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Congruent Number Elliptic Curves with
Rank at Least Three

Jennifer A. Johnstone and Blair K. Spearman

Abstract. We give an infinite family of congruent number elliptic curves each with rank at least three.

1 Introduction

A positive integer n is a congruent number if it is equal to the area of a right triangle

with rational sides. Equivalently, the congruent number elliptic curve En : y2
=

x(x2 − n2) has positive rank. Congruent numbers have been intensively studied. For

recent references see Chahal [1] and Coates [2]. The purpose of this paper is to give

an infinite family of congruent number elliptic curves with rank at least 3. We prove

the following.

Theorem 1.1 The curve w2
= t4 + 14t2 + 4 has infinitely many points. Let (t, w)

with t 6= 0 be one of them. Set t = u/v, where u and v are integers with gcd(u, v) = 1.
Define the positive integer n by

(1.1) n = 6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4).

Then the congruent number elliptic curve y2
= x(x2 − n2) has rank at least three.

In Section 2, we give a series of lemmas. In Section 3, we prove the theorem and

justify that the resulting congruent numbers are distinct modulo squares.

2 Some Useful Lemmas

Lemma 2.1 If u and v are integers with (u, v) = 1, then the quantities

(i) ±6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4)

(ii) ±6(u4 + 2u2v2 + 4v4)

(iii) ±2(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4)

(iv) ±2(u4 + 2u2v2 + 4v4)

are not equal to squares in Q.

Proof For (i), if u is odd, then

2 ‖ 6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4).
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If u is even, so that v is odd, then

25 ‖ 6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4).

These calculations show that in either case the given quantities cannot be equal to a

square in Q. The proofs in the other cases are similar and are therefore omitted.

Lemma 2.2 If u and v are nonzero integers with (u, v) = 1, then the quantities

(i) ±(u4 + 2u2v2 + 4v4)

(ii) ±(u4 + 8u2v2 + 4v4)

are not equal to squares in Q.

Proof In order for any of these quantities to be equal to a square in Q , we must

clearly choose the plus sign. In that case, a pair (u, v) satisfying the conditions in

the lemma and yielding a square, say z2, would give rise to a rational point (x, y) =

(u2/v2, zu/v3) on one of the following elliptic curves:

y2
= x(x2 + 2x + 4),

y2
= x(x2 + 8x + 4).

These curves have conductors 192 and 96 respectively. Each has rank 0 and their

only finite rational points are (0, 0) and (0, 0), (−2,±4) respectively, none of which

is consistent with x = u2/v2 and u 6= 0.

Lemma 2.3 For integers u, v such that (u, v) = 1, we have

(i) 3 ∤ (u4 + 8u2v2 + 4v4),
(ii) 3 ∤ (u4 + 2u2v2 + 4v4).

Proof Each of the quantities (u4 + 8u2v2 + 4v4) and (u4 + 2u2v2 + 4v4) is congruent to

(u2 + v2)2 modulo 3. Then we observe that 3 ∤ (u2 + v2), since −1 is not a quadratic

residue modulo 3. The result follows.

Lemma 2.4 For integers u, v such that (u, v) = 1, neither of the following quantities

is equal to a square in Q.

±(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4).

Proof Clearly we must choose the plus sign in order for one of the given quantities to

equal a square in Q . If (u4 +2u2v2 +4v4)(u4 +8u2v2 +4v4) were equal to a square in Q ,

then an easy calculation shows that each of u4+2u2v2+4v4 and u4+8u2v2+4v4 is equal

to a square. However, by Lemma 2.2 this is impossible. This proves Lemma 2.4.

Lemma 2.5 There exist infinitely many pairs of rational numbers (t, w) such that

w2
= t4 + 14t2 + 4.

Proof The given quartic curve is birationally equivalent to the elliptic curve

Y 2
= X3 − 6588X + 39312.

It has rank one, conductor 960 and Mordell–Weil group E(Q) ≃ Z × Z/2Z × Z/2Z.
Hence the given quartic has infinitely many rational points.
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3 Proof of Theorem 1.1

Proof Lemma 2.5 shows that there are infinitely many points (t, w) on the curve

w2
= t4 + 14t2 + 4,

and we can choose t 6= 0. Clearly n is positive. Rank estimation uses the following

method, which is described in Silverman and Tate [3]. Let Γ denote the group of

rational points of an elliptic curve E in the form y2
= x(x2 + ax + b). Let Q∗ be the

multiplicative group of non-zero rational numbers and let Q∗2 denote the subgroup

of squares of elements of Q∗. Define the group homomorphism α from Γ to Q∗/Q∗2

as follows.

α(P) =











1(mod Q∗2) for P = O, the point at infinity,

b(mod Q∗2) for P = (0, 0),

x(mod Q∗2) for P = (x, y) with x 6= 0.

Simultaneously, we study a second curve y2
= x(x2 − 2ax + a2 − 4b) and its group

of rational points Γ̄. In an analogous manner, we introduce a second group homo-

morphism ᾱ from Γ̄ to Q∗/Q∗2 defined by

ᾱ(P) =











1(mod Q∗2) for P = O, the point at infinity,

a2 − 4b(mod Q∗2) for P = (0, 0),

x(mod Q∗2) for P = (x, y) with x 6= 0.

The rank r of the given curve E satisfies

2r
=

|α(Γ)||ᾱ(Γ̄)|

4
.

It suffices to show that |α(Γ)| ≥ 32.
From the definition of α we have

α(Γ) ⊇ {1,−1}.

Since α((±n, 0)) ≡ ±n(mod Q∗2), we obtain

α(Γ) ⊇ S1 + {1,−1, n,−n}.

It follows from Lemma 2.1(i) that these images are distinct modulo Q∗2. For brevity

we just list generators of the subgroup of α(Γ) that we are constructing. Therefore

we have α(Γ) ⊇ 〈−1, n〉. Consider the following three non-torsion points P1, P2, P3

on y2
= x(x2 − n2):

P1 = (−36u2v2(u4 + 8u2v2 + 4v4), 36uv(u2 − 2v2)(u4 + 8u2v2 + 4v4)2),

P2 = (12(u4 + 2u2v2 + 4v4)2, 36(u4 − 4v4)(u4 + 2u2v2 + 4v4)2),

P3 = (−36u2v2(u4 + 2u2v2 + 4v4), 36uv3(u4 + 2u2v2 + 4v4)2w).
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We will show that these points are independent in Γ. As

α(P1) ≡ −(u4 + 8u2v2 + 4v4)(mod Q
∗2),

we see that α(Γ) ⊇ S1 ∪ {(u4 + 8u2v2 + 4v4)}. We check that α(P1) is not congruent

modulo Q∗2 to any element of S1. From Lemma 2.2(ii), we see that±(u4+8u2v2+4v4)

are not equal to squares in Q. If ±α(P1)n were congruent to a square modulo Q∗2

we would have a contradiction to Lemma 2.1(ii). Therefore,

α(Γ) ⊇ S2 + 〈−1, n, (u4 + 8u2v2 + 4v4)〉.

Next we turn to α(P2). We must show that α(P2) 6≡ s(mod Q∗
2

) for all s ∈ S2. If this

congruence were to hold for some s ∈ S2, then there would exist integers c1, c2 with

c1, c2 ∈ {0, 1} such that

α(P2) ≡ ±nc1 (u4 + 8u2v2 + 4v4)c2 (mod Q
∗2)

or

3 ≡ ±nc1 (u4 + 8u2v2 + 4v4)c2 (mod Q
∗2).

Comparing powers of 3 on both sides of this congruence, we deduce from (1.1) and

Lemma 2.3(i), (ii) that c1 = 1, from which it follows that at least one of the quantities

±3n or ±2(u4 + 2u2v2 + 4v4) must be equal to a square in Q . However, this would

contradict Lemma 2.1(iii), (iv). Therefore,

α(Γ) ⊇ S3 + 〈−1, n, (u4 + 8u2v2 + 4v4), 3〉

and |S3| = 16. To finish, we show that show that α(P3) 6≡ s(mod Q∗
2

) for all s ∈ S3.
If this congruence were to hold, then there would exist integers ei , i = 1, 2, 3, and

ei ∈ {0, 1} such that

α(P3) ≡ ±3e1 ne2 (u4 + 8u2v2 + 4v4)e3 (mod Q
∗2),

that is,

(3.1) (u4 + 2u2v2 + 4v4) ≡ ±3e1 ne2 (u4 + 8u2v2 + 4v4)e3 (mod Q
∗2).

Comparing powers of 2 on both sides of (3.1), we deduce as in the proof outlined in

Lemma 2.1 that

22m ‖ ±3e1 ne2 (u4 + 8u2v2 + 4v4)e3

for some nonnegative integer m. Again, as from the proof of Lemma 2.1, the exact

power of 2 dividing n is odd and therefore e2 = 0. Now (3.1) reduces to

(3.2) (u4 + 2u2v2 + 4v4) ≡ ±3e1 (u4 + 8u2v2 + 4v4)e3 (mod Q
∗2).
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Comparing powers of 3 on both sides of (3.2) and using Lemma 2.3, we deduce that

e1 = 0. Thus we treat the cases with (e1, e2, e3) = (0, 0, 0) or (0, 0, 1) and deduce

from (3.2) with e1 = 0 that

(u4 + 2u2v2 + 4v4) ≡

{

±1(mod Q∗2) if (e1, e2, e3) = (0, 0, 0),

±(u4 + 8u2v2 + 4v4)(mod Q∗2) if (e1, e2, e3) = (0, 0, 1).

Hence at least one of the quantities

± (u4 + 2u2v2 + 4v4)

± (u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4)

is equal to a square in Q. This contradicts Lemmas 2.2(i) and 2.4. Thus α(Γ) con-

tains the seventeen elements in S3 ∪ {(u4 + 2u2v2 + 4v4}, and, as |α(Γ)| is a power

of 2, we see that |α(Γ)| ≥ 32. This proves that the rank of Γ is at least 3.

Remark 3.1 Our theorem allows us to deduce the existence of infinitely many in-

tegral congruent numbers, distinct modulo squares, whose associated elliptic curves

have rank at least three. If this were not the case, then there would exist a finite set of

nonzero rational numbers {di ,= 1, . . . , m} that are inequivalent modulo Q∗, such

that for each congruent number n in our theorem we have

n = 6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4) ≡ di(mod Q
∗

2

),

for exactly one di . Equivalently, setting t = u/v, we obtain

6(t4 + 2t2 + 4)(t4 + 8t2 + 4) = di y2

for some rational number y depending on n. Our infinitely many distinct values of n

would give rise to an infinite set of distinct points on the family of algebraic curves

diY
2
= 6(X4 + 2X2 + 4)(X4 + 8X2 + 4).

However, this is impossible since we have finitely many curves of genus three, each of

which has only finitely many points.

Remark 3.2 The point (t, w) = (1/2, 11/4) lies on the curve w2
= t4 + 14t2 + 4.

Thus we can apply our theorem with (u, v) = (1, 2) yielding the congruent number

n = 42486. Our theorem implies that the associated congruent number elliptic curve

y2
= x(x2 − n2) has rank at least 3. Magma confirms that the rank is exactly 3. We

attempted to find a further specialization of the values (u, v) in our theorem that

would give an infinite family of congruent number curves with rank at least 4 but

were unsuccessful. A straightforward calculation shows that the squarefree parts of

the congruent numbers in our theorem are congruent to 6 modulo 8, so that if rank 4

could be attained for some of these curves, then we would expect from the conjecture

of Birch and Swinnerton-Dyer that, in fact, the rank would be at least 5.
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