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Communities of swimming microorganisms often thrive near liquid–air interfaces. We
study how such ‘active carpets’ shape their aquatic environment by driving biogenic
transport in the water column beneath them. The hydrodynamic stirring that active carpets
generate leads to diffusive upward fluxes of nutrients from deeper water layers, and
downward fluxes of oxygen and carbon. Combining analytical theory and simulations, we
examine the biogenic transport by studying fundamental metrics, including the single and
pair diffusivity, the first passage time for particle pair encounters and the rate of particle
aggregation. Our findings reveal that the hydrodynamic fluctuations driven by active
carpets have a region of influence that reaches orders of magnitude further in distance
than the size of the organisms. These non-equilibrium fluctuations lead to a strongly
enhanced diffusion of particles, which is anisotropic and space dependent. Fluctuations
also facilitate encounters of particle pairs, which we quantify by analysing their velocity
pair correlation functions as a function of distance between the particles. We found that
the size of the particles plays a crucial role in their encounter rates, with larger particles
situated near the active carpet being more favourable for aggregation. Overall, this research
broadens our comprehension of aquatic systems out of equilibrium and how biologically
driven fluctuations contribute to the transport of fundamental elements in biogeochemical
cycles.
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1. Introduction

Swimming microorganisms that accumulate into dense floating films are widespread at
interfaces of aquatic environments (Durham & Stocker 2012; Zhan et al. 2014; Mathijssen
et al. 2016; Sengupta, Carrara & Stocker 2017; Vaccari et al. 2017; Desai & Ardekani
2020; Sepúlveda Steiner, Bouffard & Wüest 2021). The emergence of these ‘active
carpets’ (ACs) (Mathijssen et al. 2018a; Guzmán-Lastra, Löwen & Mathijssen 2021)
results from various factors, including hydrodynamic interactions, mechanical responses,
taxis and the optimisation of metabolic activities, to name a few (Berke et al. 2008;
Durham & Stocker 2012; Sommer et al. 2017; Ahmadzadegan et al. 2019; Desai &
Ardekani 2020). Recently, Mathijssen et al. (2018a) introduced a framework to quantify
how ACs generate hydrodynamic fluctuations in their surrounding fluid. Depending on the
swimming strategy of the microbes, ACs can either attract or repel fluid in the presence
of orientational and/or density gradients (Lambert et al. 2013; Mathijssen et al. 2018a;
Kanale et al. 2022), and generate anisotropic material transport in the water column
(Guzmán-Lastra et al. 2021). Previous studies have shown that ACs can facilitate nutrient
transport and enhance diffusion orders of magnitude larger than thermal fluctuations.
However, it remains unexplored how such ACs can mobilise particles to and from
liquid–air interfaces and impact the clustering dynamics of suspended matter within
aquatic systems.

The active material transport induced by living and artificial microswimmers stands at
the forefront of fluid dynamics research (Angelani et al. 2011; Omar et al. 2018; Dani,
Yeganeh & Maldarelli 2022; Gokhale et al. 2022; Madden et al. 2022). It encompasses
diverse phenomena, starting with active diffusion in which tracer particles are entrained
due to hydrodynamic flows induced by swimming microorganisms (Jeanneret et al. 2016;
Mathijssen, Jeanneret & Polin 2018b; Pellicciotta et al. 2020; Jin et al. 2021; Bárdfalvy
et al. 2024; Škultéty et al. 2024), generating an effective enhanced diffusion over the
summation of these encounters. This active diffusion has been measured experimentally
for various microorganisms and via numerical simulations, predicting a fundamental
relationship between the active flux, the persistence of swimmers and the relative distance
between microswimmers (Miño et al. 2011, 2013; Pushkin & Yeomans 2013; Morozov &
Marenduzzo 2014; de Graaf & Stenhammar 2017).

Although particles disperse due to active diffusion, their final concentration profile
is restricted because of fluid confinement (Morozov & Marenduzzo 2014; Hamada,
Cueto-Felgueroso & de Anna 2020). In the case of ACs settling near no-slip boundaries,
we find non-Boltzmannian concentration distributions (Guzmán-Lastra et al. 2021). This
counterintuitive behaviour suggests the existence of an active temperature gradient, which
has not been measured before in the context of biogenic hydrodynamic diffusion (Loi,
Mossa & Cugliandolo 2008; Takatori & Brady 2015; Ortlieb et al. 2019).

When a microorganism swims, it induces local flows that, when superimposed over
an entire colony of microswimmers, may generate coherent flows and large-amplitude
disturbances. Examples of the impact of collective motions on scalar transport at
intermediate Reynolds numbers, Re ∼ O(1), include the biogenic mixing induced by
zooplankton diel vertical migration and bioconvection observed in natural aquatic systems
and laboratory experiments (Pedley & Kessler 1992; Hill & Pedley 2005; Dabiri 2010;
Wang & Ardekani 2015; Simoncelli, Thackeray & Wain 2017; Sommer et al. 2017; Javadi
et al. 2020; Noto & Ulloa 2023). Yet, biomixing owing to active turbulence (Alert,
Casademunt & Joanny 2022) in ACs remain unexplored.

A rigorous quantification of biogenic mixing requires the analysis of tracer pair
dispersion, rather than single-particle diffusivity (Belan & Kardar 2019). Pair dispersion
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provides information not only about the mixing capacity of a system but also about particle
aggregation. The latter is a crucial mechanism for sustaining aquatic life and a fundamental
skill of biological cells (Burd & Jackson 2009; Camassa et al. 2019; Font-Muñoz et al.
2019; Maheshwari et al. 2019; Arguedas-Leiva et al. 2022; Cruz & Neuer 2022). Recent
studies have deepened our insights into the dynamic clustering and aggregation of colloids
(Angelani et al. 2011; Jia et al. 2019; Dani et al. 2022). Notably, these studies have revealed
the role of colloid size in governing pairwise interactions with microswimmers (Gokhale
et al. 2022; Kushwaha et al. 2023). Factors such as tumbling rate and chirality have been
found to influence short-range encounters, diffusion rates and mixing (Belan & Kardar
2019; Madden et al. 2022). However, our current understanding of the hydrodynamic
interactions induced by microswimmers living near fluid–fluid interfaces on mixing and
colloid clustering remains limited (Wang, Wexler & Zhou 1998; Gonzalez, Aponte-Rivera
& Zia 2021; Dani et al. 2022).

In this paper, we build upon the singularity method to delve into the dynamics of ACs
living near fluid–air interfaces and their impact on the tracer dynamics. Our objectives are
twofold. Firstly, we seek to expand the theory of ACs by providing analytical solutions
for the velocity fluctuations induced by a colony of microswimmers inhabiting fluid–air
interfaces. Secondly, we investigate suspended tracer dynamics, quantifying universal
metrics, including the single and pair diffusivities, and particle aggregation driven by
ACs. We start by presenting an overview of the theoretical framework for ACs and the
numerical methods applied to analyse both ACs and the tracer dynamics. Finally, we report
our findings and draw conclusions.

2. Active carpets

We consider microswimmers in a three-dimensional (3-D) semi-infinite fluid that
self-organise into an AC, as illustrated in figure 1(a). The fluid–air interface is located
at z = 0, which satisfies non-penetrative and free-slip boundary conditions. The AC is
situated just beneath the interface, at a distance z = h, where h is the typical swimmer
size. We use a Cartesian coordinate system where the positive z direction points downward
from the liquid–air interface so that z indicates depth. To analyse the flow generated by
each swimmer, we utilise a multipole expansion of the fundamental solution of the Stokes
equations together with the method of images (see e.g. Lauga 2020). For a swimmer
located at rs, an image swimmer is located at the mirror position r∗

s = M · rs, where M
represents the mirror matrix M = diag(1, 1, −1). Microswimmers, such as motile bacteria,
can be considered as force dipoles in the far-field approximation, as shown by Drescher
et al. (2011). Defining the orientation of the swimmer p̂ as the unit vector along the axis
that connects the flagella with the head of the swimmer, the fluid flow at a position r caused
by a swimmer located at position rs is (Mathijssen et al. 2016)

us(r, rs, p̂) = −κ p̂ · ∇sv − κ p̂ · ∇∗
s v

∗, (2.1)

where v = G(r − rs) · p̂ is the Stokeslet flow and v∗ = MG(r − r∗
s ) · p̂ is its image, with

G(x) = (1/|x|)(I + xx/|x|2) the Oseen tensor. The coefficient κ is the dipole strength that
can be expressed in terms of the exerted force by the swimmer in the fluid, its characteristic
length and the fluid viscosity (see e.g. Mathijssen et al. 2016). In general, the dipole
strength sign depends on the swimming strategy and the swimmer body geometry: κ > 0
represents a pusher, whereas κ < 0 represents a puller (Happel & Brenner 1983).

We consider an AC composed of point dipoles, each of them located at positions rs(t) =
(xs(t), ys(t), h) and oriented along p̂(t) = ( px(t), py(t), 0), forming a flat monolayer of
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Figure 1. (a) An AC near the liquid–air interface generates flows that stir particles suspended below.
(b) Strength of hydrodynamic fluctuations as a function of distance from the AC. Markers represent simulation
results and lines represent the theoretical prediction from (2.5b). (c) Single-particle diffusivity in the z direction.
Circles are results from simulated mean-squared displacements, the squares are results from simulating the
variance following (3.3) and the solid orange line represents the theoretical prediction from (2.5b) and (3.3).

microswimmers, as sketched in figure 1(a). At any time t, microswimmers exert a flow
field given by (2.1) so the total flow field generated by an AC is given by u(r, t) =∑

s us(r, rs(t), p̂(t)) with

us(r, rs, p̂) = κ

[
(x − xs)

((
−1

r3/2
−

+ −1

r3/2
+

)
+ 3( p̂ · (r − rs))

2

(
1

r5/2
−

+ 1

r5/2
+

))
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−
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+

)
+ 3( p̂ · (r − rs))

2

(
1

r5/2
−

+ 1

r5/2
+

))
ŷ

+
(

(h − z)

r3/2
−

+ (h + z)

r3/2
+

+ 3( p̂ · (r − rs))
2

(
h + z

r5/2
+

− h − z

r5/2
−

))
ẑ

]
, (2.2)

where p̂ · (r − rs) = px(x − xs) + py( y − ys), and r± = (x − xs)
2 + ( y − ys)

2 + (z ±
h)2.

We consider the case where the induced flow is probed by fluid parcels that are far from
the free-slip surface compared with the position of the swimmers. Therefore, we make the
substitution zs = εz with ε � 1, and perform a Taylor expansion on the flow exerted by a
single swimmer, obtaining

us(r, rs, p̂) = us,ε=0 + ∂us

∂ε

∣∣∣∣
0
ε + O(ε2). (2.3)

Evaluating the velocity field at r = (0, 0, z), with rs = (ρs cos θs, ρs sin θs, h) and p̂ =
(cos φs, sin φs, 0), the approximated far-field velocity field is

us,ρs = κρs[2z2 − ρ2
s (1 + 3 cos(2(θs − φs)))]
(z2 + ρ2

s )5/2 (cos θs, sin θs), (2.4a)

us,z = zκ[−2z2 + ρs(1 + 3 cos(2(θs − φs)))]
(z2 + ρ2

s )5/2 . (2.4b)

Our AC is characterised by a uniform number density equal to n organisms per unit
area, with uniformly distributed orientations and positions, so the AC probability density
function is f (rs, p̂) = n/2π. The ensemble-averaged flow field induced by an AC is
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〈u〉 = ∫∞
0

∫ π

−π

∫ π

−π
f us(r, rs, p̂s) dφs dθs ρsdρs = 0. Thus, the mean flow at any instant is

equal to zero for an infinite uniform AC, as expected by symmetry. However, the variances
of the hydrodynamic fluctuations are not. We can derive them as follows:

〈uiuj〉 =
∫ ∞

0

∫ π

−π

∫ π

−π

n
2π

us,ius,j dφs dθs ρsdρs, (2.5a)

〈u2
x〉 = 〈u2

y〉 = 11πnκ2

16z2 , 〈u2
z 〉 = 9πnκ2

8z2 . (2.5b)

Thus, the intensity of the hydrodynamic fluctuations is proportional to the surface density
of microswimmers, n. Moreover, it scales with the square of the individual flow strength,
κ2, and is the same for swimmers of the puller and pusher type. Finally, the fluctuations
scale with the inverse of the distance squared, 1/z2, so they are stronger near the AC and
weaker farther away.

To test our analytical theory, we perform numerical simulations where the ACs are
implemented explicitly as a large set of discrete, non-interacting point dipoles. They are
randomly distributed on a square horizontal surface with a side length of L = Nh, where
N is a large integer that varies from 103 to 104. The surface density of the microswimmers
within the carpet is fixed to n = 0.1/h2, so the total number of organisms in the carpet is
given by Ns = nL2 = 0.1N2.

To evaluate the variances of the hydrodynamic fluctuations shown in (2.5b), we
compute the average 〈·〉 over a large ensemble of independent AC configurations. In
each AC configuration, Ns microswimmers are given new random positions and random
orientations within the x–y plane where the colony lives.

In what follows, we choose parameters that are typical for Escherichia coli bacteria. That
is, h is taken equal to its body width, h = 1 μm, which corresponds to bacteria swimming
just beneath the air–water interface, and the dipole strength κ = p/(8πη) is taken equal to
the value measured by Drescher et al. (2011), i.e. κ = 30 μm3 s−1. Moreover, to simplify
notation in the remainder of the paper, we will use ‘natural units’, where units of length
correspond to micrometres and units of time correspond to seconds. With this, h = 1 and
κ = 30, and all subsequent numerical values appearing in the paper must be completed
with micrometres and seconds, according to their dimensions.

We then consider Nt neutrally buoyant and non-Brownian particles to gather statistics
for the stochastic tracer dynamics. The equation of motion of the αth tracer is controlled
by the flows induced by the AC

drα

dt
=

Ns∑
s

us(rα, rs, p̂), (2.6)

where us(rα, rs, p̂) is the velocity field produced by an individual microswimmer at a
position rs and orientation p̂, acting on a tracer placed at rα , using either the full expression
from (2.1) or the far-field approximation from (2.4).

3. Results

3.1. Hydrodynamic fluctuations
We first focus on examining the velocity variance. Numerically, we produce a large
ensemble of AC configurations and evaluate each variance component for a given initial
tracer depth z0. The simulation box has a size L = 103, in which Ns = 105 swimmers
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were placed. Figure 1(b) compares the analytical solution for the variance found in
(2.5b) (black and dashed lines) with full numerical simulations (markers). Notice that
the horizontal fluctuations, 〈u2

x〉 and 〈u2
y〉, are approximately 60 % larger than the vertical

fluctuations, 〈u2
z 〉, showing a significant anisotropic behaviour. The results show that the

far-field theory is less accurate close to the AC, z0 � 10, but it offers a good approximation
at long distances from the AC.

These results show that the hydrodynamic fluctuations are space dependent in the
vertical direction, decaying as 〈u2

i 〉 ∝ 1/z2
0 through the fluid column. Compared with a

solid no-slip boundary, where 〈u2
i 〉 ∝ 1/z4

0 (Guzmán-Lastra et al. 2021), these fluctuations
near a liquid–air interface are much longer in range, giving rise to a larger region of
influence.

In Appendix A, we also consider more detailed models of ACs that more closely
resemble experimental observations (Li & Ardekani 2014; Wioland, Lushi & Goldstein
2016; Bianchi, Saglimbeni & Di Leonardo 2017; Ahmadzadegan et al. 2019). Instead of
modelling the AC as a perfectly planar thin 2-D sheet with swimmers that are aligned
parallel to the surface, we also consider the cases of a thick AC, a thin AC of swimmers
with non-zero orientation angles and the two combined cases. In all cases, we observe that
the variances do not change significantly compared with the initial case, so henceforth we
continue with that AC description.

3.2. Single-particle diffusivity
Secondly, we examine the diffusion of particles that is caused by the hydrodynamic
fluctuations generated by the AC. To explicitly obtain their diffusivity, we consider the
single-particle mean-squared displacement (MSD), given by

〈
ri
rj〉 =
ñτ∑

t′=0

ñτ∑
t′′=0

〈ui(r0, t′)uj(r0, t′′)〉
t′
t′′, (3.1)

where ñ is the total number of time steps in the simulations and τ is selected such
that it matches the characteristic time of swimmer reorientation. We consider the case
where the flow fields are uncorrelated between two consecutive time steps. Each time
step corresponds to a different independent snapshot of the AC with microswimmers
that have randomly sampled positions and orientations. Then we have the relation
〈ui(r0, t′)uj(r0, t′′)〉 = 〈ui(r0)uj(r0)〉δt′t′′ , leading to the following expression for the MSD:

〈
ri
rj〉 = 〈ui(r0)uj(r0)〉
ñτ∑

t′=0

ñτ∑
t′′=0

δt′t′′
t′
t′′ = 〈uiuj〉ñτ 2 = 〈uiuj〉τ tf , (3.2)

where tf = ñτ denotes the final integration time. Therefore, we have 〈
r2
i 〉 = 〈u2

i 〉τ tf ≡
2Ds

i tf , so the single-particle diffusivity is

Ds
i ≡ 1

2 〈u2
i 〉τ. (3.3)

To verify this result numerically, we place tracers initially at a depth z0 and we compute
their MSD for ñ = 102 time steps. Figure 1(c) shows the single-particle diffusivity Ds

i for
i = z as a function of z0 obtained from the simulations and from the theory. The simulated
observable 〈u2

z 〉τ/2 is shown as green squares, and the diffusivity, Ds
z, obtained from the

simulated MSDs, is displayed as blue circles. These markers collapse onto a single curve,
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which is compared with the theory from (3.3) shown by the orange line. Indeed, the results
exhibit strong agreement between theory and simulations. As predicted, the diffusivity
decays with an exponent of −2 for large z0. This implies that particle stirring significantly
intensifies near the AC, potentially enhancing particle encounters, which we discuss next.

3.3. Velocity pair correlation
Thirdly, we look at how pairs of suspended particles respond to fluid distortions caused
by the AC. Although the generated flow is time uncorrelated, the spatial structure is more
complex: particles that are initially located close to each other follow adjacent streamlines
that are almost parallel to each other, so their motions remain correlated at short distances.
By contrast, with larger initial separations, the particles follow different streamlines and
separate further from each other. This relative motion is quantified by the velocity pair
correlation function

gi,p(d0, z0) = 〈ui(r1)ui(r2)〉√
〈u2

i (r1)〉〈u2
i (r2)〉

, (3.4)

where the initial positions of the two particles are r1 = (d0/2
√

2, d0/2
√

2, z0) and r2 =
(−d0/2

√
2, −d0/2

√
2, z0), which are located at the same distance from the carpet z0 and

separated laterally by d0. Notice that the velocity pair correlation is symmetric in the x and
y directions.

Numerically, we sample over 104 ensembles, each with Ns = 107 swimmers, to measure
the velocity using (2.1) at the positions r1 and r2 given above, with z0 in the range
[2, 20] and d0 in the range [10−3, 103]. The resulting velocity pair correlations, in the
vertical and horizontal orientations, are shown as circles in figure 2(a,c). As predicted,
we find that pairs become progressively more uncorrelated with distance d0. Moreover,
the separation required for the pairs to become uncorrelated grows with z0. Notably, when
the velocity pair correlations are plotted in terms of the scaled distance d0/z0, there is a
collapse for all depths onto a single curve, as shown in the insets of figure 2(a,c). Globally,
velocities decorrelate at different rates, depending on the velocity direction, with particles
decorrelating at distances larger than d0 � 7z0 in the horizontal direction and d0 � 4z0 in
the vertical direction.

First, we propose a heuristic model for the collapsed velocity correlation of the form

gmodel
i,p (ξ) = exp(−ξ)[A1 sin(ξ) + cos(ξ)] + exp(−ξ/A2)[A3 + A4ξ ], (3.5)

where ξ = d0/z0. Using least squares to fit this model to our simulation data, we find that
the optimal fitting parameters are in the horizontal direction A1 = 0.097, A2 = 1.3, A3 =
−0.014, A4 = 0.89 and in the vertical direction A1 = −0.18, A2 = 0.52, A3 = −0.09,
A4 = 1.35. The resulting model is shown as coloured lines for the different z0 values in
figure 2(a,c), and also in the inset.

Analytical progress can be made by using the far-field approximation, where gi,p is
obtained by evaluating the velocity from (2.4) and the variances from (2.5) at the positions
r1 and r2

gi,p(d0, z0) = 1
〈u2

i 〉
∫ 2π

0

∫ 2π

0

∫ ∞

0
ui(r1)ui(r2)

n
2π

ρs dρs dθs dφs. (3.6)

It is challenging to find a closed-form expression for the above integral, but it can be
evaluated numerically; the semi-analytical result is shown in the inset of figure 2(a).
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Figure 2. (a) Velocity pair correlation in the planar coordinate, gρ , as a function of horizontal particle
separation. Coloured circles represent simulation results for different depths, ranging from z0 = 2 (blue) to
z0 = 20 (light green), each separated by 
z0 = 2. Lines represent the best fit to the model from (3.5). Inset:
these curves collapse when plotted as d0/z0. The yellow line is the best fit from (3.5), and the pink dashed line
is the semi-analytical result obtained by numerically integrating gρ(d0, z0). (b) Pair diffusivity in the planar
coordinate, Dp

ρ , as a function of horizontal particle separation, normalised by the single-particle diffusivity.
Markers represent simulation values for different depths, z0. The black dashed line is the theoretical asymptotic
value from Dp∞

i . (c,d) Show the pair correlation and the pair diffusion in the vertical coordinate, gz and Dp
z ,

respectively.

The theoretical result, which is in strong agreement with our simulations, underscores
the crucial role of the vertical distance to the AC in our study: it not only determines
the strength of the hydrodynamic fluctuations but also the relative motion of the flow
structures, with strong correlation at larger distances for flows parallel to the AC and fast
decaying correlations in the vertical direction, which is also evident with the heuristic
model in (3.5) with the parameter A2 representing the rate at which particles decorrelate
with distance, where Aρ

2 = 1.3 and Az
2 = 0.52. Particles at greater depths tend to move

together synchronously, which directly impacts their pair diffusivity, as we show next.

3.4. Pair diffusion
We now explore how an AC drives can mix two particles up, as a function of their
distance. This is quantified by the ‘pair diffusivity’. Numerically, we sample the carpet
as described previously. Two tracers are put initially at the positions r1 and r2, after which
they follow the equation of motion (2.6). The integration time step is 
t = 10−3. Averages
are performed over 300 pair trajectories. The pair diffusivity Dp

i is obtained by measuring
the pair’s distance squared, 
ρ2(t) = (|r1(t) − r2(t)| − d0)

2. After the simulation ends,
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each 
ρ2 curve is fitted with a power-law function of the form 4Dp
i tb. Results show that

all curves follow a diffusive regime (b ∼ 1).
Figure 2(b,d) displays the resulting pair diffusivity Dp

i , normalised by the single-particle
diffusivity Ds

i , as a function of the initial horizontal particle separation d0. For small
separations, the particles follow almost the same streamlines, so their relative motion and
pair diffusivity are small. Indeed, it is difficult to mix particles that are close to each other,
as we observe in the kitchen when stirring macaron batter (Mathijssen et al. 2023). At
large particle separations, it gets easier to mix them, so the pair diffusivity increases with
d0 until it plateaus.

To predict this analytically, we define r12 = r1 − r2. Similar to the single-particle MSD
calculation, the pair MSD is then computed as follows:

〈
r12i
r12j〉 = 〈
r1i
r1j〉 + 〈
r2i
r2j〉 − 〈
r1i
r2j〉 − 〈
r2i
r1j〉, (3.7)

where 
rαi denotes the displacement of the particle α along coordinate i and analogously
for 
r12i. On average, terms 1 and 2 on the right-hand side of (3.7) are the same, and
terms 3 and 4 are also equal to each other. Therefore, 〈
r12i
r12j〉 = 2〈
r1i
r1j〉 −
2〈
r1i
r2j〉. Considering i = j, the first term is 〈
ri
ri〉 = 2Ds

i t, with Ds
i the single

diffusivity in the i-coordinate. The second term can be estimated in a similar way as in
the single MSD calculation

〈
r1i
r2i〉 =
ñτ∑

t′=0

ñτ∑
t′′=0

〈u1iu2i〉
t′
t′′ (with τ = 
t). (3.8)

The function to be integrated is the complete spatio-temporal pair correlation velocity,
〈u1iu2i〉(d0, z0, t) = 〈u2

i 〉gi,p(d0, z0)δt′t′′ , where gi,p is the spatial pair velocity correlation
defined in (3.4). With this, we obtain

〈
r1i
r2i〉 = 〈u2
i 〉gi,p

ñτ∑
t′=0

ñτ∑
t′′=0

δt′t′′
t′
t′′ = 〈u2
i 〉gi,pτ tf . (3.9)

Thus, 〈(
r12i)(
r12j)〉 = 2(2Ds
i − 〈u2

i 〉τgi,p)tf , where we obtain the pair diffusivity

Dp
i ≡ 2Ds

i − 〈u2
i 〉τgi,p = 2Ds

i (1 − gi,p). (3.10)

This expression depends upon the variance and single diffusivity relation in (3.3). Since
the function gi,p(d0, z0) decays exponentially with the distance d0, the asymptotic pair
diffusivity is readily predicted for large d0

lim
d0→∞

Dp
i ≡ Dp∞

i = 2Ds
i . (3.11)

Figure 2(b,d) shows this theoretical result for the pair diffusivity (3.10), using the gmodel
i,p

in (3.5). This result agrees well with the simulations, as shown for various distances z0.
Interestingly, the observed diffusive behaviour in our study bears a resemblance to

turbulent systems, as seen in Belan & Kardar (2019), where a pair of tracers within a
3-D bath of microswimmers also exhibited an asymptotic diffusivity twice that of their
self-diffusion, reaching numerical values of Dp

∞ ≈ 2 μm2 s−1, which is of the same order
of magnitude as in our case when we choose τ = τR = 10 as a typical memory time for
E. coli bacteria and n = 0.01, κ = 30, z0 = 10, d0 = 10, we then get Dp

ρ ≈ 1.39 μm2 s−1,
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with horizontal and vertical self-diffusivities Ds
ρ ≈ 1.94 μm2 s−1, Ds

z ≈ 3.18 μm2 s−1,
respectively, which are one order of magnitude larger than thermal diffusion for a passive
spherical micron-sized particle DT ≈ 0.22 μm2 s−1.

To put these numbers in perspective, in natural aquatic environments, bioconvection
propelled by Chromatium Okenni (with a body length of 1–4 μm) has been demonstrated
to notably boost the actual diffusion of heat within their ecological niche (Sommer
et al. 2017). This enhancement, observed to be at least an order of magnitude, was
documented in ‘Lago di Cadagno’, Switzerland (Sepúlveda Steiner, Bouffard & Wüest
2019). Similar diffusion enhancement has been measured in laboratory experiments driven
by E. coli (Singh et al. 2021). Remarkably, the thermal diffusion augmentation resulting
from the collective swimming of microorganisms is not significantly different from the
enhancement in vertical heat diffusion around the thermocline induced by wind-driven
shear flows in strongly stratified lakes, as evidenced in Lac Léman (Fernández Castro et al.
2021; Sepúlveda Steiner et al. 2023).

Our results reveal that the distance parameter z0 significantly affects diffusivity. The
mixing becomes more intense and converges to the asymptotic value when particles
are closer to the AC. This phenomenon can be attributed to amplified hydrodynamic
fluctuations near the carpet, which disrupt spatial correlations in fluid flows. The
parameter d0 is also crucial; closer particles exhibit lower diffusion from each other
compared with those at greater distances, resulting in synchronised movement and more
similar trajectories, with vertical pair diffusion reaching the asymptotic value faster
than horizontal pair diffusion as expected from the pair velocity correlation behaviour.
Consequently, the pair diffusivity might offer fundamental insights into aggregation
phenomena, which we study next.

3.5. Particle aggregation
We investigate whether fluctuations caused by ACs can initiate the aggregation of spherical
particles of finite radius r0. To model this, we consider a short-ranged pairwise sticky force
between the particles. We consider the Morse model, given by

F M(r) = 2UW[1 − exp(−W(r − req))] exp(−W(r − req))r̂, (3.12)

where r = |r| is the distance between the tracers. Here, req is the pair equilibrium distance,
while U and W denote the depth and width of the potential well, respectively. The force is
scaled with the Stokes mobility, so it has units of velocity. By fixing req to twice the radius
r0, U to 10−9 and W to 30, we set the potential minima along r, allowing for the precise
adjustment of equilibrium distances for tracers with different radii r0.

Initially, at t = 0, the particles are placed in a square lattice of Nt = 19 × 19 = 361
particles located at the same depth z0. The distance between their centres is equal to d0 =
d̃0 + 2r0, where d̃0 is their border-to-border distance. We always set d̃0 = 0.8 and vary d0
or equivalently r0. For t > 0, the particles start moving in the x − y plane at a fixed depth
z0, obeying the equation of motion (2.6), with the addition of the inter-particle sticking
forces that allow them to collide and aggregate with each other

drα

dt
=

Ns∑
s

us(rα, rs, p̂) +
Nt∑

α /=β

Fαβ
M (rα, rβ, t). (3.13)

We investigate the particle aggregation by examining the histogram of first passage
times, defined as the time taken for particles to collide.
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Figure 3. (a) Mean first passage time of particle collisions as a function of the horizontal particle separation,
d0, for particles initially located at z0 = 3. Squares represent simulations and the line is the prediction τFP ≈
d̃0

2/4Dp
ρ. Inset: histogram of first passage times. The vertical red dashed line is the mean first passage time.

(b) Clearance time against particle radius for three depths. Symbols show simulation results, and solid lines
show τc ∼ 0.7τFP. (c) Average accumulated number of collisions over time. Markers show averaged simulation
results for different particle radii, ranging from a = 3 (triangles) to a = 10 (squares). The background colours
represent different depths, ranging from z0 = 3 (light blue) to z0 = 9 (pink).

Results are shown in the inset of figure 3(a); the red dashed line shows the mean first
passage time, τFP. This observable can also be estimated analytically by equating the
pair MSD in (3.10) to the border-to-border distance between particles, d̃0

2 ≈ 〈
r1
r2〉 =
4Dp

ρτFP, so the mean first passage time is

τFP ≈ d̃0
2

4Dp
ρ

. (3.14)

The theoretical prediction for τFP agrees well with the numerical simulations, as shown for
z0 = 3 by the solid green line in figure 3(a). Therefore, τFP provides a reliable estimate for
the average collision time between two particles due to the hydrodynamic stirring induced
by the AC.

In addition, we calculate the average ‘clearance time’ denoted as τc. This is the time
taken for half of the particles in the suspension to collide, representing a fundamental
time scale indicator for aggregation and cluster formation (Wang et al. 1998; Font-Muñoz
et al. 2019). The graph shown in figure 3(b) illustrates the clearance time as a function
of particles radius r0 and depth z0, where we assume that particles stick together after a
collision. Our results show that, as the size of the particle r0 increases, the clearance time
decreases. Moreover, τFP and τc are proportional to each other since they both arise from
the same physical process. Empirically, we observe that τc ∼ 0.7τFP for every z0, as shown
by the lines in figure 3(b), which agrees well with the simulations.

Last, we measure the time evolution of the average accumulated number of collisions
〈Ncols〉 for this configuration. Figure 3(c) shows 〈Ncols〉 over time for each depth z0. The
results show a close correlation between 〈Ncols〉 and τc. Collisions become more frequent
as we move closer to the AC and increase with larger particle radius. The latter suggests
that the pair correlation function gρ in (3.4) governs both the collisions and the measured
aggregation time scale. As the particle size increases, the correlation among their centres
decreases, making it easier for them to follow different trajectories and ultimately leading
to more collisions. Likewise, the intense fluctuations near ACs disrupt this correlation,
increasing the likelihood of collisions.
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4. Concluding remarks

Here, we have established analytical connections between the flows generated by ACs and
the aggregation dynamics of suspended particles. For this, we have investigated broadly
used fundamental metrics that characterised the suspended particle dynamics: the single
and pair diffusivities and particle aggregation. Our key findings include: (i) an analytical
solution for hydrodynamic fluctuations produced by ACs near fluid–air interfaces; (ii) the
emergence of space-dependent and anisotropic diffusion, which decreases quadratically
with distance; (iii) the role of hydrodynamic fluctuations in facilitating pairing encounters,
where particle aggregation is favoured for large compared with small particles; (iv) the
mean first passage time between collisions decreases as particles move farther apart; (v) in
the close vicinity of ACs, intense hydrodynamic stirring accelerates clearance times and
particle aggregation processes.

Although our study focused on ACs, the employed methodology can be applied to
other swimmer configurations. In particular (3.10), which relates the pair diffusivity to the
velocity pair correlation, is a valuable tool to study dynamical aggregation driven by active
fluctuations. This research highlights the pivotal role of biologically driven flows in the
transport and spatial organisation of particles in aquatic systems, serving as a noteworthy
example of an out-of-equilibrium system that remains analytically tractable.
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Appendix A. Thick and tilted active carpet

In nature and laboratory experiments, swimming microorganisms form spatial
distributions that are more complex than those of a single monolayer. They can create
‘thick’ films where the number density of microswimmers decays with depth. Also, it has
been observed that microswimmers do not always orient parallel to air–liquid interfaces;
observations also show that, in some cases, their average angle orientation is slightly out
of the plane, which we denote as ‘tilted’ swimmers (Li & Ardekani 2014; Wioland et al.
2016; Bianchi et al. 2017; Ahmadzadegan et al. 2019). We extended our results to three
different cases: a thick carpet, a tilted carpet and a thick tilted carpet. Hence, we performed
simulations to quantify the changes in the hydrodynamic fluctuations.
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Figure 4. Comparison between variances measured when the AC is thick and have planar swimmers (purple
markers), when the AC is flat and have tilted swimmers (light-green markers), when the AC is thick and have
tilted swimmers (orange markers) and when the AC is flat and have planar swimmers (hollow markers, the
manuscript case).

For the thick carpet, we consider swimmers that do not form a planar 2-D sheet, but they
are distributed in three dimensions according to a vertical exponential function

f (zs) = 2 exp(−2(zs − h)), (A1)

where zs is the swimmer’s vertical position. Using this distribution, in practice, swimmers
are found up to approximately zs ∼ 5h. In this scenario, we defined the ‘average carpet
position’ at z̄ = 2.5h. With this, we computed the variances for different depths in the
same way as in the manuscript. Figure 4 displays these results in purple symbols. We notice
that the thick carpet variances conserve the thin AC behaviour with vertical fluctuations
larger than planar fluctuations decaying with the same power law. We also observe,
quantitatively, some changes close to the AC. In contrast, for far distances, the values
are alike.

For the tilted case, we consider microswimmers with vertical out-of-plane angles from
−10◦ to 10◦, distributed according to a Gaussian with zero mean and a standard deviation
of 5◦. Figure 4 displays the results in green symbols. Coloured and hollow markers match
perfectly well; therefore, the z0 dependency holds. Only a slight decrease in magnitude
is observed in the tilted case. This change could be understood as a geometric factor
(a little less than the unity) multiplying the planar AC used in this manuscript. In
addition to the first case, we also performed numerical simulations using a thick carpet
containing tilted swimmers (both features together) to ensure completeness. In figure 4
with orange markers, it can be seen that this case is almost the same as the thick carpet with
planar swimmers case. Hence, we can conclude that a thick carpet affects hydrodynamic
fluctuations more than a carpet with tilted swimmers. In all cases, however, the effect is
small and does not change the order of magnitude of the variance.

Therefore, such variants in the AC properties do not obscure the most fundamental
results and concluding remarks presented in the manuscript. Other AC distributions can
be used, but any density profile that is concentrated near the interface will produce similar
results to that of a Dirac delta distribution, with subdominant corrections. Moreover, they
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do not break the anisotropic behaviour of fluctuations, highlighting the universality of our
results.
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