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I N T R O D U C T I O N 

The large-scale magnetic field generation by the turbulent motion energy, 
known as turbulent dynamo [1], is perspective candidate to explain the 
observed stat ionary magnetic fields of cosmic objects . 

It is well known tha t in magneto-hydrodynamic equations which de-
scribe reflectional non-symmetric (gyrotropic) conductive turbulent fluid 
some instabilities occure [2]. These instabilities lead to increasing magnetic 
fluctuation and to large-scale stat ionary magnetic field generation. How-
ever, to find the established magnetic field is a difficult problem because 
of the strong nonlinearities in MHD equations. Thus studies devoted to 
this problem usually consider non-stat ionary turbulent dynamo, i.e. they 
investigate the initial stage of large-scale magnetic field development on the 
basis of linearised MHD equations. 

In contrary to tradit ional approaches, the quan tum - field formalism 
[4, 5] is suitable to describe the final steady regime. In paper [3] this formal-
ism has been used to t reat the fully developed isotropic magneto-turbulence 
of gyrotropic incompessible fluid. The stat ionary turbulent dynamo has 
been explained by the spontaneous symmetry breaking mechanism widely 
employed in quantum theory. 

M O D E L 

The stochastic MHD is governed by equations [6]: 

dtv = ί / Δ ν - ( V v ) v + ( V b ) b - Vp + f 

dtb = uvAb — ( V v ) b + ( V b ) v (1) 

Here v (x ,£ ) denotes the transverse (incompressibility) velocity pulsations, 
b(x,£) s tand for the magnetic field fluctuations measured in Alfvén veloc-
ity units, ν is the molecular viscosity coefficient, a = i / / u ( / / - magnetic 
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diffusivity) is the inverse magnetic P rand t l number. The external random 
force f simulates the stochasticity of the problem, i.e. the interaction of the 
velocity pulsations with the mean flow. This force has Gaussian distribution 
P ( f ) = e x p ( - T j f j D j s f s ) with given pair noise correlator 

< f j ( ^ ) f s ( - k ) >= Djt(k) = d(k)QJS (2) 

(in wave vectors k and frequency ω representation, k =\ k |). Choosing 
d(k) one specifies the form of the energy pumping into the turbulent system 
which is necessary to compensate for dissipation losses. There is universally 
acknowledged choice of d(k) [4] which corresponds to the energy pumping 
from the largest-scale eddies (or, equivalently, from the region of the small 
wave vectors k). In gyrotropic MHD the transversal tensor QJS is of general 
form: QJS = Pjs + i\£jsiki/k, where Pjs — Sjs — k3ksjk2. The antisymmetric 
tensor ε models the reflectional symmetry violation (gyrotropy), λ is the 
gyrotropy coefficient (| λ |< 1). 

In the field formulation the problem (1) is described by the action 5 of 
the fields v , b and some auxiliary transversal fields v', b' [6]: 

S = + y ' [ - ö t v + i / A v - ( V v ) v + ( V b ) b ] 

+ b ' [ -^b + uvAb - (Vv)b + ( Vb)v] (3) 

The integration over the space-time variables and the trace over the vector 
indexes are implied. 

The various Green (correlation and response) functions of velocity pul-
sations ν and magnetic fluctuations b, which we are interested in, are usual 
functional averages of corresponding fields with a weight exp S. For ex-
ample, pair velocity correlation function < v v > and magnetic response 
function < bb' > are determined as: 

< v v >= J dvdbdv'db'vv exp 5, < bb' > = J dwdbdw'dh'hh' exp S. 

These functions may be calculated by Feynman diagramatic technique. The 
main problem is, as usually in field theory, to eliminate singularities tha t are 
present in the per turbat ion theory diagrams for the correlation functions. 
For the reflectionary symmetric (non-gyrotropic) MHD this problem has 
been solved in paper [6]. Using the renormalization group methods the 
existence of infrared stable scaling regime has been demonst ra ted [6, 7]. In 
this regime the inverse P rand t l number u has some definite value. 

But the additional singularity appears if the gyrotropy was included. 
This singularity causes tha t the magnetic responce function < bb' > in-
creases exponentially with the t ime in the range of the small wave 
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numbers k. Thus the system becomes unstable, because the magnetic re-
sponce function must be re tarded, and at the same time, it must ensure the 
damping of all per turbat ions. Note tha t this condition is fulfilled without 
nonlinearities in (1): 

Here θ is the usual step function (equal to zero for t < 0 and θ = 1 for 
t > 0). The included nonlinearities lead to the appereance of an unstable 
term (further called a rotor te rm) . In the first (one-loop) approximation it 
yields: 

< b ? (M)b ' s ( - k , 0 ) > = e(i)e~uuk2t[PJS cosh akt + isjsiki/ksh\hakt] + 

Here constant a is proportional to the gyrotropy parameter λ and to the 
ultraviolet cutoff kd « r^"1, where rd is the turbulent dissipation length. It 
is clear tha t < bb >—* oo as / —* oo in range of small k. 

The instability problem may be solved on the basis of the spontaneous 
symmetry breaking mechanism. Briefly, this mechanism can be described 
as follows. The 'normal s ta te ' of the turbulent gyrotropic conductive flu-
id with zero mean value of the magnetic field is unstable, being stabilised 
by the spontaneous appearance of the space-uniform mean magnetic field 
Β ξ < b >φ 0 just in the same way as a ferromagnetic below Curie temper-
a ture Tc is stabilized by the appearance of spontaneous magnetisat ion. The 
value of the appeared field is determined by the system stability condition 
bu t , unlike the case in s tandar t models, this condition is not reduced to 
a simple requirement, e.g. to the minimum free energy. In this case the 
assumption tha t Β φ 0 is fixed directly in the action (3) by the replacing 
b —• b + B , which leads to new per turbat ion theory diagrams for correlation 
functions. The stability condition is equivalent to the requirement that the 
unstable rotor term in magnetic responce function should be removed. This 
turned out to be possible with a proper choice of the Β value. The direction 
of Β is not fixed in this case and its absolute value is 

< b , ( k , 0 b /
5 ( - k , 0 ) > = e(t)e~u u k 2 tP3 < 

+ stable terms . (4) 

(5) 

where ρ is the fluid density. 

Note tha t the turbulent correlation length (external turbulent scale) 
is set to infinity in model (3) thus formally the large-scale magnetic field 
becomes space-uniform. One wants to emphasize also (detailes see in [6, 3]) 
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that the dynamo mechanism is realised in some infrared scaling regime, 
where the inverse Prandtl number u = 1.393 (in one-loop approximation). 

Expecting that the Earth magnetic field is generated by turbulent dy-
namo one can estimate the quantities in the expression for spontaneous field 
(5), taking 

the mean magnetic field of Ear th Β — 0.3 -f 0.5 Gauss, 
the viscosity coefficient ν — 10~2 τ 5 X 10~2cra2/,sec, 
the mass density in Earth core ρ — 10 -f 12 g /cm 3 , 
the inverse magnetic Prandt l number u = 1.393 

and then ?\y ξ k~l = 0.6-f4.4c?72 is obtained for the dissipation turbulent 
length. 

Taking the external turbulent scale rc ~ 3 x 108cm (the radius of the 
Earth core) and using the known relation rc = Re3^4Vd one yields large 
values of Reynolds number Re = 1010 -f 1011 which are typical for the fully 
developed turbulence. 

M O D I F I C A T I O N OF A L F V É N W A V E S 

After the instability elimination demonstrated above the "exotic" term 
remains in < bb' >: 

< ^ ( Μ ) Κ ( - Μ ) >= e(t)e~ul/k2t[Pls + igSjimkikmBm Bs t] + ..., (6) 
S ν ' 

" exotic" term 

where e = Β / | Β | and the constant g is proportional to the gyrotropy 
parameter Λ and to the mean magnetic field | Β |. Its physical sence can be 
clarified by analysis of the linearised MHD equations. 

The linearised MHD equations without dissipative terms with sponta-
neous magnetic field Β / 0 and with exotic contribution are of the form: 

d{v = ( B V ) b , 

dtb = ( B V ) v + <?[V χ e ] (be ) . (7) 

In order to find the solution an orthonormal basis of vectors η, 1, m is 
chosen: 

η = k/fc, 1 = (e - η cos a ) / sin a , m = [η x e ] /s in a , 

where a is the angle between vectors η and e. The transversal fields v , 
b are decomposite with respect to the orthonormal basis; ν = vil + v m m, 
b = 6/1 + bmm. The solution for scalar modes v/, 6/, bm has the form: 

vi = A1 exp i (kx - ωί), vm = [-A2 + ^-(1 + iut)] exp z(kx - ωί), 
Lü 

bi = -A1 exp i (kx - ωί), bm = [A2 - ig\Ait] exp i (kx - ωί). (8) 
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Here A\, Α<ι are arbitrary constant amplitudes, g\ — g sin α and ω = Bk. 
It seems that wave modes m contain contributions that increase linear-

ly with time. The inclusion of dissipative terms into linearised equations 
(8) results in exponential damping exp(-ßt), which suppresses the linear 
growth for arbitrary small β ~ uk2. 

Therefore, the exotic contribution, which necessarily appears in the dy-
namo regime, does not generate instability but facilitates the formation of 
specific long-lived pulses of order £exp(—ßt) in Alfvén waves polarized at 
right angle to the spontaneous field. 
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