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Determining sets for holomorphic
functions on the symmetrized bidisk
Bata Krishna Das, Poornendu Kumar, and Haripada Sau

Abstract. A subset D of a domain Ω ⊂ Cd is determining for an analytic function f ∶ Ω → D if
whenever an analytic function g ∶ Ω → D coincides with f on D, equals to f on whole Ω. This note
finds several sufficient conditions for a subset of the symmetrized bidisk to be determining. For
any N ≥ 1, a set consisting of N 2

− N + 1 many points is constructed which is determining for any
rational inner function with a degree constraint. We also investigate when the intersection of the
symmetrized bidisk intersected with some special algebraic varieties can be determining for rational
inner functions.

1 Introduction

1.1 Motivation

For a domain Ω inC
d (d ≥ 1), let S(Ω) denote the set of analytic functions f ∶ Ω → D,

where D denotes the open unit disk in C. Given a function f ∈ S(Ω), this paper
revolves around the question when a given subset D of Ω has the property that
whenever g ∈ S(Ω) coincides with f on D, equals to f on whole Ω. When a subset has
this property, we call it a determining set for ( f , Ω), or just f when the domain is clear
from the context. For example, {0, 1/2} is a determining set for the identity map (by
the Schwarz Lemma); any open subset of Ω is determining for any analytic function
on Ω (by the Identity Theorem). See Rudin [32, Chapter 5] for some interesting results
related to a similar concept for Ω = D

d .
The motivation behind the study of determining sets comes from the Pick inter-

polation problem. It corresponds to the case when D is a finite set. Given a finite
subset D = {λ1 , λ2 , . . . , λN} of Ω and points w1 , w2 , . . . , wN in the open unit disk D,
the Pick interpolation problem asks if there is an analytic function f ∶ Ω → D such
that f (λ j) = w j for j = 1, 2, . . . , N . Therefore in this case, D being a determining set
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for ( f , Ω) means that the (solvable) Pick problem λ j ↦ f (λ j) has a unique solution.
In view of Pick’s pioneering work [31], it is therefore clear that when Ω = D, then D is
determining for f if and only if the Pick matrix

[ 1− f (λ i) f (λ j)

1−λ i λ j
]

N

i , j=1

has rank less than N, which is further equivalent to the existence of a Blaschke function
of degree less than N solving the data. The classical Pick interpolation problem has
seen a wide range of generalizations. To mention a few, a necessary and sufficient
condition for the solvability of a given Pick data is known when Ω is the polydisk D

d

[2], the Euclidian ball Bd [24], the symmetrized bidisk [10, 14], an affine variety [20]
and in more general setting of test functions [18, 17]. However, unlike the classical
case, it is rather obscure in higher dimension when it comes to understanding when a
given solvable Pick problem has a unique solution, and usually one has to settle with
either necessary or sufficient conditions (see, for example, [4, 33–35]).

1.2 The main results

The purpose of this article is to explore this direction where the domain under
consideration is the symmetrized bidisk

G ∶= {(z1 + z2 , z1z2) ∶ (z1 , z2) ∈ D2}.(1.1)

Following the work [7] of Agler and Young, this domain has remained a field of
extensive research in operator theory and complex geometry constituting examples
and counter-examples to celebrated problems in these areas such as the rational
dilation problem [8, 13] and the Lempert theorem [16]. In quest of understanding
the determining sets, we shall actually consider the following more general situation.

Definition 1.1 Let Ω ⊂ C
d be a domain, E ⊂ Ω and f ∈ S(Ω). We say that a subset

D of E is determining for ( f , E) if for every g ∈ S(Ω), g = f on D implies g = f on E.
If D is determining for ( f , E) for all f ∈ S(Ω), then we say that D is determining for
E. Moreover, when E is the largest set in Ω such that D is determining for ( f , E), we
say that E is the uniqueness set for ( f ,D), i.e., in this case,

E = ⋂{Z(g − f ) ∶ g ∈ S(Ω) and g = f on D}.

Here, for a function f, we use the standard notation Z( f ) for the zero set of f.

Note that if E is the uniqueness set for ( f ,D), then for every z ∈ Ω/E, there exists
a function g ∈ S(Ω) such that g = f on D but f (z) ≠ g(z). Remarkably, when D is
a finite subset of G, then for any function f ∈ S(G), the uniqueness set for ( f ,D) is
an affine variety (see [6, 25]). This is owing to the fact that every solvable Pick data in
G always has a rational inner solution (see [3, 25]). Also note that if f and g agree on
D, then D is determining for ( f , E) if and only if D is determining for (g , E) also.
In view of these facts, we shall mostly be concerned with the case when the function
f in Definition 1.1 is rational and inner. Here, a function f in S(G) is called inner, if
limr→1− ∣ f (rζ1 + rζ2 , r2ζ1ζ2)∣ = 1 for almost all ζ1 , ζ2 in T.
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Note that G is the image of D2 under the (proper) holomorphic map π ∶ (z1 , z2) ↦
(z1 + z2 , z1z2). The topological boundary of G is ∂G ∶= π(D ×T) ∪ π(T ×D) and
the distinguished boundary of G is bG ∶= π(T ×T) (see [9]). Here, the distinguished
boundary of a bounded domain Ω ⊂ C

d is the Šilov boundary with respect to the
algebra of complex-valued functions continuous on Ω and holomorphic in Ω. A
special type of algebraic varieties has been prevalent in the study of uniqueness of
the solutions of a Pick interpolation problem (see [6, 22–25, 27]). We define it below.
Throughout the paper, the notation ξ stands for a polynomial in two variables.

Definition 1.2 An algebraic variety Z(ξ) in C
2 is said to be distinguished with

respect to a bounded domain Ω, if

Z(ξ) ∩ Ω ≠ ∅ and Z(ξ) ∩ ∂Ω = Z(ξ) ∩ bΩ.

An example of a distinguished variety with respect to G is {(2z, z2) ∶ z ∈ C}. We
refer the readers to the papers [6, 12, 25, 26, 29] for results concerning these varieties
and their connection to interpolation problems.

We now state the main results of this paper in the order they are proved.
(1) In Section 2.1, we reformulate the notion of determining set in the more general

setting of reproducing kernel Hilbert spaces and find a sufficient condition for
a finite subset of a general domain to be determining. This is Theorem 2.1. We
also show by an example that the sufficient condition need not be necessary, in
general.

(2) Starting with a natural number N, Section 2.2 constructs a finite subset of G
consisting exactly of N2 − N + 1 many points which is determining for any
rational inner function with a natural degree constraint on it. This is Theorem
2.5. Proposition 2.4 is an intermediate step of the construction and is interesting
on its own right.

(3) Given a distinguished variety W = Z(ξ), we investigate in Section 2.3, when the
intersection W ∩G can be the uniqueness set for ( f ,D), where f is a rational
inner function and D a finite subset of G (see Theorem 2.10). The preparatory
results Propositions 2.7 and 2.8 are interesting in their own rights. Proposition
2.7 states that if f is a rational inner function with some regularity assumption,
then there is a natural number N depending on f large enough so that any subset
of W ∩G consisting of N points is determining for ( f ,W ∩G). This section
then goes on to find (in Theorem 2.12) a sufficient condition for W ∩G to be
determining for a rational inner function f with a regularity assumption on it.
The condition is just that the inequality

2 Re⟨ f , ξh⟩H2 < ∥ξh∥2
2

holds, whenever h is a nonzero analytic function on G and ξh is bounded on G.
Here, the inner product is the Hardy space inner product, briefly discussed in
Section 2.3.

(4) Section 3 proves a bounded extension theorem for distinguished varieties with
no singularities on bG. More precisely, given a distinguished variety W, we
show that corresponding to every two-variable polynomial f, there is a rational
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function F on G such that F∣W∩G = f and that sup
G
∣F(s, p)∣ ≤ α supW∩G ∣ f ∣,

for some constant α depending only on the distinguished variety W.

2 Determining and the uniqueness sets

2.1 A result for a general domain

We begin by proving a sufficient condition for a finite subset of a general domain to
be determining. The concept of determining set can be formulated in a general setup
of reproducing kernel Hilbert spaces. Here, a kernel on a domain Ω in C

d (d ≥ 1) is
a function k ∶ Ω × Ω → C such that for every choice of points λ1 , λ2 , . . . , λN in Ω,
the N × N matrix [k(λ i , λ j)] is positive-definite. Given a kernel k, there is a unique
Hilbert space H(k) associated with it, called the reproducing kernel Hilbert space; we
refer the uninitiated reader to the book [30]. For the purpose of this paper, all that
is needed to know is that elements of the form {∑n

j=1 c j k(⋅, λ j) ∶ c j ∈ C and λ j ∈ Ω}
constitute a dense set of H(k). A kernel k is said to be a holomorphic kernel, if
it is holomorphic in the first and conjugate holomorphic in the second variable.
Note that when k is holomorphic, then so are the elements of H(k). Let us denote
by Mult H(k) the algebra of all bounded holomorphic functions φ on Ω such that
φ ⋅ f ∈ H(k) whenever f ∈ H(k). Such a holomorphic function is generally referred
to as a multiplier for H(k). Let Mult1 H(k) denote the set of all multipliers φ such
that the operator norm of Mφ ∶ f ↦ φ ⋅ f for all f in H(k) is no greater than one. A
subset D ⊂ Ω is said to be determining for a function φ in Mult1 H(k) if whenever
ψ ∈ Mult1 H(k) such that φ = ψ on D, then φ = ψ on Ω.

Theorem 2.1 Let k be a holomorphic kernel on a domain Ω in C
d , φ ∈ Mult1 H(k),

and D = {λ1 , λ2 , . . . , λN} ⊂ Ω. If the matrix

[(1 − φ(λ i)φ(λ j))k(λ i , λ j)]N
i , j=1(2.1)

is singular, then D is determining for φ.

Proof Since the matrix (2.1) is singular, there is a nonzero vector in its kernel;
let us denote it by γ. Let λN+1 be any point in Ω/D, and let ψ ∈ Mult1 H(k) be any
function such that φ = ψ on D. Since ψ ∈ Mult1 H(k), the operator Mψ ∶ f ↦ ψ ⋅ f is
a contractive operator on H(k) and therefore for every z ∈ C,

⟨[(1 − ψ(λ i)ψ(λ j))k(λ i , λ j)]N+1
i , j=1 [

γ
z] , [γ

z]⟩ ≥ 0.

Since γ ∈ Ker[(1 − φ(λ i)φ(λ j))k(λ i , λ j)] and φ = ψ on D, the above inequality
collapses to

2 Re
⎡⎢⎢⎢⎢⎣

z
N
∑
j=1
(1 − ψ(λ j)ψ(λN+1))γ j k(λN+1 , λ j)

⎤⎥⎥⎥⎥⎦
+ ∣z∣2(1 − ∣ψ(λN+1)∣2)∣∣kλN+1 ∣∣2 ≥ 0.
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Since the above inequality is true for all z ∈ C, we have
N
∑
j=1
(1 − ψ(λ j)ψ(λN+1))γ j kN+1, j = 0,

which, after a rearrangement of terms, gives

ψ(λN+1)
⎛
⎝

N
∑
j=1

ψ(λ j)γ j k(λN+1 , λ j)
⎞
⎠
=

N
∑
j=1

γ j k(λN+1 , λ j).(2.2)

Define for z in Ω,

L(z) =
N
∑
j=1

γ j kλ j(z) =
N
∑
j=1

γ j k(z, λ j).

By definition, it is clear that L ∈ H(k). Consider the open set O = Ω/Z(L). Note that
if λN+1 ∈ O, then the right-hand side of (2.2) does not vanish, and therefore ψ(λN+1)
is uniquely determined.

Now suppose ϕ = ψ on O. By the assumption that O is a set of uniqueness for
Mult1(H(k)), it follows that ϕ = ψ. ∎

The converse of the above result is not true as the simple example below demon-
strates.

Example 2.2 Let k be the Bergman kernel on Ω = D, i.e., k(z, w) = (1 − zw)−2. Then
it is well known that Mult1 H(k) = S(D) (see, for example, [5, Section 2.3]. By the
Schwarz lemma, D = {0, 1/2} is determining for the identity function. However, the
matrix [ 1 1

1 4/3 ] is nonsingular.

The rest of the paper specializes to the symmetrized bidisk.

2.2 Finite sets as a determining set

Given a natural number N, this subsection constructs a finite subsetD ofG consisting
exactly of N2 − N + 1 many points, which is determining for any rational inner
function on G with a degree constraint on it. This is inspired by the work of Scheinker
[34], which extends the following classical result for the unit disk to the polydisks.

Lemma 2.3 (Pick [31]) Let D = {λ1 , λ2 , . . . , λN} ⊂ D, and let f be a rational inner
function on D with degree strictly less than N. Then if g ∈ S(D) is such that f = g on D,
then f = g on D.

For ε > 0 and z ∈ C, let D(z; ε) ∶= {w ∈ D ∶ ∣z − w∣ < ε}. For ζ ∈ T and a ∈ D, let
mζ ,a be the Möbius map

mζ ,a(z) = ζ z − a
1 − az

.

We shall have use of two notions of degree for a polynomial in two variables. The
one used in this subsection is the following. For a polynomial ξ(z, w) = ∑i , j a i , jz iw j ,
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we define deg ξ ∶= max(i + j) such that a i , j ≠ 0. The degree of a rational function in
its reduced fractional representation is defined to be the degree of the numerator
polynomial. The following is an intermediate step to proving Theorem 2.5.

Proposition 2.4 Let N be a positive integer and for each j = 1, 2, . . . , N, let β j be
distinct points in T, and let D j be the analytic disks D j = {(z + β jz, β jz2) ∶ z ∈ D}.
Then:
(a) There exist β ∈ T and ε > 0 such that for every fixed ζ ∈ D(β; ε) ∩T and a ∈

D(0; ε), the analytic disk

Dζ ,a = {(z + mζ ,a(z), zmζ ,a(z)) ∶ z ∈ D}

intersects each of the analytic disks D j at a nonzero point.
(b) For each ζ ∈ T and ε > 0, the set

Dζ = {(z + mζ ,a(z), zmζ ,a(z)) ∶ z ∈ D and a ∈ D(0; ε)}

is a determining set for any function in S(G).
(c) The set

E = {(z + β jz, β jz2) ∶ z ∈ D and j = 1, 2, . . . , N} = ∪N
j=1D j

is a determining set for any rational inner function of degree less than N.

Proof For part (a), note that given a ζ ∈ T and a ∈ D, the analytic disk Dζ ,a
intersects each D j at a nonzero point if and only if there exist 0 ≠ z ∈ D such that
for each j, β jz = mζ ,a(z), which is equivalent to having aβ jz2 + (β j − ζ)z − aζ = 0.
Therefore, ζ must belong to T/{β j ∶ j = 1, 2, . . . , N}. Now fix one such ζ and j. Let
λ1(a), λ2(a) be the roots of the polynomial above. Then clearly λ1(0) = 0 = λ2(0).
Therefore by continuity of the roots, there exists ε > 0 such that whenever a ∈ D(0; ε),
λ1(a) and λ2(a) belong toD. This ε will of course depend on j but since there are only
finitely many j, we can find an ε > 0 so that (a) holds.

For part (b), we have to show that if f ∶ G→ D is any analytic function such that
f ∣Dζ = 0, then f = 0 on G. Fix z ∈ D and consider fz ∶ D→ D defined by fz ∶ w ↦
f (z + w , zw). Since f vanishes on Dζ , fz vanishes on {mζ ,a(z) ∶ a ∈ D(0; ε)} which
shows that fz = 0 on D. Since z ∈ D is arbitrary, f = 0 on G.

For part (c), let f be a rational inner function of degree less than N and g ∈ S(G)
be such that g = f on each D j . For each ζ and a as in part (a), Dζ ,a intersects each D j
at say (s j , p j) = (λ j + mζ ,a(λ j), λ jmζ ,a(λ j)). Restrict f and g to Dζ ,a to get fζ ,a(z) =
f (z + mζ ,a(z), zmζ ,a(z)) and gζ ,a(z) = g(z + mζ ,a(z), zmζ ,a(z)). Then clearly fζ ,a
is a rational inner function on D of degree less than N and gζ ,a ∈ S(D). Then for each
j = 1, 2, . . . , N , gζ ,a(λ j) = fζ ,a(λ j). Therefore by Lemma (2.3), we have gζ ,a = fζ ,a on
D for each ζ and a as in part (a). Hence g = f on D, which by part (b) gives g = f on
G. This completes the proof. ∎

Theorem 2.5 For any N ≥ 1, there exists a set D consisting of (N2 − N + 1) points in
G such that D is a determining set for any rational inner function of degree less than N.
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Proof For N = 1, it is trivial because then a rational inner function of degree less
than 1 is identically constant. So suppose N > 1. Let λ1 ∶= 0, λ2 , . . . , λN be distinct
points in D, β1 , . . . , βN be distinct points in T and D1 , . . . , DN be the analytic disks as
in Proposition 2.4. Consider the set

D = {(λ j + βk λ j , βk λ2
j) ∶ k, j = 1, 2, . . . , N}.

Since β j and λ j are distinct, D consists of precisely N2 − N + 1 many points. Let f be
a rational inner function on G and g ∈ S(G) be such that g agrees with f on D. As
before, restrict f and g to each Dk to obtain rational inner functions fk(z) = f (z +
βk z, z2βk) and gk(z) = g(z + βk z, z2βk) on the unit disk D. We then have fk(λ j) =
gk(λ j) for each j = 1, 2, . . . , N . Thus by Lemma 2.3, fk(z) = gk(z) on D for each k =
1, 2, . . . , N , which is same as saying that f = g on ∪N

k=1Dk . Consequently, by part (c)
of Proposition 2.4, f = g on G. ∎

2.3 Distinguished varieties as a determining and the uniqueness set

A rational function f = g/h with relatively prime polynomials g and h, is called regular
if h ≠ 0 on G. For example, note that while the rational function (3p − s)/(3 − s) is
regular, (2p − s)/(2 − s) is not.

We first recall the known results that will be used later. Let W = Z(ξ) be a
distinguished variety with respect to G. Then it follows easily that V = Z(ξ ○ π)
defines a distinguished variety with respect to D

2. Lemma 1.2 of [6] produces a
regular Borel measure ν on ∂V ∶= V ∩T

2 such that ν gives rise to a Hardy-type
Hilbert function space on V ∩D

2, denoted by H2(ν), i.e., H2(ν) is the closure in
L2(ν) of polynomials such that evaluation at every point in V ∩D

2 is a bounded
linear functional on H2(ν). It was then shown in [29, Lemma 3.2] that the push-
forward measure μ(E) = ν(π−1(E)) for every Borel subset E of ∂W ∶=W ∩ b� has
all the properties that ν has. Furthermore, the spaces H2(μ) and H2(ν) are unitary
equivalent via the isomorphism given by

U ∶ H2(μ) → H2(ν) by U ∶ f ↦ f ○ π.(2.3)

Note that if kμ and kν are the Szegö-type reproducing kernels for H2(μ) and H2(ν),
respectively, then for every (z, w) ∈ V ∩D

2 and f ∈ H2(μ),

⟨U∗kν
(z ,w) , f ⟩H2(μ) = ⟨kν

(z ,w) , U f ⟩H2(ν) = f ○ π(z, w) = ⟨kμ
π(z ,w) , f ⟩H2(μ).

We observe the following.

Lemma 2.6 LetW be a distinguished variety with respect toG, and let μ be the regular
Borel measure on ∂W as in the preceding discussion. Then for every regular rational
inner function f onG, the multiplication operator M f on H2(μ) has a finite dimensional
kernel.

Proof We note that for every (z, w) ∈ V ∩D
2,

U∗M∗f ○π kν
(z ,w) = f ○ π(z, w)U∗kν

(z ,w) = f ○ π(z, w)kμ
π(z ,w) = M∗f kμ

π(z ,w) = M∗f U∗kν
(z ,w) .
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Thus, M f on H2(μ) and M f ○π on H2(ν) are unitarily equivalent via the unitary U as
in 2.3. Now the lemma follows from [33, Theorem 3.6], which states that Ker M f ○π is
finite-dimensional. ∎

Proposition 2.7 Let W = Z(ξ) be a distinguished variety with respect to G, and let f
be a regular rational inner function onG. If dim Ker M∗f < N, then any N distinct points
in W ∩G is a determining set for ( f ,W ∩G).

Proof Let {w1 , w2 , . . . , wN} be distinct points in W ∩G, and let g ∈ S(G) be such
that g(w j) = f (w j) for each j = 1, 2, . . . , N . Let V = Z(ξ ○ π) and {v1 , v2 , . . . , vN} be
in V ∩D

2 such that π(v j) = w j for all j = 1, 2, . . . , N . Thus, g ○ π(v j) = f ○ π(v j) for
each j = 1, 2, . . . , N . Theorem 1.7 of [33] yields g ○ π = f ○ π on V ∩D

2 which is same
as g = f on W ∩G. This completes the proof. ∎

The 2-degree of a two-variable polynomial ξ ∈ C[z, w] is defined as (d1 , d2) =∶
2-deg ξ, where d1 and d2 are the largest power of z and w, respectively, in the expansion
of ξ(z, w). The reflection of a two-variable polynomial ξ ∈ C[z, w] is defined as

ξ̃(z, w) = zd1 wd2 ξ( 1
z

, 1
w
).

For a rational function f (z, w) = ξ(z, w)/η(z, w) with ξ and η having no common
factor, the 2-degree of f is defined to be the 2-degree of the numerator. For two pairs
of nonnegative integers (p, q) and (m, n), we write (p, q) ≤ (m, n) to indicate that
p ≤ m and q ≤ n.

Proposition 2.8 Let W = Z(ξ) be an irreducible distinguished variety, and let f be a
regular rational inner function on G of the form

f ○ π(z, w) = (zw)m η̃ ○ π(z, w)
η ○ π(z, w) .(2.4)

If 2-deg ξ ○ π ≤ 2-deg f ○ π, then for each (s, p) ∈ G/(G ∩W), there exists a regular
rational inner function g on G such that g coincides with f on W ∩G but g(s, p) ≠
f (s, p).

Proof Let 2-deg η ○ π = (l , l) and 2-deg ξ ○ π = (n, n). The hypothesis then is that
m + l − n is nonnegative. For ε > 0, define a symmetric function gε on D

2 as

gε(z, w) = (zw)m η̃ ○ π(z, w) + εξ̃ ○ π(z, w)
η ○ π(z, w) + ε(zw)m+l−n ξ ○ π(z, w) .(2.5)

Simple computation shows that the reflection of the denominator of gε is equal to the
numerator of gε , which implies that each each gε is a rational inner function on D

2

provided that the denominator does not vanish on D
2. Since η ○ π does not vanish on

D
2
, we can always find a sufficiently small ε so that the denominator of each gε does

not vanish in D
2
, thus making gε regular.

By Proposition 4.3 of [21], ξ ○ π = c ξ̃ ○ π for some c ∈ T. This ensures that each
gε coincides with f on W ∩G. Now, let (z0 , w0) ∈ D2 be such that π(z0 , w0) ∈ G/W.
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Then gε(z0 , w0) = f ○ π(z0 , w0) if and only if

(z0w0)m η̃ ○ π(z0 , w0) + εc̄ξ ○ π(z0 , w0)
η ○ π(z0 , w0) + ε(z0w0)m+l−n ξ ○ π(z0 , w0)

= (z0w0)m η̃ ○ π(z0 , w0)
η ○ π(z0 , w0)

,

which, after cross-multiplication and using the fact that ξ ○ π(z0 , w0) ≠ 0, leads to

cη ○ π(z0 , w0) = (z0w0)2m+l−n η̃ ○ π(z0 , w0).(2.6)

Since η ○ π does not vanish on D
2
, we have z0w0 ≠ 0. Therefore, the above equation

holds if and only if

f ○ π(z0 , w0) = (z0w0)m η̃ ○ π(z0 , w0)
η ○ π(z0 , w0)

= c
(z0w0)m+l−n .(2.7)

If m + l − n = 0, then f is a constant function. The hypothesis on the 2-degrees of ξ
and f then implies that ξ must be constant. This is not possible because ξ defines a
distinguished variety. Therefore, m + l − n ≥ 1, in which case, equation (2.7) implies
that ∣ f ○ π(z0 , w0)∣ > 1. This again is a contradiction because f is a rational inner
function and so by the Maximum Modulus Principle, ∣ f ○ π(z)∣ ≤ 1 for every (z, w) ∈
D

2. Consequently, gε(s, p) ≠ f (s, p) for every (s, p) ∈ G/(W ∩G). ∎

Remark 2.9 In a forthcoming paper [15], it is shown that any rational inner function
on G is of the form (2.4) possibly multiplied by a unimodular constant.

Theorem 2.10 LetW = Z(ξ) be an irreducible distinguished variety with respect toG,
let f be a regular rational inner function on G of the form (2.4) such that 2-deg ξ ○ π ≤
2-deg f ○ π, and let D be any subset of W ∩G consisting of at least 1 + dim Ker M∗f
many points. Then W ∩G is the uniqueness set for ( f ,D).

Proof Consider the multiplication operator M f on H2(μ), where H2(μ) is
the Hilbert space corresponding to W as mentioned in Lemma 2.6. By this
lemma, dim Ker(M∗f ) is finite. So let N be such that dim Ker(M∗f ) < N and
D = {λ1 , λ2 , . . . , λN} ⊂W ∩G. By Proposition 2.7, D is determining for ( f ,W ∩G).
We use Proposition 2.8 to show that W ∩G is the uniqueness set. Toward that end,
pick (s, p) ∈ G/W ∩G. Proposition 2.8 guarantees the existence of a (regular) rational
inner function g that coincides with f on W ∩G but g(s, p) ≠ f (s, p). This proves
that W ∩G is the uniqueness set for the interpolation problem. This completes the
proof of the theorem. ∎

Remark 2.11 An extremal interpolation problem in G is a solvable problem with
no solution of supremum norm less than 1. Let D = {λ1 , λ2 , . . . , λN} be a subset of
G, and letf be a rational inner function on G such that the N-point Pick problem
λ j ↦ f (λ j) is extremal and that none of the (N − 1)-point subproblems is extremel.
Then it is shown in [25] that the uniqueness set for ( f ,D) contains a distinguished
variety. Theorem 2.10 can be seen as a converse to this result. Indeed, Theorem 2.10
starts with a distinguished variety W = Z(ξ) and produces a regular rational inner
function f and a finite set D depending on W such that W ∩G is the uniqueness set
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for ( f ,D). In addition, we note that the problem λ j ↦ f (λ j) is an extremal problem.
This is because if g is any solution of the problem, then by Proposition 2.7, g = f on
W ∩G. Thus,

∥g∥∞,G ≥ ∥g∥∞,W∩G = ∥ f ∥∞,W∩G = 1.

The last equality follows because f is a regular rational inner function.

There is a sufficient condition for a distinguished variety to be determining. In
the theorem below and in its proof, the inner product ⟨, ⟩H2 for analytic functions
f , g ∶ G→ C is defined to be

⟨ f , g⟩H2 = sup
0<r<1

∫
T×T

f ○ π(rζ1 , rζ2)g ○ π(rζ1 , rζ2)∣J(rζ1 , rζ2)∣2dm(ζ1 , ζ2),
(2.8)

where m is the standard normalized Lebesgue measure on T ×T, and J(z, w) = z −
w is the Jacobian of the map π ∶ (z, w) ↦ (z + w , zw). See the papers [11, 14, 28] for
some motivation for and operator theory on the spaces of analytic functions for which
∥ f ∥2 ∶=

√
⟨ f , f ⟩H2 < ∞. Note here that if f is an inner function on G, then ∥ f ∥2 = 1.

Theorem 2.12 Let W = Z(ξ) be a distinguished variety such that ξ = ξ1 .ξ2 . . . ξ l ,
where ξ i are irreducible polynomials with ξ i and ξ j are co-prime for each i ≠ j, and
let f be a regular rational inner function on G. If for each analytic function h(/≡ 0)
on G,

2 Re⟨ f , ξh⟩H2 < ∥ξh∥2
2

holds, whenever ξh is bounded on G, then W ∩G is a determining set for f.

Proof We shall use contrapositive argument. So suppose that there exists g ∈ S(G)
such that g coincides with f on W ∩G but g ≠ f . Choose an integer N so that
dim Ker M∗f < N and pick N distinct points λ1 , . . . ., λN ∈W. Consider the N-point
(solvable) Nevanlinna–Pick problem λ j ↦ f (λ j). By Proposition 2.7, all the solutions
to this problem agree on W ∩G. Since g ≠ f , there exists a λN+1 ∈ G/W such that
g(λN+1) ≠ f (λN+1). Now consider the (N + 1)-point Nevanlinna–Pick problem λ j ↦
g(λ j) on G. By [25, Theorem 5.3], every solvable Nevanlinna–Pick problem in G

has a rational inner solution. Let ψ be a rational inner solution to the (N + 1)-point
problem λ j ↦ g(λ j). Since ψ, in particular, solves the problem λ j ↦ f (λ j) for each
j = 1, 2, . . . , N , ψ = f onW ∩G. But since ψ(λN+1) = g(λN+1) ≠ f (λN+1), ψ is distinct
from f. Since ψ = f on W ∩G, by the Study Lemma, there exists a rational function h
such that f − ψ = ξh (see [19, Chapter 1]. Since ψ is inner,

1 = ∥ψ∥2
2 = ∥ f − ξh∥2

2 = ∥ f ∥2
2 − 2 Re⟨ f , ξh⟩H2 + ∥ξh∥2

2 .

Since f is an inner function, ∥ f ∥2 = 1, and therefore, the above computation leads to
2 Re⟨ f , ξh⟩ = ∥ξh∥2

2. This contradicts the hypothesis because ξh = f − ψ is bounded.
Consequently, g must coincide with f on G. ∎
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One can easily find examples of distinguished varieties and regular rational inner
functions such that the stringent hypothesis of the above result is satisfied.

Example 2.13 Let f ○ π(z, w) = (zw)d and W = Z(ξ) be such that

ξ ○ π(z, w) = (zm − wn)(zn − wm),

where m, n are mutually prime integers bigger than d. Then it follows that W is a
distinguished variety with respect toG because Z(zm − wn) is a distinguished variety
with respect to D

2. For concrete example, one can take d = 1 and (m, n) = (2, 3) – the
corresponding distinguished variety then is the Neil parabole. Note that the inner
product ⟨, ⟩ as defined in (2.8) can be expressed in terms of the inner product on the
Hardy space of the bidisk H2(D2) as

⟨ f , ξh⟩H2(G) =
1

∥J∥2 ⟨J( f ○ π), J((ξ ○ π)(h ○ π))⟩H2(D2) .(2.9)

Let h ∶ G→ C be an analytic function such that ∥ξh∥2 < ∞. Since {z iw j ∶ i , j ≥ 0}
forms an orthonormal basis for H2(D2), it is easy to read off from (2.9) that ⟨ f , ξh⟩ =
0. Therefore, by Theorem 2.12, W ∩G is a determining set for f as chosen above.

3 A bounded extension theorem

We end with a bounded extension theorem for distinguished varieties with no
singularities on the distinguished boundary of �. Here, singularity of an algebraic
variety Z(ξ) at a point means that both the partial derivatives of ξ vanish at that
point. Note that the substance of the following theorem is not that there is a rational
extension of every polynomial, it is that the supremum of the rational extension over
G does not exceed the supremum of the polynomial over the variety intersected with
G multiplied by a constant that only depends on the variety. See the papers [1, 21, 36]
for similar results in other contexts.

Theorem 3.1 Let W be a distinguished variety with respect to G such that it has
no singularities on b�. Then, for every polynomial f ∈ C[s, p], there exists a rational
extension F of f such that

∣F(s, p)∣ ≤ α sup
W∩G

∣ f ∣

for all (s, p) ∈ G, where α is a constant depends only on W.

Proof Let V be a distinguished variety with respect to D
2 such that W = π(V).

Since W has no singularities on b�, it follows that V has no singularities on T
2.

Invoke Theorem 2.20 of [21] to obtain a rational extension G of the polynomial
f ○ π ∈ C[z, w] such that

∣G(z, w)∣ ≤ α sup
V∩D2

∣ f ○ π∣(3.1)
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for all (z, w) ∈ D2, where α is a constant depends only on V. Now, define a rational
function H on D

2 as follows:

H(z, w) = G(z, w) + G(w , z)
2

.(3.2)

Clearly, H is also a rational extension of f ○ π with

∣H(z, w)∣ ≤ α sup
V∩D2

∣ f ○ π∣ for all (z, w) ∈ D2 .

Note that H is a symmetric rational function on D
2. So, there is a rational function F

on G such that

H(z, w) = (F ○ π)(z, w) = F(z + w , zw) for all (z, w) ∈ D2 .

Now, we will show that this F will do our job. It is easy to see that F is a rational
extension of f. Let (s, p) ∈ G. Then there exists a point (z, w) ∈ D2 such that (s, p) =
(z + w , zw). Now,

∣F(s, p)∣ = ∣(F ○ π)(z, w)∣ = ∣H(z, w)∣ ≤ α sup
V∩D2

∣ f ○ π∣ = α sup
W∩G

∣ f ∣.

This complete the proof. ∎
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[22] Ł. Kosiński, Three-point Nevanlinna–Pick problem in the polydisc. Proc. Lond. Math. Soc. (3)
111(2015), 887–910.
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