
342 THE MATHEMATICAL GAZETTE

In particular, for , from (3) we obtaina = d = 1
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107.26 A difference theorem involving -gonal and centred

-gonal numbers

k
k

Proposition
Where  and  denote the -gonal number of  sides and the

centred -gonal number of  sides, respectively; for , the following
identity holds: 

p (n, k) c (n, k) k n
k n n ∈ �

p (n, k) − c (n, k − 2) = n − 1.

Proof: For , the proof is demonstrated for .n = 6 k = 10
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FIGURE 1

Corollary: Using the fact that a star number of  sides is isomorphic to a
centred dodecagonal number of  sides [1], we further deduce the following
result: where  and  denote the tetradecagonal number of  sides and
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the star number of  sides, respectively, for , the following identity
holds:

n n ∈ �

τ (n) − σ (n) = n − 1.

Proof: The proof is demonstrated for .n = 6

n n−1

FIGURE 2

In general, where  and  are expressed in terms of
triangular numbers  via  and

 respectively, we simply deduce

p (n, k) c (n, k)
Tn = 1

2n (n + 1) p (n, k) = n + (k − 2) Tn − 1
c (n, k) = 1 + kTn − 1

p(n, k) − c(n, k − 2) = n + (k − 2)Tn− 1 − [1 + (k − 2)Tn− 1] = n − 1.
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107.27 The discrete renewal theorem with bounded inter-
event times

Probabilistic Sequence
The purpose of this Note is to prove the celebrated Discrete Renewal

Theorem in a common special case, using only very elementary methods.
To introduce the problem, consider a class of board games in which a

player's counter makes a sequence of moves in a fixed direction along a line
of squares , . The counter starts from , with the sizes of
successive moves determined by the roll of a die (or multiple dice), which
may be biased.
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