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Abstract

Eggnog, a dairy-based beverage, comprises both milk and egg proteins. We aimed at optimiz-
ing the eggnog formulation using Box–Behnken design of response surface methodology. The
combined effects of milk (60–75), cream (25–35) and eggnog base (6–8, all three as g 100/ml)
were investigated on heat coagulation time, viscosity and thermal gelation temperature.
ANOVA indicated that experimental data were well explained by a quadratic model with
high check values (R2 > 0.94) and non-significant lack of fit tests. Based on the responses,
an optimized formulation of eggnog with 60.0 milk, 25.0 cream and 6.50 eggnog base (as
g 100/ml), could be considered best for manufacturing eggnog with desired attributes. This
optimized formulation was characterized for physico-chemical, microbial and sensory attri-
butes and the results indicated significantly higher fat and protein content than control for-
mulation, but lesser lactose and total sugar content. Significantly higher viscosity, heat stability
and lower thermal gelation temperature were also observed for the optimized formulation.
Coliform, yeast and mold, E. coli and Salmonella counts were not detected in any sample
but a significantly lower total plate count was observed for the optimized formulation.

Milk and eggs are considered as a good source of essential nutrients including proteins,
amino-acids, fatty acids, vitamins and minerals (Yilmaz et al., 2022) and their nutritional
role has been extensively studied and well-documented (Górska-Warsewicz et al., 2019; Pal
and Molnár, 2021). Besides this, their bioactive properties including antimicrobial, antihyper-
tensive, anti-inflammatory, immunomodulatory, antioxidant, and opioid properties are of
recent interest due to increased consumer demand for functional foods (Tonolo et al., 2020;
Guha et al., 2021; Sharma et al., 2021a). Eggnog, a popular seasonal drink in the United
States, United Kingdom and Canada, is a dairy beverage with, primarily, dairy and egg com-
ponents (Ellis, 2021). Milk (preferably cow milk), partially skimmed milk, cream, or skimmed
milk are the most frequent dairy ingredients used to prepare eggnog, either alone or in com-
bination, while the egg components include egg yolk (liquid, frozen, or dried) and whole egg
(liquid, frozen, or dried). It must have a minimum of 6.0 g 100/m milkfat, 1.0 g 100/ml egg
yolk solids, and not less than 8.25 g 100/ml: milk solids not fat (FDA, 2020). While the origin
of the eggnog is still unknown, some suggest a similarity to ‘posset’ (mixture of milk and alco-
holic beverage with occasional addition of eggs) and ‘egg flip’ (blend of eggs and spirit without
any milk or dairy ingredient: Graham, 2019) and in common usage eggnog can refer to either
a non-alcoholic or an alcoholic beverage.

To the best of our knowledge, only one formulation is available in the literature related to
ultra-high temperature processing of eggnog (Aggarwal, 1975) and no information is available
regarding the method of preparation and the processing conditions. Also, this proposed for-
mulation contained high sugar and water content with less protein, thus, there still exists the
need to standardize the eggnog formulation and to optimize the processing methods and con-
ditions which can further augment its commercialization on an industrial scale. Further, mix-
ing egg components with milk components may pose certain challenges with heat stability,
thermal gelation and other functional properties of the eggnog. In this regard, response surface
methodology (RSM) is one of the most widely used optimization approaches in food science,
because of its extensive theory, relatively high efficiency and simplicity (Hussain et al., 2016;
Sreedevi et al., 2021; Torres Vargas et al., 2021). Bearing this in mind, the present study aimed
to develop a response surface model to optimize the formulation of non-alcoholic eggnog by
investigating the influence of the principle independent variables, namely, milk, cream, and
eggnog base (consisting of egg yolk and albumen only) on the eggnog’s heat stability and rheo-
logical characteristics. Consequently, the optimized formulation was evaluated and compared
to control formulation (Aggarwal, 1975) for physico-chemical, rheological and sensory
parameters.
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Materials and methods

Ingredients and chemicals

Cow milk (3.2 and 8.2 g 100/g fat and SNF) and cream (40 g 100/g
fat) were procured from the experiment dairy unit of
ICAR-National Dairy Research Institute, Karnal, Haryana. Fresh
eggs and spray skimmed milk powder (3.57 g 100/g moisture)
(M/s Modern Dairies Ltd., Karnal) were purchased from the
local store at Karnal, Haryana, India. All the chemicals and solvents
were of analytical grade and purchased from commercial sources.

Experimental design

Preliminary trials were conducted for eggnog preparation using
milk, cream, eggnog base (consisting of egg yolk and albumen),
skimmed milk powder and sugar. Based on preliminary results,
skimmed milk powder and sugar levels were fixed at 4 g 100/ml
and the selected minimum and maximum levels (g 100/ml) for
milk (X1), cream (X2) and eggnog base (X3) were 60 and 75, 25
and 40, 5 and 8, respectively (detailed in online Supplementary
Table S1). The response surface methodology was used to deter-
mine the optimum formulation of eggnog. Based on Box–
Behnken design, 17 experimental runs including 5 centre points,
6 axial and factorial points were performed with three independ-
ent variables (X1, X2, and X3) (Table 1). The dependent responses
used for optimization of eggnog were heat coagulation time
(s), dynamic viscosity (mPa s) and thermal gelation temperature
(°C). The best formulation was predicted by generating a
second-order polynomial regression model equation of the quad-
ratic model as expressed in the (Eq. 1):

Y = b0 +
∑k

i=1

biXi +
∑k

i=1

biiX
2
i +

∑k−1

i=1

∑k

j=2

bijXiXj (1)

where b0, bi, bii, bij are the regression coefficient. (bo is the con-
stant term, bi is a linear effect term, bii is a squared effect term,
and bij is an interactive effect term) and Y is the predicted
response. The experiment was repeated three times and all the
parameters were performed in triplicate.

Process for eggnog preparation

Briefly, pre-warmed cow milk at 35°C and cream (40 g 100/g fat)
were mixed followed by the addition of skimmed milk powder.
Egg white and yolk contents were separated carefully and yolk
was mixed with part of the sugar (50% of the total quantity) fol-
lowed by whipping. The whole milk mixture was then mixed with
the whipped egg yolk and sugar mix and subjected to pasteuriza-
tion. Simultaneously, egg white was whipped with the remaining
part of the sugar and the mixture was separately pasteurized at
56.7°C for 3.5 min (FDA, 2002). The detailed methodology for
the preparation of eggnog is given in online Supplementary
Fig. S1. Control eggnog was prepared using skimmed milk pow-
der (10.0 g 100/ml), water (60 g 100/ml), cream with 40% fat
(15.0 g 100/ml), eggnog base (6.0 g 100/ml) and sugar (9.0 g
100/ml) (Aggarwal, 1975).

pH, acidity and proximate composition

The pH of the eggnog samples was measured at 25°C using a cali-
brated pH meter (Eutech Instruments, Cyberscan pH 2100UK).

Acidity of the samples was determined by titration method
using 0.1 N NaOH (AOAC, 2000). Total solids and ash content
of eggnog samples were estimated by drying the samples to a con-
stant weight at the temperature of 102 ± 1 and 550 ± 10°C,
respectively. Fat content of the samples was estimated by a modi-
fied Mojonnier method (AOAC, 2000) and protein content by
Kjeldahl method (AOAC, 2000). The lactose content of the egg-
nog was determined by the Lane–Eynon method (IS:SPPartXI,
1981). All these parameters were determined on the day of
experiment.

Heat coagulation time

Heat coagulation time (HCT) of eggnog samples was determined
on the next day of the experiment as per the methodology
described previously (Saipriya et al., 2021) with some modifica-
tions. Eggnog was adjusted to various pH in the range of 5.5–
7.5 by adding 0.1 M HCl or 0.1 M NaOH. 2 ml of sample was
placed in the glass tube of 4.0 ml capacity and 12.2 cm in length
made from precision-bore Pyrex tubing (0.9 cm outside diameter
and 0.65 cm bore). The tubes were closed with a silicon–rubber
stopper and clamped on the carriage, which was immersed in
the hot liquid paraffin to a depth of 4 cm. HCT was determined
in a thermostatically controlled oil bath at 120°C temperature.

Microbiological analysis

Microbial count of the eggnog samples including total plate count
(ISO 4833 : 2003), coliforms (ISO 4832 : 2006), Yeast and Moulds
(ISO 6611 : 2004), Salmonella (IS 5887 (Part 3):1999) and
Escherichia coli (IS 5877 (Part I):1976) was conducted on the
next day using standard protocols.

Rheological characteristics: dynamic viscosity

The dynamic viscosity of eggnog was measured on the same day
of the experiment on a dynamic rheometer (MCR 52, Anton Par,
Ostifildern, Germany) using cone and plate configuration (CP-75;
75 mm diameter) at 20°C (Chand et al., 2021). Viscosity measure-
ments were performed at a shear rate of 1000/s and at a tempera-
ture of 20°C using the probe CP-75.

Rheological characteristics: thermal gelation

The rheological characterization of the gelation process was stud-
ied on the same day of the experiment from 20 to 80°C with a
heating rate of 2°C per minute using Rheometer (MCR 52,
Anton Paar, Germany) (Lucey et al., 2001).

Sensory analysis

Sensory evaluation of the eggnog samples was carried out by 10
volunteers aged between 25 and 45 years (six male and four
females) on the same day of preparation of the samples using
the composite score card (Chand et al., 2022). Sensory scores of
all seventeen runs of eggnog samples were subjected to principal
component analysis (Sharma et al., 2021b).

Response surface modelling and model adequacy

The data obtained for the different responses were analyzed by the
Design Expert® software version 13.0.5.0. The value of the
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desirability index (D) was determined by the following equation
(Chakraborty et al., 2015):

D = (dr11 × dr22 × dr33 )
(1/r1+r2+r3+r4+r5) (2)

where r is the relative index and di is the desirability index. Here i
varies from 1 to 3 and desirability ranges from 0 to 1. Further, the
Student’s t-test was applied using SPSS (IBM® SPSS®, 23) to com-
pare the predicted values and the actual values and thus, the effi-
ciency of the model (Deshwal et al., 2020).

Statistical analysis

Box–Behnken design of response surface methodology was used
for the optimization of the levels of ingredients (milk, cream
and eggnog base). A total of 17 trials were conducted for the opti-
mization of eggnog formulation. The data generated for different
responses were analyzed by using the Design Expert® software
(13.0.5.0 version) (Stat-Ease., 2021 E. Hennepin Avenue,
Minneapolis, USA). Statistical significance was evaluated by F
value, and the effect of independent variables on the individual
responses was described at P < 0.01 and P < 0.05. Results of sen-
sory scores were analyzed using the principle component analysis.
Further variation among the control and optimized eggnog sam-
ples was analyzed using the independent t-test. All the experi-
ments for observing the differences between control and
optimized eggnog were conducted three times and the measure-
ments for the parameters were taken in triplicate for reducing
experimental variation.

Results and discussion

Optimization of eggnog using response surface methodology

The formulations obtained from experimental design and experi-
mental mean values obtained for HCT, thermal gelation tempera-
ture (TGT) and dynamic viscosity of eggnog after analysis are
presented in Table 1.

Diagnostic check of the quadratic model

A value of the coefficient of multiple determination (R2) more than
0.8 indicates a good fit model (Chakraborty et al., 2015). In the pre-
sent study, it could be observed that quadratic models were the
best-fitted model for each response since the R2 value for HCT
(Y1), dynamic viscosity (Y2) and TGT (Y3), was 0.97, 0.95 and
0.99 respectively (Table 2). Besides this, the coefficient of variance
in a well-fitted model should be less than 10%. For the obtained
model, this requirement was also fulfilled with the value ranging
from 0.79 to 8.70%. Moreover, the adequate precision value
(which gives a measure of signal to noise and should be greater
than 4) was in the range of 12.55–25.83, which also indicates the
adequacy of the quadratic model. From these results, we can
suggest that the obtained model can be used for this design.

Effect of different variables on heat coagulation time

Heat treatment induces certain changes in the heat stability of pro-
tein beverages when subjected to a high temperature for few sec-
onds. In the present study, HCT values varied between 297 and
540 s. Maximum HCT (540 s) was obtained for the formulation

Table 1. Experimental design with the level of three factors according to the Box–Behnken design of response surface methodology for the preparation of eggnog
and mean values of responses for different parameters

Run

Factors Responses

X1 (%) X2 (%) X3 (%) Heat coagulation time (s) Viscosity (mPa s) Thermal gelation temperature (°C)

S1 60.00 25.00 6.50 314 3.68 50.10

S2 75.00 25.00 6.50 379 3.54 51.57

S3 60.00 40.00 6.50 323 8.23 45.27

S4 75.00 40.00 6.50 327 6.14 51.20

S5 60.00 32.50 5.00 393 7.88 48.22

S6 75.00 32.50 5.00 325 5.55 52.63

S7 60.00 32.50 8.00 339 7.06 47.86

S8 75.00 32.50 8.00 383 6.29 50.95

S9 67.50 25.00 5.00 454 3.47 53.01

S10 67.50 40.00 5.00 297 9.49 47.77

S11 67.50 25.00 8.00 414 8.67 51.24

S12 67.50 40.00 8.00 363 6.12 48.47

S13 65.00 30.00 6.00 535 6.73 50.40

S14 67.50 32.50 6.50 540 6.90 50.47

S15 69.00 32.50 6.00 532 6.81 50.38

S16 63.50 30.00 6.50 505 6.70 50.36

S17 62.00 31.00 6.00 485 6.52 50.43

#Experiments were conducted randomly; X1: Milk, X2: Cream, and X3: Eggnog base.
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comprised of 67.50, 32.50 and 6.50 g 100/ml milk, cream and egg-
nog base, indicating that a higher quantity of cream decreased the
HCT (Fig. 1a) significantly at both linear (P < 0.05) and quadratic
levels (P < 0.01). Interaction effect of milk and cream also decreased
the HCT (Table 3). The coefficient of determination for HCT of
eggnog samples (at quadratic level) was high enough (R2 = 0.97)
to estimate the parameter with the regression equation (Table 3).
Figure 1a also reflects the effect of interaction of cream and eggnog
base as well as milk and eggnog base and it is noteworthy that both
cases present a similar effect with higher values for HCT at an
intermediate level of variables. Additionally, it can be observed
that cream had significantly higher impact on the heat coagulation
time followed by eggnog base and milk. A higher concentration of
milk and cream is reported to dissociate kappa-casein, thereby
increasing the concentration of hydrogen ions and calcium ions
and resulting in lower heat stability (Dumpler et al., 2020).
However, at the higher concentration of the eggnog base, it is
speculated that the susceptibility of the milk and egg proteins to
denaturation might increase. Our results suggested the
heat-induced gelation of the eggnog during the heat stability test
could be attributed to the proteins and lipids present in the eggnog.

Effect of different variables on dynamic viscosity

Physico-chemical and sensory properties such as creaminess are
highly correlated with the viscosity of the product (Flamminii

et al., 2020). The dynamic viscosity values for eggnog samples
varied from 3.54 to 9.49 mPa s. A regression equation which
has a good fitting capacity for dynamic viscosity of eggnog sam-
ples with high coefficient of determination (R2 = 0.95) was con-
structed (Table 4). All the variables had a significant influence
(linear and quadratic). The dynamic viscosity of the eggnog sig-
nificantly decreased with increased level of milk (Fig. 1b) owing
to dilution effect upon addition of higher quantity of milk in
the formulation. However, cream has a greater effect (P < 0.01)
on the dynamic viscosity of the eggnog samples. Increased
cream level and fat content might have been shown to increase
the viscosity of cheese due to cold agglutination and churning
effects (Kamath et al., 2022). The functional properties of the
egg proteins such as foaming, gel formation, and emulsification
might also have played key role in regulating dynamic viscosity.

Effect of different variables on thermal gelation temperature

Thermal gelation is heat-induced gelation during which proteins
are activated by increasing the temperature and undergo several
non-covalent interactions to form a network of a hydrogel
(Kharlamova et al., 2019). The quadratic model revealed that the
regression coefficients for all the variables had a significant effect
on the thermal gelation values of eggnog at a linear level wherein,
increased level of milk significantly increased the thermal gelation
temperature (P < 0.01), whilst cream and eggnog decreased it (P <
0.05). Only one variable (milk) could positively influence the ther-
mal gelation at quadratic level (P < 0.01) (Fig. 1c). It has been
reported that addition of high level of milk in cream (having
∼83.0% water and 3.5% protein), significantly decreased the protein
concentration, which regulates the gel formation and gel strength
(Totosaus et al., 2002). Regression equation with high coefficient
of determination (R2 = 0.98) was obtained for thermal gelation
temperature of eggnog suggesting the suitability of the model to
predict the parameter.

Optimization of independent variables and model prediction

The criteria for dependent variables (maximum for HCT and
thermal gelation, in range for dynamic viscosity) chosen to find
optimized formulation are outlined in online Supplementary
Table S2. From the RSM, the optimized formulation with highest
desirability (0.82) was obtained for better quality eggnog prepar-
ation with milk, cream, and eggnog base at the level of 60.0, 25.0
and 6.50 g 100/ml, respectively. Comparison of the predicted
values with experimental values for HCT, dynamic viscosity and
thermal gelation temperature was conducted and the results
revealed no significant difference between these two values
(online Supplementary Table S3). Hence, it could be inferred
that the optimized formulation of eggnog just defined (together
with 4 g 100/ml each of skimmed milk powder and sugar)
could be considered best for manufacturing eggnog with desired
attributes.

Principal component analysis for sensory analysis of the
eggnog samples

Principal component analysis was conducted for the sensory
scores of all the seventeen trials of the eggnog and it was observed
that a total of four principal components with a cumulative vari-
ance of 89.45% were extracted. PC1, PC2, PC3 and PC4 showed
40.47, 24.18, 14.71, and 10.10% of the variance, respectively.

Table 2. Regression coefficients and analysis of variance of quadratic model for
heat coagulation time, viscosity and thermal gelation temperature of eggnog
prepared with each formulation

Partial coefficients

Responses

Heat
coagulation

time Viscosity
Thermal
gelation

Intercept 540.00 6.90 50.47

Linear

X1 5.63NS −0.6662* 1.86**

X2 −31.37* 1.33** −1.65**

X3 3.75NS 0.2187NS −0.3887*

Interaction

X1X2 −15.25NS −0.4875NS 1.11**

X1X3 28.00NS 0.3900NS −0.3300NS

X2X3 26.50NS −2.14** 0.6175*

Quadratic

X1
2 −113.13** −0.8725* −0.5713*

X2
2 −91.13** −0.6300NS −0.3638NS

X3
2 −66.87** 0.6675* 0.0136NS

Lack of fit NS NS NS

Model F value 23.05 15.44 42.02

C.V. (%) 6.18 8.70 0.7943

R2 0.97 0.95 0.98

Adequate precision 12.5495 15.9837 25.8287

**Significant (P < 0.01);* Significant (P < 0.05); NS – non-significant (P > 0.05); X1 – milk; X2 –
cream; X3 – eggnog base; C.V. – coefficient of variation; R2 – co-efficient of determination.
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It is worth mentioning that all principal components showed a
positive correlation with viscosity, mouth feel, and creamy flavor.
Variance values obtained in the present study are in accordance
with reported values (35–65%) (Sharma et al., 2021b). The load-
ing factor with an absolute value of >0.6 indicate a strong

influence (Table 4) (Sharma et al., 2021b). In the case of PC1,
the absolute correlation of milky, creamy flavor, mouth feel, vis-
cosity and color was found to be more than 0.6, whereas the abso-
lute correlation of cooked flavor was −0.935, indicating their
strong influence on the sensory attributes (Fig. 2).

Fig. 1. Three-dimensional representation of the effect of independent variables (milk, cream and eggnog base) on (a) heat coagulation time (s), (b) viscosity
(mPaS), and (c) thermal gelation temperature (°C).

Table 3. Quadratic model in term of coded and actual factors

Response Coded equation

Heat coagulation time 540 + 5.63*X1–31.37*X2 + 3.75*X3–15.25*X1*X2 + 28.00*X1*X3 + 26.50*X2*X3–113.13X1
2–91.13X2

2–66.87X3
2 (P < 0.0001)

Dynamic viscosity + 6.90–0.67*X1 + 1.33*X2 + 0.22*X3–0.49*X1X2 + 0.39*X1–X3– 2.14X2X3–0.87 X1
2–0.63X2

2 + 0.67X3
2 (P < 0.05)

Thermal gelation + 50.47 + 1.86*X1–1.65*X2−0.39*X3 + 1.11*X1X2–0.33*X1–X3 + 0.62X2X3–0.57 X1
2–0.36X2

2 + 0.02X3
2 (P < 0.05)

(* indicating multiplication).
X1: Milk, X2: Cream and X3: Eggnog base.
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Characterization of optimized eggnog

Physico-chemical properties of optimized eggnog

As is evident from Table 5, significantly higher fat, protein, and total
solids content differentiated the optimized formulation from the
control eggnog due to the presence of 60 times more cow milk
and nearly double the amount of cream in the latter formulation.
On the other hand, higher amounts of cow milk (average 3.4 g
100/g protein), cream, eggnog base, along with skimmed milk pow-
der could be the reason for higher protein content and thus,
increased total solids (P < 0.05) (Bharti et al., 2021). Various health
benefits of a product containing higher protein and lower carbohy-
drates have been well documented (Kumar et al., 2015; Goswami

et al., 2017; Yarar-Fisher et al., 2019). Moreover, the optimized for-
mulation fulfilled the requirements recommended by the U.S. Food
& Drug Administration (FDA, 2020), wherein, eggnog must have a
minimum of 6.0 g 100/ml milk fat, 1.0 g 100/ml egg yolk solids, and
not less than 8.25 g 100/ml milk SNF.

HCT of the optimized and control eggnogs was strongly
affected by pH with the optimized formulation having higher
HCT at all of the studied pH range, except pH 7.1 (online
Supplementary Fig S2a). Majority of liquid milks exhibit type A
behaviour (Singh, 2004). However, in the present study, type B
behaviour (increase in HCT as a function of pH) of both the sam-
ples would be attributed to the added egg base which might have
increased the heat stability in the range of the minimum (i.e. ∼pH
6.9) (Tziboula et al., 1994). In our study, the lower pH of the con-
trol eggnog might have been the contributory factor for its lower
heat stability as ionic calcium concentration enhances at reduced
pH resulting in neutralization of casein micelles charges, thereby
augmenting the aggregation process (Wu et al., 2020).

Rheological characteristics of optimized eggnog

Higher amounts of fat, protein or total solids are responsible for
increased viscosity (Bienvenue et al., 2003). The viscous nature of
milk is mainly attributable to fat content as people generally correl-
ate the consistency of milk with fat content (Ghanimah, 2018).
These might be the primary factors contributing to almost 18–
20% higher dynamic viscosity (mPaS) (P < 0.05) of the optimized
eggnog (8.77 ± 0.15 vs. 7.15 ± 0.24: Table 5). Results of RSM also
demonstrated that fat content in the formulation produced marked
impact on the viscosity of the eggnog samples. Further, both
the samples exhibited a typical shear-thinning behavior (decrease
in apparent viscosity with increasing shear rate) (online
Supplementary Fig. S2b). Thermal gelation temperature (cross
over temperature of G’ and G”) was observed to be significantly
higher (P < 0.05) for the control eggnog (67.70 ± 5.14 vs. 48.53 ±
3.02: online Supplementary Fig. S2c). Two stages are mainly

Fig. 2. Three-dimensional plot showing factor scores of eggnog samples on varimax
rotated PC axes (PC1, PC2, and PC3).

Table 4. Eigen values, percentage variance and variable loadings for varimax
rotated principal components

Loading factors PC1 PC2 PC3 PC4

Eigen values 4.86 2.90 1.76 1.21

Variance (%) 40.47 24.18 14.71 10.10

Cumulative variance (%) 40.47 64.65 79.36 89.45

Attributes

Milky flavor 0.951* −0.088 −0.071 0.145

Cooked flavor −0.935* 0.287 0.053 −0.093

Creamy flavor 0.908* 0.105 0.049 0.229

Colour 0.898* −0.107 0.359 −0.097

Mouthfeel 0.633* 0.600* 0.250 0.209

Viscosity 0.606* 0.245 0.143 0.600*

Metallic aftertaste 0.082 −0.912* 0.210 0.170

Overall acceptability −0.011 0.752* 0.447 0.380

Smoothness −0.222 0.723* −0.343 0.391

Bland flavor −0.055 −0.020 −0.929* 0.107

Egg flavor 0.136 −0.430 0.705* 0.468

Sweet flavor 0.177 0.088 −0.031 0.899*

PC, Principal component.
Loadings with an absolute value >0.600 are shown as* marked.

Table 5. Physico-chemical, rheological and microbial characteristics of the
control and optimized eggnog formulation

Parameters
Control
sample

Optimized
sample

pH 7.06 ± 0.01a 7.09 ± 0.01b

Fat (g 100/ml) 6.74 ± 0.79a 10.45 ± 0.26b

Protein (g 100/ml) 4.586 ± 1.24a 9.73 ± 0.87b

Total solids (g 100/ml) 25.25 ± 0.54a 27.14 ± 0.19b

Ash (g 100/ml) 0.80 ± 0.06a 0.77 ± 0.04a

Total sugar (g 100/ml) 14.61 ± 0.43b 8.21 ± 0.25a

Lactose (g 100/ml) 5.55 ± 0.08b 4.02 ± 0.15a

Viscosity (η, mPaS at 50/s, 20°C) 7.15 ± 0.24a 8.77 ± 0.15b

Thermal gelation temperature
(TGT) (°C)

67.70 ± 5.14b 48.53 ± 3.02a

Heat stability (s) 464.33 ± 8.34a 523.00 ± 2.51b

Total plate count (log CFU /ml−) 4.87 ± 0.48b 3.07 ± 0.61a

All the values are Mean ± S.D (n = 9).
abMean values in a row with at least one similar superscript do not differ significantly (P >
0.05).
#Coliform, yeast and mold, E. coli and Salmonella count was not observed in these samples.
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involved in controlling the gelation rate, namely protein denatur-
ation and protein aggregation (Kharlamova et al., 2019).
Therefore, increased protein content in eggnog might have resulted
in decreased thermal gelation temperature as protein content mainly
regulates the transition of sol–gel (Schäfer et al., 2018).

Microbiological characteristics of optimized eggnog

Total plate count (Log CFU/ml) for the control and optimized
eggnogs was 4.87 ± 0.48 and 3.07 ± 0.61, respectively, indicating
the lower count in the latter (Table 5). Yeast and mold count, coli-
form count, Escherichia coli count, and Salmonella count were not
detected in any sample, which might be due to the pasteurization
of egg and milk (Sharma et al., 2019, 2020). Grade A pasteurized
milk should not have more than 4.3 log10 CFU/ml and less than
10 coliforms/ml and it is worth noting that the optimized eggnog
had comparable microbial count to the recommendation count.

Sensory attributes of optimized eggnog

Even upon the addition of cream (with 40 g/100 g fat) to the opti-
mized eggnog, no significant difference (P > 0.05) was observed in
the scores of appearances, mouthfeel and the creamy flavor
(online Supplementary Table S4). This might be due to the pref-
erence and perception of sensory panelists to the creamy taste
(Upadhyay et al., 2020). However, it should be remembered that
only ten panelists were included in the analysis, so further work
is required to verify these sensory conclusions. Egg and sweet fla-
vor were perceived significantly higher (P < 0.05) in the case of the
control eggnog (4.67 ± 2.56 and 7.83 ± 0.69, respectively, Fig. 3)
which corroborates with our results of lower lactose and total
sugar content in the optimized formulation. Viscosity and
smoothness of the products varied significantly (P < 0.05), being
higher in the optimized formulation (Fig. 3). This might be due
to higher protein and fat content in the former (Jørgensen
et al., 2019). Overall acceptability is generally influenced by the
culmination of the responses of all the sensory attributes

(Sharma et al., 2021c). In the present study, overall acceptability
was significantly higher (P < 0.05) for the optimized formulation
(7.66 ± 0.94 vs. 4.91 ± 1.02).

In conclusion, we were able to optimize the formulation of
eggnog using RSM (Box-Behnken Design). Second order polyno-
mials were well fitted for the experimental data. In general, all the
independent variables significantly affected HCT, dynamic viscos-
ity and TGT. Based on the responses, optimal levels of milk,
cream and eggnog base were observed to be 60, 25 and 6.5 g
100/ml, respectively. This optimized formulation of eggnog con-
tained significantly higher fat, protein and total solids than the
control eggnog which resulted in higher dynamic viscosity and
heat stability but lower TGT.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0022029923000286.
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