This is an Accepted Manuscript for Epidemiology & Infection. Subject to change during the editing and production process.

DOI: 10.1017/S0950268825000135

# <u>Are children and adolescents living with HIV in Europe and South Africa at higher risk</u> <u>of SARS-CoV-2 and poor COVID-19 outcomes?</u>

- 3 Charlotte Jackson<sup>1</sup>, Siobhan Crichton<sup>1</sup>, Alasdair Bamford<sup>1,2</sup>, Arantxa Berzosa Sanchez<sup>3</sup>, 4 Kimberly C Gilmour<sup>2,4</sup>, Tessa Goetghebuer<sup>5</sup>, Sarah May Johnson<sup>2</sup>, Ali Judd<sup>1,6</sup>, Antoni 5 Noguera-Julian<sup>7,8,9,10</sup>, Marthe Le Prevost<sup>1</sup>, Vasiliki Spoulou<sup>11</sup>, Kate Sturgeon<sup>1</sup>, Alla 6 Volokha<sup>12</sup>, Heather J Zar<sup>13</sup>, Intira Jeannie Collins<sup>1\*</sup>, The European Pregnancy and Paediatric 7 Infections Cohort Collaboration (EPPICC) SARS-CoV-2 antibody study group\*\* 8 9 <sup>1</sup> University College London, London, UK 10 <sup>2</sup> Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK 11 <sup>3</sup> Hospital General Universitario "Gregorio Marañón", Madrid, Spain 12 <sup>4</sup> National Institute for Health Research Great Ormond Street Hospital Biomedical Research 13 14 Centre, London, UK <sup>5</sup> Centre Hospitalier Universitaire St Pierre, Université libre de Bruxelles, Brussels, Belgium 15 <sup>6</sup> Fondazione Penta ETS, Padova, Italy 16 <sup>7</sup> Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Spain 17 <sup>8</sup> Universitat de Barcelona, Barcelona, Spain 18 <sup>9</sup> Red de Investigación Translacional en Infectología Pediátrica (RITIP), Madrid, Spain 19 <sup>10</sup> CIBER de Epidemiología y Salud Pública (ISCIII), Madrid, Spain 20 <sup>11</sup> "Agia Sophia" Children's Hospital, Athens, Greece 21 <sup>12</sup> Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine 22
- 23 <sup>13</sup> University of Cape Town, Cape Town, South Africa

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/bync-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. 24 \* Senior author

- <sup>\*\*</sup> The names of the authors (Project Team and Writing Committee) are listed in the
- 27 Acknowledgements section.
- 28
- 29 Corresponding author: Charlotte Jackson, MRC Clinical Trials Unit at UCL, Institute of
- 30 Clinical Trials and Methodology, 90 High Holborn, 2nd Floor, London, WC1V 6LJ. Contact
- 31 number: +44 (0)20 7670 4806. Email address: <u>c.r.jackson@ucl.ac.uk</u>
- 32
- 33
- 34

# 35 *Summary*

- 36 Children, adolescents and young people living with HIV (CALWHIV), including those in
- 37 resource-limited settings, may be at increased risk of SARS-CoV-2 infection, poorer COVID-
- 38 19 outcomes and multisystem inflammatory syndrome (MIS). We conducted a repeat SARS-
- 39 CoV-2 seroprevalence survey amongst CALWHIV in Europe (n=493) and South Africa (SA,
- 40 n=307), and HIV negative adolescents in SA (n=100), in 2020-2022. Blood samples were
- 41 tested for SARS-CoV-2 antibody, questionnaires collected data on SARS-CoV-2 risk factors
- 42 and vaccination status, and clinical data were extracted from health records. SARS-CoV-2
- 43 seroprevalence (95% CI) was 55% (50-59%) in CALWHIV in Europe, 67% (61-72%) in
- 44 CALWHIV in SA, and 85% (77-92%) among HIV negative participants in SA. Amongst
- 45 those unvaccinated at time of sampling (n=769, 85%), seroprevalence was 40% (35-45%),
- 46 64% (58-70%), and 81% (71-89%), respectively. Few participants (11% overall) had a
- 47 known history of SARS-CoV-2 positive PCR or self-reported COVID-19. Three CALWHIV
- 48 were hospitalized, two with COVID-19 (non-severe disease) and one young adult with MIS.
- 49 Although SARS-CoV-2 seroprevalence was high across all settings, even in unvaccinated
- 50 participants, it was broadly comparable to general population estimates, and most infections
- 51 were mild/asymptomatic. Results support policy decisions excluding CALWHIV without
- 52 severe immunosuppression from high-risk groups for COVID-19.

53

# 55 Introduction

| 56 | People living with HIV (PLWHIV) may be at greater risk of severe outcomes following           |
|----|-----------------------------------------------------------------------------------------------|
| 57 | coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome               |
| 58 | coronavirus 2 (SARS-CoV-2)) than people who are HIV negative, although the extent of and      |
| 59 | reasons for any causal relationship remain unclear [1, 2]. The impact of factors such as HIV  |
| 60 | viral load (VL), CD4 count, antiretroviral therapy (ART) and co-morbidities are incompletely  |
| 61 | understood [1, 2]. These factors may vary between settings, e.g. depending on country         |
| 62 | income status, meaning that collection of comparable data from multiple countries is          |
| 63 | essential.                                                                                    |
| 64 |                                                                                               |
| 65 | Data on severity of SARS-CoV-2 infection in children, adolescents and young people living     |
| 66 | with HIV (CALWHIV) are limited, although two European studies reported only mild              |
| 67 | disease in this group [3, 4], consistent with data on HIV negative children [5]. A comparison |
| 68 | between CALWHIV and HIV negative children in South Africa (SA) found no association           |
| 69 | between HIV and SARS-CoV-2 mortality, although precision was limited by the reassuringly      |
| 70 | small number of deaths [6].                                                                   |
| 71 |                                                                                               |
| 72 | While polymerase chain reaction (PCR) tests detect current SARS-CoV-2 infection,              |
| 73 | serological tests detect antibodies which indicate either previous infection or vaccination.  |
| 74 | Antibodies against the SARS-CoV-2 nucleoprotein (anti-N antibodies) are an index of natural   |
| 75 | infection, whereas those against the spike protein (anti-S antibodies) indicate previous      |
| 76 | infection or vaccination with currently available vaccines. Conversely, absence of antibodies |
| 77 | indicates that either an individual has never been infected with or vaccinated against SARS-  |
| 78 | CoV-2, or that any antibody response to infection or vaccination was below the assay limit of |

| 79 | detection or has waned over time. SARS-CoV-2 serological tests have high sensitivity and        |
|----|-------------------------------------------------------------------------------------------------|
| 80 | specificity, although sensitivity varies between tests and wanes over time since infection [7]. |
| 81 |                                                                                                 |

| 82 | Seroprevalence data can be compared to clinical data to infer the severity of SARS-CoV-2      |
|----|-----------------------------------------------------------------------------------------------|
| 83 | infection. Although the extent of protection conferred by infection with previous variants is |
| 84 | unclear, these data can inform vaccine policy, e.g. whether CALWHIV should be prioritized     |
| 85 | for vaccination or messaging to promote vaccine uptake. SARS-CoV-2 seroprevalence data        |
| 86 | in CALWHIV are limited. A study in Mozambique reported SARS-CoV-2 seroprevalence as           |
| 87 | 36% amongst 90 unvaccinated adolescents living with HIV compared to 49% amongst 450           |
| 88 | HIV negative participants in November 2022 [8], with evidence that seroprevalence was         |
| 89 | lower amongst adolescents living with HIV on unadjusted, but not adjusted, analysis.          |
| 90 |                                                                                               |

In this study, we estimate the prevalence of SARS-CoV-2 antibody in CALWHIV in Europe and SA, and a comparison group of HIV negative adolescents and young people in SA, and describe how this changed over time, overall and by age group and region.

94

# 95 Methods

We carried out a repeat SARS-CoV-2 seroprevalence study amongst CALWHIV enrolled
through established cohorts within the European Pregnancy and Paediatric Infections Cohort
Collaboration (EPPICC) and the Cape Town Adolescent Antiretroviral Cohort (CTAAC).
EPPICC is a network of cohorts of CALWHIV in routine paediatric HIV care in Europe and
Thailand [9]; a subset of six cohorts in five countries participated in this study (Belgium,
Greece, two cohorts in Spain, Ukraine, UK). Some cohorts include follow-up data after
transfer to adult HIV care. CTAAC is a longitudinal cohort study of adolescents living with

|     | TTTT7 / 11'1 1 /         |                | •              | C .1     | • . •            | C         |
|-----|--------------------------|----------------|----------------|----------|------------------|-----------|
| 102 | HIV established on A     | R I and a con  | maricon aroun  | trom the | come communities | and ane   |
| 103 | III V USLAUIISIIUU UII A | ix i anu a con | IDalison gloud | monn une | same communities | 5 01 age- |
|     |                          |                |                |          |                  | <u></u>   |

104 matched HIV negative adolescents in Cape Town, SA [10].

- 105
- 106 *Participants and study procedures*
- 107 Participants aged <25 years and in follow-up in these cohorts were invited to take part in this
- study. CALWHIV were eligible if diagnosed with HIV aged <18 years. At the start of the
- 109 study (October 2020), participation in a SARS-CoV-2 vaccine trial or receipt of a vaccine at
- 110 baseline were exclusion criteria; the latter criterion was removed in May 2021 as approved
- 111 vaccines became increasingly available.
- 112
- 113 Venous blood samples and participant data were collected during routine clinic or study visits
- at two time points ~6 months apart (allowable range 3-13 months). Participants (or

115 parents/guardians for children) completed questionnaires including information on COVID-

116 19 (physician-diagnosed with or without a positive test, or self-reported) at each visit.

- 117 Additional details on SARS-CoV-2 vaccination status were added from March 2021.
- 118

| 119 | In some clinics, previous test results from routine SARS-CoV-2 antibody screening or stored     |
|-----|-------------------------------------------------------------------------------------------------|
| 120 | samples from routine visits (after 1 March 2020 and ≥4 months before enrolment) were used       |
| 121 | as the baseline sample. Questionnaires were completed referring to the time of sample           |
| 122 | collection. All samples were tested for SARS-CoV-2 antibodies using locally available           |
| 123 | serological assays. Results for anti-S IgG were preferred as these antibodies have the longest  |
| 124 | half-life [11, 12]; other results (e.g. for IgM and/or anti-N) were also accepted. Results were |
| 125 | reported as positive, negative or indeterminate as per manufacturers' instructions.             |
| 126 |                                                                                                 |

| 127 | At each visit, data were extracted from clinic records, including demographics, HIV (clinical,    |
|-----|---------------------------------------------------------------------------------------------------|
| 128 | laboratory and ART data; CD4 counts and HIV VLs measured up to 6 months before to one             |
| 129 | month after the sample date), co-morbidities at the time of the test, dates of COVID-19           |
| 130 | diagnoses (SARS-CoV-2 positive PCR and/or hospitalization with symptoms consistent with           |
| 131 | COVID-19 according to WHO definition (Supplementary Material)) and multisystem                    |
| 132 | inflammatory syndrome in children (MIS-C, based on the WHO definition [13]), and dates            |
| 133 | and details of SARS-CoV-2 vaccination. For participants with documented COVID-19 or               |
| 134 | MIS-C diagnosis, clinicians were asked to provide further details using case report forms         |
| 135 | based on WHO/ISARIC forms, including reporting of severity as defined by WHO at the               |
| 136 | time [14] (Supplementary Material), although this was not possible in SA. The MIS-C case          |
| 137 | definition applies to 0-19 year-olds; we did not systematically collect data on post-SARS-        |
| 138 | CoV-2 inflammatory syndromes in older participants.                                               |
| 139 |                                                                                                   |
| 140 | Information on the dominant variant in each setting for each calendar quarter was based on        |
| 141 | publicly available data from the Global Initiative on Sharing All Influenza Data (GISAID)         |
| 142 | [15]; a variant was considered dominant from the first month in which it accounted for $\geq$ 50% |
| 143 | of reports.                                                                                       |

144

145 Statistical analysis

146 The original target sample size was 1150 (650 in Europe, 500 in SA). Assuming

147 seroprevalence of 10% [16], this would produce a 95% confidence interval of  $\pm 2\%$  in Europe

148 and  $\pm 3\%$  in SA. As reduced clinic visits during the pandemic affected enrolment, we revised

149 the target sample size to 950 in November 2021, with minimal impact on precision.

| 151 | Participant characteristics at baseline were summarized as frequency/percentage and median   |
|-----|----------------------------------------------------------------------------------------------|
| 152 | [interquartile range]. As our primary outcome, we summarized, we summarized the              |
| 153 | percentage of participants with at least one SARS-CoV-2 antibody positive blood sample,      |
| 154 | overall and by sex, age group (<15 vs $\geq$ 15 years), presence of any co-morbidity and     |
| 155 | geographical setting (Europe and SA). Within Europe we further stratified as UK, Ukraine     |
| 156 | and 'rest of Europe' (Belgium, Greece and Spain) based on sample size. In SA, we stratified  |
| 157 | by HIV status. Vaccine coverage is presented as the percentage of samples each quarter that  |
| 158 | were from participants who had received at least one vaccine dose, amongst those with        |
| 159 | known vaccination status.                                                                    |
| 160 |                                                                                              |
| 161 | We also present the percentage of tests that were positive, with exact 95% CIs, by calendar  |
| 162 | quarter in Europe (overall and for UK, Ukraine and rest of Europe) and SA (by HIV status),   |
| 163 | where the denominator was $\geq 10$ .                                                        |
| 164 |                                                                                              |
| 165 | To assess seroprevalence due to infection (rather than vaccination), we carried out two      |
| 166 | separate analyses restricted to 1) samples from participants reported as unvaccinated at the |
| 167 | time of blood sampling, and 2) tests for N-antibodies.                                       |
| 168 |                                                                                              |
| 169 | To assess antibody status amongst vaccinated participants, we estimated the percentage with  |
| 170 | a positive S-antibody result on their first test after vaccination. Finally, amongst all     |
| 171 | participants who were seropositive on their first test, we estimated the percentage who      |
| 172 | reverted to seronegative on their second.                                                    |
| 173 |                                                                                              |
| 174 | Results                                                                                      |

### https://doi.org/10.1017/S0950268825000135 Published online by Cambridge University Press

| 175 | Between October 2020 and April 2022, 906 participants were enrolled across six countries,      |
|-----|------------------------------------------------------------------------------------------------|
| 176 | providing 1679 serology test results. Eighteen results for 16 participants were indeterminate; |
| 177 | three of these participants had no valid results and were excluded, whereas 13 had one         |
| 178 | remaining valid result. Therefore 1661 tests for 903 participants were included in analyses    |
| 179 | (for types of tests see Supplementary Table S1). Samples were taken between May 2020 and       |
| 180 | July 2022 (Supplementary Figure S1). Amongst 758 participants with two test results, the       |
| 181 | median time between samples was 192 days [IQR 176-259]. The time between samples was           |
| 182 | <90 days for eight participants and >395 days for 28; although outside the recommended         |
| 183 | range, these were retained in analyses. 898/903 (99%) participants completed at least one      |
| 184 | questionnaire and 657/758 (87%) of those with two tests completed two questionnaires.          |
| 185 |                                                                                                |
| 186 | Participant characteristics at baseline                                                        |
| 187 | Most participants were enrolled in SA (410/903, 45%), UK (202/903, 22%) or Ukraine             |
| 188 | (160/903, 18%). 800/903 (89%) were CALWHIV; 103 (11%) were HIV negative participants           |
| 189 | in SA (Table 1). Median age at enrolment was 15 years [IQR 12-18] in Europe, 19 [IQR 17-       |
| 190 | 20] amongst CALWHIV in SA, and 17 [IQR 16-19] amongst HIV negative participants in             |
| 191 | SA. Approximately half of participants were female. Details of co-morbidities are given in     |
| 192 | Supplementary Table S2. Two participants reported enrolment in a vaccine trial during the      |
| 193 | study (one each in UK and SA).                                                                 |
| 194 |                                                                                                |
| 195 | Almost all participating CALWHIV had initiated ART before enrolment. In Europe, 5% of          |
| 196 | CALWHIV had a CD4 count <350 cells/ $\mu$ L versus 22% in SA (2% and 9% were severely          |
| 197 | immunocompromised with CD4 <200 cells/ $\mu$ L). 85% of CALWHIV in Europe and 62% in           |
| 198 | SA were virologically suppressed $<50$ copies/mL (with 95% and 76% suppressed $<1000$          |
| 199 | copies/mL).                                                                                    |

200

### 201 *COVID-19 disease and vaccination at baseline and follow-up*

- 202 At time of enrolment, among those with data, 15 participants (all were CALWHIV in Europe)
- 203 had a previous SARS-CoV-2 positive PCR in their clinic records (3% of CALWHIV in
- Europe, 2% of participants overall) (Table 2). By the end of follow-up, 5% (44/866) of all
- 205 participants had a positive PCR recorded. This percentage was highest amongst CALWHIV
- in Europe (Table 2). By end of follow-up, a further 55 (all in Europe) had self-reported
- 207 COVID-19 but without a recorded positive PCR in their clinic records.
- 208
- At enrolment, 47/463 (10%) participants in Europe with known SARS-CoV-2 vaccine status
- 210 had been vaccinated, and none in SA. This increased during follow-up, to 202/870 (23%) of
- all participants (Table 2). Of those vaccinated, 73/202 (36%) had received one dose
- 212 (including 13 single-dose schedule Janssen vaccines), 114/202 two doses (56%), and 15/202
- 213 (7%) > 2 doses. Manufacturer was reported for 259 doses, with the most common being
- 214 Pfizer/BioNTech (193/259, 75%). Vaccine coverage ( $\geq 1$  dose) varied by setting and
- 215 increased over time: amongst participants providing samples in the final quarter of the study,
- 216 vaccine coverage reached 50% (95% CI 35-65%) in Europe, 33% (95% CI 20-48%) in
- 217 CALWHIV in SA, and 30% (95% CI 17-47%) in HIV negative participants (Supplementary
- Figure S1). Within Europe, vaccine coverage was markedly lower in Ukraine (6/160, 4%)
- than in the UK (86/196, 44%) and the remaining European cohorts (54/127, 43%).
- 220
- 221 In total, amongst those with data, 199/475 (42%) CALWHIV in Europe, 35/280 (13%)
- 222 CALWHIV in SA and 24/97 (25%) HIV negative participants in SA had any of the following
- by the end of follow-up: a SARS-CoV-2 positive PCR, self-reported COVID-19 or
- 224 vaccination (Table 2).

| 226 | Two participants in Europe were hospitalized with COVID-19 (both PCR positive), neither of   |
|-----|----------------------------------------------------------------------------------------------|
| 227 | whom were classified as having severe disease. No cases of MIS-C were reported although      |
| 228 | one 22-year-old participant living with HIV in Europe was diagnosed with Multisystem         |
| 229 | Inflammatory Syndrome in Adults (MIS-A). They were hospitalized and subsequently             |
| 230 | discharged. One participant died. This participant was a CALWHIV enrolled in SA, and their   |
| 231 | death was not related to either COVID-19 or HIV.                                             |
| 232 |                                                                                              |
| 233 | SARS-CoV-2 antibody status                                                                   |
| 234 | In analyses including all participants, irrespective of vaccination status, 55% (95% CI 50-  |
| 235 | 59%) of CALWHIV in Europe, 67% (95% CI 61-72%) of CALWHIV in SA and 85% (95%                 |
| 236 | CI 77-92%) of HIV negative participants were SARS-CoV-2 seropositive on at least one         |
| 237 | sample (Figure 1, blue bars). When analysis was restricted to samples taken from             |
| 238 | unvaccinated participants (n=769), these figures were 40% (95% CI 35-45%), 64% (95% CI       |
| 239 | 58-70%) and 81% (95% CI 71-89%), respectively (Figure 1, yellow bars).                       |
| 240 | XO                                                                                           |
| 241 | Trends in seroprevalence over time and by participant characteristics                        |
| 242 | The percentage of tests that were positive increased over time in all groups (Figure 2).     |
| 243 | Overall seroprevalence reached 78% (95% CI 63-88%), 84% (95% CI 71-93%) and 95%              |
| 244 | (95% CI 83-99%) in CALWHIV in Europe, CALWHIV in SA, and HIV negative                        |
| 245 | participants in SA, respectively. The corresponding figures among unvaccinated participants  |
| 246 | were 65% (95% CI 43-84%), 76% (95% CI 58-89%) and 93% (95% CI 76-99%). In Europe,            |
| 247 | seroprevalence in Ukraine varied little over time compared to other countries (Supplementary |
| 248 | Figure S3). In all settings, seroprevalence increased following the emergence of new SARS-   |
| 249 | CoV-2 variants of concern, particularly Omicron.                                             |
|     |                                                                                              |

https://doi.org/10.1017/S0950268825000135 Published online by Cambridge University Press

| 251 | In CALWHIV, seroprevalence was higher in those aged ≥15 years (65%, 95% CI 61-69%)              |
|-----|-------------------------------------------------------------------------------------------------|
| 252 | than in younger participants (45%, 95% CI 39-52%) while in HIV negative participants,           |
| 253 | seroprevalence was higher in <15 year-olds (100% versus 84% in $\geq$ 15 year-olds), although   |
| 254 | with wide CIs. Amongst CALWHIV, seroprevalence was higher amongst participants with             |
| 255 | baseline CD4 counts ≥350 cells/µL (59% (95% CI 55-63%)) versus <350 cells/µL (46%               |
| 256 | (95% CI 35-57%)), while it did not appear to differ by baseline virological status. Similar     |
| 257 | patterns were observed when analysis was restricted to samples taken from unvaccinated          |
| 258 | participants (Figure 1, yellow bars).                                                           |
| 259 |                                                                                                 |
| 260 | Antibody status among vaccine recipients, seroreversion, and N-antibody results                 |
| 261 | Amongst participants known to be vaccinated before blood sampling, 108/119 (91%) were           |
| 262 | seropositive for S-antibodies on the first test result following vaccination (median 105 days   |
| 263 | [IQR 35-179] after vaccination). Details of the 11 seronegative participants are shown in       |
| 264 | Supplementary Table S3.                                                                         |
| 265 | XO                                                                                              |
| 266 | Amongst 283 participants (both vaccinated and unvaccinated) who were seropositive on their      |
| 267 | first test and had two tests, 45 were subsequently seronegative (Supplementary Table S4).       |
| 268 |                                                                                                 |
| 269 | A total of 199 participants had at least one N-antibody result: 160 in Ukraine, 28 in the UK    |
| 270 | and 11 in the rest of Europe. Of these, 83/199 (42%) were positive for N-antibodies on $\geq 1$ |
| 271 | test, indicating definite infection rather than vaccination.                                    |
| 272 |                                                                                                 |

Discussion

274 This is, to our knowledge, the first study to assess SARS-CoV-2 antibody status in a large, 275 geographically diverse sample of CALWHIV. We found a high seroprevalence (78-84%) of 276 SARS-CoV-2 antibodies by mid-2022 amongst CALWHIV in Europe and South Africa, and 277 65-76% amongst participants with no history of SARS-CoV-2 vaccination at the time of the 278 test. Three CALWHIV in Europe were hospitalized: two with COVID-19 (both with non-279 severe disease) and one young adult with MIS-A (although we did not systematically collect 280 data on MIS-A). Nonetheless, the lower prevalence of documented or self-reported SARS-281 CoV-2 infection or COVID-19 disease compared to seroprevalence implies that many 282 infections were asymptomatic or mild, consistent with other analyses of CALWHIV enrolled 283 in EPPICC [3] and elsewhere [4, 8]. The apparent increases in seroprevalence following the 284 emergence of novel variants, particularly Omicron, are consistent with the increased 285 transmissibility and immune evasion of these variants [17].

286

287 Comparisons of seroprevalence between settings and groups are complicated by the extended 288 period over which samples were taken, and so we did not undertake formal comparisons. 289 However, seroprevalence appeared to vary between settings, being lowest in Europe and highest in HIV negative participants in SA and, within Europe, highest in the UK. This may 290 291 reflect several factors, including age (the UK cohort was older than the other European 292 cohorts, and studies have shown seroprevalence increases with age [18-20]), the timing of 293 testing in relation to SARS-CoV-2 circulation in different settings, and variation in mitigation 294 strategies between settings. Seroprevalence was higher amongst CALWHIV with CD4 counts 295  $\geq$ 350 cells/µL than those with lower CD4 counts, consistent with other studies [21]. This 296 could reflect an impaired serological response in those with lower CD4 count (lack of 297 detectable response, lower peak antibody levels or faster waning) or greater avoidance of 298 social contact in those with lower CD4 counts. For example, early in the pandemic, the

British HIV Association advised adult PLWHIV with a CD4 count <200 cells/µL, detectable</li>
VL or not on ART to strictly follow social distancing advice [22]. We did not see a difference
in seroprevalence by viral suppression status (<50 copies/mL), although previous studies</li>
have reported higher seroprevalence amongst PLWHIV who were virologically suppressed
[11, 23].

304

It is difficult to compare our results for CALWHIV with those of general population studies 305 306 due to differences in key characteristics (e.g. age groups and sources of samples) and 307 calendar period, as well as variation in SARS-CoV-2 dynamics in different settings and 308 populations. Household serosurveys in SA reported seroprevalence ranging from 56% to 309 ~80% in children and adolescents in October-December 2021 [19, 24]. This is broadly consistent with our results for the same time frame in SA: 72% amongst CALWHIV overall 310 311 and 68% amongst unvaccinated CALWHIV, and 77% amongst all HIV negative participants 312 versus 74% in unvaccinated HIV negative participants. In the UK, population-based studies 313 reported a seroprevalence of 20% by April-June 2021 amongst 0-18 year-olds in England 314 [25], again somewhat lower than our estimates for the corresponding quarter of 34% overall 315 and 28% in unvaccinated participants, respectively (likely reflecting the older age of our 316 study participants).

317

Vaccine coverage was relatively low amongst study participants (≤50% in each of the three
cohort groups by the end of the study period), but increased over time corresponding to
vaccine availability. For example, in the UK, PLWHIV aged ≥16 years were eligible for
vaccination from February 2021; younger PLWHIV became eligible with the rest of their age
group (September 2021 for 12-15 year-olds, February 2022 for 5-11 year-olds) [26]. In SA,
people aged 18-34 years were eligible for vaccination from September 2021 [27], and 12-17

| 324 | year-olds from October 2021 [28], with PLWHIV being prioritized. Therefore the lower        |
|-----|---------------------------------------------------------------------------------------------|
| 325 | vaccine coverage in SA compared to Europe in our study probably reflects later access in SA |
| 326 |                                                                                             |



338 The higher seroprevalence amongst the HIV negative participants compared to CALWHIV in 339 SA, albeit with wide CIs, is consistent with previous results from SA [11], Mozambique [8] 340 and the USA [32]. We also found that seroprevalence was lower in CALWHIV with CD4 341 counts  $\geq$ 350 cells/µL than amongst HIV negative participants. The authors of the US study 342 proposed that PLWHIV may have been more careful to avoid infection [32], and presented 343 evidence of a diminished IgG response to SARS-CoV-2 infection, both of which might apply 344 in our study. Diminished antibody responses to childhood vaccines amongst CALWHIV, 345 compared to HIV-exposed uninfected children, have also been reported [33]. 346 347 This study has some important limitations. Our pragmatic approach to data collection meant

348 that a variety of tests were used; the predominance of S-antibody tests means that, among the

349 one-quarter of participants who were ever vaccinated, we cannot distinguish between 350 infection-versus vaccine-induced antibodies. However, we also present estimates for 351 unvaccinated participants and, where available, N-antibodies; 42% of those with N-antibody 352 results were seropositive, indicating definite infection. Variations in antibody test sensitivity 353 and specificity, and potentially antibody waning, mean that our seroprevalence estimates 354 amongst the unvaccinated may be minimum estimates of the prevalence of previous SARS-CoV-2 infection (for example, some participants who were seronegative at enrolment may 355 356 have been previously seropositive). We combined data from Belgium, Greece and Spain due 357 to small numbers, potentially masking differences between countries. Although our data 358 suggest that some CALWHIV revert from seropositive to seronegative, we cannot estimate 359 the duration of antibody persistence; furthermore, cell-mediated immunity may provide 360 protection and persist even in the absence of detectable antibody [34]. Finally, in this cohort 361 of CALWHIV, largely comprising older adolescents with perinatally acquired HIV, almost 362 all were on ART, most had undetectable VL and few were immunosuppressed, therefore our 363 findings may not be generalisable to settings with younger cohorts and less well-controlled 364 HIV.

365

We report a high seroprevalence of SARS-CoV-2 antibody amongst CALWHIV in Europe and South Africa, frequently in the absence of vaccination or reported prior infection/disease. We therefore infer that a high proportion of SARS-CoV-2 infections were mild or asymptomatic in this population. Further data on the extent and duration of protection conferred by infection- and vaccination-induced antibodies, and the relative importance of cell-mediated immunity, in this population are needed to better define their future susceptibility to (re-)infection and severe disease, and to optimize vaccination strategies.

# 374 List of abbreviations

| 375 | ART     | Antiretroviral therapy                                                   |
|-----|---------|--------------------------------------------------------------------------|
| 376 | CALWHIV | Children and adolescents living with HIV                                 |
| 377 | CI      | Confidence interval                                                      |
| 378 | CTAAC   | Cape Town Adolescent Antiretroviral Cohort                               |
| 379 | EPPICC  | European Pregnancy and Paediatric Infections Cohort Collaboration        |
| 380 | HIV     | Human immunodeficiency virus                                             |
| 381 | IQR     | Interquartile range                                                      |
| 382 | ISARIC  | International Severe Acute Respiratory and emerging Infection Consortium |
| 383 | MIS-C   | Multisystem inflammatory syndrome in children                            |
| 384 | PCR     | Polymerase chain reaction                                                |
| 385 | SA      | South Africa                                                             |
| 386 | UK      | United Kingdom                                                           |
| 387 | VL      | Viral load                                                               |
| 388 | WHO     | World Health Organization                                                |

389

# 390 Ethics approval and consent to participate

391 The authors assert that all procedures contributing to this work comply with the ethical

392 standards of the relevant national and institutional committees on human experimentation and

393 with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained

from participants aged  $\geq 16$  years (or the local legal adult age). For younger participants,

395 parent/carer consent was obtained, with participant assent where appropriate. The study was

approved by the UCL Research Ethics Committee (Ref 17493/002) and local ethics

397 committees.

398 The study is registered on clinicaltrials.gov (NCT04726137).

399 400 Availability of data and materials 401 The data that support the findings of this study are available on request from the 402 corresponding author. The data are not publicly available due to their sensitive nature and 403 privacy and ethical considerations. 404 405 **Conflicts of interest** 406 We declare no conflicts of interest. 407 408 **Financial support** 409 This study was funded by a competitive grant from ViiV Healthcare (grant number COV 410 214671). EPPICC is a collaboration between University College London and the Penta 411 Foundation (Fondazione Penta ETS) (http://penta-id.org). Some EPPICC activities received 412 industry funding, including from ViiV Healthcare, Gilead Sciences and Merck during the 413 time this work was carried out. The MRC Clinical Trials Unit at UCL is supported by the 414 Medical Research Council (programme number: MC UU 00004/03). CTAAC receives 415 funding from the South African Medical Research Council and the US National Institutes of 416 Health (grant number R01HD074051). 417 418 Authors' contributions 419 IJC, AJ, CJ and SC designed the study, with substantial input from all authors in the project 420 team. AB, ABS, TG, AN-J, MLP, VS, KS, AV and HJZ coordinated data collection in their 421 respective cohorts. SMJ led development of the study participant questionnaire. CJ led the 422 data analysis with input from SC, and drafted the manuscript. KCG provided immunological 423 expertise. All authors critically reviewed and edited the manuscript, and all have read and

424 approved the final manuscript.

## 426 Acknowledgements

427 We thank the study participants and their families.

428

- 429 **Project Team**: Charlotte Jackson<sup>1</sup>, Siobhan Crichton<sup>1</sup>, Alasdair Bamford<sup>1,2</sup>, Arantxa Berzosa
- 430 Sanchez<sup>3</sup>, Kimberly C Gilmour<sup>2,4</sup>, Tessa Goetghebuer<sup>5</sup>, Sarah May Johnson<sup>2</sup>, Ali Judd<sup>1,6</sup>,
- 431 Antoni Noguera-Julian<sup>7,8,9,10</sup>, Marthe Le Prevost<sup>1</sup>, Vana Spoulou<sup>11</sup>, Kate Sturgeon<sup>1</sup>, Alla
- 432 Volokha<sup>12</sup>, Heather J Zar<sup>13</sup>, Intira Jeannie Collins<sup>1\*</sup>

- 434 <sup>1</sup> University College London, London, UK
- 435 <sup>2</sup> Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- 436 <sup>3</sup> Hospital General Universitario "Gregorio Marañón", Madrid, Spain
- 437 <sup>4</sup> National Institute for Health Research Great Ormond Street Hospital Biomedical Research
- 438 Centre, London, UK
- 439 <sup>5</sup> Centre Hospitalier Universitaire St Pierre, Université libre de Bruxelles, Brussels, Belgium
- <sup>6</sup> Fondazione Penta ETS, Padova, Italy
- 441 <sup>7</sup> Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Spain
- 442 <sup>8</sup> Universitat de Barcelona, Barcelona, Spain
- <sup>9</sup> Red de Investigación Translacional en Infectología Pediátrica (RITIP), Madrid, Spain
- <sup>10</sup> CIBER de Epidemiología y Salud Pública (ISCIII), Madrid, Spain
- 445 <sup>11</sup>"Agia Sophia" Children's Hospital, Athens, Greece
- 446 <sup>12</sup> Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
- <sup>13</sup> University of Cape Town, Cape Town, South Africa
- 448 \* Senior author
- 449
- 450 Writing Committee, listed alphabetically: Nana Akua Asafu-Agyei (University of Cape
- 451 Town, Cape Town, South Africa), Emma Carkeek (University of Cape Town, Cape Town,

| 452 | South Africa), Elizabeth Chappell (University College London, London, UK), Danielle    |
|-----|----------------------------------------------------------------------------------------|
| 453 | Chilton (Guy's and St Thomas' NHS Foundation Trust, London, UK), Katja Doerholt (St    |
| 454 | George's University Hospitals NHS Foundation Trust), Caroline Foster (Imperial College |
| 455 | Healthcare NHS Trust, London, UK), Marie Antoinette Frick (Hospital Vall d'Hebron,     |
| 456 | Barcelona, Spain), Elizabeth Hamlyn (King's College Hospital NHS Foundation Trust,     |
| 457 | London, UK), Sally Hawkins (King's College Hospital NHS Foundation Trust, London,      |
| 458 | UK), Julia Kenny (Guy's and St Thomas' NHS Foundation Trust, London, UK), Hermione     |
| 459 | Lyall (Imperial College Healthcare NHS Trust, London, UK), Paddy McMaster (Manchester  |
| 460 | University NHS Foundation Trust, Manchester, UK), Marisa Navarro (Hospital General     |
| 461 | Universitario "Gregorio Marañón", Madrid, Spain), Katia Prime (St George's University  |
| 462 | Hospitals NHS Foundation Trust), Steven B Welch (University Hospitals Birmingham NHS   |
| 463 | Foundation Trust, Birmingham, UK).                                                     |
| 464 |                                                                                        |
|     |                                                                                        |

465 EPPICC / Penta Co-ordinating Team: Elizabeth Chappell, Siobhan Crichton, Intira Jeannie
466 Collins, Giorgia Dalla Valle, Charlotte Duff, Carlo Giaquinto, Charlotte Jackson, Ali Judd,

467 Laura Mangiarini, Edith Milanzi, Karen Scott

468

# 469 Collaborating cohorts:

470 <u>Belgium:</u> Hopital St Pierre Cohort, Brussels: Tessa Goetghebuer, MD, PhD; Marc Hainaut,

- 471 MD PhD; Wivine Tremerie, Research nurse; Marc Delforge, data manager.
- 472 Spain: CoRISPE-cat, Catalonia: CoRISPE-cat receives financial support from the Instituto de
- 473 Salud Carlos III through the Red Temática de Investigación Cooperativa en Sida (grant
- 474 numbers RED RIS RD06/0006/0035 yRD06/0006/0021). Members: Hospital Universitari
- 475 Vall d'Hebron, Barcelona (Pere Soler-Palacín, Maria Antoinette Frick and Santiago Pérez-

476 Hoyos (statistician)), Hospital Universitari del Mar, Barcelona (Núria López), Hospital

477 Universitari Germans Trias i Pujol, Badalona (María Méndez, Clara Carreras), Hospital

478 Universitari JosepTrueta, Girona (Borja Guarch), Hospital Universitari Arnau de Vilanova,

- 479 Lleida (Teresa Vallmanya, Laura Minguell-Domingo), Hospital Universitari Joan XXIII,
- 480 Tarragona (Olga Calavia), Consorci Sanitari del Maresme, Mataró (Lourdes García), Hospital
- 481 General de Granollers (Maite Coll), Corporació Sanitària Parc Taulí, Sabadell (Valentí
- 482 Pineda), Hospital Universitari Sant Joan, Reus (Neus Rius), Fundació Althaia, Manresa

483 (Núria Rovira), Hospital Son Espases, Mallorca (Joaquín Dueñas) and Hospital Sant Joan de

- 484 Déu, Esplugues (Clàudia Fortuny, Anna Gamell, Antoni Noguera-Julian).
- 485
- 486 Spain: CoRISPE-S and Madrid cohort:

487 *Receive funding from:* Estudio del análisis clínico-epidemiológico de la infección por el vih

488 en niños y adolescentes, mujeres embarazadas y sus hijos a nivel nacional . Ministerio

489 Sanidad. Proyect 202007PN0002

490 Paediatrics Units: María José Mellado, Luis Escosa, Milagros García Hortelano, Talía Sainz,

491 Carlos Grasa, Paula Rodríguez (Hospital Universitario La Paz, Madrid); Pablo Rojo, Luis

- 492 Prieto-Tato, Cristina Epalza, Alfredo Tagarro, Sara Domínguez, Álvaro Ballesteros (Hospital
- 493 Universitario Doce de Octubre, Madrid); José Tomás Ramos, Marta Illán, Arantxa Berzosa,

494 (Hospital Clínico San Carlos, Madrid); Sara Guillén, Beatriz Soto (Hospital Universitario de

495 Getafe, Madrid); María Luisa Navarro, Jesús Saavedra, Mar Santos, David Aguilera, Begoña

- 496 Santiago, Santiago Jimenez de Ory (Hospital Universitario Gregorio Marañón, Madrid);
- 497 Amanda Bermejo (Hospital Universitario de Móstoles, Madrid); María Penín (Hospital
- 498 Universitario Príncipe de Asturias de Alcalá de Henares, Madrid); Jorge Martínez (Hospital
- 499 Infantil Universitario Niño Jesús, Madrid); Katie Badillo (Hospital Universitario de Torrejón,
- 500 Madrid); Ana Belén Jiménez (Hospital Fundación Jiménez Díaz, Madrid); Adriana Navas

| 501 | (Hospital Universitario Infanta Leonor, Madrid); Eider Oñate (Hospital Universitario         |
|-----|----------------------------------------------------------------------------------------------|
| 502 | Donostia, Guipúzcoa); Itziar Pocheville (Hospital Universitario Cruces, Vizcaya); Elisa      |
| 503 | Garrote (Hospital Universitario Basurto, Vizcaya); Elena Colino, Olga Afonso (Hospital       |
| 504 | Insular Materno Infantil, Gran Canaria); Jorge Gómez Sirvent (Hospital Universitario Virgen  |
| 505 | de la Candelaria, Tenerife); Mónica Garzón, Vicente Román (Hospital General, Lanzarote);     |
| 506 | Raquel Angulo (Hospital de Poniente de El Ejido, Almería); Olaf Neth, Lola Falcón            |
| 507 | (Hospital Universitario Virgen del Rocío, Sevilla); Pedro Terol (Hospital Universitario      |
| 508 | Virgen de la Macarena, Sevilla); Juan Luis Santos, Álvaro Vázquez (Hospital Universitario    |
| 509 | Virgen de las Nieves, Granada); Begoña Carazo, Antonio Medina (Hospital Regional             |
| 510 | Universitario, Málaga); Francisco Lendínez, Mercedes Ibáñez (Complejo Hospitalario           |
| 511 | Torrecárdenas, Almería); Estrella Peromingo, María Isabel Sánchez (Hospital Universitario    |
| 512 | Puerta del Mar, Cádiz); Beatriz Ruiz (Hospital Universitario Reina Sofía de Córdoba); Ana    |
| 513 | Grande (Complejo Hospitalario Universitario Infanta Cristina, Badajoz); Francisco José       |
| 514 | Romero (Complejo Hospitalario, Cáceres); Carlos Pérez, Alejandra Méndez (Hospital de         |
| 515 | Cabueñes, Asturias); Laura Calle (Hospital Universitario Central de Asturias); Marta Pareja  |
| 516 | (Complejo Hospitalario Universitario, Albacete); Begoña Losada (Hospital Virgen de la        |
| 517 | Salud, Toledo); Mercedes Herranz,(Hospital Virgen del Camino, Navarra); Matilde Bustillo     |
| 518 | (Hospital Universitario Miguel Servet, Zaragoza); Pilar Collado (Hospital Clínico            |
| 519 | Universitario Lozano Blesa, Zaragoza); José Antonio Couceiro (Complejo Hospitalario          |
| 520 | Universitario, Pontevedra); Leticia Vila (Complejo Hospitalario Universitario, La Coruña);   |
| 521 | Consuelo Calviño (Hospital Universitario Lucus Augusti, Lugo); Ana Isabel Piqueras,          |
| 522 | Manuel Oltra (Hospital Universitario La Fe, Valencia); César Gavilán (Hospital Universitario |
| 523 | de San Juan de Alicante, Alicante); Elena Montesinos (Hospital General Universitario,        |
| 524 | Valencia); Marta Dapena (Hospital General, Castellón); Beatriz Jiménez (Hospital             |
| 525 | Universitario Marqués de Valdecilla, Cantabria); Ana Gloria Andrés (Complejo Hospitalario,   |

| 526 | León); Víctor | Marugán, | Carlos O | choa (C | Complejo | Hospitalario, | Zamora); A | na Isabel |
|-----|---------------|----------|----------|---------|----------|---------------|------------|-----------|
|-----|---------------|----------|----------|---------|----------|---------------|------------|-----------|

Menasalvas, Eloísa Cervantes, Beatriz Álvarez (Hospital Universitario Virgen de la Arrixaca, 527

Murcia) and Paediatric HIV-BioBank integrated in the Spanish AIDS Research Network and 528

collaborating Centers. 529

530

| 530 |                                                                                             |
|-----|---------------------------------------------------------------------------------------------|
| 531 | Adults Units: Cristina Díez, (Hospital Universitario Gregorio Marañón, Madrid).             |
| 532 | Ignacio Bernardino, María Luisa Montes, Eulalia Valencia, Ana Delgado (Hospital             |
| 533 | Universitario La Paz, Madrid); Rafael Rubio, Federico Pulido, Otilia Bisbal (Hospital       |
| 534 | Universitario Doce de Octubre, Madrid); Alfonso Monereo Alonso (Hospital Universitario de   |
| 535 | Getafe, Madrid); Juan Berenguer, Cristina Díez, Teresa Aldamiz, Francisco Tejerina, Juan    |
| 536 | Carlos Bernaldo de Quirós, Belén Padilla, Raquel Carrillo, Pedro Montilla, Elena Bermúdez,  |
| 537 | Maricela Valerio (Hospital Universitario Gregorio Marañón, Madrid); Jose Sanz (Hospital     |
| 538 | Universitario Príncipe de Asturias de Alcalá de Henares, Madrid); Alejandra Gimeno          |
| 539 | (Hospital Universitario de Torrejon, Madrid); Miguel Cervero, Rafael Torres (Hospital       |
| 540 | Universitario Severo Ochoa de Leganés, Madrid); Santiago Moreno, María Jesús Perez,         |
| 541 | Santos del Campo (Hospital Universitario Ramon y Cajal, Madrid); Pablo Ryan, Jesus Troya    |
| 542 | (Hospital Universitario Infanta Leonor, Madrid); Jesus Sanz (Hospital Universitario La      |
| 543 | Princesa, Madrid); Juan Losa, Rafael Gomez (Hospital Universitario Fundacion Alcorcon,      |
| 544 | Madrid); Miguel Górgolas (Hospital Fundacion Jimenez Diaz, Madrid); Alberto Díaz, Sara      |
| 545 | de la Fuente (Hospital Universitario Puerta de Hierro de Majadahonda, Madrid); Jose         |
| 546 | Antonio Iribarren, Marıa Jose Aramburu, Lourdes Martinez (Hospital Universitario Donostia,  |
| 547 | Guipuzcoa); Ane Josune Goikoetxea (Hospital Universitario Cruces, Vizcaya); Sofia Ibarra,   |
| 548 | Mireia de la Peña (Hospital Universitario Basurto, Vizcaya); Víctor Asensi (Hospital        |
| 549 | Universitario Central de Asturias); Michele Hernandez (Hospital Universitario Insular, Gran |
| 550 | Canaria); María Remedios Alemán, Ricardo Pelazas, María del Mar Alonso, Ana María           |

| 551 | López, Dácil García, Jehovana Rodriguez (Hospital Universitario de Canarias, Tenerife);      |
|-----|----------------------------------------------------------------------------------------------|
| 552 | Miguel Angel Cardenes (Hospital Universitario Doctor Negrin, Gran Canaria); Manuel A.        |
| 553 | Castaño, Francisco Orihuela, Inés Pérez, Mª Isabel Mayorga (Hospital Regional                |
| 554 | Universitario, Málaga); Luis Fernando Lopez-Cortes, Cristina Roca, Silvia Llaves (Hospital   |
| 555 | Universitario Virgen del Rocio, Sevilla); Marıa Jose Rios, Jesus Rodriguez, Virginia Palomo  |
| 556 | (Hospital Universitario Virgen de la Macarena, Sevilla); Juan Pasquau, Coral Garcia          |
| 557 | (Hospital Universitario Virgen de las Nieves, Granada); Jose Hernandez, Clara Martinez       |
| 558 | (Hospital Universitario Clinico San Cecilio, Granada); Antonio Rivero, Angela Camacho        |
| 559 | (Hospital Universitario Reina Sofia, Cordoba); Dolores Merino, Miguel Raffo, Laura Corpa     |
| 560 | (Hospital Universitario Juan Ramon Jimenez, Huelva); Elisa Martinez, Fernando Mateos,        |
| 561 | Jose Javier Blanch (Complejo Hospitalario Universitario, Albacete); Miguel Torralba          |
| 562 | (Hospital Universitario, Guadalajara); Piedad Arazo, Gloria Samperiz (Hospital Universitario |
| 563 | Miguel Servet, Zaragoza); Celia Miralles, Antonio Ocampo, Guille Pousada (Hospital Alvaro    |
| 564 | Cunqueiro, Pontevedra); Alvaro Mena (Complejo Hospitalario Universitario, La Coruna);        |
| 565 | Marta Montero, Miguel Salavert, (Hospital Universitario La Fe, Valencia); Maria Jose         |
| 566 | Galindo, Natalia Pretel (Hospital Clinico Universitario, Valencia); Joaquín Portilla, Irene  |
| 567 | Portilla (Hospital General Universitario, Alicante); Felix Gutierrez, Mar Masia, Cati        |
| 568 | Robledano, Araceli Adsuar (Hospital General Universitario de Elche, Alicante); Carmen        |
| 569 | Hinojosa, Begoña Monteagudo (Hospital Clinico, Valladolid); Pablo Bachiller (Hospital        |
| 570 | General, Segovia); Jesica Abadía (Hospital Universitario Rio Hortega, Valladolid); Carlos    |
| 571 | Galera, Helena Albendin, Marian Fernandez (Hospital Universitario Virgen de la Arrixaca,     |
| 572 | Murcia); Jose Ramon Blanco (Complejo Hospitalario San Millan-San Pedro, la Rioja).           |
| 573 |                                                                                              |
| 574 | Ukraine: Paediatric HIV Cohort: Dr T. Kaleeva, Dr Y. Baryshnikova (Odessa Regional           |

575 Centre for HIV/AIDS); Dr S. Soloha (Donetsk Regional Centre for HIV/AIDS); Dr N.

| 576 | Bashkatova | (Mariu | ool AIDS | Center) | ; Dr I. | Raus | (Kiev C | City ( | Centre | for Hl | V/AIDS | ); Dr ( | ). |
|-----|------------|--------|----------|---------|---------|------|---------|--------|--------|--------|--------|---------|----|
|-----|------------|--------|----------|---------|---------|------|---------|--------|--------|--------|--------|---------|----|

577 Glutshenko, Dr Z. Ruban (Mykolaiv Regional Centre for HIV/AIDS); Dr N. Prymak (Kryvyi

578 Rih); Dr G. Kiseleva (Simferopol); Dr Alla Volokha (Shupyk National Medical Academy of

579 Postgraduate Education); Dr Ruslan Malyuta (Perinatal Prevention of AIDS Initiative,

580 Odessa); Dr H. Bailey, Prof Claire Thorne (UCL, London, UK). Funding acknowledgement:

581 PENTA Foundation.

582



599 Bernatoniene, F Manyika; Calderdale and Huddersfield NHS Foundation Trust, Halifax: G

| 600 | Sharpe; Derby Teaching Hospitals NHS Foundation Trust: B Subramaniam; Glasgow Royal        |
|-----|--------------------------------------------------------------------------------------------|
| 601 | Hospital for Children, Glasgow: R Hague, V Price; Great Ormond Street Hospital for         |
| 602 | Children NHS Foundation Trust, London: J Flynn, N Klein, A Bamford, D Shingadia, K         |
| 603 | Grant, Karyn Moshal; Oxford University Hospitals NHS Foundation Trust, Oxford: S           |
| 604 | Yeadon, S Segal; King's College Hospital NHS Foundation Trust, London: S Hawkins; Leeds    |
| 605 | Teaching Hospitals NHS Trust, Leeds: M Dowie; University Hospitals of Leicester NHS        |
| 606 | Trust, Leicester: S Bandi, E Percival ; Luton and Dunstable Hospital NHS Foundation Trust, |
| 607 | Luton: M Eisenhut; K Duncan; Milton Keynes General University Hospital NHS Foundation      |
| 608 | Trust, Milton Keynes: L Anguvaa, L Wren, Newcastle upon Tyne Hospitals NHS Foundation      |
| 609 | Trust, Newcastle: T Flood, A Pickering; The Pennine Acute Hospitals NHS Trust,             |
| 610 | Manchester: P McMaster C Murphy; North Middlesex University Hospital NHS Trust,            |
| 611 | London: J Daniels, Y Lees; Northampton General Hospital NHS Trust, Northampton: F          |
| 612 | Thompson; London North West Healthcare NHS Trust, Middlesex; A Williams, B Williams,       |
| 613 | S Pope; Barts Health NHS trust, London Dr S Libeschutz; Nottingham University Hospitals    |
| 614 | NHS Trust, Nottingham: L Cliffe, S Southall; Portsmouth Hospitals NHS Trust, Portsmouth:   |
| 615 | A Freeman; Raigmore Hospital, Inverness: H Freeman; Royal Belfast Hospital for Sick        |
| 616 | Children, Belfast: S Christie; Royal Berkshire NHS Foundation Trust, Reading: A Gordon;    |
| 617 | Royal Children's Hospital, Aberdeen: D Rosie Hague, L Clarke; Royal Edinburgh Hospital     |
| 618 | for Sick Children, Edinburgh: L Jones, L Brown; Royal Free NHS Foundation Trust, London:   |
| 619 | M Greenberg; Alder Hey Children's NHS Foundation Trust, Liverpool: C Benson, A             |
| 620 | Riordan; Sheffield Children's NHS Foundation Trust, Sheffield: L Ibberson, F Shackley;     |
| 621 | University Hospital Southampton NHS Foundation Trust, Southampton: S Patel, J Hancock;     |
| 622 | St George's University Hospitals NHS Foundation Trust, London: K Doerholt, K Prime, M      |
| 623 | Sharland, S Storey; Imperial College Healthcare NHS Trust, London: EGH Lyall, C Foster, P  |
| 624 | Seery, G Tudor-Williams, N Kirkhope, S Raghunanan; Guy's and St Thomas' NHS                |

| 625 | Found  | lation Trust, London: Dr Julia Kenny, A Callaghan; University Hospitals of North     |
|-----|--------|--------------------------------------------------------------------------------------|
| 626 | Midla  | nds NHS Trust, Stoke On Trent: A Bridgwood, P McMaster; University Hospital of       |
| 627 | Wales  | s, Cardiff: J Evans, E Blake; NHS Frimley Health Foundation Trust, Slough: A         |
| 628 | Yann   | oulias.                                                                              |
| 629 |        |                                                                                      |
| 630 | South  | Africa (CTAAC): We thank Prof Landon Myer for his role in establishing CTAAC and     |
| 631 | Dr Li  | sa Frigati for advice on this study; we acknowledge the CTACC clinical, data and     |
| 632 | labora | atory teams for their work on this study.                                            |
| 633 |        |                                                                                      |
| 634 | Refer  | ences                                                                                |
| 635 | 1.     | Venturas, J.P., HIV and COVID-19 Disease. Seminars in Respiratory and Critical       |
| 636 |        | Care Medicine, 2023. 44(1): p. 35-49.                                                |
| 637 | 2.     | Bertagnolio, S., et al., Clinical features of, and risk factors for, severe or fatal |
| 638 |        | COVID-19 among people living with HIV admitted to hospital: analysis of data from    |
| 639 |        | the WHO Global Clinical Platform of COVID-19. Lancet HIV, 2022. 9(7): p. e486-       |
| 640 |        | e495.                                                                                |
| 641 | 3.     | The European Pregnancy and Paediatric Infections Cohort Collaboration (EPPICC)       |
| 642 |        | study group, Incidence and severity of SARS-CoV-2 infection in children and young    |
| 643 |        | people with HIV in Europe. AIDS, 2023. 37(10): p. 1633-1639.                         |
| 644 | 4.     | Berzosa Sánchez, A., et al., SARS-CoV-2 Infection in Children and Adolescents Living |
| 645 |        | With HIV in Madrid. Pediatric Infectious Disease Journal, 2022. 41(10): p. 824-826.  |
| 646 | 5.     | Nathanielsz, J., et al., SARS-CoV-2 infection in children and implications for       |
| 647 |        | vaccination. Pediatric Research, 2023. 93(5): p. 1177-1187.                          |

- 648 6. Kufa, T., et al., *Epidemiology of SARS-CoV-2 infection and SARS-CoV-2 positive*
- *hospital admissions among children in South Africa*. Influenza and Other Respiratory
  Viruses, 2022. 16(1): p. 34-47.
- 651 7. Owusu-Boaitey, N., et al., *Dynamics of SARS-CoV-2 seroassay sensitivity: a*652 *systematic review and modelling study*. EuroSurveillance, 2023. 28(21).
- 654 *serostatus, in young people in Sofala province, Mozambique.* BMC Infectious

Benoni, R., et al., SARS-CoV-2 seroprevalence and associated factors, based on HIV

655 Diseases, 2023. **23**(1): p. 809.

653

8.

- 9. Judd, A., et al., *Long-term trends in mortality and AIDS-defining events after*
- 657 *combination ART initiation among children and adolescents with perinatal HIV*
- infection in 17 middle- and high-income countries in Europe and Thailand: A cohort
- 659 *study.* PLoS Medicine, 2018. **15**(1): p. e1002491.
- Frigati, L.J., et al., *Tuberculosis infection and disease in South African adolescents with perinatally acquired HIV on antiretroviral therapy: a cohort study.* Journal of

662 the International AIDS Society, 2021. **24**(3): p. e25671.

- 663 11. Francois, K.A., et al., Seroprevalence of SARS-CoV-2 immunoglobulin G in HIV-
- 664 *positive and HIV-negative individuals in KwaZulu-Natal, South Africa.* African
- 665 Journal of Laboratory Medicine, 2023. **12**(1): p. 2065.
- Lumley, S.F., et al., *The Duration, Dynamics, and Determinants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibody Responses in Individual Healthcare Workers.* Clinical Infectious Diseases, 2021. **73**(3): p. e699e709.
- World Health Organization. *Case Report Form for suspected cases of multisystem inflammatory syndrome (MIS) in children and adolescents temporally related to*

- 672 *COVID-19*. 2020; Available from: <u>https://www.who.int/publications/i/item/WHO-</u>
- 673 <u>2019-nCoV-MIS\_Children\_CRF-2020.2</u>.
- ISARIC4C. *ISARIC Coronavirus Clinical Characterisation Protocol*. 2020; Available
  from: https://isaric.org/research/covid-19-clinical-research-resources/.
- 676 15. GISAID. hCoV-19 Variants Dashboard. 2022; Available from:
- 677 https://gisaid.org/hcov-19-variants-dashboard/.
- Stringhini, S., et al., Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva,
  Switzerland (SEROCoV-POP): a population-based study. Lancet, 2020.
- 680 17. Carabelli, A.M., et al., SARS-CoV-2 variant biology: immune escape, transmission

681 *and fitness*. Nature Reviews Microbiology, 2023. **21**(3): p. 162-177.

- 18. Powell, A.A., et al., National and regional prevalence of SARS-CoV-2 antibodies in
- primary and secondary school children in England: the School Infection Survey, a
  national open cohort study, November 2021. Journal of Infection, 2023.
- 685 19. Madhi, S.A., et al., Population Immunity and Covid-19 Severity with Omicron Variant
- 686 *in South Africa*. New England Journal of Medicine, 2022. **386**(14): p. 1314-1326.
- 687 20. Naeimi, R., et al., SARS-CoV-2 seroprevalence in children worldwide: A systematic
- 688 *review and meta-analysis.* EClinicalMedicine, 2023. **56**: p. 101786.
- 689 21. George, J.A., et al., Sentinel seroprevalence of SARS-CoV-2 in Gauteng Province,
- South Africa, August October 2020. South African Medical Journal, 2021. 111(11):
   p. 1078-1083.
- 692 22. British HIV Association. Comment from BHIVA and THT on UK Government
- 693 *Guidance on Coronavirus (COVID-19), Social Distancing to Protect Vulnerable*
- 694 *Adults and Shielding to Protect Extremely Vulnerable Adults*. 2020 23 March 2020
- 695 [cited 2023 22 August]; Available from: <u>https://www.bhiva.org/comment-from-</u>
- 696 BHIVA-and-THT-on-UK-Government-guidance-on-Coronavirus-COVID-19.

697 23. Wolter, N., et al., Seroprevalence of Severe Acute Respiratory Syndrome Coronavirus 698 2 After the Second Wave in South Africa in Human Immunodeficiency Virus-Infected 699 and Uninfected Persons: A Cross-Sectional Household Survey. Clinical Infectious 700 Diseases, 2022. **75**(1): p. e57-e68. 701 24. Kleynhans, J., et al., SARS-CoV-2 Seroprevalence after Third Wave of Infections, 702 South Africa. Emerging Infectious Diseases, 2022. 28(5): p. 1055-1058. 703 25. Ratcliffe, H., et al., Community seroprevalence of SARS-CoV-2 in children and 704 adolescents in England, 2019-2021. Archives of Disease in Childhood, 2022. 108(2): 705 p. 123-30. 706 26. Department of Health, COVID-19: the green book, chapter 14a. 2020. 707 27. Statement by President Cyril Ramaphosa on progress in the national effort to contain 708 the COVID-19 pandemic (25 July 2021). [cited 2023 23 August]; Available from: 709 https://sacoronavirus.co.za/2021/07/25/statement-by-president-cyril-ramaphosa-on-710 progress-in-the-national-effort-to-contain-the-covid-19-pandemic-25-july-2021/. 28. 711 Department of Health, Republic of South Africa,. Media Statement: Health 712 Department commence with vaccine rollout for 12-17 year olds. 2021 [cited 2023 23] August]; Available from: https://sacoronavirus.co.za/2021/10/19/media-statement-713 714 health-department-commence-with-vaccine-rollout-for-12-17-year-olds/. 29. Department of Health, Republic of South Africa, Latest Vaccine Statistics. 2023 21 715 716 August 2023 [cited 2023 23 August]; Available from: 717 https://sacoronavirus.co.za/latest-vaccine-statistics/. 718 30. Hopcroft, L., et al., First dose COVID-19 vaccine coverage amongst adolescents and 719 children in England: an analysis of 3.21 million patients' primary care records in situ 720 using OpenSAFELY [version 2; peer review: 2 approved]. Wellcome Open Research, 721 2023. **8**(70).

- 31. Dolby, T., et al., *Monitoring sociodemographic inequality in COVID-19 vaccination uptake in England: a national linked data study*. Journal of Epidemiology and
  Community Health, 2022. **76**(7): p. 646-652.
- 32. Spinelli, M.A., et al., *SARS-CoV-2 seroprevalence, and IgG concentration and pseudovirus neutralising antibody titres after infection, compared by HIV status: a*
- 727 *matched case-control observational study*. Lancet HIV, 2021. **8**(6): p. e334-e341.
- 728 33. Succi, R.C.M., et al., Immunity After Childhood Vaccinations in Perinatally HIV-

729 exposed Children With and Without HIV Infection in Latin America. Pediatric

- 730 Infectious Disease Journal, 2018. **37**(4): p. 304-309.
- 73134.Awuah, A., et al., *T-cell responses to SARS-CoV-2 in healthy controls and primary*
- *immunodeficiency patients*. Clinical and Experimental Immunology, 2022. **207**(3): p.

733 336-339.

#### Tables 735

| Characteristic          |                          | Med           | lian [IQR] or n ( | %)         |
|-------------------------|--------------------------|---------------|-------------------|------------|
|                         |                          | Europe        | SA, HIV+          | SA, HIV-   |
|                         |                          | (N = 493)     | (N = 307)         | (N = 103)  |
| Cohort                  | South Africa             |               | 307 (100)         | 103 (100)  |
|                         | United                   | 202 (41)      |                   | $\sim$     |
|                         | Kingdom                  |               | C                 |            |
|                         | Ukraine                  | 160 (32)      |                   |            |
|                         | Spain                    | 91 (18)       |                   |            |
|                         | Greece                   | 21 (4)        |                   |            |
|                         | Belgium                  | 19 (4)        |                   |            |
| Sex, female             |                          | 263 (53)      | 161 (52)          | 52 (50)    |
| Age, years (n = 492, 3  | 07, 103)                 | 15 [12-18]    | 19 [17-20]        | 17 [16-19] |
| Any co-morbidity        | 0                        | 53 (11)       | 6 (2)             | 1 (1)      |
| Perinatally acquired H  | IV (n = 469, 307)†       | 462 (99)      | 307 (100)         |            |
| Age at HIV diagnosis,   | years (n = 467, 307)     | 1.2 [0.3-3.7] | 0 [0-0]           |            |
| Initiated ART before e  | enrolment                | 451 (99)      | 307 (100)         |            |
| (n = 455, 307)          |                          |               |                   |            |
| Age at ART start, year  | rs (n = 453, 307)        | 2.1 [0.4-5.9] | 4.0 [1.9-7.0]     |            |
| CD4 count, cells/µL (1  | n = 424, 296)‡           | 739 [553-960] | 533 [374-690]     |            |
| CD4 count <350 cells/   | $\mu L (n = 424, 296)$ ; | 22 (5)        | 66 (22)           |            |
| Undetectable viral load | d* (n = 465, 297)        | 396 (85)      | 184 (62)          |            |

441 (95)

#### 736 Table 1: Participant characteristics at enrolment to the study.

737

Undetectable viral load\*\* (n = 465, 297)

---

226 (76)

- **738†** Reported as vertical acquisition or with unknown mode of acquisition diagnosed before age
- 739 10 years.
- 740 ‡ 88% of baseline CD4 measurements were taken on the day of the baseline serology test.
- \*<50 copies/mL or below lower limit of detection. 94% of baseline VL measurements were
- taken on the day of the baseline serology test.
- 743 \*\*<1000 copies/mL or below lower limit of detection.
- 744
- 745

|                                     |             |           |          | n/     | N (%)       |           |            |                 |
|-------------------------------------|-------------|-----------|----------|--------|-------------|-----------|------------|-----------------|
|                                     |             | Baseline  |          |        |             | Follow-up |            |                 |
|                                     | Europe      | SA,       | SA,      | Total  | Europe      | SA, HIV+  | SA, HIV-   | Total           |
|                                     |             | HIV+      | HIV-     |        | 5           |           |            |                 |
| SARS-CoV-2 PCR+                     | 15/482 (3)  | 0/281 (0) | 0/97 (0) | 15/860 | 40/485 (8)  | 2/282 (1) | 2/99 (2)   | 44/866 (5)      |
| Self-reported COVID-19, no<br>PCR+* |             |           |          | (2)    | 55/440 (13) | 0/290 (0) | 0/99 (0)   | 55/829 (7)      |
| Ever received SARS-CoV-2            | 47/463 (10) | 0/263 (0) | 0/90 (0) | 47/816 | 146/483     | 34/287    | 22/100     | 202/870         |
| vaccine                             |             | .0        |          | (6)    | (30)        | (12)      | (22)       | (23)            |
| Any of the above                    |             | 3         |          |        | 199/475     | 35/280    | 24/97 (25) | 258/534<br>(48) |

Table 2: SARS-CoV-2 / COVID-19 infection and vaccination status at baseline and follow-up.

747 \* Self-reported COVID-19 prior to test date not collected at baseline

3

X

# Figure legends

Figure 1. Percentage of A) CALWHIV and B) HIV negative participants with at least one positive serology test result, overall and by key characteristics. Results are shown based on all tests (blue bars) and on tests from samples taken from unvaccinated participants (yellow bars). Error bars show exact 95% confidence intervals.



Figure 2. Percentage of serology tests that were positive by cohort group and calendar quarter, overall (top) and amongst participants who were unvaccinated at the time of the test (bottom). Numbers show the denominator for each estimate.

