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Abstract. Using elementary methods we show that for every unitary representation
77 of G = SL(2, U) with no non-zero invariant vectors the matrix coefficients
(ir(a(t))v, w)of

a(t) \0 e-J
decay exponentially fast for any vectors v, w Holder continuous in the direction of
the rotation subgroup of G.

Let G denote the group SL (2, IR) and let T be a lattice in G. This means that F is
a discrete subgroup of G and the measure /A on the quotient space M = F\G derived
from the Haar measure on G is finite. We assume that (x is normalized, i.e. fi(M) = l.

The geodesic and the horocycle flows on M are defined by

geG, teU.
These flows can be viewed geometrically as the geodesic and the horocycle flows

on the unit tangent bundle of a surface of constant negative curvature with finite
volume.

The flows preserve /J. and are mixing in (M, /x). This means that if/, <j> e L2(M, /A)
and ( / l ) = 0 then B<t,J(t) = ((f>,f° g,) and C<t,J(t) = (<f>,f°h,) decay to zero when
t ->oo.

We shall investigate these rates of decay.
In the Fall of 1983 I asked Calvin Moore if he could prove that if 0 , / e L2{M, fi)

are Holder continuous on M and (f, l) = 0 then

for all teU and some C, a>0, depending only on <£,/ Moore said that he found
a proof of this for any <f>, fe L2(M, /x) Holder continuous in the direction of the
rotation group K (see definition below) with the Holder exponents greater than \.
For certain classes of analytic functions this exponential decay has been found by
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268 M. Ratner

a number of authors (see [1, p. 136] and [2], [14], [16]). Moore's arguments, (the
details of Moore's argument are not yet available since his manuscript is still in
preparation), as well as those in [1], [14], [16], which actually apply to more general
semisimple groups G, rely crucially on a substantial amount of group representation
theory.

In this paper we give a different and rather elementary proof of this exponential
decay with no restrictions on the Holder exponents of <£, / Although we also turn
to group representation theory we use merely the basic theorem about decomposition
of an arbitrary representation into irreducible ones. It seems likely that this approach
may generalize to geodesic flows on unit tangent bundles of compact surfaces of
variable negative curvature. In this connection the paper [5] of Guillemin and
Kazhdan is suggestive.

We begin with some basic concepts and definitions (see [4], [11]).
Let H be a complex separable Hilbert space, t/(H) the group of all unitary

transformations of H onto itself and T:G^ t/(H), T(g)= Tge C/(H) a unitary
representation of G in H. We shall denote the Hilbert space H by H(T).

An element veH(T) is called a C^-vector for T, k = 0, 1 , . . . ,oo if g^> Tg(v) is
a Cfc-map from G to the Hilbert space H(T) (see [10]). The space of C°°-vectors
is dense in H(T).

The Lie algebra # of G consists of all 2 x 2 real matrices with trace 0. Let X e ^
and v be a C'-vector in H(T). The Lie derivative Lxv is denned by

T(exptX)v-v
Lxv = hm .

1̂ 0 t

It satisfies
(Lxv, w)=-(v,Lxw)

for all C'-vectors v, VVGH(T) and all
We choose the following basis in ^.

-(; _:). - c :)•
We have

/cost sin A /e' 0\ (cht sht\
W=\ , exptQ = [ _.), exp(V= ,

\— sin t cost/ \0 e / \sht cht)

and

[Q,W] = 2V, [Q, V] = 2W, [W, V] = 2Q.

The Casimir operator flT is defined on C2-vectors in H(T) by the formula

aT = (L2
v+L2

Q-L2
w)/4.

It satisfies

for all C2-vectors v, weH(T) .
It is a fact that the closure of ilT is self-adjoint. flT commutes with every Lx,

Xeg on C3-vectors in H(T). It also commutes with all Tg, geG and if T is
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Rate of mixing for geodesic and horocycle flows 269

irreducible then OT is a scalar multiple of the identity, i.e.

ilTv = \v

for some A = A (T) e R and all C2-vectors v e H( T).
The spectrum A(OT) plays a crucial role in our analysis.
Let now F be a discrete subgroup of G, M = F\G and H = L2(M, /j,). For geG

let Tg be the unitary transformation of H onto itself defined by

(rg/)(Fz)=/(Fz-g), z e G , / e H .

The homomorphism T: g -» Tg is called the regular representation of G on L2( M, ^t).
Let K be the rotation subgroup of G

—sin 0 cos 6

and let / / denote the upper half plane Im z>0, z = x+ iy, equipped with the
hyperbolic metric ds2 = (dx2 + dy2)/y2. The curvature of H equals -1 at every ze H.

The quotient space G/ K is diffeomorphic to H via the map </>: G/K -» H defined
by

4>{gK) = g{i)

where

, ^ ai + b (a b\
8^ = —n and g = [c d)

eG-
The diffeomorphism <f> 1 carries to G/ K the coordinate system and the hyperbolic
Riemannian metric from H. In this metric the quotient space S = r\G/K is a surface
of constant negative curvature.

Let H' = {/e L2(M, /u.):/ is constant on orbits of K}. Each function in H' is in
fact a function on S and H' can be identified with L2(S). Let fi be the Casimir
operator associated with the regular representation of G on L2(M, fi). One can
show [11] that fl restricted to C2-vectors of H' coincides with the Laplace operator
A on L2(S) which in coordinates (x, y) has the form

\dx dy2

Let T be a unitary representation of G in H(T).

Definition. A vector v e H( 7") is called a Xp-vector, p > 0, if d -* Tr(9)
v is a Cp-map

from R to H(T). We shall denote by K(T,p), p>0 the space of all Kp-vectors in
H(T).

For 0 < p < l the expression ve K(T,p) means that v is Holder continuous in
the direction of K with the Holder exponent p, i.e.

\\TrWv-v\

For n < p < n + l, neZ + the expression veK(T,p) means that the «th derivative
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L"wv exists and it belongs to K(T,p-n) if p # n. Write

K°g=rgu, teH(r),geG.
(2)

For As (-1,0) let

r(A) satisfies the quadratic equation

fc2 + 2fc-4A=0.

THEOREM 1. Let T be a non-trivial irreducible unitary representation of G in H(T)
and let A=A(7) . Let v,weK(T,p), p>0 and B(t) = (v, w ° a(t)), C(t) =
(v,w°u(t)). Then for all \t\>\

where
(1)
(2)
(3)

Here
i/Aa:0.

«(/>) =
2/7+1

an<i C, D > 0 depend only on v, w andp (not on A).

The proof of theorem 1 is elementary. We choose an appropriate orthonormal basis
{</>„} in H(T), write a differential equation for Bnm(t) = (</>„, <t>m ° a{t)) and estimate
its solution. Then we use harmonic analysis. In fact, our proof gives not only the
decay rate but also several additional terms in the asymptotic expansion of B(t)
and C(t) when ?H>OO.

According to Bargmann's classification of irreducible unitary representations of
G the eigenvalue A = \(T) of ClT has the form

A(r) =
s2-l

where * is either pure imaginary (the principal series) or s e ( —1,1), ST^O (the
complementary series) or 5 is an integer (the discrete series). If A e ( —1,0) then
0 ^ s e ( - l , 1) and

r(A) = - l + |s|

We do not use Bargmann's classification in this paper.
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Let now T be a discrete subgroup of G, M = T\G, S = Y\G/K and A be the
Laplace operator on L2(S). Theorem 1 shows that the number — \ plays a special
role in our analysis of the decay rate just as it does in the spectral decomposition
of A.

It is well known [11] that a number A e {-\, 0) belongs to the spectrum A = A(fl)
off! on L2{M, fi) if and only if it belongs to the spectrum A(A) of A on L2(S). Write

o-(D = r(B(T)) = - l
It is a fact (see [3], [9], [11]) that if T is a lattice in G then A(T) is finite. In this
case/?(r)<0if A(F)*0.

We prove the following:

THEOREM 2. Lef F be a lattice in G, M = T\G and T be the regular representation
of G on L2(M,n). Let v, weK(T,p), p>0, (w, l) = 0 and B(t) = (v,w° a(t)),
C(t) = (v,w° u(t)}. Then there exists to= to(T) > 0 s.t. for all \t\> t0 and some C, D > 0

\B(t)\^C(H\t\))al>\ \C(t)\^D(b{\n\t\)y(»\
where

(1) fc(0 = eCT<r>< ( M O V 0 ;
(2) b{t) = e'' if A{T) = 0, sup (An(-oo, -\))<-\ and -\ is not an eigenvalue

of a;
(3) b{t)= te' ifA(T) = 0 and either sup (An(-oo, -^)) = -^ or - j is an eigen-

value of il;
and a(p) is as in theorem 1.

Let us note that if M is compact then A(ft) is discrete and therefore
sup(An(-oo,- i ) )<- i .

COROLLARY 1. Ifv, w are any two functions in L2(S) with (w, l) = 0 then theorem 2
holds for v, w with a(p) = 1. In fact, A = A(fl) in (2) and (3) can be replaced by A(A).

Selberg proved that if T = SL (2, Z) then A(T) = 0 . We get the following:

COROLLARY 2. Let T = SL (2, Z). Then b(t) = te~' in theorem 2.

When M = F\G is compact, L2(M, p) is a direct sum of irreducible subspaces of
T. To prove theorem 2 we simply apply harmonic analysis and theorem 1. This
makes it plausible that our proof may generalize in various ways.

The non-compact case is not much different from the compact case. We have
only to decompose representations as direct integrals instead of direct sums. In fact,
theorem 2 follows from a much more general theorem 3.

THEOREM 3. Let T be a unitary representation of G having no non-zero invariant
vectors in H( T). Write

A = A(flT), A(T) = An(-iO),
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Assume that /3(T)<0 if A{T)*0. Let v, weK(T,p), p>0, B(t) = (v,w° a(t)),
C(t)=(v, w° u(t)). Then there exists to= to(T) > 0 s.t.for all \t\> t0 and some C, D > 0

\B(t)\^C(b(\t\))a("\ \C(t)\<D(b(\n\t\))aip)

where
(1) b(t) = eaiT)t ifA(T)*0;
(2) b(t) = e~' ifA(T) = 0, sup (An(-oo, -* ) )<-* and -\ is not an eigenvalue

o/nT;
(3) b(t) = te~' ifA(T) = 0 and either sup(An(-oo, -\)) = -\ or -\ is an eigen-

value of ftT;
(4) b(t) = te-21 if Ac [O.oo);

and a(p) is as in theorem 1.

It was shown in [12] and [15] that if F is a finitely generated discrete subgroup
of G then A(F) is finite. We get the following generalization of theorem 2.

COROLLARY 3. Let F be a finitely generated discrete subgroup of G with /x(M) = oo,
M = T\G and let Tbe the regular representation ofG in L2{M, /x). Then the conclusion
of theorem 2 holds for all v, we K(T, p), p>0.

I wish to thank Paul Chernoff, Yitzhak Katznelson and Steve Zelditch for useful
conversations on various aspects of the problem.

This research was partially supported by NSF Grant DMS-84-20770 and Miller
Institute for Basic Research, Berkeley.

1. Harmonic Analysis
We begin by recalling some basic facts about direct integrals of representations (see
[13]). Let (V, v) be a standard measure space and for each ye Y, let ny be a
non-trivial irreducible unitary representation of G in a complex separable Hilbert
space H(j'). Let

be an orthonormal basis in H(y) s.t. the inner product (iry(g)il>n(y), 'S'm(y)) is a
measurable function of (g,y), ge G, ye Y for all n, met.

We say that a function / o n F with f(y) e H(y) is ^-measurable if (f(y), >pn(y))
is a measurable function of y for all neZ.

Let H be the set of all ^-measurable functions / with

\\f(y)\\2dp(y)«x>.

As usual after identifying functions that differ on a set of p-measure zero H becomes
a separable Hilbert space under the inner product

f,h)=\
JY

JY

{fh)=\ (f(y),h(y))dv(y).
JY

The direct integral
f

dv(y)
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is denned as the unitary representation of G on H given by

geG, yeY,feH.

Fact 1.1 (see [13]). Let T be a unitary representation of G having no non-zero
invariant vectors in H(T). Then T is unitary equivalent to a direct integral TT just
described.

Suppose that a vector veH(T) is an eigenvector for the action of K on H(T).
Then there is an integer n s.t.

Tr{e)v = einev

for all fleR.
For n e Z denote

It is a fact (see [11]) that H( r )=XH B (T) is the direct orthogonal sum of Hn(T).
If T is irreducible then dim Hn( T) = 0 or 1.

Let now IT be the direct integral of representations vy,yeY defined above. We
shall show that the basis "^(y), ye Y in the definition of IT can be replaced by a
basis consisting of eigenvectors of K in H(y).

LEMMA 1.1. There exists a set $>0(y) = {4>n(y),neZ}, ye Y with 0# <f>n(y)elln(y)
if dimHn(j') = l, <f>n{y)=0 if dimHn(y) = 0 such that the set ®(y) = ®o(y)-{0}
forms an orthonormal basis in H(y) and a function f on Y is ^-measurable if and
only if it is <t>-measurable.

Proof. W e h a v e H ( T T ) = £ H n ( i r ) . F o r n e Z let {en
k:k = l, 2,...} b e a n o r t h o n o r m a l

bas i s in Hn(ir) a n d let

All these sets are measurable subsets of Y and Yn is a disjoint union. It is clear that

"(y-U Yn)=0.
\ w — 1 /

This says that we can assume without loss of generality that Y = U"=i Yn.
For n e Z let

^ ( y ) e Hn(y), n e Z, y e Y. It is clear that (</>„(>'), iltm(y)) is a measurable function
of y for all n, meZ. Let
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We claim that $>{y) forms an orthonormal basis in H(y). Indeed, let H(_y) be the
closed subspace of H(y), spanned by <S>(y). It is clear that

= {f(y):feH(n)}

and

for all ye Y, geG, neZ. This implies that H(y) is 7ry-invariant and therefore
H(y) = H{y), since i7y is irreducible, yeY.

It is clear from the construction of <$>(y) that a function / is O-measurable if and
only if it is ^-measurable. •

Henceforth we shall always assume that TT is the direct integral of representations
7Ty on H(y), ye Y denned above with a basis <$>(y) = {4>n{y): neZ}-{0} in H(y)
such that

if dim Hn0>)=0,
(1.1)

net, yeY. Thus

for all neZ, yeY, 6eU.
We are interested in /C-vectors in H(TT). If fe K{TT, 1), then the derivative of/

in the direction of K exists and is Lw/eH(-n-). We shall denote by Vw, ye Y the
derivatives in H(y).

L E M M A 1 . 2 . L e t f e K ( T T , 1 ) . Then for a l m o s t every (a.e.) y e Y

( 1 ) <(JW)O0,4>n(y)) = in(f(y), <t>n{y))\
(2) f(y)eK(7ry,l);

(3) (Lw/)O0 = L\ARy)).
Proof. L e t Y' b e a m e a s u r a b l e s u b s e t o f Y w i t h v(Y')>0 a n d l e t 4>'n, neZ b e
d e n n e d o n Y b y

*«00 y e r
I yi y.

Then <j>'neH(ir) and

"I
- - in^ n ( j ; ) dp(y)

eine-l
-in U«(y)\\2 dv(y)

eine-l
•—in

This implies that 4>'ne K(n, 1), and

ne
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We have

(Lwf, <f>'n) = -(f L ^ ) = in(f <(>'„)

or

[ ((Lwf)(y), My)) dV(y) = in f (f(y), <f>n{y)) dv{y).
Jy Jy

This is true for all Y'a Y with positive ^-measure. Therefore

{(Lwf)(y), My)) = in(f(y), My))

for a.e. yeY a n d all n e Z . Also

2| | 2 \

Iv Wz ' /

since Lw/eH(7r). This implies that

I n2\<J(y),My))\2<«>
neZ

for a.e. yeY. For these y the vector f(y)e K{vy, 1) and

•
COROLLARY 1.1. Let fe K(ir,m) for some integer m>0. Then

\\Lkwf\\2=\ ( l n2k\(f(y),(j>n(y))\2)dV(y)<co.

for all k= 1 , . . . , m.
Now let feK(ir,p) with 0<p<l. Then

lk(r(0))/-/||£C|0|' (1.2)

for some C > 0 and all OeU. Write

The proof of the following lemma is completely analogous to the proof of Bernstein's
theorem in [8].

LEMMA 1.3. LetfeK(ir,p) with 0<p<l. Then

QU)=\ ( I \c,
JY \|n|at

for some D > 0 and all I > 1.

Proof. FormeZ+u{0} let

Then for all n with 2 m < |n |<2 m + 1 we have

|ein9"--l|>V3. (1.3)

Also

lk(r(0m))/-/||2= [ ( I |ein9--l|2|cn./(y)|2) dp(y)^C2\em\2" (1.4)
Jy Wz /

by (1.2).
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We have using (1.3) and (1.4)

( I Kf(y)\2) dr(y)
Y \2ms|n|«2m+1 /

[ ( I \eine--\\2\cnJ{y)Adv{y)
JY \2"1s|nt==2 /

This is true for all wi e Z + u {0}.

For a given t > 1 let m0 be s.t.

2m°
Then

for some D > 0 by (1.5). This completes the proof. •

COROLLARY 1.2. Letp>0 andf&K(ir,p). Then

Q(t)=\ ( I k^oofW^Dr 2 '
/ o r a// ( > 1 and some D > 0 , depending only on f.

Proof. For 0<p< 1 this is just lemma 1.3. Let p > 1, A: = fc(p) = [ p ] and

We have using lemmas 1.2 and 1.3

Q(t)= ( ( I ^ 4 ^ [
< or2* • r2(p~fc) = Dr2p. n

2. Proofs of theorems 1 and 3
Let T be a non-trivial irreducible unitary representation of G in H(T) and let
H = ilT be the Casimir operator associated with T. We have

ftu = AD

for some A=A(T)eR and all C2-vectors t>eH(T).
As we mentioned above H(T) has an orthonormal basis {<£„, neZ}-{0} with

0^</>n€Hn(T) if dimHn(T) = l and 0n =0 if dimHn(T) = 0. We have

T(r(6))<t>n = eina<t>n (2.1)

for all « e Z, d e R.

It is a fact that </>„ are C°°-vectors in H(T) (see [11]). Expression (2.1) shows that

Lw<^n = in<t>n neZ. (2.2)

(see (1) for definition of W and V, Q below). Also

for all n e Z.
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Denote

Bn,m(t) = (<(>„, <t>m°a(t))

n, meZ. Here

<i>m° a ( t ) = TaU)<t>m

by (2).
The function Bnm(t) is C°° in t and

R' (i\ = tA (1-A \on(t\\

(2.3)

LEMMA 2.1. The function Bnm(t) satisfies the following differential equation for t s 1

y" + 2y'-4ky=fl(t)+f2(t) (2.4)
where

sh2t sh22t

Proof. Write

y(t) = Bntm(t).

We have

I = <</>„, (n<f>m)°a(t))

2m(n-me 2t) {n-me' , ,

2 , ^ ^ 6 )

Write

We have

V = 2N+W, [W,N] = Q

[ WJV]"1" ^ N ^ W = ^o "•" *^NLW (2-7)

Thus we have

L2
v = 4L2

N + 4LNLw + 2Lr

= 4L2
N + 4LNLW + 2Ln + L2

n

yy — tlyvTHl/f(Iy|(;TZlyg

This implies via (2.6)

(<t>n, (L2
Q<t>m) ° a

where

9 2 ( , ) = -4im(<f>n,

Or

y" + 2y'-4\y = qi(t) + q2(t) (2.8)

by (2.3). We shall now find qu q2.
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First let us show that

Lx(i>og) = (Lg-.Xgi>)og (2.9)

for every gsG, Xep and every C'-vector ceH(T).
Indeed, we have

= lim

= T{g) hm

t
1 • cxp tX• g)v-v

h

We have from (2.2) and (2.9)

iny(t) = (Lyrf>n, 4>m ° a(t)) = -(<f>n, Lw(<f>m

We have

W= U-N

a(t)~l Wa{t) = -e2tN+e'2'U = -2sh2tN+ e~2'W

and therefore

iny(t) = 2sh2t(<t>n, ( L ^ m ) » a ( f )>+ ime'2'(<l>n, <t>m ° a(t)>. (2.10)

Or

Write

and apply to z(t) the above argument. We get

-inz(t) = ~2sh2t(<t>n, (L
2
Ncf>m) ° a(O) + c"2'(0n, i^L^J » a(/)). (2.11)

Here

by (2.7). This, (2.10) and (2.11) give

N 2iz(f)(me-2'-»), _ 2 f / ( 0
? l ( r ) " -sWr

or

y(r)(ine-2>-ii)2

This and (2.8) complete the proof. •

It is well known [7] that

Bn.m{t)-*0 when

n, meZ, since T has no invariant vectors in H(T).
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We shall estimate for large t the solution of (2.4) satisfying

y(t)-*0 when f-»oo

(2.12)

We have for n, m e Z, t e R

by (2.3) and the Schwarz inequality. Also

{(L2
v+L2

Q-L2
w)<j>m,<f>m)

if 4>m ^ 0- This implies that for <j>m # 0

and therefore

for all ten, n, mel,
Let

m2-4A20

(2.13)

be the roots of the characteristic equation
fc2 + 2fc-4A=0.

Here and henceforth Va denotes the positive square root if a > 0 and it denotes
iV|a| if a <0. Equation (2.4) can be written in the form

(D-rl)(D-r2)y=f1(t)+f2(t)=f(t),

where D denotes the operator of differentiation and

\f2{t)\<C2(m
2+n2)e-2t

for some C,, C2>0 and all f > 1 by (2.5) and (2.13). We have

(2.14)

This gives

-v -_P (2.15)

where Pt is a constant. The integral on the right side of (2.15) converges by (2.14),
since Re(/-! + 2)>l . Also

e r's/2(s) ds
J ,

< C,7m2-4Ae"3'

<C2(m2+n2)e".
(2.16)
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Expression (2.15) gives

if /•; = r2 and

' ( e"f{u)duj ds + P,te~' + P2e-'

{t) + erApA e(r>-r*)sds + P2\

if /*i ^ r2, where

= - e • r»' I e 'fMdujds- \ e • r=

(2.17)

(2.18)

P2 is a constant, and

(M)dwjds

We have using (2.14)

e'Rer^ |

Ji
'•+2)s ds

since Re r j - R e r 2 >0 and Re rj + 2
Similarly we have

\eri'A2(t)\

for some C2>0 and all r > 1. Also

(2.19)

(2.20)

(2.21)

by (2.12), (2.15) and (2.17).

LEMMA 2.2. For ( > 1 , M, meZ

where
(1)
(2) fe(0 = min{<er-', er>'|l+4Ar1/2} i /Ae( - i ,0 ) ;
(3) b(t)_=te-2'if\>0;

and K = K(m2+n2) + K, K, K>0 are independent of A.

Proof. Cases (2) and( l ) for A e [ - | , - | ] follow from expressions (2.16)-(2.21), since

V/n2 + 4 and V
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Case 1 for A <— \. In this case vm2 — 4A is unbounded and we cannot use (2.19)
to estimate e'2'Ai(t). Nevertheless we proceed as follows. We have

and

by (2.5).
Let

Integration by parts gives

d«

du.

u u)=——+2 —T
shlu Ju shshlv

dv

and therefore

for some Qi > 0 and all u > 1. Integrating by parts again we get

/(s) = 2 e"( r '+ 2 ) ' ;(s) + (r, + 2) e"(r>+2)u./(w) d
L J $

and

^4,(0 = 2 e"(r2 2 ) s / ( s )ds + (r, + 2) e
(r.-r2>s

 e-(ri+2)1

L J i J , \JS

We have using (2.22)

since Re r2= - 1 .
Now we shall estimate er2'F2(t). We have

e(r'-r>M
Integration by parts gives

r,-r,
Here

T-, + 2

r
1

J j

i +
2^

OO

V
/I

e"(r>+2

1 + 4A
+ 4A

"J(u

< 1

)dw

since A < - | . This and (2.24) give

since Re r2 = — 1.

(2.22)

ds]

(2.23)

(2.24)

(2.25)

(2.26)
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Expressions (2.24), (2.26) and (2.20) show that

in (2.17) for some Q, Q > 0 and all f > 1. One can see from (2.21) that

2V1+4A 2V1 + 4A

for some Qi, Q\>0, since A <— \. This completes case (1).

Case 3. In this case A > 0 and r, >0 . Therefore we cannot use (2.19) and (2.20). We
proceed as follows. We have, using (2.14)

W ds ^f^ e'>'• t- e~W (2.27)

since r2< —2.
Similarly

J:
by (2.14), since A > 0. Here m2 - 4A > 0 if </>m ^ 0 by (2.13). This and (2.27) imply that

\er*'A(t)\ < (C(m2 + n2) + C)te~2' (2.28)

in (2.17) for some C, C > 0 and all f > l .

Since y(t)->0 when t-><x> and r , > 0 w e have

P, = 0

in (2.17). Thus

y(t) = er*'A(t) + y(l) e~^ev

by (2.17) and (2.21). Therefore

for some Cu Cx > 0 and all f > 1 by (2.28). This completes the proof of the lemma.

•
LEMMA 2.3. Let Cnm(t) = <</>„, <f>m ° u(t)) where u(t) is defined in (2). Then for all f > 1

where b(t) and K are as in lemma 2.2, n, meZ.

Proof. One can show that

u(t) = r(d2)a(\nt)r(6l)

for some 0j = 0i(f), #2 = ^ ( 0 6 ("""•» ""]• To do so, one can use either the Cartan
decomposition of G or simply the geometrical model of G as the unit tangent
bundle of the hyperbolic plane. In fact, Hedlund showed this relation geometrically
in his proof of ergodicity of the horocycle flow (see [6]).

We have

Cn,m(t) = <<£„, <t>m o u(0> = <<*„, <t>m o r(0,) ° a(ln 0 ° r(fl2)>

= <<£„ ° r(-fl2), 0m o r(0.) o a(ln t)> = e"'"^ eime><0n, </»m « a(ln t)).
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Thus

by lemma 2.2. •

Proof of theorem 1. Let T be a non-trivial irreducible unitary representation of G
in H(T) and let {</>„, n e Z} be as above. Let u, w e /C(T, p), /> >0. We have

neZ neZ

where cn = (v, <f>n), dn = (w, <f>n), nel.

Consider the following possibilities for p.
(1) Le tp>3 . We have

= (v,wa(t))= I cndm(<t>n

Therefore

\B(t)\<b(t) £ \cn\\dm\(K(m2+n2) + K)

by lemma 2.2.
Standard elementary argument shows that S is finite. Indeed, we have

S < K ' ( I |cn||dm|m2+ I | c n | | d > 2 )
\fH,neZ m,neZ /

for some K '>0 .
We have, using corollary 1.1 and the Schwarz inequality,

\\m\ \ meZ

3

2y / 2 / i
/ VO^msZW

= CI||L
3

w«||<oo,

/ \ 1 / 2 / 1 \ 1 / 2

I |cn|s I n6\cn\2) • I -
neZ \n£Z / VO^nsZ" /

since p > 3 . Thus a(p) = 1 for p > 3 .
(2) Let 2</?<3. Let 0 < 8 < l be chosen later. Write

v,= I cn<f>n, v,= I cn<f>n.
|n|s(fc(<)rs |n|>(b(l))-5

We have using corollary 1.2
1/2

S (2.29)|n|>(fc(/))-S

We have

B{t) = (v, w ° a(t)) = (vt, w ° a(t)) + (vt, w o a(t)) = V+ V.

Also

V = (v,, w,°a(t)) + (v,, w,°a(t))= W+ W

and
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by (2.29). For W we have

\cn\\dm\Bn,m(t)

|m|,|n|s(fc(O)

for some K'>0 by lemma 2.2. Since p>2we have

c | | d m | - m 2 + I \cn\\dm\-n2) (2.31)
)

|m|==(b(r

|n|==(f>(r))

/ \ 1 / 2

I K|m2<(fc(t))-5/2 I K|2m4 =(b(t))-s/2\\L2
ww

( b ( r ) ) \msZ /

I - I «4|cn|
2

neZ M / XneZ /

2 (2.32)

Thus

by (2.31) and

by (2.30). Here Q2, (?3>0 depend only on t;, w.
Now choose 6 = 2/(2p + l) to get

\B(t)\<2Qi{b{t))2pK2p+l).

Thus a(/>) = 2/?/(2p + l) for 2 < p < 3 .
(3) Let l < p < 2 . We proceed as in (2) changing estimates in (2.32). Since p>l

we have

I \dm\m2^( I m
|m|=s(b(i)) \|m|=s(b(r)) 6

\ 1 / 2 / \ 1 / 2

• I \dm\2m2) ^ Ub(t))-3S/2\\Lww\\
/ \meZ /

/ 1 V/ 2 / \ 1 / 2

,l=s( I - • I «2|cn|2 +|co| =

Thus

and

Setting 8 = 2/(2p + 3) we get that a(p) = 2p/(2p + 3) if l <
(4) Let 0<p < 1. Using lemma 1.3 for p we get

and therefore

For W we get

' <

\ 1 / 2 / \ ' / 2

4 •( I |dm|2 ^

/ \ 1 / 2
/2- I |cn|

2 =(b(t))-s/2

\neZ /
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Thus

and

Setting 8 = l/(p + 3) we get that a(p)=p/(p + 3).
This completes the proof of theorem 1 for B(t). The proof for C(t) is the same

via lemma 2.3. •

Proof of theorem 3. Let T be a unitary representation of G having no non-zero
invariant vectors in H(7"). By fact 1.1, T is unitary equivalent to a direct integral
77 of non-trivial unitary irreducible representations iry, yeY denned in § 1. It is
clear that

For y e Y let il(y) be the Casimir operator associated with iry. Then

for some A (y) e R and every C2-vector v e H(y), yeY. The function A is a measurable
real-valued function on Y and the spectrum A(fi7r) is exactly the essential range
of A, i.e.

A = A ( n j = {xeR: p(\~l(x-8,x + S))>0 for all S>0}.

We can assume without loss of generality that Y= A~'(A).
It is clear that a number x e A is an eigenvalue of Ow if and only if v{A ~'{x}) > 0.

Let

For j ieK and t> 1 let

where 6A(y)(0 is a s in theorem 1.
(1) Let A{TT)*<Z), - 5 < / 3 ( T 7 ) < 0 and <r = o-(7r) = - 1 + V 1 + 4 / 3 ( T T - ) > - 1 be as in

theorem 3. Let

C = l/Vl+4/3.

Also let

We have using theorem 1

for all t > <0 and a.e. y e V. We set in this case

(2) A(TT) = 0 , T = sup (An( -oo , - i ) )< - i and i/(A-1{~i}) = 0. Then

CT = (l + |l+4Tp1/2)<oo
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and theorem 1 shows that

for all t > 1 and a.e. yeY. We set in this case

(3) A(TT) = 0 and either T = -\ or j '(A"1{-s})>0. By theorem I

5,(0=^-'
for all t > 1 and a.e. j> e V. We set

bM=te-.

(4) Ac[0,oo). Then

by(t)<te-2' = b^t)

for all f > 1 and a.e. yeY.
From now we proceed just as in the proof of theorem 1.
Let {4>n{y), n e 2} - {0} be the orthonormal basis in H(y), yeY found in lemma

1.1. It satisfies (1.1).
Let v, we K(ir,p), p>0. Consider the following possibilities for p
(i) Let p> 3. We have

v(y)= I cn(y)4>n(y)

where cn(y) = (v(y), <f>n{y)), dn{y) = (w(y), 4>n(y)), y^Y. Write

We have

B(t) = (v,w° a(t)) = (v(y), w(y) ° a(t)) dv(y)
JY

By lemma 2.2 for f > t0

\B*,m(t)\sKby(t)*KbM)

for a.e. j e K where K = K(m2+ n2) + K and X, K > 0 are independent of y. Thus

J Y
I (
Y \ m.neZ

where

y

= K'(S1 +

I \cn(y)\\dm(y)\m2)dv(y)+\ ( I |cB
n,meZ / J Y \ n,m<=Z

S2).

By lemma 1.2

v(y),w{y)eK(7ry,3)
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for a.e. y e Y. As in the proof of theorem 1 we have

I KOOIm'sCllL^wOOII
meZ

I \cn(y)\^C2\\L
3

wv(y)\\ + \c0(y)\

for some C,, C2>0. Thus

|Sil=s C, • C2 • f ||L3
W»00|| • H^wwOOII ^ b ) + C, I \\L3

ww(y)\\\co(y)\ dv(y)
JY JY

by the Schwarz inequality. This proves that

for all t > f0 and some C4> 0. Thus a(p) = 1 for p >3.
(ii) Let 2</><3. Let S>0 be chosen later and let r>(0.
Let v, veH(ir) be defined by

v,(y)= I ^
|n|s(b,(l))

v,(y)= I cn
|n|>(b^(l))-S

j ' e Y. We have

u = v, +15,

I \\cn(y)\\2)
|n|>(M0) /

by corollary 1.2.
We have

B(t) = (v,w°a(t)) = (v,,w°a(t)) + (v,,w°a(t))= V+V.

Also

V = (v,, w, o a(O) + <tJM w, ° a(r)> = W+ W

and

(2.33)

For W we have

\cn(y)\\dm(y)\\By
n.mO)\)dV(y)

I \cn(y)\\dm(y)\(m2+n2))dV(y)

for some K'>0 by lemma 2.2.
It follows from lemma 1.2 that
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for a.e. y e Y. For these y we have

I \dm{y)\m2^{K(t)rS/2[ I mA\dm(y)\2) = (bv(t))-'
/2\\L2

ww(y)\\
|m|==(MO) \meZ /

/ i \ l / 2 / \ l / 2

I , k w i 4 I ^ - I «4k(y)l2

since p > 2. Thus

IILVW^JIKIIL^C^II + IC

This and (2.33) imply

We choose 5 = 2/(2p + l) to get

\B(t)\<2Q3(br(t))
2pn2p+l).

Thus a(p) = 2p/(2p + l) for 2 < p < 3 .
We have just shown how to adjust the proof of theorem 1 to the case of the direct

integral. It is now clear that cases 1 < p < 2 and 0 < p < 1 can be handled similarly.
This and lemma 2.3 complete the proof of the theorem. •
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