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Abstract

We study the inverse boundary value problem for fractional diffusion in a multilayer composite medium.
Given data in the right boundary of the second layer, the problem is to recover the temperature distribution
in the first layer, which is inaccessible for measurement. The problem is ill-posed and we propose a
Fourier spectral approach to achieve Holder approximations. The convergence analysis is performed in
both the L2- and L*®-settings.
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1. Introduction

The field of fractional diffusion equations (FDEs) presents challenges and promising
applications in the real world (see, for example, [2, 3, 5]). Inverse problems for
fractional diffusion equations are now being studied, but most of the work concentrates
on single-layer domains. For example, Zheng and Wei [9] studied the inverse problem
of recovering the temperature distribution in the domain 0 < x < 1 for the time-
fractional diffusion equation from the boundary data at x = 1. Xiong et al. [7] applied
the modified kernel method to regularise the fractional sideways diffusion equation
where the spatial domain is the interval [0, 1] and Tuan et al. [6] extended this work to
the inhomogeneous case. In contrast to the previous work, we consider an inverse
boundary value problem for an FDE in a multilayer domain. To the best of our
knowledge, this is the first investigation of such a problem. More precisely, let D}
denote the Caputo fractional derivative of order y (0 <y < 1) defined by

" ur(x,T)
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We consider a composite body consisting of two layers, D; := {x |0 < x </;} and
D, :={x|l; <x<Db}. These two layers are in perfect thermal contact at the
intersection point x = [;. Let ki, k; > 0 be the thermal conductivities and @, a; > 0
the thermal diffusivities of the first and second layers, respectively. The temperature
distributions in these layers, say u;(x, ) and uy(x, ), satisfy the following equations:

e on the first layer Dy,

63”]()6,[)20’18)261/!1()@1‘), x€Dy,t>0,
ur(l, 1) = up(ly, 1), t>0, (1.1)
kiOxui(ly, 1) = kadyun(ly, 1), t>0;

e on the second layer D5,

O uy(x,1) = 20%us(x, 1), x€Dy,t>0,
uy(lr, 1) = g(1), t>0, (1.2)
Oxuar(lr, 1) = 0, t>0;

e subject to the homogeneous initial conditions
u(x,0) = ur(x,0)=0, x€(0,h). (1.3)

The problem (1.1)—(1.3) can be considered as a Cauchy boundary value problem
where the data imposed at the right boundary of the second layer is accessible for
measurement. The objective is to reconstruct the whole structure in the inaccessible
first layer. The case y = 1 has been studied in [8], where the problem (1.1)-(1.3) is
shown to be ill-posed in the sense of Hadamard. Thus, it is of interest to know whether
the same property remains in the fractional case 0 <y < 1 and, if so, whether this
ill-posedness can be diminished with regularisation techniques.

In the current paper, we aim to answer these questions. We show that the fractional
problem is ill-posed in the sense of Hadamard, consistent with the result for standard
diffusion (see [8]). We propose a simple but effective Fourier truncation method to
overcome the ill-posedness and derive convergence estimates of Holder type as the
noise level tends to zero, in both L*(R) and L*(R). Numerical simulations to illustrate
the theoretical findings will be provided in forthcoming work.

Throughout the paper, we assume that k; = k, for simplicity in the presentation. As
usual, the measurement g5 of g may contain an error satisfying

llgs — gllzw) <0, (1.4)

where 6 € (0, 1) is a bound for the measurement error. Denote by H”(R) the standard
Sobolev space. We require the a priori information

1/2
e 0, Moy = fR 1+ V@O0 ) <E wihp=z0.  (15)
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2. The ill-posedness

We extend all the functions above to the whole line —co < ¢ < co by making them
zero outside the original domains, if necessary. Let

e = %2_” f : Fe e di

denote the Fourier transform of a function f € L*>(R). Applying the Fourier transform
with respect to ¢ to both sides of (1.2), we obtain the solution in the second layer,

(6, &) = cosh( N %(lz - 07, @.1)

for [y < x < I, where

% _ (2|§_|;)1/2(1 +isign(§))” = |f}g(cos(;ry) +zsm(4 )slgn(g))

for j € {1,2}. Thanks to the representation (2.1), we can solve the problem in the first
layer to obtain

W(x, &) = O(x, HZ(E), 2.2)

Bx, &) = cosh( %(1l —x)) cosh( \/(f7 U - zl))

+ \/Z:;sinh( \/(67(1 )) sinh( \/E(lz - ll))

The solution u,(x, f) can be recovered by taking the inverse Fourier transform of (2.2).
The following lemmas give some useful estimates.

where

Lemma 2.1. For arbitrary 7 € C,
sinh |R(z)| < [sinh z] < cosh R(z) < R,
sinh|R(2)| < [coshz] < cosh R(z) < ™.
Proor. The inequalities follow from the definitions by elementary calculations. O

Lemma 2.2. Set

£0x) _( ) (—y), C = £(0).

R

O(x, &)l < «/ D fr0 < x <.

Then
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Proor. Observe that

O(x, £)| < cosh(ay(€) + iax(£)) cosh(b(&) + ib(&))
+ ‘ \/Z:; sinh(ax(§) + ia,(&)) sinh(b(£) + il—?(f))‘,

4
Y-, ae = w/ﬂsm( vign@ - ),
b(&) = A /@ cos(
(¢%)

_ Y
Y CRICE \/ﬂ sin( 2y Jsign(@(t2 - 1),
By Lemma 2.1,

10(x, &) < cosh(ay(€) + iay(é))llcosh(b(€) + b))
+ \/Z:; lsinh(a(€) + ia(€)lIsinh(b(€) + ib(£))|

< (1 N /ﬂ)eax(fﬂb(f) _ (1 + /ﬂ)elf\mf(x)’
@2 @2

which completes the proof. O

where

PN

&1 X

R

Lemma 2.3. For 0 < x <y, put

~ Varin2 Vazin2 7 ~
A =mx{(G o) (G coimm) | o= A0

Then, for || > A(x),

3 1 @1\ e

O(x, &) > 16(1 " ,/az)e .
Proor. Observe that

O(x, &) = cosh(a,(&) + ia,(£)) cosh(b(&) + ib(£))
B (x,6)
+ ﬂ sinh(a.(€) + ia,(&)) sinh(b(&) + ib(£)) .
vay

By (x.)
By direct computation,

2B1(x,€) = cosh((a«(é) + b(§)) + i(ax(€) + b(€)))
+ cosh((ax(é) — b)) + i(ax(€) - b(€)))

and

2Bs(x,€) = cosh((ax(€) + b(¢)) + i(ax(é) + b(¢)))
— cosh((=ax(é) + b(é) + i(=ax(€) + b())).
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By Lemma 2.1,

20(x,8)| 2 (1 + \/Z:;)l(;OSh((ax(‘f) +b(€)) + i(ax(€) + bE))|
~ lcosh((ax(€) = b(é) + i(a(é) = b)Y&)
- \/Z:; lcosh((=ax(é) + b(€)) + i(=ax(€) + b))

> %(1 + /ﬂ)(ea)@nb@ L o) _ pa@)-bE) _ pman@-b©))
(0%)

Since [¢] = A(x),

e E+bE) < % eux(§)+h(§)’ e ObE) zlt M)

Thus, we arrive at the final estimate

— 1 ) 1 ay v/
B(x.8) > _(1 /_) @ @bl©) _ _(1 ) lep72ec)
O, Ol 2 7e(1+ ) TR

The lemma is proved. O

The following theorem answers the first question raised in the paper.
TueorEM 2.4. The problem (1.1)—(1.3) is ill-posed in the sense of Hadamard.

Proor. We give an example to demonstrate that the problem (1.1)—(1.3) is ill-posed.
For any n € N with n > A(x), where A is the same function as in Lemma 2.3, define
Q,:={é€R;n<&<n+1). Let g, € L*(R) be the measured data such that

A(f)— §(§)+l/n if £ € Q,,
R 1) i€ e R\Q,.

By Parseval’s identity, |Ig, — gll;2x) = (fQ n2dé)'? =n~! - 0asn — co. Let u; and
uy, be solutions of (1.1)—(1.3) corresponding to the data g and g, respectively, so that

W(x, &) = 0(x,£2E)  and  Wiu(x, &) = O(x, £)gn().

By Parseval’s identity and Lemma 2.3,

) 1 . 2 1/2 1 en’//zé’(x)
fim [[(et1, — 1), Mg, = lim —( f B(x, &)l dg) > — lim = oo,
n—o00 n—oo n Q, 16 n—00 n
This proves the ill-posedness of the problem. O
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3. The Fourier spectral method

Since the problem (1.1)—(1.3) is ill-posed, any tiny noise in the data may produce
a solution which is far away from its exact value. The Fourier spectral method is a
very simple, but effective, method to deal with such problems. The idea is to cut off
the solution at high frequencies because in this ill-posed problem the information at
high frequencies is not a true reflection of the solution. Let Eg = [—f;, 5] denote the
regularisation domain, where SBs := 5(6) is the regularisation parameter that will be
chosen later. In the spirit of Fourier’s truncation method (see, for example, [1, 4]), we
consider the regularised solution

W(x,8) = O(x, £)g5(E)T 5, (£). 3.1)
where 7, denotes the characteristic function of the interval Eg. In other words, by
using the inverse Fourier transform, the regularised solution can be represented as

1 _
) = = | Beemer e (32)

7 JEg
Put
D, () = [l (x, ) — 1 (%, llioys
the LP-distance between the exact and regularised solutions. The rest of this section is
devoted to estimating the distances D, (x) and D (x).

Turorem 3.1 (The L*-distance). Let u; be the solution of problem (1.1)—(1.3) and uf
be the regularised solution given by (3.2). Assume that the measured data gs fulfils
(1.4). If the exact solution u, satisfies (1.5) and the regularisation parameter Bs is
given by

B = (5—10)2/7(111% -2 1ofm B (3:3)

frd p /2 . .
where E = E + 6(eexl/y + 200Ny then, for every x € [0,1), we obtain the Hélder
convergence estimate

. B\t
Dy(x) < (1 + [0 16(260)2”/7)E€( ! €°51-‘<X>/fo(1n 5) . G4
(0%

Proor. From Parseval’s identity and the triangle inequality,

D2(x) < 105 = Wp) 06, My + W5 = T2 (3.5)
S1(x) Sa(x)

where u,z is the regularised solution (3.1) with respect to the exact data g. Let us first
evaluate S1(x). By Lemma 2.2, (1.4) and (3.3),

- 5 IR
$i = ([ B o @ ~ToF de)
B

1/2 .
< (l + 4 /ﬂ)e(ﬂg)mf(x)( ZGEEGE df) < (1 + /a—l)e(ﬁ“)w'[md
@3 Eg (07}

(3.6)
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We are now in a position to estimate S,(x). By Lemma 2.3 and (1.5),
O(x,¢)

1
S < —|=
29 (fR\Eﬁ €27 180, &)

2062 (£(x)—Lo) 1/2
<i6([ s @ mo.or de)
R\Eg

2 , 2
(1+ &0, o) dé)

€
YI20¢(x)—¢, el —
<16 B (:) o)E < 16PE[(X)/[061_[(X)/£0(11’1 E)ZP(ZO L) /vl
(Bs) (Bs) 5
Since E > §¢¢”"”, it remains to prove that
I E>41”1(1 E) that | ﬁ>(1(1 E))M 3.7)
n—>—In|ln—|, at is, >|—(In— . .
sy 5 =26\ 5

Put @ =8p/y,y =1In E/é and h(y) =y — (a/2)In(y). Since a > 0, we claim that
h(y) = 0 for y € (e, +0). This follows since #'(y) =1 — a/2y > 1 — a/2¢* > 0 for
all y € (¢%,4+00). Then h(y) > h(e®) = ¢* — %az > 0. Thus, the estimate (3.7) holds.
Having disposed of this preliminary step, we can estimate S, by

_[(X)/f()dl ’c(x)/f()( E )_2p€(x)/750

Sa(x) < 16(260)*P"E In > (3.8)

Substituting (3.6) and (3.8) into (3.5) and noting that the parameter S; is chosen as in
(3.3), we obtain (3.4), which is the desired conclusion. The theorem is proved. O

Tueorem 3.2 (The L*-distance). Let u; be the solution of problem (1.1) and u‘lsﬁ be as
in Theorem 3.1. Let the measured data gs satisfy (1.4). Suppose that the exact solution
u, satisfies the a priori bound (1.5) for p > % Denote

07 ! 1 v p-D/y 7 Y,
{(x) =€(x) + — — 5 and E=E+ 6" + 2BO0)”?y
Y

If the regularisation parameter Bs is selected by

2y, R _ 2y
Bs = (é) (ln E_2p-1 ln(ln E)) , (3.9)
4o 6 Y 0

then, for every x € [0, 1)),

/ 2 [a1 / 2 5 @p-Dly

E‘)(l—zmﬂx)/y%

o Fl00/To 1) o (m = (3.10)
0
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Proor. First, Deo(x) < 77(x) + 72(x) because

] f O O@ T, D™ dé| < f B(x, &)@ — D) dé + f B(x, &)1 de
R Ej R\

T1(x) T2(x)

The proof now naturally falls into two steps. For the first step, it follows immediately
from Holder’s inequality and the choice of regularisation parameter (3.9) that

T1(x) < \/5(1 ¥ \/Z:;)(ffé 2600 dg)m(s

2-7)/4
< ‘/5(1 + \/a—l)_(ﬁﬁ) s
@/ \Jylly)

< 2 (1 + \/@ )EF(x)/?o 61—?(x)/70(1n E)(I_ZP)M)/%_ (3.11)
yt(ly) @ )

To reach the conclusion, it is necessary to estimate 7,. Again, in view of Holder’s
inequality and the parameter choice (3.9),

1 O(x, &)
T = —
20 fmp (1+27"180.0

2P t~t)  \1/2
< 16 f e dg) IOl
R\Eg €1

16 \/56(56)7/2(6’():)—50)([00 % dé:)l/zE
B &7

16 V2 EW/hs1WihinE/s)

- (852D
16V2
< —
V2p -1
where the last inequality is obtained by using an argument similar to that for (3.7). By

substituting (3.11) and (3.12) into the estimate Do, (x) < 71(x) + 72(x), we arrive at the
final conclusion (3.10). O

k+ﬁmwaﬂ@

IN

(1=-2p)Ex)~Lo) /7o

7 0T 1T o B2
(2{’0)(2p—1)/yEf(x>/a,51—£<x)/f0(ln E) Pyl

5 , (3.12)
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