the rising collar. This increase agrees with Gauglitz
& Radke (1988) who mentioned that a clear acceleration in the rising process is observed
when the film reaches a thickness of 0.6R0, cf. figure 5. Such high values of inertia and
convection in the tip of the collar is due to the cylindrical geometry: as the collar rises,
it has a smaller space to fill, while still accelerating due to the exponential behaviour
of the Plateau–Rayleigh instability. This phenomenon appears very briefly (here during
approximately 1 μm), explaining why tlinplug approximates well tplug.
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Figure 14. Dimensionless occlusion time observed in DNS compared with the dimensionless occlusion time
predicted from the linear regime via (7.1). Time is scaled by μlR0/σε

3. The solid orange line is a linear fit
to the points with ε > 0.15. Its slope is 0.86 with a regression coefficient 0.99989. The dashed black line is
t∗plug = t∗lin
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Figure 15. Spatial dependence of the contribution of viscosity (a,d), inertia (b,e) and convection (c, f ) in the
linear regime obtained by DNS. Data for ε = 0.2 at t = 18 ms are shown in (a–c), those at t = 19 ms are in
(d–f ) and those at t = 20 ms are presented in (g–h). Note the different colour scale for different subfigures.

Such a concentration of inertia and convection at the tip of the rising collar seems to
point towards a transition between a regime where inertia/convection and viscous forces
are both significant but spatially separated and a regime where the collar growth is only
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Figure 16. Log-log plot of the core gas throat radius Rmin against t∗plug − t∗, the time remaining before
occlusion. The case is for ε = 0.2. Times are scaled by μlR0/σε

3.

governed by inertial and convective contributions. To confirm this analysis, the evolution
of the core gas throat radius Rmin = R0 − hmax is plotted against the time remaining before
plug formation tplug − t in figure 16. A log-log scale is used to identify the relevant power
laws. For the breakup of liquid jets, Eggers & Villermaux (2008) identified three scaling
laws Rmin ∝ (tplug − t)α . First, when inertia and surface tension effects are balanced, the
dimensional analysis predicts α = 2/3. If viscous terms and surface tension are balanced,
α ≈ 0.175. Finally, in the case where all three contributions are important, α = 1/2.
Although these laws were derived for the case where only the inner fluid is considered,
it is reasonable to assume that they are still relevant for the outer fluid case. However, one
mentions that the inner fluid should play a significant role when Rmin becomes sufficiently
small. As Rmin decreases, it appears to follow a time scaling with increasing exponent
(figure 16) without scale separation. The slope mostly varies between 1/2 once the regime
is well established and 2/3 close to the channel occlusion. This suggests a continuous
transition from a regime where the viscous contribution is significant to a regime where it
becomes insignificant compared with inertia in the late stage of occlusion. The slope 0.175
is not clearly discernable at the beginning. Such results can be compared with those of Tai
et al. (2011) with more viscous fluids. In their case, the slopes 0.175 and 1/2 were both
clearly identified, highlighting the relevance of viscosity all along the occlusion process
and of inertia only in its late stages. Finally, the collar tip flattens just before plug formation
(see figure 18b), which can be caused by the resistance of the inner fluid.

7.3.2. Capillary waves
The plug formation by coalescence generates capillary waves that propagate along the
plug edges towards the thin film. Those are driven by inertia and convection, as observed
in figure 15(g,h). They then rebound several times on the plug feet and are gradually
dissipated by viscous forces at the channel wall. The rebounds appear because the viscous
forces are smaller than inertial contributions, requiring time to dissipate capillary waves.
These capillary waves can notably be important for the pressure drop and wall shear stress
evaluation, as illustrated by figure 17, which presents the evolution of the wall shear
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Figure 17. Evolution of the wall shear stress at several locations. Here z = 0 corresponds to the approximate
location of the maximal film thickness. Time is scaled by μlR0/σε

3 and the wall shear stress by ε3σ/R0, as in
Tai et al. (2011).

stress around a plug. Unlike figure 7 where the Laplace number of the film is smaller
(meaning that the viscous effects are more important compared with inertia), the main
peak occurring just after channel occlusion is followed by several significant aftershocks.

A better understanding of these capillary waves can be obtained with the spatio-temporal
diagram of the film thickness presented in figure 18(a). The outer liquid thickness h/R0
is represented with the colour scale. Only the domain between the two central plugs
is plotted. Plugs are shown in red and holes in dark blue. Several interface profiles at
times and locations indicated by the black vertical lines in figure 18(a) are also provided
in figure 18(b–g). Initially, the collars are rising around z = 0.39L and z = 0.61L while the
dip between the collars evolves into a satellite lobe surrounded by two holes (initially
at ≈ 0.45L and 0.55L). Around t∗ = 65, the collar quickly accelerates to form plugs.
The moment of plug formation corresponds to the first red line in figure 18(a). After
that and for quite a short time, the plug thickness near the tube axis becomes slightly
larger than closer to the wall (figure 18c), which corresponds to the co-existence of two
plug heights in figure 18(a) and a bulge of the red zone. Therefore, a lighter red zone
confined between the first red line and the rest of the plug is observed. Such an hourglass
shape of the plug interface is due to the liquid accumulation near the tube axis just after
coalescence. Indeed, the concentration of inertia and convection at the top of the collar
observed in figure 15(e, f ) has reached the tube axis and cannot go further. Hence, liquid
accumulates at the tube axis, quickly widening there. This generates an inertial capillary
wave that propagates from the axis towards the wall, along the plug edges (figure 18d).
When it reaches the plug foot, it strongly thins the film there, separating the flow in
the plug and in the satellite lobe. This, in turn, perturbs the satellite lobe and generates
several capillary waves close to the plug foot, with different wavelengths and velocities.
The larger wave is the closest to the plug foot and is also the slowest one, as observed
in the spatio-temporal diagram. Capillary waves then propagate along the satellite lobe
interface, interact with each other, and are eventually dissipated by viscous forces at the
plug foot (figure 18e,g). Due to the strong film thinning at the plug foot, they never re-enter
the plug, as observed in figure 15(g). Notably, while the interaction of capillary waves does
not seem to attenuate them, they are strongly damped after an interaction with the plug foot
(figure 18a). Note that during this whole process the plug edges remain almost motionless
as shown by the horizontal red zone edges in figure 18(a).
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Figure 18. (a) Spatio-temporal diagram of the simulation for ε = 0.2 around plug formation, in the central
part of the domain. Plugs are represented in red and holes in dark blue. Time is scaled by μlR0/σε

3 and length
by L. (b–g) Phase distributions at six different times and for different spatial domains, represented by the six
vertical lines in (a). Liquid water is represented in blue and water vapour in beige, as in figure 4. Results are
shown for (b) t∗ = 65.11, (c) t∗ = 65.22, (d) t∗ = 66.66, (e) t∗ = 71.42, ( f ) t∗ = 73.78, (g) t∗ = 76.81.

From the spatio-temporal diagram, figure 18, it is also possible to determine the capillary
wave celerity. However, different capillary waves do not propagate at the same speed.
Waves with smaller wavelength closer to the middle of the satellite lobe have higher
velocities than larger waves nearer to the plug foot. This is consistent with the classical
expression of inertial capillary waves

c =
√
σ

ρl
k tan kh ≈

√
σh
ρl

k. (7.2)
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Moreover, the orders of magnitudes ranging from 0.45 m s−1 to 1 m s−1 are in a good
agreement with such a model. An inertial process may thus explain the transport of these
capillary waves, although viscous effects may also play a role, as in the capillary ripples
preceding an advancing meniscus (Bretherton 1961; Dietze 2016).

The propagation and viscous dissipation of capillary waves at the plug foot helps to
explain the aftershocks in figure 17. In particular, the first aftershock is simultaneous
with a strong thinning of the film close to the plug foot. This aftershock is higher
than the initial peak corresponding to the occlusion. Subsequent aftershocks seem to be
linked to the capillary wave dissipation and reflection on the plug foot. This phenomenon
highlights the importance of both the convective/inertial and the viscous contributions to
the Navier–Stokes equations after the plug formation, as the former are responsible for the
wave formation after channel occlusion and to their propagation along the interface while
the latter attenuates the capillary waves. A major effect of these capillary waves is a quick
film thinning at the plug foot that was observed to be much more gradual in the validation
case from § 4.2, where inertia was negligible and capillary waves non-existent.

As a conclusion, we note that inertial and convective contributions appear to dominate
the nonlinear channel occlusion phenomenon both when considering time scales (§ 7.3.1)
and capillary waves (§ 7.3.2). However, the viscous contribution is essential for plug
formation in thick films.

8. Conclusion

In this study we have examined the role played by inertia and viscosity effects on the
dynamics of the Plateau–Rayleigh instability in a cylindrical capillary. The numerical
results are obtained mainly for liquid water as the outer fluid and water vapour as the
core fluid, which is representative of fuel cell applications. We used as a reference a
DNS approach, based on a front-tracking algorithm validated on previous analytical,
experimental and numerical works. It includes all the terms of the Navier–Stokes
equations. A nonlinear lubrication model has also been developed. It extends that of
Gauglitz & Radke (1988) by including the core fluid and the cylindrical symmetry. Finally,
ad hoc models including either viscosity, inertia or both contributions have been developed
in a linear approximation.

A linear stability analysis has been performed by comparing these models to the DNS
and to the lubrication model, leading to the following conclusions. (a) The existence of
an inertial regime for thick films has been evidenced. The transition between the viscous
regime, well approximated by the lubrication theory, and the inertial regime is observed
for a dimensionless unperturbed film thickness ε close to 0.2 for the water/vapour fluid
combination used in our application. Both regimes should be present for any fluid and
the transition threshold should depend on the fluid properties. (b) The presence of a core
fluid slows the instability development; this effect grows with the film thickness if the
core fluid viscosity is important. The core fluid does not affect the instability growth rate
in the opposite case. Hence, as thick films are ruled by the inertial regime, the effects
of the core gas are negligible in fuel cell conditions, without an imposed core gas flow.
(c) In the viscous regime, the assumptions of the lubrication approach are verified; the
lubrication results for thin films perfectly match the growth rates obtained from DNS and
more complete models.

The contributions of inertia, convection and viscosity to the pressure gradient have
been evaluated inside and outside the linear regime. The results from the linear stability
analysis have been verified. The transition between the inertial and viscous regimes can
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be interpreted as a transition in the nature of the transport of the kinetic energy from
the interface (where it is generated by capillarity) to the wall (where it is dissipated by
viscous friction). In the viscous regime the energy is transported by viscous diffusion,
while in the inertial regime it is transported by inertia. For thin films, the conclusions
of the linear stability analysis persist outside the linear regime. All phenomena related
to the stabilisation of the main collars and to the formation of the satellite lobes,
their drainage and motion can be explained by considering only viscous and capillary
forces. For these cases, the results of our lubrication model match those of the DNS.
Using a lubrication approach and neglecting inertia appears reasonable. Nevertheless,
inertial and convective contributions to the pressure gradient become dominant for thicker
films.

In summary, with the notable exception of thin films that are entirely governed by the
balance between viscous and surface tension forces, inertia is essential to capture and
model the development of the Plateau–Rayleigh instability in capillaries, for liquid/vapour
water systems. The growth of the instability is dominated by inertia in thick films, both
inside and outside the linear regime. In intermediate films, albeit not being dominant it
can not be neglected. Lastly, inertia governs the nonlinear formation of plugs: its value
soars at the tips of the rising collar in the few instants preceding channel occlusion,
leading to the formation of capillary waves. These waves propagate along the plug edges
towards the wall and then on the satellite lobes. Nevertheless, even in thick films, viscous
forces must be considered in addition to inertia as they explain the dissipation of these
waves.

Beyond demonstrating the key role of inertia in fuel cell conditions, this study also
emphasises the possibilities offered by the combined use of analytical and numerical
methods. It is also noted that in the context of actual fuel cell channels, one cannot
avoid using DNS due to the complexity of the system. Analytical models can nevertheless
be useful to simulate the long-time behaviour of thin films, where DNS would require
considerable computation time and fine meshing.

In future works the effects of an external core flow on the plug formation phenomenon,
and notably the conditions where it is inhibited, will be investigated. The complementary
use of DNS and analytical models to approach realistic fuel cell conditions will also be
pursued. Finally, the results obtained at a single-channel level must be scaled up to be used
at the fuel cell scale.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1024.
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Appendix A. Derivation of the lubrication model

Introducing (5.10) into (5.11) leads to a differential equation on vz that can be easily solved
to obtain the radial profile of vz in each fluid. Introducing the boundary conditions and

1001 A15-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
24

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1024
https://orcid.org/0000-0002-3525-7063
https://orcid.org/0000-0002-3525-7063
https://orcid.org/0000-0002-9486-746X
https://orcid.org/0000-0002-9486-746X
https://doi.org/10.1017/jfm.2024.1024


M. Rykner and others

assuming ∂rvz(r = 0) = 0, one gets

vz,l(r, z) = 1
4μl

[
∂pl

∂z
(r2 − R2

0)+ 2
(
∂pg

∂z
− ∂pl

∂z

)
R2

i ln
(

r
R0

)]
, (A1)

vz,g(r, z) = 1
4μg

∂pg

∂z
(r2 − R2

i )+ 1
4μl

∂pl

∂z
(R2

i − R2
0)+ 1

2μl

(
∂pg

∂z
− ∂pl

∂z

)
R2

i ln
(

Ri

R0

)
.

(A2)

Integrating along r between 0 and Ri for the gas and Ri and R0 for the liquid, and using the
pressure jump boundary condition (5.12) gives the flow rates in each phase:

Ql = A
∂pg

∂z
+ Bσ

∂κ

∂z
, (A3)

Qg = C
∂pg

∂z
+ Dσ

∂κ

∂z
. (A4)

Here A, B, C and D are coefficients depending on h only:

A = − π

8μl
(R2

0 − R2
i )

2, (A5)

B = − π

8μl

[
(R2

0 − R2
i )(3R2

i − R2
0)+ 4R4

i ln
(

Ri

R0

)]
, (A6)

C = − π

4μl
R2

i

[
R2

i

(
1

2 m
− 1

)
+ R2

0

]
, (A7)

D = π

4μl
R2

i

[
2R2

i ln
(

Ri

R0

)
+ R2

0 − R2
i

]
. (A8)

Using the conservation of volume in the tube ((5.6) and (5.7)), ∂zpg can be eliminated in
the flow rate expressions (A3) and (A4). Finally, (5.8) leads to

− 2πRi
∂h
∂t

= ∂Ql

∂z
= σ

∂

∂z

{[
B − A(B + D)

A + C

](
∂3h
∂z3 + 1

R2
i

∂h
∂z

)}
, (A9)

which is (5.14) with β = B − A(B + D)/(A + C).

Appendix B. Derivation of the dispersion models

B.1. General case
In the case where both inertia and viscosity are considered, solving (5.25) gives the
streamfunction expressions in each fluid, i.e.

ψg = [CgI1(kr)+ DgI1(kgr)]r exp(iωt + ikz), (B1)

ψl = [AlK1(kr)+ BlK1(klr)+ ClI1(kr)+ DlI1(klr)]r exp(iωt + ikz), (B2)

where six integration constants Al,Bl,Ck,Dk need to be determined. The finiteness of
velocities for r → 0 leads to the absence of K1 functions in ψg. The velocities are then
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derived from (5.21a,b):

vr,g = ik[CgI1(kr)+ DgI1(kgr)] exp(iωt + ikz), (B3)

vz,g = −k
[

CgI0(kr)+ Dg
kg

k
I0(kgr)

]
exp(iωt + ikz), (B4)

vr,l = ik[AlK1(kr)+ BlK1(klr)+ ClI1(kr)+ DlI1(klr)] exp(iωt + ikz), (B5)

vz,l = −k
[
−AlK0(kr)− Bl

kl

k
K0(klr)+ ClI0(kr)+ Dl

kl

k
I0(klr)

]
exp(iωt + ikz). (B6)

The no-slip boundary condition (two equations), the velocity continuity at the interface
(5.4) (two equations) and the tangential stress continuity (5.26) lead respectively to

0 = AlK1(ax)+ BlK1(axl)+ ClI1(ax)+ DlI1(axl),

0 = −AlK0(ax)− Bl
xl

x
K0(axl)+ ClI0(ax)+ Dl

xl

x
I0(axl),

CgI1(x)+ DgI1(xg) = AlK1(x)+ BlK1(xl)+ ClI1(x)+ DlI1(xl),

CgI0(x)+ Dg
xg

x
I0(xg) = −AlK0(x)− Bl

xl

x
K0(xl)+ ClI0(x)+ Dl

xl

x
I0(xl),

2mCgI1(x)+ mDg
x2

g + x2

x2 I1(xg) = 2AlK1(x)+ Bl
x2

l + x2

x2 K1(xl)

+ 2ClI1(x)+ Dl
x2

l + x2

x2 I1(xl).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B7)

These equations correspond to the first five rows of M in (5.29). The fifth row (tangential
stress continuity) is modified by replacing x2

i with its value x2 − ω̂Ji, by dividing it by 2
and by using the third line (vr continuity) in it.

Substituting vz with its ψ expression in (5.2) gives

∂p
∂z

= iω
ρ

r
∂ψ

∂r
+ μ

(
∂2

∂r2 + 1
r
∂

∂r
+ ∂2

∂z2

)(
−1

r
∂ψ

∂r

)
= iω

ρ

r
∂ψ

∂r
+ μ

r
∂

∂r
Dψ. (B8)

It can then be introduced in the derivative of (5.27) with respect to z to obtain the left-hand
side of (5.28). The right-hand side is obtained by replacing h with (5.16), leading to[[

−iω
ρ

r
∂ψ

∂r
+ μ

r
∂

∂r
Dψ + 2ikμ

∂vr

∂r

]]
= −ikσ

(kRi)
2 − 1

R2
i

A0 exp(iωt + ikz). (B9)

Equation (5.8) allows us to replace A0 in (B9), thus obtaining (5.28). After replacement of
ψ and vr with their values, one finally gets the equation(

2x2mI′
1(x)− ω̂JgI0(x)− x

x2 − 1
ω̂

I1(x)
)

Cg +
(

2xgxmI′
1(xg)− x

x2 − 1
ω̂

I1(xg)

)
Dg

= (2x2K′
1(x)+ ω̂JlK0(x))Al + 2xlxK′

1(xl)Bl

+ (2x2I′
1(x)− ω̂JlI0(x))Cl + 2xlxI′

1(xl)Dl, (B10)

which, after an appropriate addition of the third and fourth lines of the set (B7), gives the
last row of the matrix (5.29).
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Figure 19. Evolution of the maximum amplitude of the film over time for a film of initial thickness ε = 0.15
and a wavelength λ = 4.44 mm close to the maximum growth rate of the instability. This corresponds to the
simulation from figure 4(c,d). The vertical axis is in semi-log scale so the exponential fit is a straight line, the
slope of which gives the growth rate ω−1

i .

B.2. Absence of inertia
The same set of equations is used to obtain M in (5.32). The only difference is that ψ is
replaced by its degenerated value at small densities:

ψg = [CgI1(kr)+ DgkrI0(kr)]r exp(iωt + ikz), (B11)

ψl = [AlK1(kr)+ BlkrK0(kr)+ ClI1(kr)+ DlkrI0(kr)]r exp(iωt + ikz). (B12)

Appendix C. Determination of the growth rate in the linear regime of DNS

The growth rates from DNS are determined as follows. First, the maximum amplitude A of
the film height in the central part of the simulation domain is plotted over time. Only the
central part is considered to avoid the impact of lateral boundary conditions. Indeed, as can
be observed in figure 4, liquid bulges are present close to the lateral domain boundaries.
They are caused by the fixed film interface boundary conditions.

Figure 19 provides an example of the evolution of A for the case in figure 4(c,d). After a
transient, the instability reaches a zone where the amplitude evolution is exponential with
a characteristic time ω−1

i . An exponential fit (in red in figure 19) is performed in the time
zone where the amplitude is between 0.02R0 and 0.04R0. This ensures that the flow is well
developed and that the instability is still in its linear regime. The transient zone preceding
the linear zone is due to the initial conditions that do not correspond to the linear regime
solution requiring a proportionality of perturbations of all the variables. On the contrary, in
the DNS, the initial perturbations of all the variables are zero except the film deformation
A. The slope of the fitting line gives the destabilisation time ω−1

i . The time zone is then
manually varied to obtain an estimate of the uncertainty linked to ωi. These uncertainties,
due to the initial transient zone, are reported in figure 10.
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