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Preduals and Nuclear Operators Associated
with Bounded, p-Convex, p-Concave and
Positive p-Summing Operators

C. C. A. Labuschagne

Abstract. We use Krivine’s form of the Grothendieck inequality to renorm the space of bounded lin-

ear maps acting between Banach lattices. We construct preduals and describe the nuclear operators

associated with these preduals for this renormed space of bounded operators as well as for the spaces

of p-convex, p-concave and positive p-summing operators acting between Banach lattices and Ba-

nach spaces. The nuclear operators obtained are described in terms of factorizations through classical

Banach spaces via positive operators.

1 Introduction

In studying Banach lattices, J. L. Krivine proved the following lattice form of Gro-
thendieck’s inequality [18]: If E and F are Banach lattices and T : E → F is a bounded
linear operator, then

(1.1)
∥∥∥

( n∑

i=1

|Txi |
2
) 1/2∥∥∥ ≤ KG‖T‖

∥∥∥
( n∑

i=1

|xi |
2
) 1/2∥∥∥

for any x1, . . . , xn ∈ E, where KG denotes the universal Grothendieck constant and
‖T‖ denotes the operator norm of T (see also [25]).

Of course, sense has to be made of the square of a member of a Banach lattice.
Krivine developed a functional calculus in Banach lattices, which gives meaning to
such squares (see §2 below) and which plays an important role in the study of the

geometry of Banach lattices, cf. [7, 9, 18, 22, 25].

Let

L(E, F) = {T : E → F | T is linear}, L(E, F) = {T ∈ L(E, F) | T is bounded}.

We use (1.1) together with (2.1) and (2.2) below to renorm L(E, F) in a natural way,
to find a predual for this renormed space and to describe the nuclear operators per-
taining to this predual in terms of a factorization result. This provides analogues, in
the renormed setting, of the injective and the projective norms on E ⊗ F and gives a

description of the associated nuclear operators.
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The methods employed are general enough so as to also yield preduals (see Theo-
rem 5.2 below) and nuclear operators (see Theorem 7.4 below) associated with these

preduals for the p-convex, p-concave and positive p-summing operators, as can be
found in [1, 18].

It may be of some interest to note that these classes of operators are apparently
less general than operator ideals in the sense of Pietsch (see [24, 26]), in that one-
sided compositions by positive maps are required rather than bounded ones. Fur-
thermore, some of the norms under consideration are not tensor norms (in the sense

of Grothendieck), but are reasonable cross norms.

2 Preliminaries

We follow the terminology of [8, 10] with regard to normed tensor products. If X

and Y are Banach spaces and α is a norm on X ⊗ Y , we denote the normed space
(X ⊗ Y, α) by X ⊗α Y , its norm completion by X ⊗̃α Y and its continuous dual by
(X ⊗α Y ) ′. A norm α on X ⊗ Y is called a reasonable cross norm (cf. [8, 10, 14]) if α
satisfies the conditions:

(i) For x ∈ X and y ∈ Y , α(x ⊗ y) ≤ ‖x‖ ‖y‖.

(ii) For x ′ ∈ X ′ and y ′ ∈ Y ′, x ′ ⊗ y ′ ∈ (X ⊗α Y ) ′ and ‖x ′ ⊗ y ′‖ ≤ ‖x ′‖ ‖y ′‖.

It is well known that the inequalities in (i) and (ii) may be replaced by equality.

We denote the injective cross norm on X ⊗ Y by ‖ · ‖ǫ or by ǫ and the projective
cross norm on X ⊗ Y by ‖ · ‖π or by π (see [8–10, 14, 25, 26]).

For Riesz spaces, we follow the terminology of [30], and for Banach lattices, we
follow [22, 23, 29, 30].

If E is a Banach lattice, x1, . . . , xn ∈ E and 1 ≤ p ≤ ∞, then by Krivine’s func-

tional calculus,
(∑n

i=1 |xi |
p
) 1/p

∈ E, where

( n∑

i=1

|xi |
p
) 1/p

= sup
{ n∑

i=1

aixi

∣∣ ai ∈ R,

n∑

i=1

|ai |
q ≤ 1

}

for 1 ≤ p < ∞ and 1
p

+ 1
q

= 1, and

( n∑

i=1

|xi |
p
) 1/p

=

n∨
i=1

|xi |

for p = ∞ (see [22, pp. 42–44] and [18]).

There is a connection between
∥∥(∑n

i=1 |xi|
p
) 1/p∥∥ and the elements of a suitable

tensor product of ℓp and E, for which we resort to Chaney’s M-norm [3]: If E is
Banach lattice and X is a Banach space, then the M-norm on X ⊗ E is given by

‖u‖M = inf
{∥∥∥

n∑

i=1

‖xi‖ |yi|
∥∥∥

∣∣∣ u =

n∑

i=1

xi ⊗ yi

}
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and also by

∥∥∥
n∑

i=1

xi ⊗ yi

∥∥∥
M

=

∥∥∥ sup
{ n∑

i=1

〈x ′, xi〉yi

∣∣ x ′ ∈ X ′ and ‖x ′‖ ≤ 1
}∥∥∥ ,

where x1, . . . , xn ∈ X and y1, . . . , yn ∈ E (see also [13, 29]). The M-norm is a
reasonable cross norm on X ⊗ E (cf. [3, Theorem 1.4]) and is equal to Schaefer’s
m-norm on X ⊗ F, (see [29, Ch. 4, §7] and [17, Ch. 4, §5]).

Recall from [8] that if X and Y are Banach spaces and α is a reasonable cross norm

on X ⊗ Y , then the transpose of α, denoted by tα and defined on Y ⊗ X by

tα
( n∑

i=1

yi ⊗ xi

)
= α

( n∑

i=1

xi ⊗ yi

)
,

is a reasonable cross norm on Y ⊗ X (see also [6, 10, 14]).

The transpose of the M-norm, i.e.,

‖u‖tM = inf
{∥∥∥

n∑

i=1

‖yi‖ |xi |
∥∥∥

∣∣∣ u =

n∑

i=1

xi ⊗ yi

}
,

∥∥∥
n∑

i=1

xi ⊗ yi

∥∥∥
tM

=

∥∥∥ sup
{ n∑

i=1

〈y ′, yi〉xi

∣∣∣ y ′ ∈ X ′ and ‖y ′‖ ≤ 1
}∥∥∥ ,

where x1, . . . , xn ∈ E and y1, . . . , yn ∈ X, is Schaefer’s l-norm.
Furthermore, if E = Lp(µ), where (Ω, Σ, µ) is a σ-finite measure space and

1 ≤ p < ∞, then the transpose of the M-norm is the Bochner norm on Lp(µ, X).
Consequently, Lp(µ, X) is isometrically isomorphic to Lp(µ) ⊗̃tM X.

If E and F are Banach lattices. Then

E+ ⊗ F+ =

{ n∑

i=1

xi ⊗ yi

∣∣ xi ∈ E+, yi ∈ F+, n ∈ N

}

is the projective cone in E ⊗ F, where E+ denotes the positive cone of E.
The norms M and tM have the property that E ⊗̃M F and E ⊗̃tM F, if equipped

with the respective norm closures of the projective cone in E ⊗ F, are Banach lattices

[3, 20, 29].
The isometric isomorphism between Lp(µ, E) and Lp(µ) ⊗̃tM E, mentioned above,

is a Riesz isometry (i.e., the isometry preserves the vector lattice structure), provided
that Lp(µ) ⊗̃tM E is equipped with the closure of its projective cone.

Let ei be the i-th standard unit vector in ℓp, i.e., ei = (δi j), where δi j = 1 if i = j

and δi j = 0 if i 6= j. If X is a Banach space and E is a Banach lattice, let

S(X) =

{ n∑

i=1

ei ⊗ xi

∣∣ xi ∈ X and n ∈ N

}
,

S+(E) =

{ n∑

i=1

ei ⊗ xi

∣∣ xi ∈ E+ and n ∈ N

}
.
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If X is a Banach space, 1 ≤ p ≤ ∞, and α is a reasonable cross norm on
Λ

p⊗X, then S(X) is dense in Λ
p ⊗̃α X, and if X is a Banach lattice, then clαS+(X) =

clα(Λ
p
+ ⊗ X+) (cf. [20, §7]).

It is shown in [20, Lemma 8.1.] that if x1, . . . , xn ∈ E, then

(2.1)
∥∥∥

( n∑

i=1

|xi |
p
) 1/p∥∥∥ =

∥∥∥
n∑

i=1

ei ⊗ xi

∥∥∥
ℓp⊗M E

for 1 ≤ p < ∞, and

(2.2)
∥∥∥

n∨
i=1

|xi |
∥∥∥ =

∥∥∥
n∑

i=1

ei ⊗ xi

∥∥∥
c0⊗M E

.

In terms of the M-tensor product, (1.1) can be stated as

(2.3)
∥∥∥

n∑

i=1

ei ⊗ Txi

∥∥∥
ℓ2⊗M F

≤ KG‖T‖
∥∥∥

n∑

i=1

ei ⊗ xi

∥∥∥
ℓ2⊗M E

.

We let Λ
p

= ℓp for 1 ≤ p < ∞ and Λ
∞

= c0 and denote the identity map on X

by idX for any Banach space X.

The p-convex and p-concave operators (cf. [22]) can also be described in terms of
suitable tensor products equipped with the M-norm or its transpose tM. Let E and
F be Banach lattices, X and Y be Banach spaces and 1 ≤ p ≤ ∞. Then it follows
from [22, p. 45] that a linear operator T : E → Y is p-concave if and only if

idΛp ⊗ T : Λ
p ⊗M E → Λ

p ⊗tM Y

is continuous, and a linear operator T : X → F is p-convex if and only if

idΛp ⊗ T : Λ
p ⊗tM X → Λ

p ⊗M F

is continuous.

3 The Banach Space G(γp ,δp)(X,Y )

Let X, X1, Y , Y1 be Banach spaces and γ and δ reasonable cross norms on X1⊗Y1 and
X ⊗Y , respectively. If S ∈ L(X1, X), R ∈ L(Y2,Y ) and S⊗R ∈ L(X1 ⊗γ Y1, X ⊗δ Y ),
then since δ is a reasonable cross norm,

‖(S ⊗ R)(x ⊗ y)‖ = ‖Sx‖ ‖Ry‖ for all (x, y) ∈ X1 × Y1,

from which we get
‖S ⊗ R‖ ≥ ‖S‖ ‖R‖.

In particular, if R ∈ L(Y1,Y ) and idX ⊗ R ∈ L(X ⊗γ Y1, X ⊗δ Y ), then

(3.1) ‖idX ⊗ R‖ ≥ ‖R‖.
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Definition 3.1 Let X and Y be Banach spaces, γ and δ reasonable cross norms on
Λ

p ⊗ X and Λ
p ⊗ Y , respectively, and 1 ≤ p ≤ ∞. Set

G(γp ,δp)(X,Y ) := {T ∈ L(X,Y ) | idΛp ⊗ T ∈ L(Λp ⊗γ X, Λp ⊗δ Y )}

and

(3.2) ‖T‖G(γp ,δp )(X,Y ) := ‖idΛp ⊗ T‖ for all T ∈ G(γp ,δp)(X,Y ).

Proposition 3.2 Let X and Y be Banach spaces, γ and δ reasonable cross norms on

Λ
p ⊗ X and Λ

p ⊗ Y , respectively, and 1 ≤ p ≤ ∞. Then G(γp ,δp)(X,Y ) is a Banach

space with respect to the norm ‖ · ‖G(γp ,δp )(X,Y ).

Proof It is clear that ‖ · ‖G(γp ,δp )(X,Y ) is a norm on G(γp ,δp)(X,Y ). To prove com-
pleteness, let (Tn) be a Cauchy sequence in G(γp ,δp)(X,Y ). Then (idΛp ⊗ Tn) is a
Cauchy sequence in L(Λp ⊗γ X, Λp ⊗δ Y ). Hence, (idΛp ⊗ Tn) converges to some
S ∈ L(Λp ⊗γ X, Λp ⊗̃δ Y ). By (3.1) and (3.2), (Tn) is also a Cauchy sequence in

L(X,Y ) and hence converges in operator norm to some T ∈ L(X,Y ). Consequently,
if x ∈ X, then S(ek ⊗ x) = limn→∞(idΛp ⊗ Tn)(ek ⊗ x) = limn→∞(ek ⊗ Tnx) =

ek ⊗ Tx = (idΛp ⊗ T)(ek ⊗ x), from which we get S(Λp ⊗γ X) ⊆ (Λp ⊗δ Y ) and
S = idΛp ⊗ T. But then T ∈ G(γp ,δp)(X,Y ) and Tn → T in ‖ · ‖G(γp ,δp )(X,Y ).

We renorm L(E, F).

Theorem 3.3 If E and F are Banach lattices and T : E → F, then G(M2,M2)(E, F) is a

Banach space which is linearly and topologically isomorphic to L(E, F). Moreover,

‖T‖ ≤ ‖T‖G(M2 ,M2)(E,F) ≤ KG‖T‖.

Proof The proof follows from (2.3), (3.1) and Proposition 3.2.

The positive p-summing operators considered in [1] can also be described in
terms of a suitable tensor product (see Example 3.4 below), for which we need the
following notation: If E and F are Banach lattices, let

L+(E, F) = {T : E −→ F | T is linear and positive}.

We denote by |ǫ| the norm on E ⊗ F induced by the r-norm

‖T‖r := inf{‖S‖ | ±T ≤ S, S ∈ L+(E ′, F)}

defined on Lr(E ′, F) = L+(E ′, F) − L+(E ′, F). The |ǫ|-norm is a reasonable cross
norm on E ⊗ F and E ⊗̃|ǫ| F is a Banach lattice with positive cone the |ǫ|-closure of

the projective cone E+ ⊗ F+ (cf. [20]).
If E is a Banach lattice, the norms |ǫ| and tM agree on ℓ1 ⊗ E (see [29, Ch. 4]

or [20, Theorem 8.2]) and the norms ǫ and M agree on c0⊗E (see [3, Proposition 1.5]
or [29, Ch.4]).
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Example 3.4

G(γp ,δp)(X,Y ) CNp(X,Y ) Pp(X,Y ) Sp(X,Y ) Lpcav(X,Y ) Lpvex(X,Y )

‖ · ‖G(γp ,δp )(X,Y ) Np Pp σp ‖ · ‖pcav ‖ · ‖pvex

Operator Cohen p-Absolutely Positive p- p-concave p-convex
p-Nuclear summing summing

X Banach space space lattice lattice space

Y Banach space space space space lattice

γ ǫ ǫ |ǫ| M tM

δ π tM tM tM M

p 1 < p < ∞ 1 ≤ p < ∞ 1 ≤ p < ∞ 1 ≤ p ≤ ∞ 1 ≤ p ≤ ∞

Reference [5] [6, p. 127] [1] [18, 22] [18, 22]

In the terminology of [29], the ∞-convex operators are known as majorizing op-
erators and the 1-concave operators are known as cone absolutely summing operators.
In the terminology of [1], the latter operators are known as positive 1-summing oper-

ators.

4 The Norm ‖ · ‖(γp,δq)

Let X and Y be Banach spaces, E and F Banach lattices and 1
p

+ 1
q

= 1.

Our aim is to construct a predual for G(γp ,δp)(X,Y ′), for special cases of γp and
δp. We, therefore, consider suitable norms on X ⊗ Y, and resort to vector-valued
sequence spaces.

Denote the space of weakly p-summable sequences in X by ℓweak
p (X) for 1 ≤ p ≤

∞. The following result, formulated by Grothendieck, relates ℓweak
p (X) to L(ℓq, X)

(see [5] and [16, §19.4]).

Theorem 4.1 Let X be a Banach space and let 1
p

+ 1
q

= 1.

(i) ℓweak
p (X) is isometrically isomorphic to L(ℓq, X) for 1 < p ≤ ∞ and ℓweak

1 (X) is

isometrically isomorphic to L(c0, X).

(ii) ℓweak
p (X ′) is isometrically isomorphic to L(X, ℓp) for 1 ≤ p ≤ ∞ and (c0)weak(X ′)

is isometrically isomorphic to L(X, c0).

It is well known that

Λ
weak
p,c (X) :=

{
(xi) ∈ Λ

weak
p (X)

∣∣ ‖(xi)
∞
i=n‖Λweak

p (X) → 0 as n → ∞
}

is isometrically isomorphic to Λ
p ⊗̃ǫ X for 1 ≤ p ≤ ∞. (For details, see [5, 6, 9, 11,

12, 14, 20, 21].)
To proceed with the task at hand, let

F(X) := {(x1, . . . , xn, 0, . . . ) | xi ∈ X and n ∈ N},

F+(E) := {(x1, . . . , xn, 0, . . . ) | xi ∈ E+ and n ∈ N}.
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We recall from [20] that F(E) is an Archimedean Riesz space with positive cone

F+(E) = F(E) ∩ (EN)+,

where (EN)+ is the cone in EN generated by the pointwise order, i.e.,

(xi) ≤ (yi) ⇔ xi ≤ yi for all i ∈ N.

The map

κ :

n∑

k=1

ek ⊗ xk 7→ (x1, x2, . . . , xn, 0, . . . ),

provides an identification of S(X) and F(X) and also yields a one-to-one correspon-

dence between S+(E) and F+(E) (cf. [20, §7]).
Let 1 ≤ p ≤ ∞ and α a reasonable cross norm on Λ

p ⊗ X. Set

Λ
p,c
α (X) :=

{
(xi) ∈ EN

∣∣
∞∑

i=1

ei ⊗ xi ∈ Λ
p ⊗̃α X

}

and

‖(xi)‖Λ
p,c
α (X) :=

∥∥∥
∞∑

i=1

ei ⊗ xi

∥∥∥
Λp⊗̃αX

.

Hence by our discussion above,

Λ
p,c
ǫ (X) = Λ

weak
p,c (X) for 1 ≤ p ≤ ∞.

Theorem 4.2 Let X be a Banach space, 1 ≤ p ≤ ∞ and α a reasonable cross norm

on Λ
p ⊗ X. Then

(i) Λ
p,c
α (X) is a Banach space with respect to the norm ‖ · ‖

Λ
p,c
α (X).

(ii) (xi) ∈ Λ
p,c
α (X) if and only if limm→∞ ‖(xi)

∞
i=m‖Λ

p,c
α (X) = 0.

(iii) F(X) ⊆ Λ
p,c
α (X) and clαF(X) = Λ

p,c
α (X).

(iv) Λ
p ⊗̃α X is isometrically isomorphic to Λ

p,c
α (X); the isometry is given by the con-

tinuous extension of κ to Λ
p ⊗̃α X.

If E is a Banach lattice, then the isometric isomorphism in (iv) yields a one-to-one cor-

respondence between clα(Λ
p
+ ⊗ E+) and

Λ
p,c
α (E)+ := {(xi) ∈ (EN)+

∣∣
∞∑

i=1

ei ⊗ xi ∈ Λ
p ⊗̃α E}.

Proof If 0 = ‖(xi)‖Λ
p,c
α (X) = ‖

∑∞
i=1 ei ⊗ xi‖Λp⊗̃αX , then since ‖ · ‖ǫ ≤ ‖ · ‖α, it

follows from Theorem 4.1 and (
∑∞

i=1 ei ⊗ xi)e j = x j , that x j = 0 for all j ∈ N. It is
then easy to verify that ‖ · ‖

Λ
p,c
α (X) is a norm and

(xi) ∈ Λ
p,c
α (X) if and only if lim

m→∞
‖(xi)

∞
i=m‖Λ

p,c
α (X) = 0,
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i.e., (ii) holds.
To prove (iii), note that if x1, . . . , xn ∈ X, then

∑n
i=1 ei ⊗ xi ∈ Λ

p ⊗α X and so

F(X) ⊆ Λ
p,c
α (X). Also, by (ii), we get that Λ

p,c
α (X) is contained in the norm com-

pletion, denoted by H, of (F(X), ‖ · ‖
Λ

p,c
α (X)). But H is isometrically isomorphic to

Λ
p ⊗̃α X; the isomorphism is given by the continuous extension of κ, denoted by

κ̃ : Λ
p ⊗̃α X → H. We claim that H ⊆ Λ

p,c
α (X). If z ∈ H, then there exists∑∞

i=1 ei ⊗ xi ∈ Λ
p ⊗̃α X such that z = κ̃

( ∑∞
i=1 ei ⊗ xi

)
. Then (xi) ∈ Λ

p,c
α (X)

and

(xi) = κ̃
( ∞∑

i=1

ei ⊗ xi

)
= z.

It follows from what has just been shown that Λ
p,c
α (X) is norm complete and that

Λ
p,c
α (X) is isometrically isomorphic to Λ

p ⊗̃α X. Thus, (i) and (iv) hold.

The statement about the order holds due to the fact that κ yields a one-to-one
correspondence between S+(E) and F+(E), as mentioned above, and clαS+(E) =

clα(Λ
p
+ ⊗ E+), as mentioned in §2.

Where convenient, we shall identify Λ
p(X) ⊗̃α X and Λ

p,c
α (X) and denote

‖(xi)‖Λ
p,c
α (X) by ‖(xi)‖Λp⊗̃αX.

Also, if the space of all absolutely p-summable sequences (xn) in X is denoted
by ℓ

strong
p (X), then ℓ

strong
p (X) is isometrically isomorphic to ℓp ⊗̃tM X. (For details of

ℓ
strong
p (X), see [9].) Hence,

ℓ
strong
p (X) = Λ

p,c
t M

(X) for 1 ≤ p < ∞.

Using the notation convention made above, i.e., by denoting ‖(xi)‖Λ
p,c
α (X) by

‖(xi)‖Λp⊗̃αX , and considering 1 ≤ p ≤ ∞, the Chevet–Saphar norms gp and dp

are given by

gp(u) = inf
{
‖(xi)‖Λp⊗tM X‖(yi)‖Λq⊗ǫY

∣∣ u =

n∑

i=1

xi ⊗ yi

}
,

dp(u) = inf
{
‖(xi)‖Λp⊗ǫX‖(yi)‖Λq⊗tMY

∣∣ u =

n∑

i=1

xi ⊗ yi

}

for all u ∈ X ⊗ Y , and the Cohen norms wp are given by

wp(u) = inf
{
‖(xi)‖Λp⊗ǫX‖(yi)‖Λq⊗ǫY

∣∣ u =

n∑

i=1

xi ⊗ yi

}

for all u ∈ X ⊗ Y (see [4–6, 19, 26–28]).
The norm w2 is Grothendieck’s important Hilbertian norm on X⊗Y [6,14,19,25,

26]. It is well known that these norms are reasonable cross norms on X ⊗ Y (in fact,
these norms are tensor norms in the sense of Grothendieck, see [5, 6, 12, 26]).
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For 1 ≤ p ≤ ∞ and E a Banach lattice, denote the space of positive weakly p-sum-

mable sequences in E by ℓ
|weak|
p (E) (see [2, 20, 21] for details). It is a Banach lattice

with the ordering induced by the pointwise ordering on EN. Furthermore, Λp ⊗̃|ǫ| E

is Riesz and isometrically isomorphic to Λ
|weak|
p,c (E), where

Λ
|weak|
p,c (E) :=

{
(xi) ∈ Λ

|weak|
p (E)

∣∣ ‖(xi)
∞
i=n‖Λ

|weak|
p (E)

→ 0 as n → ∞
}

.

Hence,
Λ

p,c
|ǫ| (E) = Λ

|weak|
p,c (E) for 1 ≤ p ≤ ∞.

The tM-norm has the following description, which is a Chevet–Saphar–Cohen
norm look-alike:

‖u‖tM = inf
{
‖(xi)‖ℓ1⊗|ǫ|X‖(yi)‖c0⊗ǫY

∣∣ u =

n∑

i=1

xi ⊗ yi

}

for all u ∈ E ⊗ Y (cf. [21]). However, tM is not a tensor norm, as was noted by
Pisier [6, 25].

Definition 4.3 Let X and Y be Banach spaces, γ and δ reasonable cross norms on
Λ

p ⊗ X and Λ
q ⊗ Y , respectively, 1 ≤ p ≤ ∞ and 1

p
+ 1

q
= 1. Define

‖u‖(γp ,δq) := inf
{
‖(xi)‖Λp⊗γX‖(yi)‖Λq⊗δY

∣∣ u =

n∑

i=1

xi ⊗ yi

}
for all u ∈ X ⊗ Y.

The convention is used to denote (γ1, δ∞) by (γ1, δ0) and (γ∞, δ0) by (γ0, δ1).

In general, it seems difficult to verify the triangle inequality for ‖ · ‖(γp ,δq). How-
ever, it follows easily from the definition of ‖ · ‖(γp ,δq) that
• wp(u) ≤ ‖u‖(γp ,δq) for all u ∈ X ⊗ Y ;
• if u ∈ X ⊗ Y , then ‖u‖(γp ,δq) = 0 if and only if u = 0;
• if λ ∈ R, then ‖λu‖(γp ,δq) = |λ| ‖u‖(γp ,δq) for all u ∈ X ⊗ Y ;
• if x ∈ X and y ∈ Y , then ‖x ⊗ y‖(γp ,δq) ≤ ‖x‖ ‖y‖;
• if x ′ ∈ X ′ and y ′ ∈ Y ′, then x ′ ⊗ y ′ ∈ (X ⊗(γp ,δq) Y ) ′; because by Cohen’s

result that wp is a reasonable cross norm, we get that x ′ ⊗ y ′ ∈ (X ⊗wp
Y ) ′,

hence, the inequality wp(u) ≤ ‖u‖(γp ,δq) implies x ′ ⊗ y ′ ∈ (X ⊗(γp ,δq) Y ) ′ and
‖x ′ ⊗ y ′‖(γp ,δq) ′ ≤ ‖x ′ ⊗ y ′‖w ′

p
≤ ‖x ′‖ ‖y ′‖.

For a number of interesting special cases we provide verification of the triangle
inequality for ‖ · ‖(γp ,δq).

Theorem 4.4 Let E and F Banach lattices, X and Y Banach spaces, 1
p

+ 1
q

= 1 and

1 ≤ p ≤ ∞. Then

(i) ‖ · ‖(M2,M2) and ‖ · ‖(|ǫ|p ,Mq) are reasonable cross norms on E ⊗ F.

(ii) ‖ · ‖(tMp ,Mq) is a reasonable cross norm on X ⊗ F.
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(iii) ‖ · ‖(Mp ,tMq) and ‖ · ‖(|ǫ|p ,tMq) are reasonable cross norms on E ⊗ Y .

Proof (i) Consider ‖ · ‖(|ǫ|p ,Mq). By the remark preceding Example 3.4,

‖ · ‖(|ǫ|1,M0) = ‖ · ‖(|ǫ|1,ǫ0) = ‖ · ‖tM ,

and since the latter is a norm, we may assume that p 6= 1.
By our remarks preceding the theorem, we only need to verify the triangle inequal-

ity. Let u1, u2 ∈ E ⊗ F and let ǫ > 0 be given. For i = 1, 2 there are representations

ui =

ni∑

j=1

x̄(i)
j ⊗ ȳ(i)

j

such that
‖(x̄(i)

j )‖Λp⊗|ǫ|E‖(ȳ(i)
j )‖Λq⊗M F ≤ ‖ui‖(|ǫ|p ,Mq) + ǫ.

Let

x(i)
j =

[
‖(ȳ(i)

j )‖Λq⊗M F

] 1/p
[[

‖(x̄(i)
j )‖Λp⊗|ǫ|E

] 1/q
]−1

x̄(i)
j

y(i)
j =

[
‖(x̄(i)

j )‖Λp⊗|ǫ|E

] 1/q
[[

‖(ȳ(i)
j )‖Λq⊗MF

] 1/p
]−1

ȳ(i)
j .

Then

‖(x(i)
j )‖Λp⊗|ǫ|E =

[
‖(x̄(i)

j )‖Λp⊗|ǫ|E

] 1/p[
‖(ȳ(i)

j )Λq⊗M F

] 1/p
≤

(
‖ui‖(|ǫ|p ,Mq) + ǫ

) 1/p
,

‖(y(i)
j )‖Λq⊗M F ≤

(
‖ui‖(|ǫ|p ,Mq) + ǫ

) 1/q

and

u1 + u2 =

2∑

i=1

ni∑

j=1

x̄(i)
j ⊗ ȳ(i)

j =

2∑

i=1

ni∑

j=1

x(i)
j ⊗ y(i)

j .

If B(E ′)+ = {x ′ ∈ E ′ | ‖x ′‖ ≤ 1}, then

‖(x(i)
j )i, j‖Λp⊗|ǫ|E

= sup
{∥∥(

〈|x(i)
j |, x ′〉

)
i, j

∥∥
Λp

∣∣∣ x ′ ∈ B(E ′)+

}
(cf. [20, §7])

= sup
x ′∈B(E ′)+

∥∥∥
(
〈|x(1)

1 |, x ′〉, 〈|x(1)
2 |, x ′〉, . . . , 〈|x(1)

n1
|, x ′〉, 〈|x(2)

1 |, x ′〉,

〈|x(2)
2 |, x ′〉, . . . , 〈|x(2)

n2
|, x ′〉, 0, 0, . . .

)∥∥∥
Λp

= sup
x ′∈B(E ′)+

∥∥∥
(∥∥(

〈|x(1)
j |, x ′〉

) n1

j=1

∥∥
Λp ,

∥∥(
〈|x(2)

j |, x ′〉
) n2

j=1

∥∥
Λp , 0, 0, . . .

)∥∥∥
Λp

≤
∥∥∥

(∥∥ (x(1)
j )

n1

j=1

∥∥
Λp⊗|ǫ|E

,
∥∥ (x(2)

j )
n2

j=1

∥∥
Λp⊗|ǫ|Y

, 0, 0, . . .
)∥∥∥

Λp

≤
(
‖u1‖(|ǫ|p ,Mq) + ‖u2‖(|ǫ|p ,Mq) + 2ǫ

) 1/p
.
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Hence,
∥∥ (x(i)

j )
i, j

∥∥
Λp⊗|ǫ|E

≤
(
‖u1‖(|ǫ|p ,Mq) + ‖u2‖(|ǫ|p ,Mq) + 2ǫ

) 1/p
.

Also,

‖(y(i)
j )i, j‖Λq⊗M F =

∥∥ (y(1)
1 , y(1)

2 , . . . , y(1)
n1

, y(2)
1 , . . . , y(2)

n2
, 0, 0, . . . )

∥∥

=
∥∥(

|y(1)
1 |

q
+ |y(1)

2 |
q

+ · · · + |y(1)
n1
|
q

+ |y(2)
1 |

q
+ |y(2)

2 |
q

+ · · · + |y(2)
n2
|
q) 1/q∥∥

≤
∥∥∥

( n1∑

i=1

|y(1)
i |

q
) 1/q∥∥∥ +

∥∥∥
( n2∑

i=1

|y(2)
i |

q
) 1/q∥∥∥

=
∥∥ (y(1)

j )n1

j=1

∥∥
Λq⊗M F

+
∥∥ (y(2)

j )n2

j=1

∥∥
Λq⊗M F

≤
(
‖u1‖(|ǫ|p ,Mq) + ‖u2‖(|ǫ|p ,Mq) + 2ǫ

) 1/q
.

All the other proofs follow in a similar manner.

5 A Predual for G(γp ,δp)(X,Y
′)

It is well known (see [3, 5, 6, 15, 29]) that if X and Y are Banach spaces and E and F

are Banach lattices, then

(i) (X ⊗wp
Y ) ′ = CNp(X,Y ′) for 1 < p < ∞;

(ii) (X ⊗dp
Y ) ′ = Pp(X,Y ′) for 1 ≤ p < ∞;

(iii) (E ⊗(|ǫ|1 ,ǫ0) Y ) ′ = L1cav(E,Y ′).

Let 1
p

+ 1
q

= 1 and 1 ≤ p ≤ ∞.

The projective norm has the property that X ⊗̃π Y →֒ X ′ ′ ⊗̃π Y is an isometry for
any Banach spaces X and Y (cf. [26, p. 25]), so c0 ⊗̃π Y →֒ ℓ∞ ⊗̃π Y is an isometry.
Due to the fact that ℓp has the metric approximation property, the nuclear operators

are isometrically embedded in the integral operators. Consequently, Λ
p ⊗̃π Y ′ →֒

(Λq ⊗ǫ Y ) ′ is an isometry (into).

It is also known (cf. [3]) that Λ
p ⊗̃tM Y ′ →֒ (Λq ⊗tM Y ) ′ is an isometry (into)

and Λ
p ⊗̃M F ′ →֒ (Λq ⊗M F) ′ is a Riesz isometry (into), provided that Λ

p ⊗̃M F ′ is
equipped with the closure of the projective cone. If Y is a Banach lattice, the former

isometry is also a Riesz isometry [3, 17, 29].

Proposition 5.1 Let X and Y be Banach spaces, 1
p

+ 1
q

= 1 and 1 ≤ p ≤ ∞. Suppose

(i) γ and δ are reasonable cross norms on Λ
p ⊗ X and Λ

p ⊗ Y ′, respectively;

(ii) there exists a reasonable cross norm θ on Λ
q⊗Y such that Λ

p⊗̃δY ′ →֒
(
Λ

q⊗θY
) ′

is an isometry;

(iii) ‖ · ‖(γp ,θq) is a reasonable cross norm on X ⊗ Y .

Then (X ⊗(γp ,θq) Y ) ′ = G(γp ,δp)(X,Y ′).
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Proof Let T ∈ G(γp ,δp)(X,Y ′) and define fT : X ⊗ Y → R by

fT

( n∑

i=1

xi ⊗ yi

)
=

n∑

i=1

〈yi, Txi〉.

Note that (Txi) ∈ Λ
p ⊗δ Y ′ →֒ (Λq ⊗θ Y ) ′ and (yi) ∈ Λ

q ⊗θ Y ; hence,

n∑

i=1

〈yi , Txi〉 =
〈

(yi)
n
i=1, (Txi)

n
i=1

〉
.

Thus,

∣∣∣ fT

( n∑

i=1

xi ⊗ yi

)∣∣∣ =

∣∣∣
n∑

i=1

〈yi, Txi〉
∣∣∣

=
∣∣〈 (yi)

n
i=1, (Txi)

n
i=1

〉∣∣

≤
∥∥ (Txi)

n
i=1

∥∥
Λp⊗δY ′

∥∥ (yi)
n
i=1

∥∥
Λq⊗θY

≤ ‖T‖G(γp ,δp )(X,Y ′)‖(xi)
n
i=1‖Λp⊗γX‖(yi)

n
i=1‖Λq⊗θY .

Consequently, if u ∈ X ⊗(γp ,θq) Y , then | fT(u)| ≤ ‖T‖G(γp ,δp )(X,Y ′)‖u‖(γp ,θq), i.e.,

‖ fT‖ ≤ ‖T‖G(γp ,δp )(X,Y ′).

Conversely, let f ∈ (X ⊗(γp ,θq) Y ) ′. Define T f : X → Y ′ by 〈y, T f x〉 = f (x ⊗ y).
Then

‖ f ‖ = sup
{
|〈u, f 〉|

∣∣ ‖u‖(γp ,θq) ≤ 1
}

= sup

{∣∣∣
n∑

i=1

〈yi, T f xi〉
∣∣∣

∣∣∣∣

inf
{∥∥ (xi)

n
i=1

∥∥
Λp⊗γX

∥∥ (yi)
n
i=1

∥∥
Λq⊗θY

∣∣∣ u =

n∑

i=1

xi ⊗ yi

}
≤ 1

}

≥ sup
{∣∣∣

n∑

i=1

〈yi, T f xi〉
∣∣∣

∣∣∣
∥∥ (xi)

n
i=1

∥∥
Λp⊗γX

≤ 1 and
∥∥ (yi)

n
i=1

∥∥
Λq⊗θY

≤ 1
}

= sup

{
sup

{∣∣∣
n∑

i=1

〈yi, T f xi〉
∣∣∣

∣∣∣
∥∥ (yi)

n
i=1

∥∥
Λq⊗θY

≤ 1
} ∣∣∣∣

∥∥ (xi)
n
i=1

∥∥
Λp⊗γX

≤ 1

}

= sup
{∥∥ (T f xi)

n
i=1

∥∥
Λp⊗δY ′

∣∣∣
∥∥ (xi)

n
i=1

∥∥
Λp⊗γX

≤ 1
}

,
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because T f xi ∈ Y ′ for i = 1 . . . n, and by assumption, Λp ⊗̃δ Y ′ →֒ (Λq ⊗θ Y ) ′ is an
isometry; thus

∥∥ (T f xi)
n
i=1

∥∥
Λp⊗δY ′ =

∥∥ (T f xi)
n
i=1

∥∥
(Λq⊗θY ) ′

= sup
{∣∣∣

n∑

i=1

〈yi , T f xi〉
∣∣∣

∣∣∣ ‖(yi)
n
i=1‖Λq⊗θY ≤ 1

}
.

Hence,

sup
{∥∥ (T f xi)

n
i=1

∥∥
Λp⊗δY ′

∣∣∣
∥∥ (xi)

n
i=1

∥∥
Λp⊗γX

≤ 1
}

= ‖T f ‖G(γp ,δp )(X,Y ′).

Thus, ‖ f ‖ ≥ ‖T f ‖G(γp ,δp )(X,Y ′).

We can now construct preduals for the renormed space of bounded maps, the
positive p-summing, the p-concave and the p-convex operators. The cases p = ∞
in (iii) and p = 1 in (iv) below are well known:

Theorem 5.2 If X and Y are Banach spaces, E and F Banach lattices and 1
p

+ 1
q

= 1,

then

(i) (E ⊗(M2,M2) F) ′ = G(M2,M2)(E, F ′);

(ii) (E ⊗(|ǫ|p ,tMq) Y ) ′ = Sp(E,Y ′) for 1 ≤ p < ∞;

(iii) (E ⊗(Mp ,tMq) Y ) ′ = Lpvex(E,Y ′) for 1 ≤ p ≤ ∞;

(iv) (X ⊗(tMp ,Mq) F) ′ = Lpcav(X, F ′) for 1 ≤ p ≤ ∞.

Proof (i) The M-norm is a reasonable cross norm on ℓ2 ⊗ E and on ℓ2 ⊗ F ′.
As mentioned above, the M-norm is also self-dual in the sense that ℓ2 ⊗̃M F ′ →֒
(ℓ2 ⊗M F) ′ is a Riesz isometry (into). It was shown in Theorem 4.4 that ‖ · ‖(M2,M2)

is a norm on E ⊗ F. It therefore follows from Proposition 5.1 that (E ⊗(M2,M2) F) ′ =

G(M2,M2)(E, F ′).

The remaining proofs follow by using analogous arguments.

Krivine’s version (1.1) of Grothendieck’s inequality translates via Theorem 3.3 and
Theorem 5.2(a) into the following.

Corollary 5.3 Let E and F be Banach lattices. Then

1

KG

‖u‖π ≤ ‖u‖(M2,M2) ≤ ‖u‖π for all u ∈ E ⊗ F.
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6 Representing the Elements of X ⊗̃(γp,δq) Y

Definition 6.1 Let X and Y be Banach spaces, 1
p

+ 1
q

= 1, γ a reasonable cross norm

on Λ
p ⊗ X, δ a reasonable cross norm on Λ

q ⊗Y , ‖ · ‖(γp ,δq) a reasonable cross norm
on X ⊗Y and 1 ≤ p ≤ ∞. Then ‖ · ‖(γp ,δq) is said to satisfy property (REP) on X ⊗Y

provided that u ∈ X ⊗̃(γp ,δp) Y if and only if u =
∑∞

i=1 xi ⊗ yi , where (xi) ∈ Λ
p ⊗̃γ X

and (yi) ∈ Λ
q ⊗̃δ Y , and

‖u‖(γp ,δq) = inf ‖(xi)‖Λp⊗̃γX ′‖(yi)‖Λq⊗̃δY ,

where the inf is taken over all such representations of u.

It was shown in [12] that the Cohen norms wp have property (REP) and it was
shown in [20] that the norms M and tM have property (REP). Before we consider

other norms with property (REP), we recall some facts about Krivine’s sequence
space.

Let E be a Banach lattice and Ẽ(ℓp) the space of all sequences (xi) of elements of E

for which

‖(xi)‖Ẽ(ℓp)
:= sup

n

∥∥∥
( n∑

i=1

|xi |
p
) 1/p∥∥∥ ∈ R if 1 ≤ p < ∞

or

‖(xi)‖Ẽ(ℓ∞)
:= sup

n

∥∥∥
( n∨

i=1

|xi |
)∥∥∥ ∈ R if p = ∞.

Denote by E(ℓp) the closed subspace of Ẽ(ℓp) spanned by the sequences (xi) which
are eventually zero, and denote E(ℓ∞) by E(c0). It was shown in [20, §8] that E(Λp) is

a Banach lattice and the map κ, as defined in §4, can be extended to a Riesz isometry
from the Banach lattice Λ

p ⊗̃M E onto E(Λp). In the notation of Theorem 4.2, we
have

Λ
p,c
M (E) = E(Λp) for 1 ≤ p ≤ ∞.

By adapting the notation, the method used in [12] to prove that wp has (REP),

can also be used to prove the following.

Theorem 6.2 Let E and F be Banach lattices, X and Y Banach spaces, 1
p

+ 1
q

= 1 and

1 ≤ p ≤ ∞. Then

(i) the reasonable cross norms ‖ · ‖(M2,M2) and ‖ · ‖(|ǫ|p ,Mq) on E ⊗ F have property

(REP);

(ii) the reasonable cross norm ‖ · ‖(tMp ,Mq) on X ⊗ F has property (REP);

(iii) the reasonable cross norms ‖ · ‖(Mp ,tMq) and ‖ · ‖(|ǫ|p ,tMq) on E ⊗ Y have property

(REP).

Proof The proofs are based on [12] (see also [21, Theorem 4.1]). We keep the first
part of the proof general up to the point where we need specific information about
the norms γ and δ.
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Suppose (ai) ∈ Λ
p ⊗̃γ X and (yi) ∈ Λ

q ⊗̃δ Y . Let ur =
∑r

i=1 ai ⊗ yi . Then for
each r ∈ N,

‖ur‖(γp ,δq) ≤ ‖(ai)
r
i=1‖Λp⊗γX ‖(yi)

r
i=1‖Λq⊗δY ≤ ‖(ai)‖Λp⊗̃γX ‖(yi)‖Λq⊗̃δY .

It then follows easily that (ur) converges to u :=
∞∑
i=1

ai ⊗ yi in (γp, δq)-norm and

(6.1) ‖u‖(γp ,δq) ≤ ‖(ai)‖ℓ1⊗̃γX‖(yi)‖Λq⊗̃δY .

Conversely, let u ∈ X ⊗̃(γp ,δq)Y and let ǫ > 0 be given. Then there exists a sequence

(un) in X ⊗ Y such that

‖u − ui‖(γp ,δq) < (1/2)2i+1ǫ

for i = 0, 1, 2, . . . . Then

‖ui+1 − ui‖(γp ,δq) ≤ ‖ui+1 − u‖(γp ,δq) + ‖u − ui‖(γp ,δq) < (1/4)iǫ

for i = 0, 1, 2, . . . . Hence ui+1 − ui has a representation

ui+1 − ui =

ni+1∑

n=1

a(i+1)
n ⊗ y(i+1)

n ,

with a(i+1)
n ∈ X, y(i+1)

n ∈ Y ,

∥∥(
a(i+1)

n

) ni+1

n=1

∥∥
Λp⊗γX

∥∥(
y(i+1)

n

) ni+1

n=1

∥∥
Λq⊗δX

< (1/4)iǫ,

where

∥∥(
a(i+1)

n

) ni+1

n=1

∥∥
Λp⊗γX

≤
[

(1/4)iǫ
] 1/2

,

∥∥(
y(i+1)

n

) ni+1

n=1

∥∥
Λq⊗δY

≤
[

(1/4)iǫ
] 1/2

.

Since
‖u0‖(γp ,δq) ≤ ‖u‖(γp ,δq) + ‖u − u0‖(γp ,δq) < ‖u‖(γp ,δq) + ǫ/2,

there is a representation u0 =
∑n0

n=1 a(0)
n ⊗ y(0)

n with a(0)
n ∈ X, y(0)

n ∈ Y ,

∥∥(
a(0)

n

) n0

n=1

∥∥
Λp⊗γX

∥∥(
y(0)

n

) n0

n=1

∥∥
Λq⊗δY

< ‖u‖(γp ,δq) + ǫ/2,

with

∥∥(
a(0)

n

) n0

n=1

∥∥
Λp⊗γX

≤
(
‖u‖(γp ,δq) + ǫ/2

) 1/2
,

∥∥(
y(0)

n

) n0

n=1

∥∥
Λq⊗δY

≤
(
‖u‖(γp ,δq) + ǫ/2

) 1/2
.
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From the choices of the representations of ui+1 − ui , it follows that for any k ∈ N,

∥∥∥u −
(

u0 +

k∑

i=1

ni∑

n=1

a(i)
n ⊗ y(i)

n

)∥∥∥
(γp ,δq)

= ‖u − uk‖(γp ,δq) < (1/2)2k+1ǫ,

i.e., the series
(

u0 +
∑∞

i=1

∑ni

n=1 a(i)
n ⊗ y(i)

n

)
converges to u in (γp, δq)-norm. At this

point, it is less cumbersome to relabel some of the sequences. Consider the composed
sequences given by

(an) := (a(0)
1 , . . . , a(0)

n0
, a(1)

1 , . . . , a(1)
n1

, . . . ),

(yn) := (y(0)
1 , . . . , y(0)

n0
, y(1)

1 , . . . , y(1)
n1

, . . . ).

Let n ′
k = n0 + n1 + · · · + nk for each k ∈ N ∪ {0}. Then, for each k ∈ N ∪ {0},

‖(ai)
n ′

k

i=1‖Λp⊗̃γX ≤
k∑

i=0

‖(a(i)
1 , . . . , a(i)

ni
)‖

Λp⊗̃γX ≤ (‖u‖(γp ,δq) + ǫ/2)1/2 + ǫ1/2

and, similarly,

‖(yi)
n ′

k

i=1‖c0⊗̃δY ≤ (‖u‖(γp ,δq) + ǫ/2)1/2 + ǫ1/2.

Also, for each k ∈ N ∪ {0},

k∑

i=0

ni∑

n=1

a(i)
n ⊗ y(i)

n =

n ′
k∑

i=1

ai ⊗ yi .

Thus, the series
∑∞

i=1 ai ⊗ yi converges to u in (γp, δq)-norm.
To show that (an) ∈ Λ

p ⊗̃γ X and (yn) ∈ Λ
q ⊗̃δ Y , let

ξn :=

{
(1/2i)1/2 for n ′

i < n ≤ n ′
i+1, i = 0, 1, 2, . . . ,

1 for 1 ≤ n ≤ n ′
0.

Then (ξn) ∈ c0. For large m, n ∈ N with m ≤ n, select j, ℓ ∈ N such that n ′
j < m ≤

n ≤ n ′
j+ℓ.

At this point, specific information about the norms γ and δ is required. We now
consider the particular cases for ‖ · ‖(γp ,δq).

To prove (i), consider the case where X and Y are Banach lattices, γ = |ǫ| and
δ = M. Since ‖ · ‖M = ‖ · ‖(ǫ0,|ǫ|1) has (REP) [21, Theorem 4.1], we may assume that
p 6= 1.

Let āi := ai/ξi , for all i ∈ N and B(X ′)+ = {a ′ ∈ X ′
+ | ‖a ′‖ ≤ 1}. Then

sup
{
‖(〈|āi|, a ′〉)n

i=m‖Λp

∣∣ a ′ ∈ B(X ′)+

}

≤

j+ℓ∑

k= j

sup
{
‖(〈|āi|, a ′〉)

n ′
k+1

i=n ′
k

+1
‖Λp

∣∣ a ′ ∈ B(X ′)+

}
.
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By definition of (ξn) it follows that

j+ℓ∑

k= j

sup
{
‖(〈|āi |, a ′〉)

n ′
k+1

i=n ′
k

+1
‖Λp

∣∣ a ′ ∈ B(X ′)+

}

≤

j+ℓ∑

k= j

(1/ξk) sup
{
‖(〈|ai |, a ′〉)

n ′
k+1

i=n ′
k

+1
‖Λp

∣∣ a ′ ∈ B(X ′)+

}

=

j+ℓ∑

k= j

2k/2
∥∥ (an ′

k
+1, an ′

k
+2, . . . , an ′

k+1
)
∥∥

Λp⊗|ǫ|X

=

j+ℓ∑

k= j

2k/2
∥∥(

a(k+1)
i

) n ′
k+1

i=1

∥∥
Λp⊗|ǫ|X

≤

j+ℓ∑

k= j

2k/2((1/4)kǫ)1/2
= ǫ1/2

j+ℓ∑

k= j

(1/2)k/2.

This shows that
(
〈|ai|, a ′〉

)
i≤n

is a Cauchy sequence in Λ
p for each a ′ ∈ B(X ′)+

which converges to
(
〈|ai|, a ′〉

)∞

i=1
∈ Λ

p. Thus (ān) ∈ Λ
|weak|
p (X); consequently,

(an) ∈ Λ
p ⊗̃|ǫ| X.

Let ȳi := yi/ξi for all i ∈ N. Fix n and select s such that n ′
s < n ≤ n ′

s+1. Then

( n∑

i=1

| ȳi |
q
) 1/q

≤
( n ′

s+1∑

i=1

| ȳi |
q
) 1/q

.

We also have in the Banach lattice Y (Λp) that

∣∣ (21/2 y(s+1)
1 , . . . , 2(s+1)/2 y(s+1)

ns+1

) ∣∣ =
(

21/2
∣∣ y(s+1)

1

∣∣ , . . . , 2(s+1)/2
∣∣ y(s+1)

ns+1

∣∣ )

≤ 2(s+1)/2
∣∣ ( y(s+1)

1 , . . . , y(s+1)
ns+1

) ∣∣ ,

and since the M-norm is a Riesz norm,

∥∥ (21/2 y(s+1)
1 , . . . , 2(s+1)/2 y(s+1)

ns+1
)
∥∥

Λq⊗MY
≤ 2(s+1)/2

∥∥ (y(s+1)
1 , . . . , y(s+1)

ns+1
)
∥∥

Λq⊗MY
.

Consequently,

∥∥ (yi)
n
i=1

∥∥
Λq⊗MY

≤
∥∥ (yi)

n ′
s+1

i=1

∥∥
Λq⊗MY

≤

s+1∑

i=0

∥∥ (y(i)
1 , . . . , y(i)

ni
)
∥∥

Λq⊗MY
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=

s∑

i=0

∥∥ (y(i)
1 , . . . , y(i)

ni
)
∥∥

Λq⊗MY

+
∥∥ (21/2 y(s+1)

1 , . . . , 2(s+1)/2 y(s+1)
ns+1

)
∥∥

Λq⊗MY

≤
s∑

i=0

∥∥ (y(i)
1 , . . . , y(i)

ni
)
∥∥

Λq⊗MY
+ 2(s+1)/2

∥∥ (y(s+1)
1 , . . . , y(s+1)

ns+1
)
∥∥

Λq⊗MY

≤ (‖u‖(|ǫ|p ,Mq) + ǫ/2)1/2 + ǫ1/2 + 2(s+1)/2((1/4)sǫ)1/2

≤ (‖u‖(|ǫ|p ,Mq) + ǫ/2)1/2 + ǫ1/2 + ǫ1/2,

from which we get supn∈N
‖(yi)

n
i=1‖Λq⊗MY < ∞. This shows that (yi) ∈ Y (Λq);

consequently, (yi) ∈ Λ
q ⊗̃M Y .

Furthermore,

‖(ai)‖Λp⊗̃|ǫ|X ≤ (‖u‖(|ǫ|p ,Mq) + ǫ/2)1/2 + ǫ1/2,

‖(yi)‖Λq⊗̃MY ≤ (‖u‖(|ǫ|p ,Mq) + ǫ/2)1/2 + 2ǫ1/2.

Hence,

(6.2) ‖(ai)‖Λp⊗̃|ǫ|X‖(yi)‖Λq⊗̃MY ≤ ‖u‖(|ǫ|p ,Mq) + f (ǫ),

where f is a positive real valued function with f (ǫ) → 0 as ǫ → 0. By (6.1) and (6.2),

the norm equality holds.
The proof that ‖ · ‖(M2,M2) has (REP) is similar.
To prove (ii), let X be a Banach space and Y a Banach lattice, γ =

tM and δ = M.
We may again assume p 6= 1. Using the same notation as in the first part of the proof,

we claim that (‖ai‖)i≤n is a Cauchy sequence in Λ
p. For large m, n ∈ N with m ≤ n,

select j, ℓ ∈ N such that n ′
j < m ≤ n ≤ n ′

j+ℓ; then

‖(ai)
n
i=m‖Λp⊗̃tM X ≤

j+ℓ∑

k= j

∥∥(
a(k+1)

i

) n ′
k+1

i=1

∥∥
Λp⊗tM X

≤

j+ℓ∑

k= j

((1/4)kǫ)1/2 ≤ 2ǫ1/2.

Hence (‖ai‖)∞i=1 ∈ Λ
p, from which we get (ai) ∈ Λ

strong
p (X) = Λ

p ⊗̃tM X and

‖(ai)‖Λp⊗̃tM X ≤ ‖u‖(tMp ,Mq) + ǫ1/2 + 2ǫ1/2.

The proof may now be completed in a similar way as in the preceding cases.
The proof of (iii) follows in an analogous way as that of (i) and (ii).

7 (γp, δq)-Nuclear Operators

Let X and Y be Banach spaces and let α be a reasonable cross norm on X ′ ⊗ Y .
The canonical embedding φ : X ′ ⊗α Y → L(X,Y ) is continuous with norm ≤ 1.
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Let φα : X ′ ⊗̃α Y → L(X,Y ) be the continuous extension of φ. The elements of
Nα(X,Y ) := φα(X ′ ⊗̃α Y )

/
φ−1

α (0) are called the α-nuclear operators from X into Y ,

and ‖ · ‖Nα(X,Y ), defined by

‖T‖Nα(X,Y ) = inf
{
‖v‖α

∣∣ v ∈ X ′ ⊗̃α Y and φα(v) = T
}

is called the α-nuclear norm of T.
We are interested in Nα(X,Y ), where α is one of the norms

‖ · ‖(M2,M2), ‖ · ‖(|ǫ|p ,Mq), ‖ · ‖(tMp ,Mq), ‖ · ‖(Mp ,tMq)

(and where X and Y are appropriately chosen as Banach spaces or Banach lattices in
order for these choices of norms to be meaningful).

To do so, we first consider Nγ(X,Y ), where γ is one of the “component” norms
that occur in the above choices of α, i.e., γ is one of |ǫ|, tM or M.

Let E and F be Banach lattices. It is well known and easy to verify that the range
of the canonical embedding φ : E ′ ⊗ F → L(E, F) is contained in Lr(E, F), and since
|ǫ| is the norm on E ′ ⊗ F induced by the ‖ · ‖r norm, we have that φ|ǫ| : E ′ ⊗̃|ǫ| F →

N|ǫ|(E, F) is a surjective Riesz isometry. Furthermore, if X and Y are Banach spaces,
then φtM : E ′ ⊗̃tM Y → N

tM(E,Y ) is a surjective isometry (and in the case of Y being

a Banach lattice, φ tM is a surjective Riesz isometry); and φM : X ′ ⊗̃M F → NM(X, F)
is a surjective isometry (and in the case of X being a Banach lattice, φM is a surjective
Riesz isometry).

We now proceed with the task at hand of considering Nα(X,Y ), where α is one of

the norms

‖ · ‖(M2,M2), ‖ · ‖(|ǫ|p ,Mq), ‖ · ‖(tMp ,Mq), ‖ · ‖(Mp ,tMq).

Proposition 7.1 Let 1
p

+ 1
q

= 1 and 1 ≤ p ≤ ∞. Suppose ‖ · ‖(γp ,δq) is one of the

following norms

(a) ‖ · ‖(M2,M2) or ‖ · ‖(|ǫ|p ,Mq) on X ′ ⊗ Y , where X,Y are Banach lattices;

(b) ‖ · ‖(tMp ,Mq) on X ′ ⊗ Y , where X is a Banach space and Y is a Banach lattice;

(c) ‖ · ‖(Mp ,tMq) or ‖ · ‖(|ǫ|p ,tMq) on X ′⊗Y , where X is a Banach lattice and Y is a Banach

space.

Then the following statements are equivalent for T ∈ L(X,Y ):

(i) T ∈ N(γp ,δq)(X,Y ).

(ii) There exist (x ′
i ) ∈ Λ

p,c
γ (X ′) and (yi) ∈ Λ

q,c
δ (Y ) such that T =

∑∞
i=1〈x

′
i , · 〉yi ,

moreover,

‖T‖
N

(γp ,δq)(X,Y ) = inf ‖(x ′
i )‖

Λp⊗̃γX ′‖(yi)‖Λq⊗̃δY ,

where the inf is taken over all such representations of T.

(iii) There exist R ∈ N
tγ(X, Λp) and S ∈ Nδ(Λp,Y ) such that T = S ◦ R; moreover,

‖T‖
N

(γp ,δq)(X,Y ) = inf ‖S‖δ‖R‖t γ ,

where the inf is taken over all such representations of T.
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Proof (a) Let E and F be Banach lattices and consider the norm ‖ · ‖(M2,M2).
(i) ⇔ (ii). Note that T ∈ N(M2,M2)(E, F) if and only if there exists u ∈ E ′ ⊗̃(M2,M2) F

such that φ(M2,M2)(u) = T. Since ‖ · ‖(M2,M2) satisfies property (REP), by Theorem 6.2,
u ∈ E ′ ⊗̃(M2,M2) F if and only if there exist (x ′

i ) ∈ ℓ2,c
M

(E ′) and (yi) ∈ ℓ2,c
M

(F) such
that u =

∑∞
i=1 x ′

i ⊗ yi . The definition and continuity of φ(M2,M2) guarantee that
T = φ(M2,M2)(u) if and only if T =

∑∞
i=1〈x

′
i , · 〉yi .

The stated norm equality follows from the definition of ‖T‖N(M2 ,M2)(E,F) and the
fact that ‖ · ‖(M2,M2) satisfies property (REP).

(ii) ⇔ (iii). We note that (x ′
i ) ∈ ℓ2,c

M
(E ′) if and only if

∑∞
i=1 x ′

i ⊗ ei ∈ E ′ ⊗̃tM ℓ2.

Because φtM : E ′ ⊗̃tM ℓ2 → N
tM(E, ℓ2) is a surjective isometry,

∑∞
i=1 x ′

i ⊗ ei is in

one-to-one correspondence with R(x ′
i ) ∈ N

tM(E, ℓ2), where R(x ′
i ) =

∑∞
i=1〈x

′
i , · 〉ei =

(〈x ′
i , · 〉)

∞
i=1, and ‖(x ′

i )‖M = ‖R(x ′
i )‖tM .

Similarly, (yi) ∈ ℓ2,c
M

(F) if and only if
∑∞

i=1 ei ⊗ yi ∈ ℓ2 ⊗̃M F. But φM : E ′ ⊗̃M ℓ2 →
NM(E, ℓ2) is a surjective isometry, so

∑∞
i=1 ei ⊗ yi is in one-to-one correspondence

with S(yi ) ∈ NM(ℓ2, F), where S(yi )

(
(λi)

)
=

∑∞
i=1 λi yi , and ‖(yi)‖M = ‖S(yi )‖M .

By construction of R(x ′
i ) and S(yi ), it follows that S(yi ) ◦ R(x ′

i ) =
∑∞

i=1〈x
′
i , · 〉yi .

The equivalence of (ii) and (iii), together with the stated norm equalities, now

follows.
The proofs of the equivalence of (i) ⇔ (ii) ⇔ (iii) for the other norms stated in

the proposition follow almost verbatim as in the preceding case, with the obvious
changes in notation.

The following two known results are special cases of the norms under considera-
tion. We use them to prove Theorem 7.4, our main result.

Theorem 7.2 (cf. [3, 21, 29]) Let E be a Banach lattice and Y a Banach space. Then

the following statements are equivalent for T ∈ L(E,Y ):

(i) T ∈ N(|ǫ|1,ǫ0)(E,Y ).

(ii) T has a representation

T =

∞∑

i=1

〈x ′
i , · 〉yi,

where (x ′
i ) ∈ (ℓ1 ⊗̃|ǫ| E ′)+ and (yi) ∈ c0 ⊗̃ǫ Y . Moreover,

‖T‖N(|ǫ|1 ,ǫ0)(E,Y ) = inf ‖(x ′
i )‖ℓ1⊗̃|ǫ|E ′‖(yi)‖ c0⊗̃ǫY

,

where the inf is taken over all such representations of T.

(iii) There exist S ∈ Lr
+(E, ℓ1) and R ∈ L(ℓ1,Y ) such that S and R are compact and

T = R ◦ S. Further, ‖T‖N(|ǫ|1 ,ǫ0)(E,Y ) = inf ‖R‖ ‖S‖r, where the inf is taken over

all such factorizations of T.

(iii ′) There exist S ∈ Lr
+(E, ℓ1) and R ∈ L(ℓ1,Y ) such that S is compact and T =

R◦ S. Further, ‖T‖N(|ǫ|1 ,ǫ0)(E,Y ) = inf ‖R‖ ‖S‖r , where the inf is taken over all such

factorizations of T.

(iv) There exist a measure space (Ω, Σ, µ), S ∈ Lr
+(E, L1(µ)) and R ∈ L(L1(µ),Y )

such that R is compact and T = R ◦ S. Further, ‖T‖N(|ǫ|1 ,ǫ0)(E,Y ) = inf ‖R‖ ‖S‖r ,

where the inf is taken over all such factorizations of T.
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Theorem 7.3 (cf. [3, 21, 29]) Let X be a Banach space and F a Banach lattice. Then

the following statements are equivalent for T ∈ L(X, F):

(i) T ∈ N (ǫ0,|ǫ|1)(X, F).

(ii) T has a representation

T =

∞∑

i=1

〈x ′
i , · 〉yi,

where (x ′
i ) ∈ c0 ⊗̃ǫ X ′ and (yi) ∈ (ℓ1 ⊗̃|ǫ| F)+. Moreover,

‖T‖N(ǫ0 ,|ǫ1|)(X,F) = inf ‖(x ′
i )‖ c0⊗̃ǫX ′‖(yi)‖ℓ1⊗̃|ǫ|F,

where the inf is taken over all such factorizations of T.

(iii) There exist S ∈ L(X, c0) and R ∈ Lr
+(c0, F) such that S and R are compact and

T = R ◦ S. Further, ‖T‖N(ǫ0 ,|ǫ|1)(X,F) = inf ‖R‖r‖S‖, where the inf is taken over all

such factorizations of T.

(iii ′) There exist S ∈ L(X, c0) and R ∈ Lr
+(c0, F) such that R is compact and T =

R ◦ S. Further, ‖T‖N(ǫ0 ,|ǫ|1)(X,F) = inf ‖R‖r‖S‖, where the inf is taken over all such

factorizations of T.

(iv) There exist a compact Hausdorff space Ω, S ∈ L(X,C(Ω)) and R ∈ Lr
+(C(Ω), F)

such that S is compact and T = R ◦ S. Further, ‖T‖N(ǫ0 ,|ǫ|1)(X,F) = inf ‖R‖r‖S‖,

where the inf is taken over all such factorizations of T.

Let E and F be Banach lattices and

Kr(E, F) := {T : E → F | T = T1 − T2 for some T1, T2 ∈ K+(E, F)}.

We recall from [21] that if E is a Banach lattice and 1
p

+ 1
q

= 1, then Kr(Λq, E) is

also a Banach lattice for 1 ≤ p ≤ ∞ and Λ
p ⊗̃|ǫ| E = Kr(Λq, E) for 1 ≤ p < ∞. We

also recall from [20] that |ǫ| is symmetric, i.e. t |ǫ| = |ǫ|.
As an example of using Proposition 7.1 and Theorem 6.2 in conjunction with

Theorems 7.2 and 7.3, we characterize the nuclear operators associated with the
renormed space of bounded operators, as in Theorem 3.3, and the nuclear opera-
tors associated with the p-convex, p-concave and positive p-summing operators.

Theorem 7.4 Let E and F be Banach lattices, X and Y be Banach spaces and 1
p

+ 1
q

= 1.

(i) If T ∈ L(E, F), then the following statements are equivalent:

(a) T ∈ N(M2,M2)(E, F).

(b) There exist T1 ∈ L+(E, ℓ1), T2 ∈ L(ℓ1, ℓ2), T3 ∈ L(ℓ2, c0) and T4 ∈
L+(c0, F) such that T = T4 ◦ T3 ◦ T2 ◦ T1, T1 and T4 are compact. More-

over, ‖T‖N(M2 ,M2)(X,F) = inf ‖T4‖‖T3‖‖T2‖‖T1‖, where the inf is taken over

all such factorizations of T.

(c) There exist a measure space (Ω1, Σ, µ), a compact Hausdorff space Ω2,

T1 ∈ L+(E, L1(µ)), T2 ∈ L(L1(µ), ℓ2), T3 ∈ L(ℓ2,C(Ω2)) and T4 ∈
L+(C(Ω2), F) such that T = T4 ◦ T3 ◦ T2 ◦ T1 and T2 and T3 are com-

pact. Moreover, ‖T‖N(M2 ,M2)(X,F) = inf ‖T4‖‖T3‖‖T2‖‖T1‖, where the inf is

taken over all such factorizations of T.
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(ii) If 1 < p < ∞ and T ∈ L(X, F), then the following statements are equivalent:

(a) T ∈ N(tMp ,Mq)(X, F).

(b) There exist T1 ∈ L(X, c0), T2 ∈ L+(c0, ℓ
p), T3 ∈ L(ℓp, c0) and T4 ∈

L+(c0, F) such that T = T4 ◦ T3 ◦ T2 ◦ T1, and T2 and T4 are compact.

Moreover, ‖T‖
N

(tMp ,Mq)(X,F)
= inf ‖T4‖‖T3‖‖T2‖‖T1‖, where the inf is taken

over all such factorizations of T.

(c) There exist a compact Hausdorff spaces Ω1, Ω2, T1 ∈ L+(E,C(Ω1)), T2 ∈
L(C(Ω1), ℓp), T3 ∈ L(ℓp,C(Ω2)) and T4 ∈ L+(C(Ω2), F) such that T =

T4 ◦ T3 ◦ T2 ◦ T1, and T2 and T3 are compact. Moreover, ‖T‖
N

(tMp ,Mq)(X,F)
=

inf ‖T4‖‖T3‖‖T2‖‖T1‖, where the inf is taken over all such factorizations

of T.

(ii ′) If 1 < p < ∞ and T ∈ L(E,Y ), then the following statements are equivalent:

(a) T ∈ N(Mp ,
tMq)(E,Y ).

(b) There exist T1 ∈ L+(E, ℓ1), T2 ∈ L(ℓ1, ℓp), T3 ∈ L+(ℓp, ℓ1) and T4 ∈
L(ℓ1,Y ) such that T = T4 ◦ T3 ◦ T2 ◦ T1, and T1 and T3 are compact.

Moreover, ‖T‖
N

(Mp ,tMq)(E,Y )
= inf ‖T4‖‖T3‖‖T2‖‖T1‖, where the inf is taken

over all such factorizations of T.

(c) There exist measure spaces (Ω1, Σ1, µ1), (Ω2, Σ2, µ2), T1 ∈ L+(E, L1(µ1)),

T2 ∈ L(L1(µ1), ℓp), T3 ∈ L+(ℓp, L1(µ2)) and T4 ∈ L(L1(µ2), F) such that

T = T4 ◦ T3 ◦ T2 ◦ T1, and T2 and T4 are compact. Moreover,

‖T‖
N

(tMp ,Mq)(E,Y )
= inf ‖T4‖‖T3‖‖T2‖‖T1‖,

where the inf is taken over all such representations of T.

(iii) If 1 < p < ∞ and T ∈ L(E,Y ), then the following statements are equivalent:

(a) T ∈ N(|ǫ|p ,
tMq)(E,Y ).

(b) There exist T1 ∈ L(E, ℓp), T3 ∈ L+(ℓp, ℓ1) and T4 ∈ L(ℓ1,Y ) such that

T = T4 ◦ T3 ◦ T1, and T1 and T3 are compact. Moreover, ‖T‖
N

(|ǫ|p ,tMq)(E,Y )
=

inf ‖T4‖‖T3‖‖T1‖, where the inf is taken over all such representations of T.

(c) There exist a measure space (Ω2, Σ2, µ2), T1 ∈ L(E, ℓp), T2 ∈ L+(ℓp, L1(µ2))

and T3 ∈ L(L1(µ2), F) such that T = T3 ◦ T2 ◦ T1, T1 is compact and T2 is

compact. Moreover, ‖T‖
N

(|ǫ|p ,tMq)(E,Y )
= inf ‖T3‖‖T2‖‖T1‖ , where the inf is

taken over all such factorizations of T.

Proof (i) (a) ⇔ (b). Note that T ∈ N(M2,M2)(E, F) if and only if there exist R ∈
N

tM(E, ℓ2) and S ∈ NM(ℓ2, F) such that T = S ◦ R; moreover,

‖T‖N(M2 ,M2)(E,F) = inf ‖S‖M‖R‖tM ,

where the inf is taken over all such factorizations of T, by Proposition 7.1. But R ∈
N

tM(E, ℓ2) if and only if there exist T1 ∈ Lr
+(E, ℓ1) and T2 ∈ L(ℓ1, ℓ2) such that T1

is compact and R = T2 ◦ T1; further, ‖R‖N
tM (E,ℓ2) = inf ‖T2‖ ‖T1‖r , where the inf is

taken over all such representations of R, by Proposition 7.3. Also, S ∈ NM(ℓ2, F) if
and only if there exist T3 ∈ L(ℓ2, c0) and T4 ∈ Lr

+(c0, F) such that T4 is compact and
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T = T4 ◦T3; further, ‖S‖NM (ℓ2,F) = inf ‖T4‖r‖T3‖, where the inf is taken over all such
factorizations of T, by Proposition 7.3 (i) ⇔ (iii ′). Consequently, (a) is equivalent

to (b).

It follows in a similar way, by using Proposition 7.2(i) ⇔ (iv) and Proposition 7.3
(i) ⇔ (iv), that (a) is equivalent to (c).

The proofs of the other statements follow by analogous arguments, noting that
the remarks preceding Theorem 7.4, concerning Kr(E, F) and the symmetry of |ǫ|,
pertain to the proof of (iii).
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