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Abstract

We investigate the maximal finite length submodule of the Breuil–Kisin prismatic coho-
mology of a smooth proper formal scheme over a p-adic ring of integers. This submodule
governs pathology phenomena in integral p-adic cohomology theories. Geometric appli-
cations include a control, in low degrees and mild ramifications, of (1) the discrepancy
between two naturally associated Albanese varieties in characteristic p, and (2) the
kernel of the specialization map in p-adic étale cohomology. As an arithmetic applica-
tion, we study the boundary case of the theory due to Fontaine and Laffaille, Fontaine
and Messing, and Kato. Also included is an interesting example, generalized from a con-
struction in Bhatt, Morrow and Scholze’s work, which illustrates some of our theoretical
results being sharp, and negates a question of Breuil.
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1. Introduction

Let OK be a mixed characteristic discrete valuation ring (DVR) with perfect residue field k and
fraction field K. Let X be a smooth proper (formal) scheme over OK . It is natural to ask how
the geometry of Xk and XK are related. Recall that the proper base change theorem [Sta21, Tag
0GJ2] says that, for any prime �, there is a specialization map

Sp: RΓét(Xk,Z�)→ RΓét(XK ,Z�).
The smooth base change theorem says [Sta21, Tag0GKD] that the above map is an isomorphism
for any � �= p.

The lack of a smooth base change theorem for when � = p is related to many interesting
‘pathology’ phenomena in p-adic cohomology theories. In this paper, we try to investigate these
pathologies using the recent advances of prismatic cohomology theory.

The driving philosophy in this paper is as follows. Recall that in [BMS18], [BMS19], and
[BS22], the authors attached a natural cohomology theory, known as the prismatic cohomology,
to the mixed characteristic family X/OK . This cohomology can be thought of as ‘the universal
p-adic cohomology theory’, therefore we expect a certain well-defined piece inside prismatic
cohomology to be ‘the universal source of pathology’ in all p-adic cohomology theories. Before
explicating the above, let us first say that the comparison between étale torsion and crystalline
torsion as in [BMS18, Theorem 1.1(ii)] serves as the initial inspiration. Now let us showcase two
more such pathologies and state what our main theorem specializes to in these two cases.

Albanese and reduction
Let us assume, in addition to the above, that X possesses an OK-point x. Associated with the
pair (X , x) is a functorial map of abelian varieties f : Alb(Xk)→ Ak over k, where A is the Néron
model of the Albanese of (XK , xK). The smooth and proper base change theorem tells us that f
is a p-power isogeny. What can we say about ker(f)?

Theorem 1.1 (Corollary 4.6). Let e be the ramification index of OK .

(1) If e < p− 1 then the map f : Alb(Xk)→ Alb(XK)k is an isomorphism.
(2) If e < 2(p− 1) then ker(f) is p-torsion.
(3) If e = p− 1 then ker(f) is p-torsion and of multiplicative type, hence must be a form of

several copies of μp. Moreover, there is a canonical injection of OK-modules,

D(ker(f))⊗k
(OK/p) ↪→ H2(X ,OX ).
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Here D(−) denotes the Dieudonné module of the said finite flat group scheme. If one translates
this result into a statement concerning maps between Picard schemes, then our result slightly
refines an old result by Raynaud [Ray79, Thèoréme 4.1.3] in the setting of smooth central fibers
(see Remark 4.8).

Kernel of specialization
The p-adic specialization map is not an isomorphism, as it is almost never surjective, for the
rank of the source is at most half of the rank of the target. One can still ask whether the p-adic
specialization map is injective or not.

Theorem 1.2 (Corollary 4.15). Let e be the ramification index of OK and let i ∈ N. Consider
the specialization map Spi : Hi

ét(Xk,Zp)→ Hi
ét(XK ,Zp).

(1) If e · (i− 1) < p− 1, then Spi is injective.
(2) If e · (i− 1) < 2(p− 1), then ker(Spi) is annihilated by pi−1.
(3) If e · (i− 1) = p− 1, then ker(Spi) is p-torsion, and there is a Gal(k/k)-equivariant injection,

ker(Spi)⊗Fp

(OK ⊗W W (k)
)
/p ↪→ Hi(OX )⊗W W (k).

The above two theorems are of similar shape, and that is because they are shadows of the
same result concerning prismatic cohomology, which we explain next.

Prismatic input
Choose a uniformizer π ∈ OK . There is a canonical surjection S := W (k)[[u]] � OK with kernel
generated by the Eisenstein polynomial of π, which has degree given by the ramification index e.
Let ϕS be the endomorphism on S which restricts to usual Frobenius on W (k) and sends u to
up. The triple (S, (E), ϕS) is known as the Breuil–Kisin prism associated with (OK , π) [BS22,
Example 1.3(3)].

In [BMS19, BS22], the authors attached an S-perfect complex RΓΔ(X/S) with a Frobenius
operator. Similar to the classical crystalline story, the Frobenius operator is also an isogeny. A
concrete consequence of having an isogenous Frobenius map is that the torsion submodule in
Hi

Δ(X/S) is p-power torsion [BMS18, Proposition 4.3(i)]. Hence, the torsion must be supported
on Spec(S/p). Note that S/p ∼= k[[u]] is a DVR. An upshot of the above discussion is that we
have three descriptions of a submodule in Hi

Δ(X/S):

(1) the u∞-torsion submodule in Hi
Δ(X/S), henceforth denoted by Hi

Δ(X/S)[u∞];
(2) the maximal finite length submodule in Hi

Δ(X/S); and
(3) the submodule in Hi

Δ(X/S) supported at the closed point in Spec(S).

To make the point that the above is the universal source of pathology in p-adic cohomology
theory, let us exhibit the connection between u∞-torsion and our previous results.

Theorem 1.3.

(1) (Theorem 4.2) Concerning the natural map f : Alb(Xk)→ Alb(XK)k, we have a natural
isomorphism of Dieudonné modules,

D(ker(f))(−1) ∼= H2
Δ(X/S)[u],

where (−)(−1) denotes the Frobenius untwist and (−)[u] denotes the u-torsion submodule.
(2) (Theorem 4.14) As for the kernel of the p-adic specialization map, we have a natural

isomorphism of Gal(k/k)-representations,

ker(Spi) ∼= (
Hi

Δ(X/S)[u∞]/u⊗W (k) W (k)
)ϕ=1

.

1609

https://doi.org/10.1112/S0010437X23007261 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007261


S. Li and T. Liu

In view of the aforementioned statements, the reader can probably guess what our main
result, concerning the structure of u∞-torsion in prismatic cohomology, should look like.

Theorem 1.4 (Theorem 3.6 and Corollary 3.22). Let us write Mi := Hi
Δ(X/S)[u∞], and write

Ann(−) for the annihilator ideal of an S-module.

(1) If e · (i− 1) < p− 1, then Mi = 0.
(2) If e · (i− 1) < 2(p− 1), then Ann(Mi) + (u) ⊃ (pi−1, u).
(3) If e · (i− 1) = p− 1, then Ann(Mi) ⊃ (p, u). Moreover, the semi-linear Frobenius on Mi is

bijective, and there is a natural injection Mi ⊗k
(OK/p) ↪→ Hi(X ,OX ).

Remark 1.5. (1) We also prove the mod pn analogs. As a consequence we obtain the following
result (Corollary 3.8) concerning the shape of prismatic cohomology. Let i be an integer satisfying
e · (i− 1) < p− 1. Then there exists a (non-canonical) isomorphism of S-modules,

Hi
Δ(X/S) � Hi

ét(XK ,Zp)⊗Zp S.

(2) Min [Min21, Corollary 5.4] has previously obtained Theorem 1.4(1), and his method will
show the mod pn analog when e · i < p− 1. Let us briefly explain the appearance of i− 1 in our
result, which might seem odd at first glance. It is due to the fact that the prismatic Verschiebung
operator Vi becomes canonically divisible by E when restricted to the p∞-torsion submodule or
the u∞-torsion submodule, and these submodules with the usual prismatic Frobenius and the
‘divided Verschiebung’ are canonically (generalized) Kisin modules of height i− 1 instead of i.
For more details, see Corollary 3.16.

(3) One may ask if there can be a better trick/argument showing better bounds on the
vanishing of u-torsion. Later on we shall explain a generalization of a construction in [BMS18,
§ 2.1] with u-torsion in cohomological degree 2 and ramification index p− 1. Hence, our result is
actually sharp in terms of the largest e · (i− 1) allowed.

To illustrate Remark 1.5(2), let us quickly sketch a proof of Theorem 1.4(1). The follow-
ing proof was provided by the referee; the same strategy has essentially appeared in the proof
of [LL20, Corollary 7.25]. However, we would like to point out that this argument does not
immediately extend to the derived mod pn-prismatic cohomology.

Proof sketch of Theorem 1.4(1). We have a short exact sequence of k[[u]]-modules,

0→ Hi
Δ(X/S)/p→ Hi

Δ(X/S,O/p)→ Hi+1
Δ (X/S)[p]→ 0.

There are Frobenius ϕ and Verschiebung Vi acting on the first two items in a compatible way,
such that the composition of these two operators in either way is equal to multiplication by ue·i,
hence these two operators descend to the third item with their compositions satisfying the same
relation. This forces the third item to be u-torsion-free whenever e · i < p− 1 (see, for example,
[FKW21, Lemma 2.2.1] or the proof of Corollary 3.4). Since any u-power torsion is necessarily
also p-power torsion, we win. �

Special fiber telling Hodge numbers of the generic fiber
As a third geometric application of our result, we revisit the question discussed in [Li22]: what
mild condition on X guarantees that the Hodge numbers of the generic fiber X can be read off
from the special fiber X0? In [Li22] the first named author obtained a result along these lines,
with technical input of prismatic cohomology and the structural result in [Min21]. However, it
was noted that the results in [Li22] are not optimal in the unramified case, when compared
with what one got from results by Fontaine–Messing, Kato, and Wintenberger. We analyzed
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the situation and concluded that it is because we lack knowledge of the shape of u∞-torsion in
prismatic cohomology in the boundary degree. This paper is partially motivated by the hope of
improving results in [Li22], and our improvement is the following theorem.

Theorem 1.6 (Theorem 4.17, improvement of [Li22, Theorem 1.1]). Let X be a smooth proper
p-adic formal scheme over Spf(OK) of ramification index e. Let T be the largest integer such
that e · (T − 1) ≤ p− 1.

(1) Assume there is a lift of X to S/(E2). Then for all i, j satisfying i+ j < T , we have equalities

hi,j(X) = hi,j(Xk),
where the latter denotes virtual Hodge numbers of Xk, defined as in [Li22, Definition 3.1].

(2) Assume, furthermore, that e · (dimXk − 1) ≤ p− 1. Then the special fiber Xk knows the
Hodge numbers of the rigid generic fiber X.

Along the way, we also improve the results in [Li22] concerning the integral Hodge–de Rham
spectral sequence (see Theorem 4.18), and obtain a curious degeneration statement of the
‘Nygaard–Prism’ spectral sequence (see Theorem 4.22) in the unramified case.

Application to integral p-adic Hodge theory
It is a central theme in integral p-adic Hodge theory to understand Galois representations such
as Hi

ét(XK ,Zp) in terms of linear algebraic data such as a certain crystalline cohomology of
X together with natural structures. The first result along such lines is that of Fontaine and
Messing [FM87] and Kato [Kato87], which treats the case of e = 1 (namely the unramified
base) and i < p− 1.1 Later on Breuil [Bre98] generalized the above to semistable X , whereas
Faltings [Fal99] studied the analog for p-divisible groups allowing arbitrary ramification index e.
A few years later, Caruso [Car08] made progress allowing e > 1 as long as e · (i+ 1) < p− 1.2

Of interest to us is Breuil’s question [Bre02, Question 4.1].

Question 1.7. Assume i < p− 1 and let S be the p-adic divided power envelope of S � OK . Then
the (torsion-free) crystalline cohomology Hi

crys(X/S)/tors together with its natural structure
(e.g., divided Frobenius operator, filtration and connection) should be a ‘strongly divisible lattice’
and ‘corresponds’ to the Galois representation Hi

ét(XK ,Zp).
All works mentioned above can be thought of as solving various special cases of the above

question. In [LL20, Theorem 7.22], a connection with u-torsion in prismatic cohomology is
observed. We showed that, fixing an i < p− 1 and a smooth proper formal scheme X/OK ,
the mod pn analog of the above question has a positive answer in degree i if and only if both
of ith and (i+ 1)th mod pn prismatic cohomology of X/S are u-torsion-free. We then used
Caruso’s result on the mod p analog as a starting point to do an induction to show the vanishing
as in Theorem 1.4(1) and Remark 1.5(1), which in turn implies the mod pn analog of Breuil’s
question for all n and e · i < p− 1 (see [LL20, Corollary 7.25]). In particular, this gives an affir-
mative answer to Breuil’s original question when e · i < p− 1. In this paper, the aforementioned
vanishing of u-torsion is easily deduced, hence gives a ‘shortcut’ to the above result bypassing
Caruso’s work.

In private communications with Breuil, we were encouraged to study his question beyond
the above bound. To our surprise, we discovered that the construction in [BMS18, § 2.1] can be

1 See also [AMMN22] for an approach of a different flavor.
2 For the mod p analog, Caruso’s work even allows e · i < p − 1.
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generalized to a counterexample with e = p− 1 and i = 1 to Breuil’s question (see Example 1.10).
Note that in this example, we have e · i = p− 1, hence our previous result was actually sharp.

The other extreme of (e, i) with e · i = p− 1 is e = 1, i = p− 1. In this case, Fontaine and
Messing [FM87] and Kato [Kato87] showed that the crystalline cohomology Hp−1

crys(Xn/Wn)
together with its natural structure is still a Fontaine–Laffaille module. According to [FL82]
this Fontaine–Laffaille module is associated with a Galois representation ρp−1

n,FL. It is only natural
to ask the following question.

Question 1.8. What is the relation between ρp−1
n,FL and Hp−1

ét (XK ,Z/pn)?
Although we have not found any discussion on this question, there seems to be consensus

among experts that these two Galois representations are different. We are not aware of any
particular past expectation. Our entire § 5 is more or less devoted to this question, and we arrive
at the following statement.

Theorem 1.9 (Theorem 5.28). There exists a natural map η : Hp−1
ét (XK ,Z/pnZ)(p− 1)→ ρp−1

n,FL

of GK-representations such that ker(η) is an unramified representation of GK killed by p, and
coker(η) sits in a natural exact sequence 0→ ker(η)→ coker(η)→ ker(Spp−1

n ).

Here Spp−1
n denotes the specialization map of mod pn étale cohomology in degree p− 1,

which is also known to be an unramified GK-representation killed by p (see Corollary 4.15(3)).
The appearance of ker(η) is due to the defect of a key functor in integral p-adic Hodge theory,
which is well known to experts; whereas the potential u-torsion in degree p of mod pn prismatic
cohomology of X is solely responsible for the appearance of ker(Spp−1

n ).

Example and open questions
Now let us discuss an interesting example, generalized from [BMS18, § 2.1].

Example 1.10. Let E/W (k) be a lift of an ordinary elliptic curve over an algebraically closed field
k of characteristic p. Fix an n ∈ N and let OK := W (k)[ζpn ]. Over OK we have a tautological
map of group schemes χ : Z/pn → μpn sending 1 to ζpn .

With the above notation, we consider the smooth proper Deligne–Mumford stack X :=
[EOK

/(Z/pn)] where the action of Z/pn is via the character χ and the embedding μpn ⊂ E [pn] (by
the theory of canonical subgroup; see [Katz73, § 3.4]). Note that its special fiber is Ek ×B(Z/pn)
and its generic fiber is an elliptic curve E ′K :=

(EOK
/μpn

)
K

. In view of the pathologies discussed
at the beginning of this introduction, let us record some facts concerning this example.

• The Albanese map has Néron model given by the ‘further quotient’ map: X → E ′ := EOK
/μpn ,

and the special fiber of this map factors as Ek ×B(Z/pn)→ Ek
f−→ Ek/μpn . Note that ker(f) =

μpn .
• The fundamental group of Xk is abelian, with torsion given by Z/pn due to the factor

of B(Z/pn). By the universal coefficient theorem, we have H2
ét(Xk,Zp)tors

∼= Z/pn whereas
H2

ét(XK ,Zp) is torsion-free. Hence, we have ker(Sp2) = Z/pn.
• One can go through the Leray spectral sequence for the cover E → X to compute the prismatic

cohomology of X/S. The most relevant computation is

H2
Δ(X/S)[u∞] ∼= S/((u+ 1)p

n−1 − 1, pn).

• Finally, we compute the crystalline cohomology of X/S and to our surprise we have
H1

crys(X/S) ∼= S ⊕ J , where J is the ideal

{x ∈ S | pn divides x · ((u+ 1)p
n − 1)}.
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In particular, it is torsion-free of rank 2 yet not free. This gives a counterexample to
Question 1.7.

By standard approximation techniques, one can cook up schematic examples having all the above
features. When n = 1, we have e = p− 1, therefore our results above (stated and proved only
for formal schemes) are sharp. For more details (see § 6).

Combining a generalized version of the above construction with our Theorem 1.1, we get a
geometric proof of Raynaud’s theorem [Ray74, Théorème 3.3.3] on prolongations of finite flat
commutative group schemes over mixed characteristic DVR (see § 6.1).

Finally, let us end this introduction with two natural questions awaiting exploration. We
consider them to be the next step in understanding pathological torsion in p-adic cohomology
theory.

Question 1.11. Is there a smooth proper (formal) scheme X over an unramified base W which
has u-torsion in its pth prismatic cohomology? Note that p is the smallest possible cohomological
degree according to our result, and when p = 2 this is achieved by the above example.

Question 1.12 (see Question 3.10). Recall Mi := Hi
qSyn(X ,Δ)[u∞].

(1) Let β be the smallest exponent such that pβ ∈ Ann(Mi), and let γ be the exponent such
that Ann(Mi) + (u) = (u, pγ). Is there a bound on β and γ in terms of e and i?

(2) In light of the above example, we guess that β and/or γ are bounded above by
logp((e · (i− 1))/(p− 1)) + 1 when p is odd.

Remark 1.13. Confirming the above guess will give us results along the following lines. If
Hi

crys(Xk/W ) has torsion not annihilated by pN , then Hi
ét(XK ,Zp) has torsion not annihilated

by pN−c(e,i), with c(e, i) being some constants depending only on e and i. Note that this would
be a relation between torsion in étale and crystalline cohomology ‘converse’ to that established
in [BMS18, Theorem 1.1(ii)]. When e · i < 2(p− 1), our Theorem 1.4(2) can be translated into
such a statement. Since our Theorem 1.4(2) does not seem to be optimal, we do not pursue that
direction in this paper.

The links between each section are as follows.

Section 2

−−−→

Section 3 −−−→ Section 5

−−−→

-----

Section 4 - - - - - Section 6

Notation and conventions
Let k be a perfect field of characteristic p > 0 with W = W (k) its Witt ring. Let K be a totally
ramified finite extension of W (k)[1/p] of degree e, and let OK be its ring of integers. Choose
a uniformizer π ∈ OK whose Eisenstein polynomial we denote by E with E(0) = a0p; we get a
surjection S := W [[u]] � OK sending u to π. We equip S with the δ-structure with ϕS(u) = up.
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The pair (S, (E)) is the so-called Breuil–Kisin prism (see [BS22, Example 1.3.(3)]). Denote the
p-adic divided power envelope of S � OK by S.

We always use C and its cousins like C� or Ainf to denote the usual construction associated
with the completion of an algebraic closure K of K in p-adic Hodge theory. We use GK :=
Gal(K/K) denote the absolute Galois group. Similarly, Gk := Gal(k/k).

We use X to denote a smooth proper p-adic formal scheme on Spf(OK), X0 to denote its
reduction mod π and X to denote its rigid generic fiber.

On (OK)qSyn we have the sheaf Δ given by (left Kan extended) prismatic cohomology relative
to S. We use Δ(1) to denote its ϕS twist. This sheaf of Frobenius-twisted prismatic coho-
mology admits a decreasing filtration called the Nygaard filtration (see [BS22, § 15]), which
will be denoted by Fil•N. Let us note that RΓΔ(X/S) ∼= RΓqSyn(X ,Δ) and ϕ∗

SRΓΔ(X/S) ∼=
RΓqSyn(X ,Δ(1)).

For any n ∈ N ∪ {∞}, we use subscript (−)n to denote the derived mod pn of a quasi-syntomic

sheaf; for example, RΓqSyn(X ,Δ(1)
n ) := RΓqSyn(X ,Δ(1)/pn).

In this paper we only consider relative prismatic cohomology, and hopefully readers will not
confuse our notation with the absolute prismatic cohomology developed in [BL22].

2. Various modules and their Galois representations

In this section, we discuss three types of Frobenius modules – Kisin modules, Breuil modules
and Fontaine–Laffaille modules – and their associated Galois representations. Roughly speaking,
various cohomologies discussed in this paper will have these structures and functors to Galois
representations just model comparison to étale cohomology. The major difference between the
current work and [LL20] is that we now focus on the boundary case eh = p− 1. So it is necessary
to discuss nilpotent objects for Fontaine–Laffaille modules and Breuil modules when e = 1 and
h = p− 1.

2.1 Kisin modules
We review (generalized) Kisin modules from [LL20, § 6.1]. Let (S, E(u)) be the Breuil–Kisin
prism over OK , with d = E(u) = E the Eisenstein polynomial of a fixed uniformizer π ∈ OK .
A ϕ-module M over S is an S-module M together with a ϕS-semi-linear map ϕM : M→M.
Write ϕ∗M = S⊗ϕ,S M. Note that 1⊗ ϕM : ϕ∗M→M is an S-linear map. A (generalized)
Kisin module M of height h is a ϕ-module M of finite S-type together with an S-linear map ψ :
M→ ϕ∗M such that ψ ◦ (1⊗ ϕM) = Eh idϕ∗M and (1⊗ ϕM) ◦ ψ = Eh idM. The map between
generalized Kisin modules is a S-linear map that is compatible with ϕ and ψ. We denote by
Modϕ,hS the category of (generalized) Kisin modules of height h. As explained in [LL20], the
main difference between generalized Kisin modules and classical theory Kisin modules is that
the classical theory only discusses the situation where M has no u-torsion, while Kisin modules
from prismatic cohomology could have u-torsion in general. In the following, when we need to
restrict to the classical theory, we will call M either classical or u-torsion-free. Let Modϕ,h,cS,tor

denote the full subcategory of Modϕ,hS consists of classical Kisin modules of height h and killed
by pn for some n ∈ N.

We now review some technologies to deal with classical Kisin modules on the boundary case
and extend them to generalized Kisin modules. Following [Kis09, (1.2.10)] and [Gao17, § 2.1],
we call a ϕ-module M multiplicative (respectively, nilpotent) if (1⊗ ϕ) : ϕ∗M→M is surjective
(respectively, if limn→∞ ϕn(x) = 0, ∀x ∈M).
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Remark 2.1. In [Kis09, (1.2.10)] and [Gao17, § 2.1], the authors define multiplicative to mean
(1⊗ ϕ) : ϕ∗M→M is bijective. For a classical Kisin module M these two concepts are the same
as 1⊗ ϕ is always injective. But for generalized Kisin modules, as u-torsion exists, bijection of
1⊗ ϕ is too restrictive. For example, S/(p, u)S with the usual Frobenius is multiplicative but
1⊗ ϕ is not injective.

Let M be a ϕ-module over S of finite S-type. Set M := M/uM and write q : M→M =
M/uM. By the Fitting lemma, we haveM = Mm ⊕Mn where ϕ is bijective onMm and nilpotent
on Mn.

Lemma 2.2. With notation as above, there exists a unique W (k)-linear section [·] : Mm →M

such that [·] is ϕ-equivariant and q ◦ [·] = id |Mm .

Proof. Pick any x ∈Mm. Since ϕ on Mm is bijective, there exists a unique xn ∈M such that
ϕn(xn) = x. Select xn ∈M a lift of xn and define [x] := limn→∞ ϕn(xn). We first check that
ϕn(xn) converges to an x ∈M such that q(x) = x. Indeed, since ϕ(xn+1) = xn, ϕ(xn+1)− xn =
uyn with yn ∈M. So ϕn+1(xn+1)− ϕn(xn) = ϕn(u)ϕn(y) and hence ϕn(xn) converges to an
x ∈M and clearly q(x) = x. Suppose that x′n ∈M is another lift of xn. Then x′n − xn = uzn
with zn ∈Mn. Then ϕn(x′n)− ϕn(xn) = up

n
ϕn(zn). So {ϕn(x′n)} also converges to x. This

implies that x = [x] does not depend on the choice of lift xn of xn = ϕ−n(x). Hence, the
section [·] : Mm →M is well defined and satisfies q ◦ [·] = idMm . For any a ∈W (k), it is clear
that a[x] = [ax] from construction of [x]. So [·] is W (k)-linear. If y = ϕ(x) then ϕ(xn) is
a lift of ϕ−n(y) and [y] = limn→∞ ϕn+1(xn) = ϕ(x) = ϕ([x]). So [·] is ϕ-equivariant. Finally,
suppose there is another section [·]′ : Mm →M. Then [x]− [x]′ ∈ uM for any x ∈Mm. Then
[x]− [x]′ = ϕn([xn]− [xn]′) ∈ upn

M. This forces [x] = [x]′. �

Lemma 2.3. Let M be a ϕ-module with finite S-type. Then there exists an exact sequence of
ϕ-modules

0 �� Mm �� M �� Mn �� 0 (2.4)

such that Mm is multiplicative and Mn has no non-trivial multiplicative submodule. Further-
more, the above exact sequence is functorial for M, and if M is in Modϕ,h,cS,tor then so are Mm

and Mn.

Proof. Note that [Kis09, Prop. (1.2.11)] has treated the situation that M has no u-torsion, but
our idea here is slightly different. By the above lemma, we can set Mm to be the S-submodule
of M generated by [Mm] and Mn := M/Mm. Clearly, 1⊗ ϕ : S⊗ϕ,S Mm →Mm is surjective.
Consider the right exact sequence S⊗W (k) [Mm]→M→Mn → 0. Modulo u, we have the right
exact (indeed, exact) sequence Mm →M →Mn/uMn → 0. So Mn/uMn �Mn and also forces
Mm/uMm = Mm. Hence, ϕ on Mn is topologically nilpotent as ϕ on Mn is nilpotent, thus Mn

cannot have non-trivial multiplicative submodule. So we obtain exact sequence (2.4) which is
functorial for M because [·] is clearly functorial for M by the above lemma.

If M ∈ Modϕ,h,cS,tor then Mm has no u-torsion. Note that the exact sequence (2.4) modulo u
becomes the exact sequence 0→Mm →M →Mn → 0. Then Mn cannot have u-torsion as M

has no u-torsion. Hence, both Mm and Mn have no u-torsion. Then both Mm and Mn have
E-height h by [Fon90, Prop. B 1.3.5] as required. �

But for a generalized Kisin module M with height h, it is unclear whether we can define
ψ : Mm → ϕ∗Mm such that Mm has height h. Luckily, we will not need such a statement.
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Let M [pn] denote the pn-torsion in M . For later application, we need the following two
statements.

Lemma 2.5. Let M be a finitely generated S-module. Assume M/pnM are u-torsion-free for
all n > 0. Then M/(M [pn] + pM) are also u-torsion-free for all n > 0.

Proof. Suppose x ∈M is a lift of a u-torsion in M/(M [pn] + pM), hence satisfies u · x = y + p · z
for some y ∈M [pn] and z ∈M . Multiplying the equation by pn, we get u · pn · x = pn+1 · z.
As M/pn+1M also has no u-torsion by assumption, we see that pn · x = pn+1 · z̃ for some
z̃ ∈M . Writing x = (x− p · z̃) + p · z̃ shows that in fact x ∈M [pn] + pM , as required. �
Proposition 2.6. Let M be a finitely generated generalized Breuil–Kisin module. Assume
M/pnM are u-torsion free for all n > 0. Then there exists a Zp-module N and an isomorphism
of S-modules M � N ⊗Zp S.

Proof. First let us treat the case when M is torsion. In this case M is killed by a power of p
(see [BMS18, Proposition 4.3(i)]). Denote Im(M

p−→M) = pM =: M1. We claim M1/p
nM1 are

also u-torsion-free for all n > 0. Granting this claim, by induction on the exponent of p annihi-
lating M , we know M1 satisfies the conclusion. Here, for the starting point of induction, we used
the fact that a finitely generated S/p-module is u-torsion-free if and only if it is free. Then by
[Min21, Lemma 5.9], we get the conclusion for M .

We now verify the claim. Applying the snake lemma to

0 �� M1
��

·pn

��

M ��

·pn

��

M/M1
��

0
��

0

0 �� M1
�� M �� M/M1

�� 0

yields an exact sequence

0→M/(M [pn] + pM)→M1/p
nM1 →M/pnM.

Here M [pn] denotes the pn-torsion in M . Since M/pnM has no u-torsion by assumption, it
suffices to show the same for M/(M [pn] + pM). Applying Lemma 2.5 gives the claim.

Next we turn to the general case. By [BMS18, Proposition 4.3], we have two short exact
sequences of generalized Breuil–Kisin modules

0→Mtor →M →Mtf → 0

and

0→Mtf →Mfr →M0 → 0.

Here Mtor is the torsion submodule, Mtf is the torsion-free quotient, Mfr is the reflexive hull
of M (which is free as S is a two-dimensional regular Noetherian domain), and M0 has finite
length. The first sequence implies that Mtor/p

n injects into M/pn, therefore Mtor satisfies the
assumption. Since we have treated the torsion case, we see that Mtor satisfies the conclusion.
Now we claim M0 vanishes. This immediately implies that Mtf = Mfr is free, hence the first
sequence splits, and M = Mtor ⊕Mtf has the shape of a Zp-module.

Finally, let us justify the claim that M0 = 0. Taking the second sequence above, derived
mod p, gives an inclusion M0[p] ⊂Mtf/p. Since M0 has finite length, we see that M0[p] must be
u∞-torsion. If we can show that Mtf/p is u-torsion-free, then we get M0[p] = 0 which implies
M0 = 0 as it must be p∞-torsion. We are now reduced to showing M/(Mtor + p ·M) is
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u-torsion-free. Since Mtor = M [pn] for sufficiently large n, we finish the proof by appealing to
Lemma 2.5. �

2.2 Breuil modules
Fix 0 ≤ h ≤ p− 1. Let S be the p-adically completed PD envelope of θ : S � OK , u �→ π, and
for i ≥ 1 write Fili S ⊆ S for the (closure of the) ideal generated by {γn(E) = En/n!}n≥i. For
i ≤ p− 1, one has ϕ(Fili S) ⊆ piS, so we may define ϕi : Fili S → S where ϕi := p−iϕ. We have
c1 := ϕ(E(u))/p ∈ S×. Note that S ⊂ K0[[u]]. Define I+ := S ∩ uK0[[u]]. Clearly, S/I+ = W (k).
Let Sn := S/pnS. Let ∼Modϕ,hS denote the category whose objects are triples (M,FilhM, ϕh),
consisting of:

(1) two S-modules M and FilhM;
(2) an S-module map ι : FilhM→M whose image contains Filh S · M; and
(3) a ϕ-semi-linear map ϕh : FilhM→M such that for all s ∈ Filh S and x ∈M we have

ϕh(sx) = (c1)−hϕh(s)ϕh(E(u)hx).

Morphisms are given by S-linear maps compatible with ιs and commuting with ϕh. Let ′Modϕ,hS
denote the full subcategory of ∼Modϕ,hS whose objects (M,FilhM, ϕh) satisfy the following
conditions.

(1) ι is injective such that FilhM is regarded as a submodule ofM.
(2) ϕh(FilhM) generates M as S-modules.

A sequence is defined to be short exact if it is short exact as a sequence of S-module, and induces
a short exact sequence on Filhs. Let Modϕ,hS,tor denote the full subcategory of ′Modϕ,hS with the
underlying module M killed by a p-power, and the triple M can be a written as successive
extensions of triplesMi in ′Modϕ,hS with each underlying moduleMi �

⊕
finite S1.

Let ∇ : S → S be W (k)-linear continuous derivation such that ∇(u) = 1. Let Modϕ,h,∇S,tor

denote the category of the object (M,FilhM, ϕh,∇) where (M,FilhM, ϕh) is an object in
Modϕ,hS,tor and ∇ is W (k)-linear morphism ∇ :M→M such that the following assertions hold.

(1) For all s ∈ S and x ∈M, ∇(sx) = ∇(s)x+ s∇(x).
(2) E∇(FilhM) ⊂ FilhM.
(3) The following diagram commutes:

FilhM
E(u)∇

��

ϕh �� M
c1∇

��

FilhM
up−1ϕh�� M

(2.7)

An object M in Modϕ,hS,tor is called a (torsion) Breuil module.

Now let us recall the relation of classical torsion Kisin modules and objects in Modϕ,hS,tor.

For each such M ∈ Modϕ,h,cS,tor, we construct an objectM :=M(M) ∈ Modϕ,hS,tor as follows:M :=
S ⊗ϕ,S M and

FilhM := {x ∈M|(1⊗ ϕM)(x) ∈ Filh S ⊗S M};
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and ϕh : FilhM→M is defined as the composite of the map

FilhM
1⊗ϕM �� Filh S ⊗S M

ϕh⊗1
�� S ⊗ϕ,S M =M .

For any M∈ Modϕ,hS,tor, define a semi-linear ϕ :M→M by ϕ(x) = (c1)−hϕh(Ehx).
Similar to the situation of Kisin module, we say M is multiplicative (respectively, nilpotent)
if 1⊗ ϕ : S ⊗ϕ,SM→M is surjective (respectively, limn→∞ ϕn(x) = 0, ∀x ∈M). Clearly, if
M ∈ Modϕ,h,cS,tor is multiplicative (respectively, nilpotent) then so isM(M).

Remark 2.8. Here our definition of multiplicative is different from that in [Gao17, Def. 2.2.2]
where M is called multiplicative if FilhM = Filh SM. Indeed, these two definitions are
equivalent. Suppose that FilhM = Filh SM. Since ϕh(ax) = ϕh(a)ϕ(x) for any a ∈ Filh S and
x ∈M, {ϕ(x) = c−h1 ϕh(Ehx)} and {ϕh(Filh SM)} generate the same subsets in M. This
implies that ϕ(M) generates M. Conversely, suppose that ϕ(M) generates M. To show that
FilhM = Filh SM, we can reduce to the case thatM is finite S1-free by dévissage. See the last
part of the proof of Lemma 2.9.

Lemma 2.9. For any objectM∈ Modϕ,hS,tor, there exists a functorial exact sequence

0 �� Mm �� M �� Mn �� 0 (2.10)

with Mm a multiplicative submodule ofM andMn being nilpotent.

Proof. Recall I+ = S ∩ uK0[[u]], S/I+ �W (k) and ϕ(x) = c−h1 ϕh(Ehx). Write Sn := S/pnS and
assume that M is an Sn-module. We claim Lemma 2.2 still holds by replacing M by M,
M =M/I+ and q :M→M =M/I+. Indeed, the same proof goes through because ϕ�(I+) = 0
in Sn for sufficient large �. Now we can set Mm as the S-submodule of M generated
by [Mm] and Mn :=M/Mm. Using the same argument as in Lemma 2.3, the right exact
sequence S ⊗W (k) [Mm]→M→Mn → 0 modulo I+ becomes an exact sequence 0→Mm →
M →Mn → 0. This forces Mm/I+ = Mm and Mn/I+ = Mn. Set FilhMm = Filh S · Mm and
FilhMn = FilhM/FilhMm. It is clear that ϕh : FilhMm →Mm and ϕh : FilhMn →Mn

are well defined. So we obtain an exact sequence 0→Mm →M→Mn → 0 in the category
∼ Modϕ,hS .

To promote our exact sequence to the category Modϕ,hS,tor, we argue by induction on n where
pn kills M. The base case n = 1 is most complicated and postponed to the end. For general n,
by definition, M sits in the exact sequence in Modϕ,hS,tor : 0→M1 →M→M2 → 0 with M1,
M2 killed by pn−1 and p, respectively. Consider the following commutative diagram:

0 �� Mm
1

��

�� M1
��

��

Mn
1

��

��

0

0 �� Mm

f
��

�� M ��

��

Mn ��

��

0

0 �� Mm
2

�� M2
�� Mn

2
�� 0

(2.11)

We need to show that the first columns is short exact. Note that M2 is finite S1-free, and
the exact sequence in the second column yields the exact sequence 0→M1 →M →M2 → 0
where Mi :=Mi/I+Mi for i = 1, 2. So the sequence 0→Mm

1 /I+ →Mm/I+ →Mm
2 /I+ → 0
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is also exact as it is the same as the exact sequence 0→Mm
1 →Mm →Mm

2 → 0. Note that
Mm

i is finite S-generated as they are generated by [Mm
i ]. Note that Sn is a coherent ring (see

[LL20, Lemma 7.15]). By induction on n and [Sta21, Tag 05CW], we see that M is coherent
and then Mm is coherent. Since Mm

1 is coherent by induction, L =Mm/Mm
1 is also coherent

by [Sta21, Tag 05CW] again. Note that f induces a map f ′ : L →Mm
2 . We need to show that

f ′ is an isomorphism. Let L = L/I+. Note that f ′ := f ′ mod I+ : L→Mm
2 is an isomorphism.

Nakayama’s lemma shows that f ′ is surjective. Let K := ker(f ′), which is still coherent. Since
Mm

2 is finite S1-free by induction, TorS1 (Mm
2 , S/I+) = 0. So we obtain an exact sequence 0→

K/I+ → L→Mm
2 → 0. Hence K/I+ = 0 as f ′ is an isomorphism. By Nakayama’s lemma, K = 0

and the first column is exact as a finite S-module. Using that Mm
2 is finite S1-free, we see that

the sequence 0→Mm
1 /Filh S →Mm/Filh S →Mm

2 /Filh S → 0 is exact. So the sequence 0→
Filh S · Mm

1 → Filh S · Mm → Filh S · Mm
2 → 0 is exact. Therefore, the first column of (2.11) is

exact in Modϕ,hS,tor. Then it is standard to check that the last column is also exact sequence in
′ Modϕ,hS,tor. In particular, Mn is an object in Modϕ,hS,tor by induction on n. Once (2.10) is exact

in Modϕ,hS,tor. Then ϕ on Mm, M and Mn defined from ϕ(x) = c−h1 ϕh(x) are compatible with
maps in the sequence. Since Mm is generated by [Mm] and Mn/I+ = Mn, we see that Mm is
multiplicative andMn is nilpotent.

Now we discuss the case n = 1. We have already shown that Mm is finite S-generated.
Now the exact sequence 0→Mm/I+ →M/I+ →Mn/I+ → 0 is an exact sequence of
k-vector spaces. Pick mi ∈Mm and nj ∈M such that mi mod I+ and nj mod I+ are bases
of Mm/I+ and Mn/I+ respectively. Using that M is finite S1-free, it is easy to show that
mi, nj forms a basis of M and then both Mm and Mn are finite S1-free. Now it remains
to show that FilhM∩Mm = Filh SMm such that FilhMn = FilhM/FilhMm is a submod-
ule of Mn. Then it is easy to check that (Mn,FilhMn, ϕh) is an object in Modϕ,hS,tor and thus

the sequence 0→Mm →M→Mn → 0 is in the category Modϕ,hS,tor. To show that FilhMn =

FilhM/FilhMm, consider F :=Mm/Filp S1Mm. Write F̃il
hF := (FilhM∩Mm)/Filp S1 and

FilhF = Filh SMm/Filp S1. Since FilhF = uehF ⊂ F̃il
hF ⊂ F which is a finite free k[[u]]/upe-

module, there exists a basis e1, . . . , ed of F such that F̃il
hF is generated by uaiei with 0 ≤ ai ≤ eh.

Suppose one of the ai is less than eh, say a1 < eh. Let êi ∈Mm be a basis which lifts ei. Then
ua1 ê1 ∈ FilhM∩Mm. So ϕh(uehê1) = ϕh(ueh−a1uai ê1) = ϕ(ueh−a1)ϕh(ua1 ê1) ∈ I+M. This con-
tradicts that ϕh(uehêi) mod I+ is a basis Mm ⊂M =M/I+. So all the ai equal eh and we have
FilhMm = Filh S · Mm = FilhM∩Mm as required. �

Corollary 2.12. The exact sequence (2.10) is canonical in the following sense. Suppose M
admits another exact sequence in Modϕ,hS,tor,

0→ M̃m →M→ M̃n → 0,

with M̃m being multiplicative and M̃n being nilpotent. Then M̃m =Mm and M̃n =Mn.

Proof. Since M̃n is successive extension of finite free S1-modules, Tor1S(Mn, S/I+) = 0. Hence,
the sequence 0→ M̃m/I+ →M/I+ → M̃n/I+ → 0 is exact. Since M̃m is multiplicative,
M̃m/I+ ⊂Mm and thus M̃m/I+ = Mm, otherwise ϕ on M̃n/I+ cannot be nilpotent. So
[Mm] ⊂ M̃m. Hence, Mm ⊂ M̃m as Mm is constructed as S-submodule of M generated by
[Mm]. Since Mm/I+ = Mm, we have M̃m =Mm by Nakayama’s lemma. By the definition of
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exact sequence in the category Modϕ,hS,tor, we see that

Filh M̃m = M̃m ∩ FilhM =Mm ∩ FilhM = FilhMm,

where the last equality was proved by the end of the proof of Lemma 2.9. Therefore, we have
the desired equality (M̃m,Filh M̃m, ϕh) = (Mm,FilhMm, ϕh) as a subobject of M. �

2.3 Fontaine–Laffaille modules
Fix h = p− 1 for this subsection. Let us review Fontaine–Laffaille theory from [FL82]. Let
FMW (k) denote the category whose objects are finite W (k)-modules M together with decreasing
filtration {FiliM}i≥0 and a Frobenius semi-linear map ϕi : FiliM →M satisfying:

(1) Fili+1M is a direct summand of FiliM for all i ∈ N, and Fil0M = M , Filh+1M = {0};3
(2) ϕi|Fili+1M = p · ϕi+1;
(3)

∑
i≥0 ϕi(FiliM) = M .

Morphisms in FMW (k) are W (k)-linear homomorphisms compatible with filtration and ϕi. It
turns out that the category FMW (k) is abelian (see [FL82, Proposition 1.8]); and any morphism
is automatically strict with respect to the filtrations (see [FL82, 1.10(b)]). A sequence 0→M1 →
M →M2 → 0 in FMW (k) is short exact if the underlying W (k)-module is exact.4 In this case,
we call M2 a quotient of M . An object M ∈ FMW (k) is called multiplicative if Fil1M = {0} and
M is called nilpotent if it does not have a multiplicative subobject. Just as in previous sections,
we have the following lemma.

Lemma 2.13. Let (M,Fil•M,ϕ•) ∈ FMW (k).

(1) It is multiplicative (respectively, nilpotent) if and only if ϕ0 is bijective (respectively,
nilpotent).

(2) There is a canonical multiplicative-nilpotent exact sequence in FMW (k),tor,

0 �� Mm �� M �� Mn �� 0, (2.14)

such that Mm is the maximal multiplicative subobject in M and Mn is nilpotent.

Proof. (1) Condition (3) of being an object in FMW (k) in the case of a multiplicative
object translates to ϕ0 being surjective, which is equivalent to being bijective due to length
considerations. Conversely, if ϕ0 is bijective, we let M ′ ∈ FMW (k) be defined as follows: the
underlying module is M itself, with Fil0M ′ = M ⊃ Fil1M ′ = 0 and ϕ0. Then there is an evi-
dent morphism M ′ →M in FMW (k), which is necessarily strict with respect to filtrations (see
[FL82, 1.10(b)]), hence Fil1M = Fil1M ′ = 0. The proof for nilpotent objects is at end of the
proof of (2).

(2) By the Fitting lemma, we have M = Mm ⊕Mn only as ϕ-modules, such that ϕ0 on Mm

is bijective and ϕ0 on Mn is nilpotent. Let Fil1Mm = 0; we get the desired sequence. The fact
that the quotient Mn with the induced filtration is nilpotent follows from (1). By the exact
sequence (2.14), M is nilpotent if and only if M = Mn, whose ϕ0 is nilpotent. �

For any object M in FMW (k), we can attach a Breuil module MFM(M) ∈ Modϕ,h,∇S,tor

in the following ways. Let M =MFM(M) := S ⊗W (k) M , ∇M = ∇S ⊗ idM and FilhM :=∑h
i=0 Fili S ⊗W (k) Filh−iM . By definition FilhM is a submodule of M. We define

3 It turns out that this condition follows from the next two conditions (see [Win84, Proposition 1.4.1 (ii)]).
4 Note that by the above result of Fontaine–Laffaille, the sequence of filtrations is forced to be exact as well.
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ϕh,M : FilhM→M by ϕh,M :=
∑h

i=0

(
ϕi |Fili S

)⊗ (
ϕh−i |Filh−i M

)
; this is well defined because

Fili+1M is a direct summand of FiliM . It is standard to check thatMFM(M) is a Breuil module
in Modϕ,h,∇S,tor .

Proposition 2.15.

(1) Let M ∈ FMW (k),tor. Then MFM((2.14)) is isomorphic to (2.10) with M =M(M). In
particular,M(Mm) =M(M)m.

(2) Given an M ∈ FMW (k),tor and suppose that there exists a classical Kisin module M ∈
Modϕ,h,cS,tor such that M(M) �MFM(M) in the category of Modϕ,hS,tor. Then we have
isomorphismMFM((2.14)) �M((2.4)). In particular,M(Mn) =M(M)n =MFM(Mn).

Proof. It is easy to check that if M ∈ FMW (k),tor (respectively, M ∈ Modϕ,h,cS,tor) is multiplica-
tive or nilpotent then so is MFM(M) (respectively, M(M)). Then the proposition follows from
Corollary 2.12. �

For later use, let us prove the following technical lemma which says that one can test an
object in FMW (k) after looking at its ‘Breuil’s counterpart’. This is well known to experts.

Lemma 2.16. Let (M,Fil•M,ϕ•) be a filtered module with divided Frobenius; that is, only
assuming the condition (2) in the definition of FMW (k) is satisfied. Let M =MFM(M) :=
S ⊗W (k) M and FilhM :=

∑h
i=0 Fili S ⊗W (k) Filh−iM . Suppose there is a semi-linear map

ϕh : FilhM→M satisfying

ϕh =
h∑
i=0

(
ϕi |Fili S

)⊗ (
ϕh−i |Filh−i M

)
.

Then (M,Fil•M,ϕ•) is an object in FMW (k) if and only if ϕh(FilhM) generates M as an
S-module.

Proof. The ‘only if’ part follows from the standard direction of going from Fontaine–Laffaille
modules to Breuil modules as discussed above. We prove the ‘if’ part, which is the only part that
will be used later. To that end, we simply observe thatM/(p, I+) · M ∼= M/p. One checks that
the induced map ϕh : FilhM→M/p has image given by the image of

∑h
i=0 ϕi :

⊕h
i=0 FiliM →

M/p. Our condition now implies the reduction map is surjective. Since M is p-adically complete,
it follows that the map

∑h
i=0 ϕi :

⊕h
i=0 FiliM →M before mod p is also surjective, which is

exactly what we need to show. �

2.4 Relations to Galois representations
Fix πn ∈ K such that π := (πn) ∈ O�C and π0 = π; also K∞ :=

⋃
n≥0K(πn) and G∞ :=

Gal(K/K∞). We embed S→ Ainf via u �→ [π]. As discussed in [LL20, § 6.2], for a classical Kisin
module M ∈ Modϕ,hS , we can associate the Galois representation of G∞ via TS(M) = (M⊗S

W (O�C))ϕ=1 and T hS(M) = (Filh ϕ∗M⊗Ainf)ϕh=1 where Filh ϕ∗M := {x ∈ ϕ∗M | (1⊗ ϕ)(x) ∈
EhM} and ϕh : Filh ϕ∗M→ ϕ∗M is given by ϕh(x) = (1⊗ ϕ)(x)/ϕ(a−1

0 E)h. See [LL20, § 6.2]
for more details on T hS and TS; for example, T hS(M) = TS(M)(h) and both TS and T hS are exact.

Note that if M⊗SAinf has an Ainf -semi-linear GK-action which extends the natural
G∞-action and commutes with ϕ, then TS(M) is a GK-representation. In particular, this is the
case when M = Hi

Δ(X/Sn) modulo u∞-torsion.
Now given a Breuil module M∈ Modϕ,h,∇S,tor , as explained around [LL20, Eq. (6.19)], we

define Filh(M⊗S Acrys) := FilhM⊗S Acrys and then ϕh extends toM⊗S Acrys and we define a
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GK-action onM⊗S Acrys: for any σ ∈ GK , any x⊗ a ∈ Acrys ⊗SM, define

σ(x⊗ a) =
∞∑
i=0

∇i(x)⊗ γi
(
σ([π])− [π]

)
σ(a). (2.17)

The above GK-action on M⊗S Acrys extends the G∞-action, preserves filtration and
commutes with ϕh. As in [LL20, § 6.3], we define

TS(M) := (Filh(M⊗S Acrys))ϕh=1,

which is a Zp[GK ]-module.
Now suppose M ∈ Modϕ,h,cS,tor and let c :=

∏∞
n=1 ϕ

n(E/E(0)) ∈ S×. As explained in the proof
of [LL20, Prop. 6.12], the map m �→ ch(1⊗m) induces a natural map ι : T hS(M)→ TS(M(M)).

Suppose that M⊗SAinf has GK-action which extends the G∞-action and commutes with ϕ,
and the natural map M⊗SAinf →M(M)⊗S Acrys is compatible with GK-actions on both sides.
Then, as explained in [LL20, Remark 6.14], the natural map TS(M)(h) � T hS(M) ι−→ TS(M(M))
is compatible with GK-actions on both sides. In particular, this will happen (see the proof of
Theorem 5.28) when M = Hi

qSyn(X ,Δn) is an object in Modϕ,h,cS,tor and M(M) is subobject of

Hi
crys(X/Sn) inside Modϕ,h,∇S,tor .

Lemma 2.18. If M ∈ Modϕ,h,cS,tor is nilpotent then the natural map ι : T hS(M)→ TS(M(M)) is an
isomorphism.

Proof. WriteM :=M(M). ThenM is also nilpotent by Proposition 2.15. When h ≤ p− 2, ι is
known to be an isomorphism (without assuming nilpotency of M) by [LL20, Prop. 6.12]. So in
the following, we assume h = p− 1.

Since T hS and M are exact and TS is left exact, we can assume that M is killed by p such
that M is a finite free k[[u]]-module with basis e1, . . . , ed. Write ϕ(e1, . . . , ed) = (e1, . . . , ed)A
with AB = BA = a−h0 uehId. Let ẽi := 1⊗ ei be a basis of ϕ∗M and an S1-basis of M. Then
Filh ϕ∗M is generated by (α1, . . . , αd) = (ẽ1, . . . , ẽd)B and FilhM is generated by (α1, . . . , αd)
and Filp S1M. Note that ι(ẽ1, . . . , ẽd) = ch(ẽ1, . . . , ẽd), and any x ∈ (Filh ϕ∗M⊗SAinf) can be
written as x = (α1, . . . , αd)X with X ∈ (O�C)d and any y ∈ FilhM⊗S Acrys can be written as
y = ch(α1, . . . , αd)Y + ch(ẽ1, . . . , ẽd)Z with Y ∈ (O�C/uep)d and Z ∈ (FilpAcrys,1)d. Then ι is the
same as

{X ∈ (O�C)d | ϕ(X) = BX} −→ {(Y, Z) | Y ∈ (O�C/uep)d, Z ∈ (FilpAcrys,1)d,

ϕ(Y ) + ϕ(A)ϕh(Z) = BY + Z}
by sending X �→ (X, 0). We must show the above map is bijective. For injectivity, note that X ∈
ker(ι) if and only if BX ∈ (upeO�C)d. Then a−h0 uehX = ABX ∈ (upeO�C)d. Hence, Y = a0u

−eX ∈
(O�C)d. Note that ϕ(X) = BX implies that Aϕ(X) = a−h0 uehX and then Y = Aϕ(Y ). So Y =
Aϕ(A) · · ·ϕm(A)ϕm+1(Y ). Since M is nilpotent, Aϕ(A) · · ·ϕm(A)→ 0 for m→∞, we see that
Y = 0. This proves the injectivity of ι.

To prove the surjectivity of ι, consider the equation ϕ(Y ) + ϕ(A)ϕh(Z)−BY = Z. Note that
Acrys,1 = (O�C/upe)[{zi}i≥1]/{zpi , i ≥ 1} with zi the image of γpi(E) in Acrys,1. Since ϕh(zi) = ap

i

0

or 0, the left-hand side of the equation is in (O�C/upe)d; this forces the right-hand side Z = 0
and we only have ϕ(Y ) = BY inside (O�C/upe)d. So it suffices to show there exists Ỹ ∈ (O�C)d

such that ϕ(Ỹ ) = BỸ and BỸ = BY inside (O�C/upe)d. To prove the existence of Ỹ , pick any lift
Y0 ∈ (O�C)d of Y . Then ϕ(Y0) = BY0 + upeW0. Since upeId = BA(a0u

e)hId, we have ϕ(Y0) = BY1

with Y1 = Y0 + ueAah0W0. Then ϕ(Y1) = BY1 + upeϕ(A)W1 for some W1 ∈ (O�C)d. Continuing to
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construct Yn in this way, we have ϕ(Yn) = BYn + upeAϕ(A) · · ·ϕn(A)Wn for some Wn ∈ (O�C)d

and then Yn+1 = Yn + ueAϕ(A) · · ·ϕn(A)Wn. Then Yn converges to Ỹ as Aϕ(A) · · ·ϕn(A)→ 0.
Since Ỹ = Y0 + ueAW̃ for some W̃ ∈ (O�C)d, we see that BỸ = BY0 = BY inside (O�C/upe)d. �

For h = p− 1 the following example shows that the above lemma will fail without M being
nilpotent.

Example 2.19. Let h = p− 1. Consider the rank 1 Kisin module M = S · e1 and ϕ(e1) = e1.
Then ẽ1 = 1⊗ e1 is a basis of ϕ∗M with Filh ϕ∗M = Ehϕ∗M. We have M =M(M) = S · ẽ1
with FilhM = Filh Sẽ1 and ϕh(xẽ1) = ϕh(x)ẽ1,∀x ∈ Filh S. Hence,

T hS(M) = (EhAinf)ϕh=1ẽ1 = {Ehx ∈ EhAinf |ϕ(x) = a−h0 Ehx}ẽ1 = EhthZpẽ1.

Here t ∈ Ainf is discussed in Example 3.2.3 in [Liu10] which also shows that ϕ(t) = a−1
0 Et and

t = cϕ(t). On the other hand, TS(M) = (FilhAcrys)ϕh=1ẽ1 = (th/p)Zpẽ1. Tracing the definition
of ι : T hS(M)→ TS(M), we see that ι(Ehthẽ1) = thZpẽ1 ⊂ TS(M) = (th/p)Zpẽ1. So ι is not a
surjection in this case. By modulo pn, we see ker(ι) ∼= coker(ι) is unramified and killed by p.

Corollary 2.20. Let h = p− 1 and M ∈ Modϕ,h,cS,tor be a classical Kisin module of height p− 1.

Then the kernel and cokernel of ι : T hS(M)→ TS(M(M)) are canonically isomorphic and are
unramified representations killed by p.

Proof. Note that T hS is exact (see [LL20, § 6.2]). Since TS is clearly left exact, by the exact
sequence (2.4) and Lemma 2.18, it suffices to prove Corollary for M being multiplicative. Clearly,
we can assume k = k and then M is direct sum of the Sn · e1 with ϕ(e1) = e1. Now our desired
conclusion just follows from the above example. �

Finally, given a Fontaine–Laffaille module M ∈ FMW (k), set

TFM(M) := TS(MFM(M)) = Filh(M ⊗W (k) Acrys)ϕh=1,

where Filh(M ⊗W (k) Acrys) =
∑h

i=0 FiliM ⊗W (k) Filh−iAcrys.

3. Boundary degree prismatic cohomology

3.1 Structure of u∞-torsion
Let X be a smooth proper formal scheme over OK which is a degree e totally ramified exten-
sion of W = W (k), the Witt ring of a perfect field k of characteristic p > 0. Let Mi

n denote
Hi

qSyn(X ,Δn)[u∞], where n =∞ is to be understood as not modulo any power of p at all. Below
we formulate the abstract structure shared by Mi

n, by considering the ith cohomology of the
(i− 1)th Nygaard filtration (and the mod pn version).

Definition 3.1. Let i ∈ N≥1. A quasi-filtered BK module of height i consists of:

• two S-modules M and N; and
• four S-linear maps f : ϕ∗M→ N, g : N→ ϕ∗M, h : N→M, and h′ : M→ N such that the

following assertions hold.

(1) Composing f and g in both ways is equal to multiplication by Ei−1, and composing h and
h′ in both ways is equal to multiplication by E.

(2) h is injective.
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We shall summarize the above in the following diagram:

( )

The composition h ◦ f exhibits a Frobenius structure on M.

Proposition 3.2. The diagram

ϕ∗Hi
qSyn(X ,Δn)⊗S (Ei−1) �� Hi

qSyn(X ,Fili−1
N /pn) ��

��

ϕi−1

��

ϕ∗Hi
qSyn(X ,Δn)

Hi
qSyn(X ,Δn) Hi

qSyn(X ,FiliN /p
n)

ϕi

∼=��

����������������

gives rise to a quasi-filtered BK module of height i, as does the following diagram by passing to
u∞-torsion submodules:

Here the top row is given by (mod pn of) inclusions of quasi-syntomic sheaves,

Δ(1) ⊗S (Ei−1) ⊂ Fili−1
N ⊂ Δ(1).

ϕi−1 and ϕi are the divided Frobenius. h′ is defined as composing the inverse of ϕi, which is an
isomorphism, with the natural inclusion of the ith Nygaard filtration in the (i− 1)th Nygaard
filtration. By definition, the induced Frobenius structure on Mi

n and Hi
qSyn(X ,Δn) is the usual

one on prismatic cohomology.

Proof. For the first diagram, just apply [LL20, Lemma 7.8(3)]. We see that ϕi−1 is injective in
degree i and ϕi is an isomorphism in degree i. As for the second diagram, passage to u∞-torsion
submodule commutes with ϕ∗ as ϕS is flat and sends u to up, and the procedure of passing to
a submodule clearly preserves injectivity. �

Below we shall see that one can say quite a lot about the module-theoretic structure of
the underlying module M of a quasi-filtered BK module. We shall retain the notation from
Definition 3.1.

Proposition 3.3. We have the following restriction on the annihilator ideal of M:

Ei−1 ·Ann(M) ⊂ Ann(ϕ∗M) = Ann(M)⊗S,ϕS
S.

Proof. The equality follows from the flatness of ϕS. The inclusion is because the multiplication
by Ei−1 on ϕ∗M factors through N (due to condition (1) of Definition 3.1) which is a submodule
of M (due to condition (2) of Definition 3.1). �
Corollary 3.4. If there is an α ∈ Z≥0 such that Ann(M) + (p) = (uα, p), then we have

α ≤ e(i− 1)
p− 1

.
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Proof. Using Proposition 3.3, after modulo (p), we get the inclusion

Ei−1 · (uα) ⊂ ϕ∗(uα) = (upα)

in S/p = k[[u]]. Since E ≡ ue modulo p, the above inclusion translates to the inequality

pα ≤ e(i− 1) + α,

which is exactly what we need to show. �
Later on we shall exhibit examples showing that the above bound is sharp for those coming

from geometry as in Proposition 3.2 (see Remark 6.14(1)). We can say quite a lot when the α
appearing above is ≤ 1.

Proposition 3.5. Assume that M is finitely generated and u∞-torsion.

(1) If e · (i− 1) < p− 1, then M = 0.
(2) If e · (i− 1) < 2(p− 1), then Ann(M) + (u) ⊃ (pi−1, u).
(3) If e · (i− 1) = p− 1, then Ann(M) ⊃ (p, u). Moreover, the semi-linear Frobenius on M is

bijective.

Proof. Our assumption implies the existence of α in Corollary 3.4. In the situation of (1),
the inequality in Corollary 3.4 gives α = 0, hence Ann(M) + (p) is the unit ideal. Since p is
topologically nilpotent, this shows that Ann(M) is already the unit ideal, hence M = 0.

In the situation of (2), the inequality in Corollary 3.4 gives α < 2. Therefore, we have
either M = 0 or Ann(M) + (p) = (u, p). Without loss of generality, we may assume M �= 0,
hence Ann(M) + (p) = (u, p). Let us pick an element f = u+ a ∈ Ann(M) with a ∈ p ·W (k),
and compute

Ei−1 · f = (E(u))i−1 · (u+ a) = (ue·(i−1) + · · ·+ a1 · u+ a0) · (u+ a) =
p−1∑
j=0

ϕS(Bj) · uj .

Proposition 3.3 implies that all the Bi are in Ann(M). Let us consider C1 = B1(0): the above
equation says ϕ(C1) = a1 · a+ a0. Since we know vp(a1) ≥ i− 1 and vp(a0) = i− 1, we see that
vp(C1) = i− 1, which implies (B1) + (u) ⊃ (u, pi−1).

Finally, we turn to (3). Similarly arguing as above, we may assume M �= 0 and Ann(M) +
(p) = (u, p), and our first task is to show u ∈ Ann(M). To that end, pick again an element
f = u+ a ∈ Ann(M) with a ∈ p ·W (k). Next we compute

Ei−1 · f = (ue + p · g1)i−1 · (u+ a) = (up−1 + p · g2) · (u+ a)

= (up + pi−1E(0)i−1 · a) · 1 +
p−1∑
j=1

bj · uj .

By Proposition 3.3, there is another element of the form u+ b ∈ Ann(M) with b ∈W (k) having
a bigger p-adic valuation than that of a. Consequently, we have u ∈ Ann(M), as a− b and a
differ by a unit in W (k). Now we do the trick again:

E(u)i−1 · u = (ue + pg(u))i−1 · u = up +
i−1∑
j=1

(
i− 1
j

)
u1+e(i−1−j)(pg(u))j = up +

p−1∑
j=1

Bju
j ,

with Bj ∈W (k). Since up ∈ Ann(ϕ∗Mi
n), we see that

∑p−1
j=1 Bju

j ∈ Ann(ϕ∗Mi
n) and hence each

ϕ−1(Bj) is in Ann(Mi
n). From the above expansion, we see that

E(u)i−1 · u ≡ up + (i− 1)u1+e(i−2)(pg(u)) mod p2.
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Since E(u) is an Eisenstein polynomial, we see that g(0) is a p-adic unit. This implies that
vp(B1+e(i−2)) = 1, so p ∈ Ann(Mi

n).
Finally, we need to show the semi-linear Frobenius on M is a bijection. The previous

paragraph tells us that M � k⊕r. Let us consider the diagram ( ):

ϕ∗M
f

��

����

N

g

��

� � h �� M

Ei−1 · ϕ∗M � � �� ϕ∗M

We claim the first arrow in the top row is surjective, the middle vertical arrow is injective
with image Ei−1 · ϕ∗M, and the map h is an isomorphism. We know ϕ∗M � (k[u]/up)⊕r, hence
Ei−1 · ϕ∗M is also abstractly isomorphic to k⊕r. Let �(·) denote the k-length. The above diagram
gives a chain of inequalities of lengths

r ≤ �(N) ≤ r = �(M),

where the first inequality follows from the previous sentence. So the above inequalities are
both equalities, and the claim follows easily. The composition, which we have shown to be
surjective, of

Frob∗
kM
∼= ϕ∗

SM/u
f−→ N

h−→M

is the linearization of the semi-linear Frobenius on M. This shows that the semi-linear Frobenius
on M is surjective, hence bijective by length/dimension considerations. �

The above gives our current knowledge on the u∞-torsion submodules in prismatic
cohomology.

Theorem 3.6. Recall Mi
n := Hi

qSyn(X ,Δn)[u∞].

(1) If e · (i− 1) < p− 1, then Mi
n = 0.

(2) If e · (i− 1) < 2(p− 1), then Ann(Mi
n) + (u) ⊃ (pi−1, u).

(3) If e · (i− 1) = p− 1, then Ann(Mi
n) ⊃ (p, u). Moreover, the semi-linear Frobenius on Mi

n is
bijective. In particular, Mi

n gives rise to an étale ϕ-module on k, hence an Fp-representation
of Gk or equivalently an unramified Fp-representation of GK .

Later we shall give an interpretation of the Gk-representation in (3) above (see Theorem 4.14
and Corollary 4.15).

Proof. Combining Propositions 3.2 and 3.5 gives us what we want. �
Below let us remark on results in the literature concerning u∞-torsion in Breuil–Kisin

prismatic cohomology.

Remark 3.7. (1) Under the assumption e · i < p− 1, Min [Min21, Theorem 0.1] showed that the
ith prismatic cohomology has no u-torsion and ‘looks like’ the étale cohomology of the geometric
generic fiber. His strategy is to exploit the fact that Frobenius map in degree i has height i.
Note that his method also shows that in the same range, the ith (derived) mod pn prismatic
cohomology also has no u-torsion. But as far as we can tell, the method stops outside the above
range.

(2) Philosophically speaking, the u∞-torsion in the ith (derived) mod pn prismatic cohomol-
ogy is surjected on by the (i− 1)th cohomology of the sheaf Δn/uN for some large N , hence
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it should secretly have height i− 1. Our Proposition 3.3 may be taken as a manifestation of
this philosophy. Later on we show this philosophy is literally true for u∞-torsion in the integral
prismatic cohomology (see Corollary 3.16).

(3) In our previous work, we showed a close relation between u-torsion in prismatic coho-
mology and the structure of Breuil’s crystalline cohomology [LL20, Theorem 7.22]. Using this
relation, together with Caruso’s result [Car08, Theorem 4.1.24], we obtained the same conclusion
as in Theorem 3.6(1) and an improvement of Caruso’s result [Car08, Theorems 4.1.24 and 4.2.1]
(see [LL20, Corollary 7.25]). Note that our bound on the cohomological index is 1 higher than
Caruso’s result.

(4) Our control of u-torsion in this paper bypasses Caruso’s result. Hence, we obtain a
proof of Caruso’s result and its improvement simultaneously (cf. [LL20, Theorem 7.22 and
Corollary 7.25]).

(5) Later on, we shall see that our bound is in some sense sharp by exhibiting an example
having (u, p)-torsion with e = p− 1 and i = 2. See § 6.

Let us give an application by showing that the module structure of prismatic cohomology in
low range looks like a Zp-module.

Corollary 3.8. Let i be an integer satisfying e · (i− 1) < p− 1. Then there exists a (non-
canonical) isomorphism of S-modules,

Hi
Δ(X/S) � Hi

ét(XC ,Zp)⊗Zp S.

Proof. We always have inclusions Hi
Δ(X/S)/pn ⊂ Hi

qSyn(X ,Δn). In the specified range, we know
the latter has no u-torsion by Theorem 3.6(1). Applying Proposition 2.6 shows that there exists
an isomorphism of S-modules

Hi
Δ(X/S) � Ni ⊗Zp S

for some Zp-module Ni. To obtain Ni � Hi
ét(XC ,Zp), we simply use the étale comparison of

Bhatt and Scholze (see [BMS18, Theorem 1.8(iv)] and [BS22, Theorem 1.8(4)]). Here we are
using the fact that the isomorphism class of a finitely generated Zp-module is determined by its
base change to W (C�). �

One should compare this with Min’s result [Min21, Theorem 5.11]. Our bound on the coho-
mological degree i here is 1 better than Min’s. Below we recall a useful result in [BMS18] assuring
nice behavior of prismatic cohomology when crystalline cohomology has no torsion, which is a
condition often cited in the literature.

Remark 3.9. If Hi
crys(X0/W ) is torsion-free, then Hi

Δ(X/S) is free. This follows from [BMS18,
Corollary 4.17] and crystalline comparison. We sketch a proof below (see also [KP21,
Lemma 4.3.28.(1)]).

Proof. Denote M := Hi
Δ(X/S). We shall use the two short exact sequences appearing in the

proof of Proposition 2.6. Crystalline comparison implies M/uM ↪→ Hi
crys(X0/W ). Let us derived

modulo the sequence

0→Mtor →M→Mtf → 0

by u. Since Mtf is torsion-free, we have Mtor/u ↪→M/u. The target is p-torsion-free by assump-
tion whereas Mtor consists of p-power torsion, therefore Mtor = 0 and Mtf = M. Now we again
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derived modulo the sequence
0→M→Mfr →M0 → 0

by u to get M0[u] ↪→M/u; the same argument as above shows M0[u] = 0, whereas M0 is
supported at the maximal ideal of S. Therefore, we again conclude M0 = 0 and M = Mfr. �

Let us conclude this subsection by posing some questions.

Question 3.10. Recall Mi
n := Hi

qSyn(X ,Δn)[u∞].

(1) Let β be the smallest exponent such that pβ ∈ Ann(Mi
n), and let γ be the exponent such

that Ann(Mi
n) + (u) = (u, pγ). Is there a bound on β and γ in terms of e and i?

(2) In light of the example in § 6, is β and/or γ bounded above by a polynomial in logp of
a polynomial in e and i, perhaps simply bounded above by logp((e · (i− 1))/(p− 1)) + 1
when p is odd?5

3.2 Comparing Frobenius and Verschiebung
Given a smooth proper formal scheme X over OK , for each degree i, we have a natural inclusion
Hi

Δ(X/S)(1)/u ↪→ Hi
crys(X0/W ) from the crystalline comparison of prismatic cohomology theory.

Here the superscript (−)(1) denotes the Frobenius twist, so

Hi
Δ(X/S)(1) := ϕ∗

SHi
Δ(X/S) ∼= Hi

qSyn(X ,Δ(1)).

The map is compatible with Frobenius and Verschiebung, hence induces Frobenius and
Verschiebung maps on the cokernel Hi+1

Δ (X/S)(1)[u]. How to understand these maps? That is
the question we shall answer in this subsection.

Given any algebra R which is quasi-syntomic over OK , we may take its mod π reduction R0

which is quasi-syntomic over k. This way we obtain a natural map of sites i : kqSyn → (OK)qSyn.
Note that the functor R0 �→ Cris(R0/W ) is a quasi-syntomic sheaf on kqSyn. Here by abuse of
notation we use Cris(R0/W ) to denote the left Kan extended crystalline cohomology. The sheaf
i∗ Cris takes an algebra R in (OK)qSyn to i∗ Cris(R) := Cris(R0/W ). The base change property
and the crystalline comparison of prismatic cohomology [BS22, Theorem 1.8.(1)&(5)] give us the
following exact triangles of sheaves on (OK)qSyn:

Δ
·u−→ Δ→ i∗ Cris(−1)

and
Δ(1) ·u−→ Δ(1) → i∗ Cris,

where i∗ Cris(−1)(R) = Cris(R0/W )⊗W,ϕ−1 W is the Frobenius inverse twist.

Proposition 3.11.

(1) The linear Frobenius maps Hi
Δ(X/S)(1) → Hi

Δ(X/S) and Hi
crys(X0/W )→ Hi

crys(X0/W )(−1)

induce a linear map Hi+1
Δ (X/S)(1)[u]→ Hi+1

Δ (X/S)[u] which agrees with the linear
Frobenius Hi+1

Δ (X/S)(1) → Hi+1
Δ (X/S) restricted to u-torsion.

(2) The semi-linear Frobenius maps Hi
Δ(X/S)(1) → Hi

Δ(X/S)(1) and Hi
crys(X0/W )→

Hi
crys(X0/W ) induce a semi-linear map Hi+1

Δ (X/S)(1)[u]→ Hi+1
Δ (X/S)(1)[u]. This map is

up−1 times the semi-linear Frobenius on Hi+1
Δ (X/S)(1) restricted to u-torsion.

5 After considering the image of Whitehead’s J-homomorphism, we suspect the above bound should be higher by
1 when p = 2 and e · (i − 1) ≥ 2.
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Note that semi-linearity means u-torsion is only sent to up-torsion under the semi-linear
Frobenius; after multiplying up−1 we land in u-torsion again.

Proof. Below we use lin–Frob (respectively, sl–Frob) to denote the linearized Frobenius (respec-
tively, semi-linear Frobenius) on Δ(1).

(1) This follows from the commutative diagram

Δ(1)
·u ��

lin−Frob

��

Δ(1) ��

lin−Frob

��

i∗ Cris

i∗(lin−Frob)
��

Δ
·u �� Δ �� i∗ Cris(−1)

(2) This follows from the analogous commutative diagram

Δ(1)
·u ��

up−1·(sl−Frob)
��

Δ(1) ��

sl−Frob
��

i∗ Cris

i∗(sl−Frob)

��

Δ(1)
·u �� Δ(1) �� i∗ Cris �

Remark 3.12. Comparing the above two formulas, the appearance of an extra up−1 factor
has a natural explanation. Let M be an S-module. Then by flatness of ϕS we know that(
M ⊗S,ϕS

S
)
[u] ∼= (

M [u]⊗S,ϕS
S

)
[u]. We may expand the right-hand side as

(
M [u]⊗W,ϕW

W
)⊗W (S/up[u]). Under this identification, one checks that there is a semi-linear bijec-

tion M [u] �−→ (
M [u]⊗W,ϕW

W
)⊗W (S/up[u]) given by m �→ (m⊗ 1)⊗ up−1. Applying this to

M = Hi+1
Δ (X/S) gives the relation between (1) and (2) above.

Next we turn to the map on Hi+1
Δ (X/S)(1)[u] induced from Verschiebung maps. We need the

following fact on Nygaard filtration.

Lemma 3.13. The divided Frobenius ϕi−1 : Fili−1
N → Δ induces an isomorphism

ϕi−1 : Hi
qSyn(X ,Fili−1

N )tors
∼=−→ Hi

Δ(X )tors.

Proof. Note that we have a commutative diagram of quasi-syntomic sheaves:

Fili−1
N ⊗S(E)

incl ��

ϕi−1
�������������

FiliN

ϕi����
��

��
��

Δ

By [LL20, Lemma 7.8(3)] we know the ith divided Frobenius map in degree i is an isomorphism
for any bounded prism. Therefore, we only need to show that the map Hi

qSyn(X ,Fili−1
N )⊗S (E)→

Hi
qSyn(X ,FiliN) induces an isomorphism on the torsion submodule.

We claim these modules have the property that their torsion submodule coincides with the
p∞-torsion submodule. To see this, just use the fact that both ϕi−1 and ϕi are injective in degree
i, thanks to [LL20, Lemma 7.8.(3)]. The torsion submodule in prismatic cohomology is well
known to coincide with p∞-torsion submodule.

Therefore, we are reduced to showing the above map induces an isomorphism on
the p∞-torsion submodule. To that end, we use the exact sequence of quasi-syntomic
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sheaves: Fili−1
N ⊗S(E)→ FiliN → FiliH. Finally, just note that Hi(X ,FiliH) ∼= H0(X ,Ωi

X/OK
) is

p-torsion-free. �

Corollary 3.14. If e · (i− 1) = p− 1, then the map incl : Hi
qSyn(X ,Fili−1

N )[u]→ Hi
Δ(X/S)(1)[u]

is an isomorphism.

Proof. We consider the following diagram and consider taking Hi:

Δ(1) ⊗ (E)⊗i−1

ϕ⊗id

��������������
incl

��

incl

�������������

Δ⊗ (E)⊗i−1 Fili−1
N

ϕ
�� incl �� Δ(1)

By Theorem 3.6(3), applied to n =∞, combined with Lemma 3.13 we know that the map

incl :
(
Hi

Δ(X/S)(1)[u∞]
)
/u⊗ (E)⊗i−1 → Hi

qSyn(X ,Fili−1
N )[u]

is an isomorphism. Using Theorem 3.6(3) again, we know that the map

incl :
(
Hi

Δ(X/S)(1)[u∞]
)
/u⊗ (E)⊗i−1 → Hi

Δ(X/S)(1)[u]

is also an isomorphism. Therefore, we get the desired result. �

The relevance of Nygaard filtration when discussing the Verschiebung map follows from
[LL20, Corollary 7.9]. We recall its statement below:

Lemma 3.15. Let (A, I) be a bounded prism, and let X be a smooth formal scheme over
Spf(A/I). The ith Verschiebung map (see [BS22, Corollary 15.5])

Vi : τ≤iΔX/A ⊗A I⊗i → τ≤iΔ(1)
X/A

can be functorially identified with incl ◦ ϕ−1:

τ≤iΔX/A ⊗A I⊗i ϕ←−∼= τ≤i FiliN(X/A) incl−−→ τ≤iΔ(1)
X/A.

Proof sketch. This follows from the following commutative diagram:

τ≤i FiliN(X/A)
ϕ

∼=
��

incl
��

τ≤iΔX/A ⊗A I⊗i

��

Vi

		� � � � � � �

τ≤iΔ(1)
X/A

ϕ
�� τ≤iΔX/A

Here the top arrow is an isomorphism due to [LL20, Lemma 7.8(3)], and the diagonal map is
defined affine locally and follows from the description Δ(1)

Y/A
∼= LηIΔY/A

ϕ−→∼= ΔY/A for any smooth

affine Y over Spf(A/I) (see [BS22, Theorem 15.3]). �

Consequently, we see that the torsion and u∞-torsion in the ith prismatic cohomology is
canonically a (generalized) Kisin module of height i− 1.

Corollary 3.16. The restriction of the Verschiebung map Vi : Hi
Δ(X )→ Hi

qSyn(X ,Δ(1)) to
either the torsion submodule or u∞-torsion submodule of the source is canonically divisible
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by E. The division is given by

Hi
Δ(X )tors

ϕi−1←−−−∼= Hi
qSyn(X ,Fili−1

N )tors → Hi
qSyn(X ,Δ(1))tors,

which, together with the usual prismatic Frobenius, makes the torsion submodule and u∞-torsion
submodule in Hi

Δ(X ) a (generalized) Kisin module of height i− 1.

Proof. This follows from combining Lemmas 3.13 and 3.15. �
We can finally understand the induced ‘Verschiebung’ map.

Corollary 3.17. The ith linear Verschiebung maps Hi
Δ(X/S)→ Hi

Δ(X/S)(1) and
Hi

crys(X0/W )(−1) → Hi
crys(X0/W ) induce a linear map Vi : Hi+1

Δ (X/S)[u]→ Hi+1
Δ (X/S)(1)[u]

which fits into the following diagram:

Hi+1
qSyn(X ,FiliN)[u]

ϕi

∼=
��

incl 

�������������
Hi+1

Δ (X/S)[u]
Vi

		�������������

Hi+1
Δ (X/S)(1)[u]

In particular, the induced map Vi is identified with incl ◦ ϕ−1
i .

In other words, the induced Vi is the restriction of ‘Vi+1 divided by E’ (from Corollary 3.16)
to the u-torsion submodule.

Proof. This follows from combining Lemmas 3.13 and 3.15. �
Corollary 3.18. If e · (i− 1) = p− 1, then the induced Verschiebung Vi−1 : Hi

Δ(X/S)[u]→
Hi

Δ(X/S)(1)[u] is an isomorphism.

Proof. This follows from Corollary 3.17, Lemma 3.13 and Corollary 3.14. �

Summary
Let us summarize our knowledge on the structure of prismatic cohomology, with the auxiliary
(i− 1)th Nygaard filtration in mind. Fix the cohomological degree i and n ∈ N ∪ {∞}. The
relevant diagram is:

If we drop the dashed arrows, then the diagram commutes. On the other hand, the two circles
on top have the property that composing the two arrows either way gives multiplication by Ei−1

and E separately.
The above diagram induces a diagram

We know the following facts about the above diagram.

(1) The two arrows in the first circle composed either way give multiplication by Ei−1.
(2) The two arrows in the second circle composed either way give multiplication by E.
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(3) Composing the rightward arrows gives the prismatic Frobenius.
(4) Composing the leftward arrows gives the prismatic Verschiebung Vi (see [BS22,

Corollary 15.5], [LL20, Corollary 7.9] and Lemma 3.15).
(5) The map h is injective (see [LL20, Lemma 7.8.(3)]).
(6) If n =∞, then h induces an isomorphism of torsion submodules (see Lemma 3.13). Hence,

as far as torsion or u∞-torsion in Hi
Δ(X/S) is concerned, we may focus on the first circle

and see that these Frobenius modules are canonically (generalized) Kisin modules of height
i− 1 (see Corollary 3.16).

3.3 Induced Nygaard filtration
Finally, let us discuss the induced Nygaard filtration on u∞-torsion in the boundary degree
prismatic cohomology.

Lemma 3.19. Assume e · (i− 1) = p− 1 and let n ∈ N ∪ {∞}. For any j ∈ N, consider the
induced map on Hi

qSyn(X ,−/pn) of the maps of quasi-syntomic sheaves FiljN → Δ(1), the following

two submodules of Hi
qSyn(X ,Δ(1)

n )[u∞] agree:

• Im
(
Hi

qSyn(X ,FiljN /p
n)→ Hi

qSyn(X ,Δ(1)
n )

) ∩Hi
qSyn(X ,Δ(1)

n )[u∞];

• Im
(
Hi

qSyn(X ,FiljN /p
n)[u∞]→ Hi

qSyn(X ,Δ(1)
n )[u∞]

)
.

Proof. We consider the following diagram of S-modules, with exact rows:

0 �� Hi
qSyn(X ,FiljN /p

n)[u∞] ��

��

Hi
qSyn(X ,FiljN /p

n) ��

f
��

Q1

g

��

�� 0

0 �� Hi
qSyn(X ,Δ(1)

n )[u∞] �� Hi
qSyn(X ,Δ(1)

n ) �� Q2
�� 0

By [LL20, Proposition 7.12], Ker(f) has finite length, hence must be contained in
Hi

qSyn(X ,FiljN /p
n)[u∞]. The snake lemma implies that Ker(g) embeds inside a quotient of

Hi
qSyn(X ,Δ(1)

n )[u∞]. Since Ker(g), being a submodule of Q1, is u-torsion-free, we see it must
be zero, which is exactly what we need to show. �

If no confusion would arise, when e · (i− 1) = p− 1, we shall refer to the submodule in
the above lemma as the (induced) jth Nygaard filtration on Hi

qSyn(X ,Δ(1)
n )[u∞]. The following

proposition reveals what this filtration is.

Proposition 3.20. Assume e · (i− 1) = p− 1 and let n ∈ N ∪ {∞}.
(1) The Nygaard filtration on Hi

qSyn(X ,Δ(1)
n )[u∞] as above is the E(u) ≡ ue-adic filtration.

(2) The map Hi
qSyn(X ,Fili−1

N /pn)→ Hi
qSyn(X ,Δ(1)

n ) is injective.

(3) For any j ≥ 0, the map Hi
qSyn(X ,Fili+jN /pn)→ Hi

qSyn(X ,Δ(1)
n ) has kernel given by

u∞-torsion of the source.

Remark 3.21. (1) We recall that, under the hypothesis of this lemma, Theorem 3.6(3) gives a
canonical isomorphism of S-modules

Hi
qSyn(X ,Δ(1)

n )[u∞] ∼= Hi
qSyn(X ,Δn)[u∞]⊗S,ϕS

S ∼= Hi
qSyn(X ,Δn)[u, p]⊗k S/(p, up).

Therefore, the E(u)-adic filtration is the same as ue-filtration.
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(2) Also note that ue·(i+j) = up−1+e·(j+1) ∈ (up) if j ≥ 0, hence (1) implies (3).
(3) To put Proposition 3.20(3) into context, let us point to [LL20, Corollary 7.9] which says

that the divided Frobenius ϕi+j : Hi
qSyn(X ,Fili+jN /pn)→ Hi

qSyn(X ,Δn) is an isomorphism for all
j ≥ 0.

Proof of Proposition 3.20. Throughout this proof, all filtrations referred to are filtrations on
Hi

qSyn(X ,Δ(1)
n )[u∞].

Since we have a containment of quasi-syntomic sheaves, Ej · Δ(1) ⊂ FiljN ⊂ Δ(1), one easily
sees that the Nygaard filtration contains the ue-adic filtration. All we need to show is the converse
containment.

Let us first show that (1) holds for the (i− 1)th Nygaard filtration and (2). As discussed
above, since ue·(i−1) = up−1, we see that the (i− 1)th Nygaard filtration has length at least that
of Hi

qSyn(X ,Δn)[u∞].6 To finish, it suffices to show that the u∞-torsion in Hi
qSyn(X ,Fili−1

N /pn)
has length at most that. This follows from the fact that the divided Frobenius, which is S-linear,

ϕi−1 : Hi
qSyn(X ,Fili−1

N /pn)→ Hi
qSyn(X ,Δn),

is injective (see [LL20, Lemma 7.8(3)]).
Next we show that (1) holds for the jth filtration whenever 0 ≤ j ≤ i− 1. We consider

another containment of quasi-syntomic sheaves: Ei−1−j · FiljN ⊂ Fili−1
N ⊂ FiljN. Therefore, we see

the jth filtration can differ from the (i− 1)th filtration by at most ue·(i−1−j); this gives the
desired converse containment by what we proved in the previous paragraph.

Finally, we show that (1) holds for the (i+ j)th filtration for any j ≥ 0; note that this
implies (3), as remarked right after the statement of this proposition. We want to show that
the map Hi

qSyn(X ,Fili+jN /pn)[u∞]→ Hi
qSyn(X ,Δ(1)

n )[u∞] is the zero map when j ≥ 0. Since this
map factors through the j = 0 case, it suffices to prove the j = 0 case. To that end, we shall
utilize [LL20, Corollary 7.9], according to which we need to show that the prismatic Verschiebung
annihilates Hi

qSyn(X ,Δn)[u∞]. Now we consider the following sequence of arrows:

Hi
qSyn(X ,Δ(1)

n )[u∞]
ϕ−→ Hi

qSyn(X ,Δn)[u∞]
ψ−→ Hi

qSyn(X ,Δ(1)
n )[u∞].

Here ψ = Vi is the ith Verschiebung as in [BS22, Corollary 15.5]. The composition of
these two arrows is multiplication by Ei = up−1+e = 0, as the module is abstractly several
copies of S/(p, up). We finish the proof by recalling that the map ϕ above is surjective
(Theorem 3.6(3)). �

As a consequence, in the boundary degree, we can use torsion in the cohomology of OX to
bound u∞-torsion.

Corollary 3.22. Assume e · (i− 1) = p− 1 and let n ∈ N ∪ {∞}. The natural map Δ(1) →
gr0N Δ(1) ∼= O gives rise to a canonical injection:

Hi
qSyn(X ,Δn)[u∞]⊗k

(OK/p) ↪→ Hi(X ,OX /pn).

Proof. The exact sequence Fil1N → Δ(1) → OX tells us that the kernel of the map

Hi
qSyn(X ,Δ(1)

n )[u∞] ∼= Hi
qSyn(X ,Δn)[u∞]⊗k k[u]/(up)→ Hi(OX /pn)

is given by the induced first Nygaard filtration on the source, which we know is exactly
ue times the source, thanks to Proposition 3.20(1). Notice that, as an OK-algebra, we have

6 Note that here we are not twisting the prismatic cohomology by Frobenius.
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k[u]/(ue) ∼= OK/p. Therefore, we get the desired injection

Hi
qSyn(X ,Δn)[u∞]⊗k k[u]/(ue) ∼= Hi

qSyn(X ,Δn)[u∞]⊗k
(OK/p) ↪→ Hi(OX /pn). �

4. Geometric applications

4.1 The discrepancy of Albanese varieties
In this subsection, we give a geometric interpretation of u-torsion in the second Breuil–Kisin
prismatic cohomology. Our main application in this subsection has partly been obtained by
Raynaud in [Ray79]; our method is of course quite different. Without loss of generality, we
assume our smooth proper (formal) scheme X has an OK-point. This can be arranged after an
unramified extension of OK .

The generic fiber of X is a smooth proper rigid space X over Sp(K) admitting a K-point.
Specializing the main result of [HL00] to our case where X has a smooth proper formal model,
we know that Pic0(X) is an abeloid variety which has good reduction, namely it is the rigid
generic fiber of a formal abelian scheme over OK . In the algebraic situation, the existence of
the abelian scheme integral model follows from Serre and Tate’s generalization [ST68] of the
Néron–Ogg–Shafarevich’s criterion. For the general theory of the Néron model of abeloid variety,
we refer readers to [Lüt95]. Now we can form the Albanese of X, which is a universal map

gK : X → A

from X to abeloid varieties (see [HL20, § 4]). Since in this case A is the dual of Pic0(X), we
know it also has good reduction: the Néron model of A is a formal abelian scheme A over OK .
Finally, since X is smooth over OK , the Néron mapping property implies that the map X → A
extends uniquely to

g : X → A
over OK . Taking the special fiber of the above map, we get

g0 : X0 → A0.

Now the Albanese theory tells us that the above map factors:

X0

g0
��

h

��									
A0

Alb(X0)

f
��










where Alb(X0) is the Albanese of X0. Therefore, out of a pointed smooth proper formal scheme
X over OK , we can cook up a map f : Alb(X0)→ A0 of abelian varieties over k. What can we
say about this map?

Proposition 4.1. The map f : Alb(X0)→ A0 above is an isogeny of p-power degree.

Proof. It suffices to show that f induces an isomorphism of the first �-adic étale cohomology
for all primes � �= p. From now on we fix such an �. Standard Albanese theory tells us that the
Albanese maps h : X0 → Alb(X0) and gK : X → A induce an isomorphism of the first �-adic étale
cohomology. To finish the proof, we just use the smooth and proper base change theorems in
étale cohomology theory to see that the map g0, being a reduction of the ‘smooth proper model’
g of gK , also induces an isomorphism of the first �-adic étale cohomology. Since h∗ ◦ f∗ = g∗0 and
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both h∗ and g∗0 induce an isomorphism of the first �-adic étale cohomology, we conclude that f∗

also does. �
Let us denote the finite p-power order group scheme ker(f) by G. The Dieudonné module of

G is related to X in the following way.

Theorem 4.2. We have an isomorphism of W -modules

D(G) ∼= H2
Δ(X/S)(1)[u].

Under this identification, the semi-linear Frobenius F on the left-hand side and the semi-linear
Frobenius ϕ on the left-hand side are related via F = up−1 · ϕ, and the linear Verschiebung on
the left-hand side can be understood as

H2
Δ(X/S)[u]

ϕ1←−∼= H2
qSyn Fil1N(X/S)[u] incl−−→ H2

Δ(X/S)(1)[u].

Proof. The Dieudonné module of G in our situation is given by

D(G) ∼= Coker
(
f∗ : H1

crys(A0/W )→ H1
crys(Alb(X0)/W )

)
,

so we need to understand the above map f∗.
We want to relate everything to X . First, by [Ill79, Remarque 3.11.2] we know that the map

h∗ : H1
crys(Alb(X0)/W )→ H1

crys(X0/W )

is an isomorphism. Therefore, by composing with h∗ we have

D(G) ∼= Coker
(
g∗0 : H1

crys(A0/W )→ H1
crys(X0/W )

)
.

Next, we use the crystalline comparison of prismatic cohomology [BS22, Theorem 1.8(1)], and
get the following diagram:

H1
Δ(A/S)(1) �� ��

g∗∼=
��

H1
Δ(A/S)(1)/u

∼= ��

g∗∼=
��

H1
crys(A0/W )

g∗0
��

H1
Δ(X/S)(1) �� �� H1

Δ(X/S)(1)/u
� � �� H1

crys(X0/W )

We postpone the proof of the left (and therefore the middle) vertical arrow being an isomorphism
of ϕ-modules over S to the next proposition. The right horizontal arrows are injective because of
the standard sequence 0→ Hi

qSyn(Δ
(1))/u→ Hi

qSyn(Δ
(1)/u)→ Hi+1

qSyn(Δ
(1))[u]→ 0. The top right

horizontal arrow is an isomorphism, as the (Breuil–Kisin) prismatic cohomology of abelian
schemes is finite free, which in turn follows from the torsion-freeness of the crystalline coho-
mology of abelian varieties and Remark 3.9. The above diagram and sequence tell us that g∗0 is
injective with cokernel given by H2

Δ(1)(X/S)[u]. The description of (the semi-linear) Frobenius
follows from Proposition 3.11(2), and the description of the linear Verschiebung follows from
Corollary 3.17. �

The following proposition was mentioned in the above proof.

Proposition 4.3.

(1) The underlying S-module of H1
Δ(X/S) is finite free.

(2) The map g∗ : H1
Δ(A/S)→ H1

Δ(X/S) is an isomorphism of Kisin modules. Therefore, the
Frobenius-twisted version g∗ : H1

Δ(A/S)(1) → H1
Δ(X/S)(1) is also an isomorphism.
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Proof. (1) This follows from Corollary 3.8. Alternatively we can prove it using Remark 3.9 [Ill79,
Remarque 3.11.2] and the fact that the crystalline cohomology of abelian varieties is torsion-free.

(2) Since étale realization of finite free Kisin modules is fully faithful (see [Kis06,
Proposition 2.1.12] and also [BS21, Theorem 7.2]), we are reduced to checking that the étale
realization of g∗ is an isomorphism. Since the map S→ Ainf sending u to [π] is p-completely
faithfully flat, it remains so after p-completely inverting u and [π], respectively. Therefore, we are
further reduced to proving it for the W (C�)-étale realizations. Now the étale comparison [BS22,
Theorem 1.8(4)] translates the above to the statement that gK induces an isomorphism of the
first p-adic étale cohomology, which follows from the usual Kummer sequence together with the
fact that the Picard variety of X is an abeloid.7 �

We get two consequences from Theorem 4.2.

Corollary 4.4. The finite group scheme G is connected.

Proof. Since the induced Frobenius on D(G), when identified with H2
Δ(X/S)[u] ⊂ H2

Δ(X/S)[u∞],
is divisible by up−1, powers of Frobenius will gain more and more u-divisibility. We see that the
Frobenius is nilpotent as H2

Δ(X/S)[u] ⊂ H2
Δ(X/S)[u∞] and there is a power of u which kills the

latter. Now Theorem 4.2 implies the Frobenius on D(G) is nilpotent, thereforeG is connected. �
Remark 4.5. The above fact can actually be seen directly. Let us quotient out Alb(X0) by
the neutral component subgroup scheme of G, denoted by A′

0. Then we get a factorization

X0 → A′
0

f ′0−→ A0 of g0. Now f ′0 is finite étale by construction. Hence, deformation theory implies

the above sequence lifts to X → A′ f ′−→ A, with A′ being a formal abelian scheme finite étale
above A. Now the composition of the above map is the universal map from X to formal abelian
schemes as pointed formal schemes,8 and we conclude that the map f ′ has to be an isomorphism,
hence the neutral component subgroup scheme of G is G itself.

Combining Theorem 4.2, Theorem 3.6 (with i = 2) and Corollary 3.18, we immediately obtain
the following result.

Corollary 4.6.

(1) If e < p− 1 then the map f : Alb(X0)→ Alb(X)0 is an isomorphism.
(2) If e < 2(p− 1) then ker(f) is p-torsion.
(3) If e = p− 1 then ker(f) is p-torsion and of multiplicative type, hence must be a form of

several copies of μp. Moreover, there is a canonical injection of OK-modules D(ker(f))⊗k(OK/p) ↪→ H2(X ,OX ).

Proof. Parts (1) and (2) follow from Theorems 4.2 and 3.6(1)–(2) (with i = 2), respectively. As
for the multiplicativity claim in (3), recall that a finite flat group scheme over k is of multiplicative
type if and only if its Dieudonné module has bijective Verschiebung, hence the claim follows from
Theorem 4.2 and Corollary 3.18. The last sentence follows from Corollary 3.22. �

When e = 1 and p = 2 the above says that although f need not be an isomorphism, the
kernel is always a 2-torsion, such an interesting example can be found in [BMS18, § 2.1], and one

7 Note that in general the Albanese of smooth proper rigid spaces (granting its existence) always induces an
injective but not necessarily surjective map of the first étale cohomology, no matter whether �-adic or p-adic (see
[HL20, Proposition 4.4, Example 5.2 and Example 5.8]). The surjectivity is equivalent to the Picard variety being
an abeloid (assuming p is invertible in the ground non-Archimedean field).
8 We use the Néron mapping property and the fact that the generic fiber map is the Albanese map.
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can check directly that the example there does satisfy our prediction here. In fact the f in their
example can be identified with the relative Frobenius of an ordinary elliptic curve (which is the
reduction of the E in their notation) over F2. For a generalization of this example to the case
when p �= 2, we refer readers to § 6 below, and specifically Remarks 6.11 and 6.14(3).

Remark 4.7. If Pic0(X0) is reduced, then the relative (formal) Picard scheme of X/OK is a formal
abelian scheme which is the Néron model of the Picard variety ofX/K. The base change property
of relative Picard functor now guarantees that the f we have been studying is an isomorphism
in this case. Therefore, taking Theorem 4.2 into account, we see that X0 having reduced Picard
scheme implies that the second prismatic cohomology of X has no u-torsion.

The dual question to what we have discussed here was studied by Raynaud [Ray79]. Below
we recall some of the main results in that work and compare them with ours.

Remark 4.8. Using determinant construction [KM76], the universal line bundle on XK ×K
Pic0(XK) extends to a line bundle on X ×OK

P, where P is the formal Néron model of Pic0(XK)
which is itself a formal abelian scheme over OK . Here we used the regularity of X ×OK

P so that
any coherent sheaf on it can be presented as a perfect complex, in order to perform the determi-
nant construction. Moreover, if we rigidify using the given point x ∈ X (OK), then the extension as
a rigidified line bundle is unique. Taking the special fiber, we get an induced map P0 → Pic0(X0)
which necessarily factors through the reduced subvariety of the target f∨ : P0 → Pic0(X0)red. By
construction, the map f∨ is dual to the map f we considered before.

Raynaud has studied the question of whether f∨ is an isomorphism in [Ray79]. His main
result makes the following assertions.

(1) When e < p− 1, then f∨ is an isomorphism [Ray79, Thèoréme 4.1.3.(2)].
(2) When e = p− 1, then ker(f∨) is p-torsion and unramified [Ray79, Thèoréme 4.1.3.(3)].

We see that his results are the same as Corollary 4.6(1) and first half of (3); our slight improve-
ment is Corollary 4.6(2) and second half of (3). We prove the map f∨ has p-torsion kernel in a
larger range of ramifications, and when e = p− 1 the second cohomology of structure sheaf needs
to have ‘actual’ p-torsion in order for ker(f) to be non-zero. On the other hand, Raynaud’s result
allows X to be singular: for instance, he just needs X0 to be normal. Our method crucially relies
on prismatic theory, which only seems to work well with local complete intersection singularities.
Whether our Corollary 4.6 can be extended to the generality considered by Raynaud remains
unclear.

Remark 4.9. One of the key ingredients allowing Raynaud to prove the aforementioned results
in [Ray79] is an earlier result of his [Ray74] concerning prolongations of finite flat commu-
tative group schemes. In § 6.1 we shall see a way to go backward: applying these structural
results on Picard/Albanese varieties to a marvelous construction due to Bhatt, Morrow and
Scholze [BMS18], one deduces Raynaud’s prolongation theorem.

4.2 The p-adic specialization maps
Another reason why one might care about u∞-torsion is because it appears naturally in under-
standing the specialization map of the p-adic étale cohomology or, phrased differently, the p-adic
vanishing cycle.

Let us introduce some notation. Fix a complete algebraically closed non-Archimedean exten-
sion C of K, with ring of integers OC . Denote the perfect prism associated with OC , which is
known to be oriented, by (Ainf , (ξ)). Given a p-adic formal scheme X over Spf(OK), we denote
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its base change to OC (respectively, C) by XOC
(respectively, XC). Denote the central fiber of

XOC
by Xk. We continue to assume X to be smooth and proper over Spf(OK).

Recall that the proper base change theorem gives, for any prime �, a specialization
map [Sta21, Tag 0GJ2]

Sp: RΓét(Xk,Z�)→ RΓét(XC ,Z�).
The cone of the specialization map above is called the vanishing cycle (of Z�). The smooth base
change theorem says that the above map is an isomorphism for any � �= p [Sta21, Tag 0GKD],
in other words the �-adic vanishing cycle vanishes in our setting. On the other hand, one may
ask what happens when � = p. Fix a cohomological degree i and n ∈ N ∪ {∞}. Let us consider

Spin : Hi
ét(Xk,Z/pn)→ Hi

ét(XC ,Z/pn);
when n =∞, then by Z/pn we mean Zp and we simply denote it by Spi. It is well known that Spi

is almost never surjective unless for trivial reasons such as the target being 0. We shall consider
ker(Spi) in this subsection.

In [BS22, § 9] one finds a prismatic interpretation of the p-adic specialization map.

Theorem 4.10 [BS22, Theorem 9.1 and Remark 9.3]. There are canonical identifications

RΓét(XC ,Z/pn) ∼=
(
(RΓΔ(XOC

/Ainf)[1/ξ])̂/pn
)ϕ=1

and

RΓét(Xk,Z/pn) ∼=
(
RΓΔ(XOC

/Ainf)/pn
)ϕ=1

,

fitting in the following diagram, which is commutative up to coherent homotopy:

RΓét(Xk,Z/pn)
∼= ��

Sp

��

(
RΓΔ(XOC

/Ainf)/pn
)ϕ=1

incl
��

RΓét(XC ,Z/pn)
∼= �� ((RΓΔ(XOC

/Ainf)[1/ξ])̂/pn
)ϕ=1

Here (RΓΔ(XOC
/Ainf)[1/ξ])̂ denotes the p-completion of the localization, which is only rele-

vant in the statement when n =∞. This theorem is true with no smooth or proper assumption on
X : one may safely replace XOC

over Spf(OC) with any p-adic formal scheme Y over a perfectoid
base ring as in loc. cit.

Sketch of proof following that of [BS22]. The first identification is [BS22, Theorem 9.1], the
second identification is [BS22, Remark 9.3] with details left to readers, so let us fill in some of
the details.

We follow the proof of [BS22, Theorem 9.1]. First we see that both RΓét((−)k,Z/p
n) and(

Δ−/Ainf
/pn

)ϕ=1 are arc-sheaves (see [BM21] for more details on this notion) on fSch/ Spf(OC). The
former is [BM21, Theorem 5.4], the latter follows from the same argument as in [BS22, Theorem
9.1]: using [BS22, Lemma 9.2], one has an identification

(
Δ−/Ainf

/pn
)ϕ=1 ∼= (

Δ−/Ainf ,perf/p
n
)ϕ=1,

and then one again uses [BS22, Corollary 8.10] to see that the latter is an arc-sheaf.
Since everything involved is an arc-sheaf and is arc-locally supported in cohomological degree

0, the relevant maps (of arc-sheaves) live in mapping spaces with contractible components.
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Altogether we get the following diagram which commutes up to coherent homotopy:

RΓét((−)k,Z/p
n) ��

Sp

��

(
Δ−/Ainf

/pn
)ϕ=1

incl
��

RΓét((−)C ,Z/pn)
∼= �� ((Δ−/Ainf

[1/ξ])̂/pn
)ϕ=1

Finally, we need to show the top horizontal arrow is an isomorphism. We may localize in the
arc-topology, reducing to the case of Spf of a perfectoid ring S, which follows from applying
Artin–Schreier–Witt and the fact that perfection does not change the étale site (of a characteristic
p scheme). �

In order to pass from the derived statement above to concrete cohomology groups, we need
the following lemma.

Lemma 4.11. For any i and n, the Zp-linear operator ϕ− 1 is surjective on both
Hi

(
(RΓΔ(XOC

/Ainf)[1/ξ])̂/pn
)

and Hi
(
RΓΔ(XOC

/Ainf)/pn
)
.

Proof. We observe that, since ϕ([a]) = [a]p for any a ∈ m�
C , we know that ϕ acts topologically

nilpotently on
[m�

C ] ·Hi
(
RΓΔ(XOC

/Ainf)/pn
)
.

Therefore, to check surjectivity of ϕ− 1 on Hi
(
RΓΔ(XOC

/Ainf)/pn
)

we may quotient outW (m�
C) ·

Hi
(
RΓΔ(XOC

/Ainf)/pn
)
. Since X is smooth and proper over OK , we know the relevant groups

are finitely generated modules over W (C�) and W (k). Both of C� and k are algebraically closed
fields of characteristic p, hence we are reduced to [Cha98, Exposé III, Lemma 3.3]. �

Using the same proof, we may identify the p-adic étale cohomology of Xk as Frobenius fixed
points in various prismatic cohomologies of X , after suitably base-changing to W (k).

Porism 4.12. Consider the S-algebra W (k)[[u]]. We have an identification of Gk-modules:

Hi
ét(Xk,Z/pn) ∼=

(
Hi

qSyn(X ,Δn)⊗SW (k)[[u]]
)ϕ=1 ∼=

(
Hi

qSyn(X ,Δ(1)
n )⊗SW (k)[[u]]

)ϕ=1
.

Proof. As showed in the proof of Lemma 4.11, we may compute Frobenius fixed points after
quotienting out W (m�

C) (for the Ainf -module) or u for the Frobenius module appearing in this
porism. Now the first identification is reduced to Theorem 4.10 and an equality of S-algebras:
Ainf/W (m�

C) ∼= W (k) ∼= W (k)[[u]]/(u). The second identification is reduced to the fact that, given
a Frobenius module M on W (k), the natural map M →M ⊗W (k),ϕW (k) given by m �→ m⊗ 1
induces an isomorphism of Frobenius fixed points. �
Remark 4.13. Assume that the residue field k of OK is separably closed. Porism 4.12 above
induces a map

Hi
ét(Xk,Z/pn) ∼=

(
Hi

qSyn(X ,Δ(1)
n )

)ϕ=1
↪→ Hi

qSyn(X ,Δ(1)
n )→ Hi(OX /pn).

This map can be seen at the level of étale sheaves on fSch/ Spf(OK): Zp/p
n → Δ(1)

n → OX /pn.
Therefore, we get a canonical map

Hi
ét(Xk,Z/pn)⊗Zp W → Hi(OX /pn).

In general, we just base-change along W (k)→W (k) and get a Gk-equivariant map

Hi
ét(Xk,Z/pn)⊗Zp W (k)→ Hi(OX /pn)⊗W W (k).
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Later in Corollary 4.15(3) we shall see a peculiar result concerning this map in the boundary
degree. Now we return to the relation between kernel of specialization map and u∞-torsion in
prismatic cohomology.

Theorem 4.14. Let X be a smooth proper formal scheme over Spf(OK). Recall Mi
n :=

Hi
qSyn(X ,Δn)[u∞]. There is a canonical isomorphism of Gk-modules

ker(Spin) ∼= (Mi
n ⊗SAinf

)ϕ=1 ∼= (
Mi

n/u⊗W (k) W (k)
)ϕ=1

for any n ∈ N ∪ {∞}.
Proof. Combining Theorem 4.10 and Lemma 4.11, we get the following diagram with exact rows:

0 �� Hi
ét(Xk, Z/pn)

Spi
n

��

�� Hi
(
RΓΔ(XOC /Ainf)/pn

)
incl

��

ϕ−1
�� Hi

(
RΓΔ(XOC /Ainf)/pn

)
incl

��

�� 0

0 �� Hi
ét(XC , Z/pn) �� Hi

(
(RΓΔ(XOC /Ainf)[1/ξ])̂/pn

) ϕ−1
�� Hi

(
(RΓΔ(XOC /Ainf)[1/ξ])̂/pn

) �� 0

We shall apply the snake lemma to the above. First, we claim

Hi
(
RΓΔ(XOC

/Ainf)/pn
)
[ξ∞] ∼= ker(Hi

(
RΓΔ(XOC

/Ainf)/pn
) incl−−→ Hi

(
(RΓΔ(XOC

/Ainf)[1/ξ])̂/pn
)
.

When n ∈ N the map is localization with respect to ξ, hence tautological. We need to
see this when n =∞, that is, we need to show injectivity of Hi

(
RΓΔ(XOC

/Ainf)[1/ξ]
)→

Hi(RΓΔ(XOC
/Ainf)[1/ξ])̂. Here the latter completion is the classical p-adic completion: our

assumption implies all cohomology groups Hi
Δ(XOC

/Ainf) have bounded p-torsion, hence derived
p-completion agrees with derived p-completion. Since the Hi

Δ(XOC
/Ainf) are finitely presented

over Ainf , its localization with respect to ξ has separated p-adic topology, hence the p-adic
completion map is injective.

Next, applying the base change property of prismatic cohomology to the p-completely faith-
fully flat map S→ Ainf and [BMS18, Proposition 4.3], we get an identification of Frobenius
modules:

Mi
n ⊗SAinf

∼= Hi
(
RΓΔ(XOC

/Ainf)/pn
)
[ξ∞].

Now we get the first identification. To finish, just observe that ϕ([a]) = [a]p, for any a ∈ m�
C ,

which acts nilpotently on Hi
(
RΓΔ(XOC

/Ainf)/pn
)
[ξ∞]. Hence, the map ϕ− 1 is necessarily

an isomorphism (of Zp-modules) on [m�] ·Hi
(
RΓΔ(XOC

/Ainf)/pn
)
[ξ∞]. Therefore, we may quo-

tient this part, as far as Frobenius fixed points are concerned, which leads to the second
identification. �
Corollary 4.15. Let X be a smooth proper formal scheme over Spf(OK) with ramification
index e, and let i ∈ N and n ∈ N ∪ {∞}. We have the following understanding of the kernel of
the specialization map Spin : Hi

ét(Xk,Z/pn)→ Hi
ét(XC ,Z/pn).

(1) If e · (i− 1) < p− 1, then Spin is injective.
(2) If e · (i− 1) < 2(p− 1), then ker(Spin) is annihilated by pi−1.
(3) If e · (i− 1) = p− 1, then ker(Spin) is p-torsion, and corresponds to the étale-ϕ module Mi

n

over k. Moreover, the natural Gk-equivariant map in Remark 4.13,

Hi
ét(Xk,Z/pn)⊗Zp W (k)→ Hi(OX /pn)⊗W W (k),

induces a Gk-equivariant injection,

ker(Spin)⊗Fp

(OK ⊗W W (k)
)
/p ↪→ Hi(OX /pn)⊗W W (k).
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Proof. All but the last statement immediately follow from Theorems 3.6 and 4.14. The last
statement is a Galois-theoretic analog of Corollary 3.22. To prove this, we may base-change X
from OK to OK ⊗W W (k) and it suffices to prove the statement there. Hence, it suffices to
assume that OK has algebraically closed residue field k.

Let us analyze the sequence of maps of S-modules

Hi
ét(Xk,Z/pn) ∼=

(
Hi

qSyn(X ,Δ(1)
n )

)ϕ=1
↪→ Hi

qSyn(X ,Δ(1)
n )→ Hi(OX /pn).

By Corollary 4.15(3), we see the first map induces an isomorphism:

ker(Spin)⊗Fp k[u]/(u
p) ∼= Hi

qSyn(X ,Δ(1)
n )[u∞].

The exact sequence Fil1N → Δ(1) → OX tells us that the kernel of the map

ker(Spin)⊗Fp k[u]/(u
p)→ Hi(OX /pn)

is given by the induced first Nygaard filtration on the source, which we know is exactly ue times
the source, thanks to Proposition 3.20(1). Notice that, as an OK-algebra, we have k[u]/(ue) ∼=
OK/p. Therefore, we get the desired injection

ker(Spin)⊗Fp k[u]/(u
e) ↪→ Hi(OX /pn). �

We refer readers to § 6, especially Remarks 6.11 and 6.14(4), for a related interesting example.

4.3 Revisiting the integral Hodge–de Rham spectral sequence
In this subsection, we revisit the question discussed in [Li22]: what mild condition on X
guarantees that the Hodge numbers of the generic fiber X can be read off from the special
fiber X0?

Let us introduce some notation, which is the threshold of cohomological degree for which we
can say something about the integral Hodge–de Rham spectral sequence, based on knowledge of
the integral Hodge–Tate spectral sequence.

Notation 4.16. Let T be the largest integer such that e · (T − 1) ≤ p− 1.

The main result in this subsection is the following theorem.

Theorem 4.17 (Improvement of [Li22, Theorem 1.1]). Let X be a smooth proper p-adic formal
scheme over Spf(OK).

(1) Assume there is a lift of X to S/(E2). Then for all i, j satisfying i+ j < T , we have equalities

hi,j(X) = hi,j(X0)

where the latter denotes virtual Hodge numbers of X0, defined as in [Li22, Definition 3.1].
(2) Assume, furthermore, that e · (dimX0 − 1) ≤ p− 1. Then the special fiber X0 knows the

Hodge numbers of the rigid generic fiber X.

For instance, in the unramified case e = 1, condition (1) is automatic and condition (2) says
we allow X to be at most dimension p. From the proof, we shall see that the Hodge numbers
of X can be computed using the virtual Hodge numbers of X0 (see [Li22, § 3.2]) together with
Euler characteristics of the Ωi

X0
in an algorithmic way.

We largely follow the proof of [Li22, Theorem 1.1]. Just like there, we need to first analyze
the integral Hodge–de Rham spectral sequence, hence the title of this subsection.

Theorem 4.18. Let X be a smooth proper p-adic formal scheme over Spf(OK) liftable to
S/(E2). Let n ∈ N ∪ {∞}.
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(1) The Hodge–de Rham spectral sequence for Xn has no non-zero differentials with source of
total degree < T .

(2) If e > 1, then MT
n := HT

qSyn(X ,Δn)[u∞] = 0. In particular, the prismatic cohomology
Hm

Δ (X/S) �Mm ⊗Zp S is of the shape of a Zp-module Mm for all m ≤ T .

(3) If e = 1, The induced Hodge filtrations Hi(X ,FiljH) ⊂ Hi
dR(X ) are split for any i ≤ p and

any j.
(4) If e > 1, The induced Hodge filtrations Hi(X ,FiljH) ⊂ Hi

dR(X ) are split for any i < T and
any j.

Here Xn denotes the mod pn fiber. We do not know if the split statement in (3) above holds
at the mod pn level. Mimicking the terminology in [Li22], we may say the Hodge–de Rham
sequence for Xn is split degenerate up to degree T . We need some preparation.

Lemma 4.19.

(1) If e = 1, we have �
(
TorS

1 (k,OK)
)

= �
(
TorS

1 (k, ϕS,∗OK)
)
.

(2) If e > 1, we have �
(
TorS

1 (k,OK)
)
< �

(
TorS

1 (k, ϕS,∗OK)
)
.

(3) Let M be a finitely generated p∞-torsion S-module without u-torsion. Then

�
(
M ⊗SOK

)
= �

(
M ⊗S,ϕS

OK
)
.

Here �(−) denotes length of the OK-module.

Proof. For (1) and (2), simply note that TorS
1 (k,OK) is the ue-torsion in k = S/(p, u), whereas

the module TorS
1 (k, (ϕS)∗OK) is the ue-torsion in k ⊗S,ϕS

S = S/(p, up).
For (3), it is easy to see that the condition guarantees a finite filtration on M with graded

pieces given by S/p ∼= k[[u]]. Indeed, we just argue by induction on the exponent of powers of p
that annihilates M and consider the sequence

0→M [p]→M →M/M [p]→ 0.

Hence, the equality of lengths follows from the equality of S/p⊗S,ϕS
S � S/p. �

Lemma 4.20. Let F ⊂M be an inclusion of finitely generated W (k)-modules. If the induced
maps F/pn →M/pn are injective for any n ∈ N, then F is a direct summand in M .

Proof. Denoting M/F by C, the condition implies that M [pn] � C[pn] for all n. Writing the
torsion submodule Ctor as direct sums of cyclic torsion W (k)-modules, and using the condition,
we see that each cyclic summand admits a section back to M . This way we see that the extension
class restricts to 0 in Ext1W (k)(Ctor, F ), hence it must come from a class in Ext1W (k)(C/Ctor, F ).
But now C/Ctor is finitely generated torsion-free W (k)-module, which is well known to be a free
W (k)-module, hence the extension group is 0. �
Proof of Theorem 4.18. Let us show (1) and (2). The case of n =∞ follows from the finite n
case: for (1) this is by left exactness of taking inverse limit, for (2) it follows from Proposition 2.6.
Now assuming n ∈ N, the degeneration statement is equivalent to equality of lengths

�(Hm
dR(Xn)) =

∑
i+j=m

�(Hi,j(Xn)),

for any m < T . Note that by the mere existence of the Hodge–de Rham spectral sequence, we
have the inequality

�(Hm
dR(Xn)) ≤

∑
i+j=m

�(Hi,j(Xn))

for free for any m. Below we shall try to show the converse inequality for m < T .
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To that end, by the same argument as in the first paragraph of [Li22, Proof of Theorem 1.1],
the liftability condition implies that the Hodge–Tate complex in degrees ≤ p− 1 splits into
direct sums of its cohomology sheaves (see [BS22, Remark 4.13 and Proposition 4.14], [ALB23,
Proposition 3.2.1], and [LL20, Corollary 4.23]). In particular, since T − 1 ≤ p− 1 we have a
splitting of OK-modules: Hm

HT(Xn) �
⊕

i+j=m Hi,j(Xn) for any m < T . Here the Hodge–Tate
cohomology of Xn is defined to be the quasi-syntomic cohomology of the mod pn of the
Hodge–Tate sheaf OΔ. What remains to be shown is an inequality of length

�(Hm
HT(Xn)) ≤ �(Hm

dR(Xn)).
By the Hodge–Tate and de Rham comparisons of prismatic cohomology [BS22, Theorem 4.10
and Corollary 15.4], we have equalities

�(Hm
HT(Xn)) = �

(
Hm

qSyn(X ,Δn)⊗SOK
)

+ �
(
TorS

1 (Mm+1
n ,OK)

)
and

�(Hm
dR(Xn)) = �

(
Hm

qSyn(X ,Δn)⊗S,ϕS
OK

)
+ �

(
TorS

1 (Mm+1
n , (ϕS)∗OK)

)
.

Now the desired inequality between the length of Hodge–Tate and de Rham cohomology follows
from the definition of T , the inequality m < T , Theorem 3.6, and Lemma 4.19. This finishes the
proof of (1).

Turning to (2), note that by Theorem 3.6(3), if MT
n were non-zero, it would necessarily

be a direct sum of k as an S-module. Then Lemma 4.19(2) shows that when e > 1, the strict
inequality

�(HT−1
HT (Xn)) < �(HT−1

dR (Xn))
holds, which violates the fact that the left-hand side is the same as the sum of the lengths of
Hodge cohomology groups whereas the right-hand side is at most that sum. Hence, we arrive at
a contradiction. The vanishing of Mm

n when m < T already follows from Theorem 3.6(1). The
statement concerning structure of prismatic cohomology now follows from Proposition 2.6.

Now we turn to (3): e = 1, hence T = p. In this case, the statement (1) we proved above
implies that for any i ≤ p and any j, the map Hi(Xn,FiljH)→ Hi

dR(Xn) is injective. Hence, the
submodule Hi(X ,FiljH) ⊂ Hi

dR(X ) has the property that it induces an injection modulo any pn.
The desired splitness follows from Lemma 4.20.

Finally, we show (4): when e > 1. We follow the argument of [Li22, Corollary 3.9]. Using the
vanishing statement established in (2), it follows that we have abstract isomorphism Hm

HT(X ) �
Hm

dR(X ) whenever m < T . Hence, the argument of [Li22, Corollary 3.9] shows that in the range
m < T , the splitting of the Hodge–Tate filtration on Hm

HT(X ) is equivalent to the splitting of
the Hodge filtration on Hm

dR(X ). We can then finish our proof, as liftability to S/(E2) gives the
desired splitting of the Hodge–Tate filtration in the range m < T ≤ p. �
Remark 4.21. Comparing our Theorem 4.18(1) with what Fontaine and Messing obtained [FM87,
II.2.7.(i)] (assuming the existence of a lifting over W ), we seemingly get a stronger statement.
Fontaine and Messing only proved a degeneration statement when the differential has a target
of degree < p whereas ours allows the differential to have source of degree < p (so the target can
have degree p). However, this is due to Fontaine and Messing not trying to squeeze their method
to the most optimal, which is understandable given how many indices they needed to take care
of. Indeed, their [FM87, II.2.6.(ii)] implies the map in the next degree (following their notation)⊕t

r=1 Hm+1(J [r]
n )→⊕t

r=0 Hm+1(J [r]
n ) is injective, which can be used to strengthen their [FM87,

II.2.7.(i)], hence also gaining the extra degeneration statement we obtained here.
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We are now in a position to prove the main theorem in this subsection.

Proof of Theorem 4.17. Fix an m < T and a j ∈ N. We consider the map of two OK-complexes

RΓ(X ,FiljH)→ RΓdR(X/OK).

Our Theorem 4.18(1), (3) and (4) implies that this map in degree m satisfies the assumption
of [Li22, Lemma 2.16] (with our m being the n in that lemma). We finish the proof of (1) by
combining the conclusion of [Li22, Lemma 2.16] with the definition of Hodge numbers of X and
virtual Hodge numbers of X0.

The fact that (1) implies (2) is rather a brain teaser. In the Hodge diamond of X, all numbers
below the middle row, which is the row with total degree given by dim(X) (≤ T by assumption),
are given by the corresponding virtual Hodge number of X0. Serre duality implies that X0 also
knows all numbers above the middle row. Now for the middle row, simply use the fact that Euler
characteristic is locally constant for any flat family of coherent sheaves. �

For the rest of this subsection, let us specialize to the case of e = 1. Using knowledge on
the Hodge–de Rham spectral sequence, we have a similar degeneration of the ‘Nygaard–Prism’
spectral sequence up to cohomological degree p.

Theorem 4.22. Assume e = 1 (so OK = W ), and let n ∈ N ∪ {∞}. The map

Hi
qSyn(X ,FiljN /p

n)→ Hi
qSyn(X ,Δ(1)

n )

is injective, when i < p or i = p, j ≤ p− 1.

Recall that when i = p and j ≥ p, kernels of these maps have been studied in
Proposition 3.20(3).

Proof. We shall induct on j, the case of j = 0 being trivial. We need to consider the following
diagram:

Hi
qSyn(X ,FiljN /p

n)⊗S (E) ��
� �

��

Hi
qSyn(X ,Filj+1

N /pn) ��

��

Hi(X ,Ω≥j+1
X/W /pn)
� �

��

Hi
qSyn(X ,Δ(1)

n )⊗S (E) �� Hi
qSyn(X ,Δ(1)

n ) �� Hi
dR(Xn/Wn)

The rows are exact as they are part of long exact sequences, coming from exact sequences of
sheaves on XqSyn. The right vertical arrow is injective for all i ≤ p thanks to Theorem 4.18(1);
note that T = p as e = 1. The left vertical arrow is injective by induction hypothesis.

Let us first show the statement for i < p. Take an element in the kernel of the mid-
dle vertical arrow; by diagram-chasing we see that the element comes from an element α in
Hi

qSyn(X ,FiljN /p
n)⊗S (E). Now it suffices to show that the image of α in Hi

qSyn(X ,Δ(1)
n )⊗S (E)

is zero. Finally, we note that the further image in Hi
qSyn(X ,Δ(1)

n ) is zero, therefore it suf-

fices to know Hi
qSyn(X ,Δ(1)

n ) has no E-torsion, or equivalently it has no u-torsion, thanks to
Theorem 3.6(1).

Finally, let us show the statement when i = p, and let j + 1 ≤ p− 1. Arguing as in the
previous paragraph, we are reduced to showing that, given an element βj ∈ Hp

qSyn(X ,FiljN /p
n)

whose image γ in Hp
qSyn(X ,Δ(1)

n ) is an E-torsion, the image of βj ⊗ E in Hp
qSyn(X ,Filj+1

N /pn) is
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already zero. To that end, we need the help of another diagram:

Hp
qSyn(X ,Filp−1

N /pn)⊗S (E) ��

��

Hp
qSyn(X ,Filp−1

N /pn)

��

Hp
qSyn(X ,FiljN /p

n)⊗S (E) ��
� �

��

Hp
qSyn(X ,Filj+1

N /pn)

��

Hp
qSyn(X ,Δ(1)

n )⊗S (E) �� Hp
qSyn(X ,Δ(1)

n )

We point out that the two vertical arrows in the top square are both injective because of
Proposition 3.20(2), although we make no further use of this. Since γ is an E-torsion, we know
it is (u, p)-torsion (see Theorem 3.6(3)). Therefore we see γ is the image of a (u, p)-torsion βp−1

in Hp
qSyn(X ,Filp−1

N /pn) thanks to Proposition 3.20(1). By the induction hypothesis, we see that
the image of βp−1 in Hp

qSyn(X ,FiljN /p
n) is precisely βj . Now we are done as E · βp−1 = 0 in

Hp
qSyn(X ,Filp−1

N /pn). �

5. Crystalline cohomology in boundary degree

Notation 5.1. Throughout this section let us fix n ∈ Z ∪ {∞}, and fix e, i such that e · i = p− 1.
Let S be the PD envelope of S � OK , and let c1 = ϕ(E)/p ∈ S×. Denote Sn := S/pn and
Sn := S/pn. Let X be a smooth proper formal scheme over Spf(OK). Let M := Hi

qSyn(X ,Δ(1)
n ),

letM := Hi
crys(Xn/Sn,Ocrys) ∼= Hi

qSyn(X ,dR−/S/pn), and finally let V := Hi+1
qSyn(X ,Δn)[u∞]. We

use Frobk to denote the Frobenius on k.

Recall that, by Theorem 3.6, the module M is u-torsion-free and the Frobenius S-module
V is an étale ϕ-module over k. Also recall ([BS22, Theorem 5.2] and [LL20, Theorem 3.5 and
Lemma 7.16]) that we have a short exact sequence of Frobenius S-modules:

0→M⊗Sn Sn →M→ TorSn
1 (V, ϕ∗Sn) ∼= TorS1

1 (V, ϕ∗S1) =: M → 0, ( )

where the last equality follows from the fact that S1 = S1 ⊗L

Sn
Sn. Here, by assumption on X ,

we know M is finitely generated over S and we can replace completed tensor with tensor to ease
notation a little bit.

Let us give a functorial description of M .

Lemma 5.2. Let N be an S1-module. Then we have identifications of S1-modules:

(1) TorS1
1 (V,N) ∼= V ⊗k

(
N [u]

)
; and

(2) TorS1
1 (V, ϕ∗N) ∼= Frob∗

k(V )⊗k
(
N [up]

)
.

Here the S-module structures on the right-hand sides are via the second factor.

In particular, we have M ∼= Frob∗
k(V )⊗k S1[up].

Proof. Let us prove (2) here as the proof of (1) follows a similar argument. Note that

V ⊗L

S1,ϕ N = V ⊗L

k,id k ⊗L

S1,ϕ N = V ⊗L

k,id k ⊗L

S1,ϕ S1 ⊗L

S1
N.

Then one simply computes
k ⊗L

S1,ϕ S1
∼= S1/u

p,
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with k module structure via Frobenius on k. Therefore, the tensor derived above becomes

Frob∗
kV ⊗k TorS1

1 (S1/u
p, N) ∼= Frob∗

kV ⊗k
(
N [up]

)
. �

In the following we shall describe the induced filtrations, divided Frobenii and connections
on all terms of the sequence ( ).

5.1 Understanding filtrations
Recalling [LL20, Theorem 4.1] (and references therein) we have filtered isomorphisms

RΓ(X ,Fil•H dR∧
−/S)

∼=−→ RΓcrys(X/S, I•crys).

By the above identification, we need to understand the Hodge filtration on the derived de Rham
cohomology of X/S.

Lemma 5.3. We have the following assertions.

(1) The map Hi
qSyn(X ,FiliN Δ(1)

n )→M is injective.

(2) The map Hi(X ,FiliH dR∧
−/S/p

n)→M is injective.

This fact has appeared in the proof of [LL20, Theorem 7.22]; for the convenience of readers
we reproduce its proof below. The key point is that the inequality e · (i− 1) < p− 1 implies the
ith prismatic cohomology is u-torsion-free, which in turn guarantees injectivity.

Proof. By [LL20, Corollary 4.23] and diagram-chasing, we know the kernel of

Hi
qSyn(X ,FiliN Δ(1)

n )→M

surjects onto the kernel of

Hi(X ,FiliH dR∧
−/S/p

n)→M.

Hence, it suffices to prove (1).
By [LL20, Lemma 7.8] we know the ith divided Frobenius ϕi : Hi

qSyn(X ,FiliN Δ(1)
n )→

Hi
qSyn(X ,Δn) is an isomorphism. Combining this with Theorem 3.6(1) we see that the cohomol-

ogy of Nygaard filtration has no finite length sub-S-module. Finally, [LL20, Proposition 7.12]
says the kernel of the map in (1) must be a finite length sub-S-module, thus zero. �

Notation 5.4. We denote the images of the above injections by Fili M and FiliM, respectively.

The submodule FiliM⊂M induces filtrations on the first and third terms in the sequence
( ). For instance,

Fili
(
M⊗Sn Sn

)
:=

(
M⊗Sn Sn

) ∩ FiliM
where the intersection happens insideM, and

FiliM := Im(FiliM→M).

Let us investigate these filtrations.
Let I [i] ⊂ S be the ith PD filtration ideal, which is p-completely generated by ≥ ith divided

powers of E(u) in S. Note that the quotient S/I [i] is p-torsion-free, hence the ideal I [i]
n :=

I [i]/pn ⊂ Sn can be regarded as the ith PD filtration ideal on Sn.
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Recall [LL20, § 4] that we have a commutative diagram of sheaves on
(OK)

qSyn
:

(E(u)j)⊗S Δ(1) ��

��

FiljN Δ(1) ��

��

Δ(1)

��

I [j] ⊗S dR∧
−/S �� FiljH dR∧

−/S �� dR∧
−/S

Lemma 5.5. The diagram above induces the following commutative diagram of sheaves on(OK)
qSyn

:

0 �� FiljN Δ(1)

(E(u)j)⊗SΔ(1)
��

��

Δ(1)

(E(u)j)⊗SΔ(1)
��

��

Δ(1)

FiljN Δ(1)
��

��

0

0 �� FiljH dR∧
−/S

I[j]⊗̂S dR∧
−/S

�� dR∧
−/S

I[j]⊗̂S dR∧
−/S

��
dR∧

−/S

FiljH dR∧
−/S

�� 0

which has short exact rows, and vertical arrows are isomorphisms if j ≤ p. Moreover, all these
statements remain true after derived mod pn is an exact functor.

Proof. The derived mod pn statement follows from the fact that derived mod pn is exact. It
suffices to show two of the three vertical arrows are isomorphisms.

Using dR∧
−/S ∼= S⊗̂SΔ(1) (see [BS22, Theorem 5.2] and [LL20, Theorem 3.5]), the middle

vertical arrow is identified with

Δ(1)⊗̂S

(
S

(E(u)j)
−→ S

I [j]

)
,

hence it suffices to note that the ring map S/(E(u)j)→ S/I [j] is an isomorphism.
The right vertical arrow is an isomorphism (thanks to [LL20, Corollary 4.23]). �

Proposition 5.6. The map FiliM→M is surjective. Hence, FiliM = M .

Proof. We consider the following map between long exact sequences:

Hi
qSyn(X ,FiliN Δ(1)/pn) ��

��

M

ι

��

�� Hi
qSyn(X ,

(
Δ(1)/FiliN Δ(1)

)
/pn)

�
��

Hi
qSyn(X ,FiliH dR∧

−/S/p
n) �� M �� Hi

qSyn(X ,
(
dR∧

−/S/FiliH dR∧
−/S

)
/pn)

Chasing the diagram, we see that it suffices to show the top right horizontal arrow is a surjection.
Indeed, granting the surjectivity assertion, we get that the summation map

FiliM⊕M→M
is a surjection. Projection further to M kills the second factor above, hence we get the desired
surjectivity.

Finally, we prolong the top long exact sequence:

Hi
qSyn(X ,

(
Δ(1)/FiliN Δ(1)

)
/pn)→ Hi+1

qSyn(Xn,FiliN Δ(1)/pn) ι−→ Hi+1
qSyn(X ,Δ(1)/pn).
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We are reduced to showing ι is injective, which is exactly Proposition 3.20(2); note that

e · ((i+ 1)− 1
)

= e · i = p− 1. �
Using what is proved in the above proposition, we can also understand Fili

(
M⊗Sn Sn

)
. The

diagram before Lemma 5.5 implies that we have a natural map M⊗Sn I [i]
n → Fili

(
M⊗Sn Sn

)
.

Since the map Δ(1) → dR∧
−/S of quasi-syntomic sheaves is filtered, we also have a natural map

Fili M→ Fili
(
M⊗Sn Sn

)
. We recall (Notation 5.4) that the source denotes Hi of the ith mod

pn Nygaard filtration.

Proposition 5.7. The summation map Fili M⊕ (
M⊗Sn I [i]

n

)→ Fili
(
M⊗Sn Sn

)
is surjective.

Proof. Note that
M⊗Sn Sn

M⊗Sn I [i]
n

= M⊗Sn

Sn

I [i]
n

= M/(Ei).

In the last equality, we use the fact that i < p implies Sn/I [i]
n = Sn/(Ei). Therefore, any element

x in M⊗Sn Sn can be written as x = y + z with y ∈M and z is in the image of M⊗Sn I [i]
n .

Hence, we have

Fili
(
M⊗Sn Sn

)
=

(
Fili

(
M⊗Sn Sn

) ∩M
)

+ Im(M⊗Sn I [i]
n ).

It suffices to show

Fili
(
M⊗Sn Sn

) ∩M = Fili M := Hi
qSyn(X ,FiliN Δ(1)/pn),

which indeed follows from chasing the diagram in the proof of Proposition 5.6. �
Corollary 5.8. Let e = 1 and i = p− 1. Then the triple (M,FiliM, ϕi) is an object in
Modϕ,p−1

S,tor .

Proof. Note that the map FiliM→M is injective by Lemma 5.3. We need to show admissi-
bility, that is, the image ϕi generates M. To that end, we shall explain why both images of
ϕi : Fili

(
M⊗Sn Sn

)→ Fili
(
M⊗Sn Sn

)
and ϕi : FiliM = M →M generate the target. For the

latter, it follows from the e = 1 case of Proposition 5.13. For the former, just note that the
Nygaard filtration, Fili M (see Notation 5.4), already has its image of ϕi generating the module,
thanks to [LL20, Lemma 7.8(3)]. �

5.2 Computing the divided Frobenius
Next we discuss the divided Frobenius on Fili of terms in the sequence ( ). We will use ϕi to
denote the divided Frobenius on both Nygaard and Hodge filtrations; hopefully readers can tell
them apart by looking at the source of the arrow to see which divided Frobenius we are using.

Recall [LL20, Remark 4.24] that when j ≤ p− 1, the semi-linear Frobenius ϕ on dR∧
−/S

becomes uniquely divisible by pj when restricted to the sub-quasi-syntomic sheaf FiliH dR∧
−/S

(cf. [Bre98, p. 10]), which we denote by ϕj . The divided Frobenii on Nygaard and Hodge filtrations
are related by

FiljN Δ(1)
ϕj

��

ι

��

Δ

1⊗cj1
��

FiljH dR∧
−/S

ϕj
�� dR∧

−/S ∼= Δ⊗̂S,ϕS
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as one computes ϕ/ϕ(E)j · (ϕ(E)/p)j = ϕ/pj . Restricting further to I [j]⊗̂ϕ,SΔ ⊂ FiljH dR∧
−/S,

the divided Frobenius is related to the (semi-linear) prismatic Frobenius via

I [j]⊗̂ϕ,SΔ
ϕj⊗ϕ

��

ι

��

S⊗̂ϕ,SΔ

∼=
��

FiljH dR∧
−/S

ϕj
�� dR∧

−/S

where the ϕj and ϕ on the top arrow are respectively the divided Frobenius on I [j] ⊂ S and
the semi-linear Frobenius on Δ. Since we assumed e · i = p− 1, in particular i ≤ p− 1. From the
discussion, we immediately get the following lemma.

Lemma 5.9. Restricting the divided Frobenius ϕi : FiliM→M to Fili
(
M⊗Sn Sn

)
, the image

lands in the submodule M⊗Sn Sn.

Proof. By the above discussion, we have a commutative diagram

Fili M⊕ (I [i]
n ⊗Sn M

) ��

��

M⊗Sn Sn

ι

��

FiliM
ϕi �� M

where the top arrow is given by
(
ϕi ⊗ ci1

)⊕ (
ϕi ⊗ ϕ

)
. Our claim follows from Proposition 5.7

which says the image of the left vertical arrow is precisely Fili
(
M⊗Sn Sn

)
. �

Consequently, the divided Frobenius ϕi : FiliM→M descends to a semi-linear map
FiliM = M →M (see Proposition 5.6), which we refer to as the residual divided Frobenius.
Our next task is to relate this residual divided Frobenius to the Frobenius on V .

To that end, we factorize the divided Frobenius on the ith Hodge filtration as

FiliH dR∧
−/S

α−→ Δ⊗̂SI [i] id⊗ϕi−−−→ Δ⊗̂Sϕ∗S. ( )

Here α is S-linear and is defined at the level of sheaves in
(OK)

qSyn
. Recall [LL20, Remark 4.24]

that on the basis of large quasi-syntomic algebras,

FiliH dR∧
−/S =

∑
0≤j≤i

I [i−j]⊗̂SFiljN Δ(1).

Therefore, the linear Frobenius

Δ⊗̂Sϕ∗S ∼= dR∧
−/S

β−→ Δ⊗̂SS

restricted to the ith Hodge filtration lands in Δ⊗̂SI [i], and composition further with the ith
divided Frobenius on the second factor gives the semi-linear divided Frobenius.

Lemma 5.10. The map FiliH dR∧
−/S

α−→ Δ⊗̂SI [i] induces a commutative diagram

Fili
(
M⊗Sn Sn

)
��

��

Hi
qSyn(X ,Δn)⊗Sn I [i]

n

��

FiliM
α �� Hi

qSyn(X ,Δn⊗̂SnI [i]
n )
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The content of this lemma is that when we first derived mod α by pn, then took
Hi

qSyn(X ,−), and finally restricted it to the submodule Fili
(
M⊗Sn Sn

)
, it landed in the sub-

module Hi
qSyn(X ,Δn)⊗Sn I [i]

n of the target. This is proved exactly the same way as in Lemma 5.9
so we omit it. From the above lemma, we know the map α descends to a map

FiliM = M = Frob∗
k(V )⊗k S1[up]

α−→ TorSn
1 (V, I [i]

n ) = V ⊗k I [i]
1 [u].

Here we use I [i]
n ⊗L

Sn
S1 = I [i]

1 and Lemma 5.2(1) to obtain the identification of the target.

Proposition 5.11. Let F : V → V denote the semi-linear prismatic Frobenius on V , which
induces the linearized Frobenius F̃ : Frob∗

k(V )→ V . Then the map

Frob∗
k(V )⊗k S1[up]

α−→ V ⊗k I [i]
1 [u]

is given by F̃ ⊗ up−1.

Note that given a up-torsion in S1, multiplication by up−1 gives us a u-torsion in S1, implicitly
in the statement we have used the fact that the inclusion I [i]

1 [u] ⊂ S1[u] is a bijection because
i ≤ ep− 1.

Proof. We consider the following commutative diagram of sheaves on
(OK)

qSyn
:

FiliH dR∧
−/S

��

α �� Δ⊗̂SI [i]

��
Δ⊗̂Sϕ∗S ∼= dR∧

−/S
β

�� Δ⊗̂SS

This induces the following commutative diagram:

FiliM

∼=
��

α �� V ⊗k I [i]
1 [u]

∼=
��

M
β

�� V ⊗k S1[u]

The left vertical arrow is an isomorphism. As explained right after the statement, the right
vertical arrow is also an isomorphism. Therefore, we are reduced to computing the effect on H−1

of the map
(V ⊗L

S1,ϕ S1)⊗L

S1
S1 → V ⊗L

S1
S1

induced by the linearized Frobenius V ⊗L

S1,ϕ
S1
∼= Frob∗

k(V )⊗k S1/u
p F̃⊗proj−−−−→ V ⊗k S1/u. We

can choose the following explicit resolution of the above map of S1-modules:

Frob∗
k(V )⊗k S1

id⊗up

��

F̃⊗up−1

��

Frob∗
k(V )⊗k S1

id⊗proj
��

F̃⊗id
��

Frob∗
k(V )⊗k S1/u

p

F̃⊗proj
��

V ⊗k S1

id⊗u
�� V ⊗k S1

id⊗proj
�� V ⊗k S1/u

Tensoring the above with S1 over S1 and considering the induced map on H−1 yields the
conclusion. �
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The effect of the second arrow in ( ) is very easy to understand: we only need to understand
the divided Frobenius ϕi : I [i]

1 [u]
ϕi−→ S1[up]. Note that we assumed e · i = p− 1, hence e = 1

means i = p− 1.

Lemma 5.12. The S1-module I [i]
1 [u] = S1[u] is generated by uep−1, and we have

ϕi(uep−1) =

{
cp−1
1 ∈ S1 = S1[up], when e = 1,

0, when e > 1.

Proof. The description of I [i]
1 [u] is well known. It follows from the explicit description of I [i]

1 ⊂ S1,
given in the proof of Proposition 5.7.

Let us choose a lift of uep−1 ≡ E(u)p−1 · ue−1 to I [i] and compute

ϕi(E(u)p−1 · ue−1) = cp−1
1 · pp−1−i · uep−p.

After reduction mod p, the right-hand side is 0 if 0 < p− 1− i which is equivalent to e > 1, and
the right-hand side is cp−1

1 when e = 1. �

Putting everything together, we arrive at the following proposition.

Proposition 5.13. The divided Frobenius FiliM→M descends to a residual divided
Frobenius

ϕi : FiliM = M →M.

After identifying M ∼= Frob∗
k(V )⊗k S1[up], we have

ϕi =

{
F ⊗ cp−1

1 · ϕS1 , when e = 1,
0, when e > 1.

Here we abuse notation a little by writing the induced Frobenius on Frob∗
k(V ) as F .

Proof. The first sentence is Lemma 5.9. As for the computation of the residual divided Frobenius,
we consider the sequence ( ), which gives rise to

Frob∗
k(V )⊗k S1[up]

α−→ V ⊗k I [i]
1 [u]

id⊗ϕi−−−→ V ⊗k,ϕ S1[up].

Combining Proposition 5.11 and Lemma 5.12 yields the result. �

5.3 The connection
In [LL20, § 5.1] we explained how one gets a natural connection on the derived de Rham complex
relative to S. Consequently, we see that there is a connection ∇ : M→M satisfying ∇(f ·m) =
f ′ ·m+ f · ∇(m) for any f ∈ S and m ∈M. In this section, we shall see that in a strong sense
there is a unique such connection. As a corollary, the connection ∇ preserves the sequence ( ).
Moreover, the compatibility between ∇ and the divided Frobenius [LL20, § 5.2] will determine
the residual connection on M .

Notation 5.14. Let S[ε] := S[x]/(x2) and let S ι1−→ S[ε] and S ι2−→ S[ε] be two ring homomorphisms
defined as ι1(f) = f ⊗ 1 and ι2(f) = f ⊗ 1 + f ′ ⊗ ε.
Proposition 5.15. There is a unique E∞-S[ε]-algebra isomorphism dR∧

R/S⊗S,ι1S[ε]→
dR∧

R/S⊗S,ι2S[ε] which reduces to the identity modulo ε and is functorial in the formally smooth
OK-algebra R.
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Proof. One observes that the formula ∇ �→ (
g(m⊗ 1) = m⊗ 1 +∇(m)⊗ ε) gives a bijection

between functorial connections on dR∧
R/S and the said functorial isomorphisms. Therefore, the

existence follows from [LL20, § 5.1].
To show uniqueness, we follow the same argument as in the proof of [LL20, Theorem 3.13].

Firstly, by left Kan extension and quasi-syntomic descent, it suffices to check the uniqueness when
viewing both sides as quasi-syntomic sheaves of S[ε]-algebras. Secondly, by the same argument in
[LL20, Theorem 3.13], one sees that restricting to the category of quasi-syntomic OK-algebras of
the form OK〈X1/p∞

j ; j ∈ J〉 for some set J determines such morphisms of S[ε]-algebras. Finally,

when R̃ = OK〈X1/p∞
j ; j ∈ J〉, both the source and the target are given by S[ε]〈X1/p∞

j ; j ∈ J〉.
Now we need to show that g(X) must be X.

To that end, let us assume g(X1/pn
) = X1/pn

+ Yn ⊗ ε. Then we compute g(X) =
g(X1/pn

)p
n

= (X1/pn
+ Yn ⊗ ε)pn ≡ X modulo pn. Therefore we conclude that g(X)−X is

divided by arbitrary powers of p, hence must be 0 by the p-adic separatedness of S[ε]〈X1/p∞
j ;

j ∈ J〉. �

Remark 5.16. For any quasi-compact and quasi-separated smooth formal scheme Y over
Spf(OK), the crystal nature of RΓcrys(Y/S) gives a connection on RΓcrys(Y/S) (see [BdJ11,
p. 2 and Lemma 2.8]). Note that although in [BdJ11] the authors were talking about crystals
in quasi-coherent modules, their argument works in our setting of crystals in perfect com-
plexes as Ω1,pd

S/W is finite free over S, so there is no subtlety when derived tensoring it with
any other S -module. Consequently, one gets a connection on RΓcrys(Y/S), and when identifying
RΓcrys(Y/S) ∼= dR∧

Y/S, our Proposition 5.15 shows the ‘crystalline’ connection agrees with our
‘derived de Rham’ connection.

Below we explain yet another way to get the connection, via the prismatic crystal
nature of prismatic cohomology. Recall [BS21, Construction 7.13] that there is a cosimplicial
prism

(
S(•), J (•))→ OK ∼= S(•)/J (•). Let S(•) → OK be the similarly defined cosimplicial ring

obtained by taking divided power envelopes of S⊗̂Wn � OK where [n] ∈ Δ. Note that there is
a map of these cosimplicial rings induced by the Frobenius ϕ⊗•

S : S⊗• → S⊗•. Let us explicate
this for • = 0, 1 as we will need it later:

S ∼= W [[u]]
ι1 ��

u�→up

��

W [[u, v]]{ u−v
E(u)}∧ ∼= S(1) ∼= W [[u, v]]{ u−v

E(v)}∧

u�→up v �→vp

��

W [[v]] ∼= S
ι2��

v �→vp

��
S ∼= W [[u]]〈〈E(u)〉〉 ι1 �� W [[u, v]]〈〈E(u), u− v〉〉 ∼= S(1) ∼= W [[u, v]]〈〈E(v), u− v〉〉 W [[v]]〈〈E(v)〉〉 ∼= S

ι2��

where 〈〈−〉〉 denotes p-completely adjoining divided powers of the designated elements. To see
the middle arrow is well defined we use the fact that ϕ(E(u)) and ϕ(E(v)) in S(1) is p times a
unit, and adjoining ϕ(u− v)/p as a δ-ring is the same as adjoining divided powers of u− v (see
[BS22, Corollary 2.39]).

Now for any p-adically smooth OK-algebra R, we have a functorial isomorphism of
E∞-S(1)-algebras,

ΔR/S⊗̂S,ι1S
(1) ∼= S(1)⊗̂ι2,SΔR/S,

by base change of prismatic cohomology. Base-changing the above along the aforesaid map
S(1) → S(1) (and use either [BS22, Theorem 5.2] or [LL20, Theorem 3.5]) identifies the left
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(respectively, right) hand side with

ΔR/S⊗̂S,ι1S
(1)⊗̂S(1),ϕS

(1) ∼= ΔR/S⊗̂S,ϕS⊗̂S,ι1S(1) ∼= dR∧
R/S ⊗̂S,ι1S(1)

(respectively, S(1)⊗̂ι2,S dR∧
R/S). This gives rise to another description of the ‘crystalline’

connection.

Proposition 5.17. The following diagram commutes functorially in the p-adically smooth
OK-algebra R:

ΔR/S⊗̂S,ι1S
(1)

∼= ��

⊗̂
S(1)S

(1)

��

S(1)⊗̂ι2,SΔR/S

⊗̂
S(1)S

(1)

��

dR∧
R/S ⊗̂S,ι1S(1)

∼= �� S(1)⊗̂ι2,S dR∧
R/S

Proof. Base-changing the top arrow along S(1) → S(1) gives a potentially different functorial
isomorphism at the bottom. Therefore, it suffices to show that there is no non-trivial automor-
phism of the quasi-syntomic sheaf of S(1)-algebras R �→ dR∧

R/S ⊗̂S,ι1S(1). The same argument as
in [LL20, Theorem 3.13] does the job. �

As a consequence, we know the sequence ( ) is stable under the connection. In fact more
generally we have the following result.

Corollary 5.18. For any j ∈ N and any n ∈ N ∪ {∞}, the connection on Hj
qSyn(X ,dR∧

−/S/p
n)

preserves the submodule Hj
qSyn(X ,Δ(1)/pn)⊗Sn Sn.

Proof. In line with the dictionary between connections and crystals [BdJ11, Lemma 2.8], we
need to show that the isomorphism (note that both of ιi : S → S(1) are p-completely flat)

Hj
qSyn(X ,dR∧

−/S/p
n)⊗Sn,ι1 S

(1)
n
∼= S(1)

n ⊗ι2,Sn Hj
qSyn(X ,dR∧

−/S/p
n)

preserves the submodule Hj
qSyn(X ,Δ(1)/pn)⊗Sn Sn. This immediately follows from the commu-

tative diagram

Hj
qSyn(X ,Δ/pn)⊗̂Sn,ι1S

(1)
n

∼= ��

−⊗̂
S

(1)
n
S

(1)
n

��

S(1)⊗̂ι2,SnHj
qSyn(X ,Δ/pn)
S

(1)
n ⊗̂

S
(1)
n

−
��

Hj
qSyn(X ,dR∧

−/S/p
n)⊗̂Sn,ι1S

(1)
n

∼= �� S
(1)
n ⊗̂ι2,SnHj

qSyn(X ,dR∧
−/S/p

n)

induced by Proposition 5.17. �

Therefore, we see that there is a residual connection ∇ : M →M . Recall [LL20, § 5.2] that
the connection ∇ and divided Frobenius ϕi are related by the following commutative diagram:

FiliM
ϕi ��

E(u)·∇
��

M
c1·∇

��

FiliM
up−1ϕi�� M

Since all maps descend to FiliM = M , we have the following proposition.
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Proposition 5.19. There is a commutative diagram:

M
ϕi ��

E(u)·∇
��

M

c1·∇
��

M
up−1ϕi�� M

Consequently, when e = 1, after identifying M ∼= Frob∗
k(V )⊗k S1[up], we have ∇(v ⊗ 1) = v ⊗

d log(c1).

Here d log(c1) = c′1/c1 = up−1/c1.

Proof. The existence of such a commutative diagram follows from the preceding discussion and
the fact that both ϕi and ∇ descend to M by Proposition 5.13 and Corollary 5.18, respectively.

Starting with v ⊗ 1 at the top left corner and comparing the end results of the two routes,
we arrive at an identity,

∇(F (v)⊗ 1) · cp1 + F (v)⊗ (p− 1)cp−1
1 · c′1 = 0,

where we used the description of ϕi in Proposition 5.13. Now we use the fact that M is p-torsion
and the fact that F is a bijection to yield the desired conclusion. �
Corollary 5.20. Let e = 1 and h = p− 1. Then the quadruple (M,Filp−1M,ϕp−1,∇) is a

Breuil module and there is a canonical isomorphism TS(M)
∼=−→ (V ⊗W (k) W (k))ϕ=1 of repre-

sentation of GK . In particular the resulting Galois representation TS(M) is the unramified
Fp-representation associated with the étale ϕ-module V .

Proof. The first part of statement follows from Lemma 5.2 and Propositions 5.13 and 5.19.
To compute TS(M), let I+Acrys ⊂ Acrys be the ideal such that I+Acrys contains W (mO�

C
) and

Acrys/I+Acrys = W (k). It is clear that ϕn(a)→ 0 for any a ∈ I+Acrys and I+Acrys ∩ S = I+.
By (2.17), M ⊗S I+Acrys is stable under the GK-action. So we have a canonical map of
GK-representations

TS(M) = (FilhM ⊗S Acrys)ϕh=1 = (M ⊗S Acrys)ϕh=1

→ (M ⊗A Acrys/I+Acrys)ϕh=1 = (M/I+ ⊗k k)ϕh=1.

By Proposition 5.13, if we identify M = Frob∗V ⊗k S1[up] then ∀x⊗ 1 ∈M/I+, ϕ(x⊗ 1) =
F (x)⊗ ap−1

0 with a0 = E(0)/p ∈W (k)×. So ϕh : M/I+ →M/I+ is bijective. Using that
limn→∞ ϕn(a) = 0, ∀a ∈ I+Acrys, we conclude that the above map is an isomorphism TS(M)

∼=−→
(M/I+ ⊗k k)ϕh=1 of GK-representations. Finally, we have to check that M/I+ � Frob∗V as
ϕ-modules. Indeed, Frob∗V → Frob∗V ⊗k S1[up]/I+S = M/I+ via x �→ a0(x⊗ 1) is the required
isomorphism of ϕ-modules. �

5.4 Fontaine–Laffaille and Breuil modules
In this subsection we assume e = 1. For simplicity we pick the uniformizer p, but all results
in this subsection hold true with any other uniformizer. We shall compare the two approaches
to understanding étale cohomology, as a Galois representation, from linear algebraic data on
certain crystalline cohomologies, which are due to Fontaine, Messing and Kato, and to Breuil
and Caruso.

First we need a reminder of the filtered comparison between the derived de Rham cohomology
and crystalline cohomology (see [LL20, Theorem 4.1] and references therein).
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Remark 5.21. Let X be a smooth p-adic formal scheme over Spf(W ). We have filtered
isomorphisms

RΓ(X ,Fil•H dR∧
−/W )

∼=−→ RΓcrys(X/W, I•crys)

and
RΓ(X ,Fil•H dR∧

−/S)
∼=−→ RΓcrys(X/S, I•crys).

In classical references by Fontaine and Messing, Kato, and Breuil and Caruso, they considered
the right-hand-side objects of the above isomorphisms. However, we will be thinking about the
derived de Rham side, as it is compatible with various techniques developed by Bhatt, Morrow
and Scholze and by Bhatt and Scholze.

For the remainder of this subsection we let X be a quasi-compact quasi-separated p-adic
formal scheme over Spf(W ). At the derived level, we have the following comparisons.

Proposition 5.22. Consider the diagram

X

�������������

�� 

�����������������������

Spf(W )
u �→p

�� Spf(S) �� Spf(W )

For any n ∈ Z ∪ {∞}, we have the following assertions.

(1) The canonical maps of p-complete cotangent complexes L
∧
X/W → L

∧
X/S (from the right

triangle) and L
∧
W/S→ L

∧
X/S (from the left triangle) induce an isomorphism

L
∧
X/W /p

n ⊕ (
L
∧
W/S⊗̂WOX

)
/pn

∼=−→ L
∧
X/S/p

n,

functorial in X/W .
(2) The canonical filtered maps of p-complete de Rham complexes dR∧

X/W → dR∧
X/S (from the

right triangle) and dR∧
W/S→ dR∧

X/S (from the left triangle) induce a filtered isomorphism(
dR∧

X/W ⊗̂W dR∧
W/S

)
/pn

∼=−→ dR∧
X/S/p

n,

functorial in X/W .
(3) Moreover, the identification in (2) is compatible with divided Frobenii ϕj on the jth filtration

of both sides for any j ≤ p− 1.

In case readers are worried that we do not put any smoothness assumption on X , just notice
that both sides of these equalities are left Kan extended from smooth X s, therefore it suffices
to prove these statements for smooth affine X s. That said, we will prove the statement without
the smoothness assumption as the proof just works in this generality.

Proof. The finitary n cases follow from the case of n =∞. Henceforth, we assume n =∞.
(1) This follows from the exact triangle of cotangent complexes associated with a triangle of

morphisms.
(2) Let XS := X ×Spf(W ) Spf(S) be the base change. Then we have X ∼= XS×Spf(S) Spf(W ).

These objects fit in a commutative diagram:

X

��

�� XS

��

�� X

��
Spf(W )

u �→p
�� Spf(S) �� Spf(W )
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Using the Künneth formula for the derived de Rham complex, we obtain a filtered isomorphism:

dR∧
XS/S

⊗̂SdR∧
W/S

∼=−→ dR∧
X/S .

The base change formula for the derived de Rham complex gives us a filtered isomorphism:

dR∧
X/W ⊗̂WS

∼=−→ dR∧
XS/S

.

In both filtered isomorphisms above we put the derived Hodge filtration on the derived de Rham
complex, and a trivial filtration on the coefficient ring W and S. Combining these two filtered
isomorphisms gives our desired filtered isomorphism.

(3) This follows from the fact that the two maps in (2) are compatible with divided
Frobenii. �

Remark 5.23. Since S
u �→p−−−→W is a complete intersection, the p-adic derived de Rham complex

dR∧
W/S

∼= S is given by Breuil’s ring S with the Hodge filtration given by divided powers of
(u− p) and the usual Frobenius u �→ up. Similarly, the mod pn derived de Rham complex is
S/pn with the induced filtration. This is because the rings S and S/I [j] are all p-torsion-free for
any j ∈ N.

To obtain consequences at the level of cohomology groups, we need the following abstract
lemma.

Lemma 5.24. Let C be a stable ∞-category. Let F : N
op × N

op → C be a simplicial diagram of
simplicial sets. Then, for any 0 < m ≤ n, we have a pushout diagram

F (n+ 1−m,m) ��

��

F (n+ 1−m,m− 1)

��
colimi+j≥n,j≥mF (i, j) �� colimi+j≥n,j≥m−1F (i, j)

In particular, the two inclusions F (i, j)→ F (i− 1, j) and F (i, j)→ F (i, j − 1) give rise to a
pushout diagram:⊕

i+j=n+1,i>0,j>0 F (i, j) ����
⊕

i+j=n F (i, j) �� colimi+j≥nF (i, j) .

Proof. The second statement follows from repeatedly applying the first statement and observing
that

colimi+j≥n,j≥nF (i, j) = colim(i,j)≥(0,n)F (i, j) = F (0, n)

as (0, n) is the final object in {(i, j) ≥ (0, n)} ⊂ N
op × N

op. The first statement follows from
[Lur09, Proposition 4.4.2.2]: applying the statement to

{i+ j ≥ n, j ≥ m− 1} = {i+ j ≥ n, j ≥ m}
⊔

{(i,j)≥(n+1−m,m)}
{(i, j) ≥ (n+ 1−m,m− 1)}

yields the desired pushout diagram. �

Combining the previous two general statements yield the following corollary.

Corollary 5.25. Let I [•] ⊂ S be the filtration given by divided powers of (u− p). The natural
maps, for any q + j ≥ m,

RΓ(X ,FilqH dR∧
−/S)⊗̂WI [j] → RΓ(X ,FilmH dR∧

−/S)
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give rise to an exact triangle⊕
q+j=�+1,i>0,j>0

RΓ(X ,FilqH dR∧
−/S)/pn⊗̂Wn

(I [j]/pn
)

→
⊕
q+j=�

RΓ(X ,FilqH dR∧
−/S)/pn⊗̂Wn

(I [j]/pn
)→ RΓ(X ,FilnH dR∧

−/S)/pn

for any � ∈ Z and any n ∈ Z ∪ {∞}.
Proof. The filtration comparison (Proposition 5.22(2)) shows the right-hand side is given by
the �th Day convolution filtration on RΓ(X ,dR∧

−/S)/pn⊗̂Wn dR∧
W/S/p

n. Here the filtered ring
dR∧

W/S/p
n is given by (S/pn, I [•])/pn (see Remark 5.23). Finally, we apply Lemma 5.24 to

conclude the proof. �

Theorem 5.26 (cf. [Bre98, p. 559 Remarques.(2)]). For any j, � ∈ Z and any n ∈ Z ∪ {∞}, use

Im
(
Hj(X ,Fil�H dR∧

−/S/p
n)→ Hj(X ,dR∧

−/S)/pn
)

=: Fil� Hj(X ,dR∧
−/S/p

n)

to filter Hj(X ,dR∧
−/S/p

n), and similarly filter Hj(X ,dR∧
−/W /pn). Then we have a filtered

isomorphism

Hj(X ,dR∧
−/W /pn)⊗̂Wn

(
S/pn

) ∼=−→ Hj(X ,dR∧
−/S/p

n).

Moreover, it is compatible with the divided Frobenii ϕm on the mth filtration of both sides for
all m ≤ p− 1.

Here again the ring S/pn is equipped with the divided power ideal filtration. Concretely, we
have

Fil� Hj(X ,dR∧
−/S/p

n) =
∑
r+s=�

Filr Hj(X ,dR∧
−/W /pn)⊗̂Wn

(I [s]/pn
)

as sub-Wn-modules inside Hj(X ,dR∧
−/S/p

n)⊗̂Wn

(
S/pn

) ∼=−→ Hj(X ,dR∧
−/S/p

n).

Proof. By Corollary 5.25, it suffices to show that the exact triangle obtained induces a short
exact sequence after applying Hq. To that end, it suffices to show the map

Hq(X ,Fil�H dR∧
−/S/p

n)⊗̂Wn

(I [j+1]/pn
)→ Hq(X ,Fil�H dR∧

−/S/p
n)⊗̂Wn

(I [j]/pn
)

is injective for any q, j, �, n. But this follows from the fact that
(I [j]/pn

)
/
(I [j+1]/pn

) �Wn ·
γj(u− p) is p-completely flat over Wn. The compatibility with divided Frobenii was checked in
Proposition 5.22(3). �

We arrive at the following result, already proved by Fontaine and Messing [FM87, Cor. 2.7]
and Kato [Kato87, II.Proposition 2.5]. In fact they did not need the existence of a lift all the
way to Spf(W ).

Corollary 5.27. Let X be a proper smooth p-adic formal scheme over W . Let j ≤ p− 1 and

n ∈ N. Then the natural map Hj
crys(Xn/Wn, I [i]

crys)→ Hj
crys(Xn/Wn) is injective, and the triple(

Hj
crys(Xn/Wn),Hj

crys(Xn/Wn, I [i]
crys), ϕi : Hj

crys(Xn/Wn, I [i]
crys)→ Hj

crys(Xn/Wn)
)

is an object in FMW (k).
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Proof. The injectivity follows from Theorem 4.18(1). The triple tensored up to S is identified
with

(Hj(X ,dR∧
−/S/p

n),Hj(X ,FiljH dR∧
−/S/p

n), ϕj)

by Theorem 5.26. We have shown that the map Hj(X ,Fil�H dR∧
−/S/p

n)→ Hj(X ,dR∧
−/S/p

n)
is injective, and the divided Frobenius ϕj generates the image: for j ≤ p− 2, this was the
main result in our previous paper [LL20, Theorem 7.22 and Corollary 7.25]; and for j =
p− 1, use Lemma 5.3 and Corollary 5.8. Using the ‘if’ part of Lemma 2.16, we see that(
Hj

crys(Xn/Wn),H
j
crys(Xn/Wn, I [j]

crys), ϕi : Hj
crys(Xn/Wn, I [i]

crys)→ Hj
crys(Xn/Wn)

)
is an object in

FMW (k). �

5.5 Comparison to étale cohomology
In this section, we study how the crystalline cohomology Hi

crys(X/Sn) compares to the étale
cohomology Hi

ét(XC,Z/p
n
Z) in the boundary case e · i = p− 1. We shall freely use the notation

and terminology from § 2.
We first treat the case when e = 1 and p− 1, in which case Corollary 5.27 shows that

M :=
(
Hp−1

crys(Xn/Wn),Hp−1
crys(Xn/Wn, I [p−1]

crys ), ϕp−1

)
is an object in FMW (k).

Theorem 5.28. With notation as above, there exists a natural map η : Hp−1
ét (XC,Z/p

n
Z)(p− 1)

→ TFM(M) of GK-representations such that:

(1) ker(η) is an unramified representation of GK killed by p;
(2) coker(η) sits in a natural exact sequence 0→W → coker(η)→W ′, where W ∼= ker(η) and

W ′ ∼= ker(Spp−1
n ) is given by the kernel of specialization map in degree p− 1.

Note that by our Corollary 4.15(3), ker(Spp−1
n ) is also an unramified GK-representation killed

by p. The TFM(M) in the above theorem is what we meant by ρp−1
n,FL in Theorem 1.9.

Proof. Let M := Hp−1
Δ (X/Sn) (note that here we do not have a Frobenius twist) and M =

Hp−1
crys(X/Sn). We have shown that the natural exact sequence ( ) induces a natural exact

sequence in Modϕ,p−1,∇
S,tor :

0 �� M(M) �� M �� M �� 0

(see Propositions 5.6, 5.7, 5.13 and 5.19 and Corollaries 5.8 and 5.18 for descriptions of the
filtrations, Frobenii action, and connections). Furthermore, our Theorem 5.26 says that M =
MFM(M). Therefore, by left exactness of TS , we have a natural sequence of GK-representations:

0→ TS(M(M)) ↪→ TS(M) = TFM(M)→ TS(M).

On the other hand, we also have natural maps of GK-representations:

η : Hp−1
ét (XC,Z/p

n
Z)(p− 1)

∼ �� TS(M)(p− 1)
∼
α

�� T p−1
S (M)

ι �� TS(M(M)) .

The first isomorphism is proved by [LL20, Cor. 7.4, Rem. 7.5]. As explained before Lemma 2.18,
the map ι ◦ α is a map compatible with GK-actions if the natural map f : M⊗SAinf →
M(M)⊗S Acrys is compatible with GK-actions on the both sides, where the GK-action on
M⊗SAinf given by M⊗SAinf � Hp−1

Δ (XOC
/Ainf) and the GK-action on M(M)⊗S Acrys are

defined by formula (2.17). To prove that f is compatible with GK-actions, note that the
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natural map f ′ : Hp−1
S (XOC

/Ainf)→ Hp−1
crys(XOC

/Acrys), which is compatible with GK-actions,
factors through f : M⊗SAinf →M(M)⊗S Acrys by using the inclusion M(M) ⊂M and the
isomorphism β :M⊗S Acrys � Hp−1

crys(XOC
/Acrys). So it suffices to check thatM(M)⊗S Acrys →

M⊗S Acrys � Hp−1
crys(XOC

/Acrys) are compatible with GK-actions. The compatibility of first map
is due to the fact that M(M) ⊂M is stable under ∇ on M by Corollary 5.18, and the com-
patibility of the second isomorphism is proved in [LL20, § 5.3]. In summary, we obtain a natural
map η : Hp−1

ét (XC,Z/p
n
Z)(p− 1)→ TFM(M) of GK-representations.

Now we shall justify the two extra statements concerning kernel and cokernel of η. Since TS
is left exact, ker(η) � ker(ι) which is unramified and killed by p, thanks to Corollary 2.20.

An easy diagram chase gives us a natural exact sequence:

0→ coker(ι)→ coker(η)→ TS(M).

By Corollary 2.20 we have coker(ι) ∼= ker(ι). The fact that TS(M) ∼= ker(Spp−1
n ) follows from

Corollary 5.20 and Theorem 4.14. �

Remark 5.29. (1) From the proof, we see that the appearance of ker(η) and V is due to the
defect of a key functor in integral p-adic Hodge theory, and the potential u-torsion in the degree
p (mod pn) prismatic cohomology of X is to be blamed for the appearance of V ′.

(2) It is unclear to us if the whole coker(η) is unramified and/or killed by p. It could even very
well be the case that the sequence 0→W → coker(η)→W ′ is split exact (in particular, right
exact) as GK-representations. One would need extra input from integral p-adic Hodge theory,
especially a further study of Breuil and Fontaine–Laffaille modules in the boundary degree case,
in order to obtain such refinements.

We now discuss the case where e > 1 but h ≤ p− 2. We first recall that for i ≤ p− 1, in [LL20,
§ 5.2] we have shown that Mi

n := (Hi
crys(X/Sn),Hi

crys(X/Sn, I [i]), ϕi) is an object in ∼ Modϕ,iS .
By the discussion before equation (7.24) in [LL20], we get the following exact sequence for
i ≤ h ≤ p− 2:

· · ·Hi−1
crys(Xn/Acrys,n)→ Hi

ét(XC,Z/p
n
Z(h))→ Hi

crys(Xn/Acrys,n, I [h]
crys)

ϕh−1−→ Hi
crys(Xn/Acrys,n).

(5.30)

Note that the crucial input is [AMMN22, Theorem F]. Thanks to Acrys,n being flat over Sn, we
have

Hi
crys(Xn/Acrys,n, I [h]

crys) ∼= Hi
crys(Xn/Sn, I [h]

crys)⊗S Acrys and Hi
crys(Xn/Acrys,n)

∼= Hi
crys(Xn/Sn)⊗S Acrys.

In this case, we can still define

TS(Mi
n) := Fili(Mi

n ⊗S Acrys)ϕi=1 = ker{ϕi − 1 : Hi
crys(Xn/Acrys,n, I [i]

crys)→ Hi
crys(Xn/Acrys,n)}.

The only difference is that the natural map Hi
crys(Xn/Sn, I [i]

crys)→ Hi
crys(Xn/Sn) is not expected

to be injective without the condition e · i < p− 1.

Proposition 5.31. With notation as above, we have a functorial isomorphism TS(Mi
n) ∼=

Hi
ét(XC,Z/p

n
Z(i)).

Proof. By (5.30), it suffices to show that ϕi − 1 : Hi
crys(Xn/Acrys,n, I [i]

crys)−→Hi
crys(Xn/Acrys,n) is

surjective for i < p− 2. Choose an m large enough such that ϕi(Film Sn) = 0. So clearly ϕi − 1
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restricted to the image of Film S ⊗Hi
crys(Xn/Acrys,n) is bijective.9 Hence, it suffices to show that

ϕi − 1 : Hi
crys(Xn/Acrys,n, I [i]

crys)/Film S ·Hi
crys(Xn/Acrys,n)

−→ Hi
crys(Xn/Acrys,n)/Film S ·Hi

crys(Xn/Acrys,n)

is surjective. Now we claim that both sides are finitely generated Wn(O�C)-modules. Then the
surjectivity of ϕi − 1 follows Lemma 5.34 below.

To check that both

Hi
crys(Xn/Acrys,n, I [i]

crys)/Film S ·Hi
crys(Xn/Acrys,n)

and
Hi

crys(Xn/Acrys,n)/Film S ·Hi
crys(Xn/Acrys,n)

are finitely generated over Wn(O�C), it suffices to check that

Hi
crys(Xn/Sn, I [i]

crys)/Film S ·Hi
crys(Xn/Sn)

and
Hi

crys(Xn/Sn)/Film S ·Hi
crys(Xn/Sn)

are finitely generated Sn-modules. This is clear for Hi
crys(Xn/Sn)/Film S ·Hi

crys(Xn/Sn): it is
known that Hi

crys(Xn/Sn) is a finitely generated Sn-module (see [LL20, Proposition 7.19]). For

Hi
crys(Xn/Sn, I [i]

crys)/Film S ·Hi
crys(Xn/Sn), consider the following diagram:

Hi−1
qSyn(Xn,Δ(1)/FiliN Δ(1))

α ��

�
��

Hi
qSyn(Xn,FiliN Δ(1))

β
��

��

Hi
qSyn(Xn,Δ

(1)

−/S)

ι

��

�� · · ·

Hi−1
qSyn(Xn,dR∧

−/S /FiliH dR∧
−/S)

α′
�� Hi

qSyn(Xn,FiliH dR∧
−/S)

β′
�� Hi

qSyn(Xn,dR∧
−/S) �� · · ·

Since Hi
qSyn(Xn,dR∧

Xn/Sn
) is finitely generated over Sn, the image of Hi

crys(Xn/Sn, I [i]
crys)/Film S ·

Hi
crys(Xn/Sn) inside Hi

crys(Xn/Sn)/Film S ·Hi
crys(Xn/Sn) is also finitely Sn-generated. Here

we have used the fact that Sn/Film Sn is finitely generated over Sn. Note that ker(β′) =
Im(α′) is also finitely generated over Sn. So Hi

crys(Xn/Sn, I [i]
crys)/Film S ·Hi

crys(Xn/Sn) is finitely
Sn-generated. �
Lemma 5.32. Let C� be a characteristic p algebraically closed complete non-Archimedean field.
Denote its ring of integers by O�C with maximal ideal m� and residue field k�. Let M and N
be two finitely generated O�C modules, let F : M → N be a Frobenius semi-linear map, and let
G : M → N be a linear map. The following assertions are equivalent.

(1) The map F −G : M → N is surjective.
(2) The cokernel of F −G : M → N is finite.
(3) The induced map F −G : M/m�M → N/m�N is surjective.
(4) The cokernel of F −G : M/m�M → N/m�N is finite.

Proof. It is clear that (1) =⇒ (2), (3) =⇒ (4). Below we shall show (4) =⇒ (1).
Without loss of generality we may assume that both M and N are finite free over O�C . Indeed,

let us choose maps from finite free modules, say P and Q, to M and N such that these maps are

9 From now on, we abusively denote this image by Film S · Hi
crys(Xn/Acrys,n).
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isomorphisms after modulo m�. By Nakayama’s lemma we see that these maps are surjective.
Lift the two maps F and G, to get the diagram

P
F̃−G̃

��

��

Q

��
M

F−G
�� N

By our choice of P and Q, condition (4) still holds for the top arrow. Since vertical arrows are
surjective, it suffices to show that the top arrow is surjective. Therefore, we may and do assume
M and N are finite free.

Let us name the reduction of M and N by V and W which are finite dimensional k�-vector
spaces, and denote the reduction of F and G by f and g. We claim there are exhaustive increasing
filtrations Fili with 0 ≤ i ≤ � on V and W respectively such that:

• the maps f and g respect these two filtrations;
• the induced f : Fil0 V → Fil0W is surjective;
• the induced f : gri V → griW is 0 for all 1 ≤ i ≤ �; and
• the induced g : gri V → griW is an isomorphism for all 1 ≤ i ≤ �.
To see the existence of such filtrations, we consider the following process. Notice the image of
f : V →W is a k� subspace, and consider the map g : V →W/Im(f). By the assumption of
Coker(f − g) being finite, this map must be surjective, and finally we let

Fil0 V = Ker
(
g : V →W/Im(f)

)
, Fil0W = Im(f).

Replace V and W with Fil0 V and Fil0W and repeat the above steps. This process terminates
when we arrive at Im(f) = W , and it will terminate as each time the dimension of W will drop.
This way we get a decreasing filtration, after reversing the indexing order we arrive at the desired
increasing filtration.

Choosing a subvector space V0 ⊂ Fil0(M/m�M) on which f is an isomorphism, and lifting
the basis of gri(M/m�M) for 1 ≤ i ≤ � and the basis of V0 all the way to elements in M , we
generate a finite free submodule M̃ . Now we consider the map M̃ → N .

After choosing bases, we may regard both sides as O�C points of formal affine space over
O�C , and the map F −G can be promoted to an algebraic map h : Spf(O�C〈X〉)→ Spf(O�C〈Y 〉).
Note that by our choice of M̃ , these two formal affine spaces have the same dimension. Our
choice of M̃ guarantees that the reduction of h is finite, due to the next lemma. Therefore,
the rigid generic fiber map hrig is also finite by [BGR84, 6.3.5 Theorem 1], which implies it
is flat by miracle flatness [Sta21, Tag 00R4], hence inducing a surjective map at the level of
C�-points.10 �

The following lemma was used in the proof above. We thank Johan de Jong for providing an
elegant proof.

Lemma 5.33. Let k be a field, let m > 1 be an integer, and let
(
aij

)
be an n× n matrix with

entries in k. Let h : A
n
k → A

n
k be the morphism given by h


(yi) = xmi +
∑

j ai,jxj . Then h is a
finite morphism.

10 Note that the C�-points of the rigid generic fiber of an admissible formal scheme over O�
C are the same as the

O�
C-points of the formal scheme (see [Bos14, § 8.3]).
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Proof. This map can be compactified to a morphism between P
n
k preserving the infinity

hyperplane. When restricted to the infinity hyperplane, the map becomes [x1 : · · · : xn] �→
[xm1 : · · · : xmn ], which is non-constant. Finally, observe that any endomorphism of P

n
k is either

finite or constant. �
Here we have crucially used the algebraic closedness of O�C . Below is an example suggested

to us by Johan de Jong illustrating the failure of (4) =⇒ (3) when one drops the algebraically
closed assumption. Starting with the field L0 = Fp(t1/p

∞
) and picking a basis of H1

ét(L0,Fp), we
may find an (enormous!) Galois pro-p infinite field extension L1 such that the induced map on
H1

ét(−,Fp) kills every basis vector except the first. Repeating this process, we arrive at a perfect
field L such that H1

ét(L,Fp) is one -dimensional over Fp.
From the above we immediately obtain the following lemma.

Lemma 5.34. Let M and N be two finitely generated Ainf modules. Let F : M → N be a
Frobenius linear map and G : M → N be a linear map. Then the cokernel of F −G (which is a
Zp-linear map) is finitely generated over Zp if and only if it is 0.

Proof. The ‘if’ part is trivial. For the ‘only if’ part, using right exactness of tensors and
Lemma 5.32, we conclude that the cokernel is zero after modulo p. Now since a finitely gen-
erated Zp module is 0 if and only if its reduction modulo p is so, we get that the cokernel is
zero. �

6. An example

Inspired by the example in [BMS18, § 2.1], let us work out a direct generalization of their example
(as suggested in [BMS18, Remark 1.3]) in this subsection. This example answers a question of
Breuil [Bre02, Question 4.1] negatively.

Fix a positive integer n.11 Let E0 be an ordinary elliptic curve over an algebraically closed field
k of characteristic p > 0. Let E over Spec(W (k)) be a lift. By the theory of canonical subgroups
(see [Katz73, § 3.4]), we have a closed immersion μpn ⊂ E [pn] of finite flat group schemes over
Spec(W (k)). Let OK := W (k)[ζpn ] and choose ζpn − 1 to be the uniformizer in order to get
S � OK . To avoid confusion let us denote its Eisenstein polynomial by

E = d =
(u+ 1)p

n − 1
(u+ 1)pn−1 − 1

∈ S.

On Spec(OK) we have the canonical group scheme homomorphism Z/pn → μpn .

Construction 6.1. Let X := [E/(Z/pn)], a Deligne–Mumford stack which is smooth proper
over Spec(OK). Here the action of Z/pn on E is via μpn . The generic fiber of X is the elliptic
curve EK/μpn and the special fiber is E0 ×B(Z/pn). We have a factorization

E → X → E/μpn =: E ′.
We want to understand the various cohomology theories of X , but first we need a remark on

how these cohomology theories (originally defined for schemes or formal schemes over OK) can
be made meaningful for X .

Remark 6.2 (cf. [Li22, Remark 4.9]). We may regard X as a sheaf valued in groupoids on the
big étale site of OK . Then for any étale sheaf F , it makes sense to talk about F(X ). In
fact, following [ABM21, Construction 2.7], the above can be generalized to any syntomic sheaf

11 We suggest that first-time readers simply take n = 1 in order to simplify the notation and formulas.
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(all sheaves considered in this paper are quasi-syntomic sheaves) and any syntomic stack (such as
our X here). Just as in [ABM21] we can use the cover E → X to get the Leray spectral sequence,
that is, the cohomologies of m-fold self-products of E over X converge to cohomologies of X .
Since the cover is a Z/pn-torsor, the above spectral sequence becomes the usual Hochschild–Serre
spectral sequence, that is, we can use the group cohomology of Z/pn with coefficients being coho-
mologies of E to compute cohomologies of X . For an even more general treatment concerning
higher stacks (see [KP21, § 2]).

Let us first record the structure of the prismatic cohomology of EOK
relative to S. We need

the following lemma explicating the Frobenius operator on the (−1) Breuil–Kisin twist S{−1}
(see [BL22, § 2.2]).

Lemma 6.3. The Frobenius module S{−1} has a generator x such that

ϕ(x) = E(u) · p/E(0) · x.
Proof. We know that modulo u the Breuil–Kisin prism S reduces to crystalline prism, whose
(−1)-twist has a canonical generator x satisfying ϕ(x) = p · x. Lifting this generator, we see that
there is a generator x′ of S{−1} such that ϕ(x′) = a · x′ with a ≡ p mod u. On the other hand,
we know a is necessarily E(u) · unit, due to [BL22, Construction 2.2.14]. Therefore, we see that
a = E(u) · p/E(0) · v′ where v′ ∈ S× and reduces to 1 mod u. It is a simple exercise to verify that
v′ is of the form ϕ(v)/v for some unit v ∈ S× satisfying v ≡ 1 mod u as well. Finally, x = x′/v
is our desired generator. �

In our concrete situation, the Eisenstein polynomial d of ζpn − 1 has constant term p.
Therefore, our S{−1} has a generator x such that ϕ(x) = d · x.
Proposition 6.4. We have an isomorphism of Frobenius modules over S:

(1) H0
Δ(EOK

/S) ∼= S;
(2) H2

Δ(EOK
/S) ∼= S{−1}; and

(3) H1
Δ(EOK

/S) � S · {e1, e2} with its Frobenius action given by ϕ(e1) = e1, and ϕ(e2) = a ·
e1 + d · e2 for some a ∈ S.

Proof. It is well known that an elliptic curve has torsion-free crystalline cohomology. Therefore,
by Remark 3.9, we know all these prismatic cohomology groups are finite free S-modules.

The map X → Spf(S/d) always induces an isomorphism on H0
Δ by Hodge–Tate comparison;

this proves the first identification.
The second identification is well known. For instance, the relative prismatic Chern class

[BL22, § 7.5] of (the line bundle associated with) the origin 0 ∈ EOK
(OK) gives a map

c : S{−1} → H2
Δ(EOK

/S). Reducing mod u, this reduces to the first Chern class map in the
crystalline cohomology which is well known to be an isomorphism. Since both source and target
are finite free S-module, the map c is an isomorphism.

The cup product gives rise to a map of finite free Frobenius S-modules:
∧2

SH1
Δ(EOK

/S)→
H2

Δ(EOK
/S). Modulo u this map reduces to the analogous map in the crystalline cohomology

which is again well known to be an isomorphism, hence it is an isomorphism before mod u.
Therefore, it suffices to justify the existence of e1. Since ϕ(u) = up, we see that(

H1
Δ(EOK

/S)
)ϕ=1 ∼= (

H1
Δ(EOK

/S)/u
)ϕ=1

.

Now we may use the crystalline comparison H1
Δ(EOK

/S)/u ∼= H1
crys(E0/W )(−1) and the fact that

E0 is ordinary to conclude the existence of e1. �
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Next let us compute the prismatic cohomology H∗
Δ(X/S). We consider the Leray spectral

sequence
Ei,j

2 = Hi(Z/pn,Hj
Δ(EOK

/S)) =⇒ Hi+j
Δ (X/S)

which is compatible with Frobenius actions. In order to understand the E2 terms, we need the
following lemma.

Lemma 6.5. The action of Z/pn on Hj
Δ(EOK

/S) is trivial.

Proof. Let us use the p-completely flat base change S ↪→W (C�). Since our prismatic cohomolo-
gies, as S-modules, are free, we get injections Hj

Δ(EOK
/S) ↪→ Hj

Δ(EOK
/S)⊗SW (C�) compatible

with the Z/pn-action. Using the étale comparison [BMS18, Theorem 1.8.(iv)], the target is canon-
ically identified with Hj

ét(EC ,Zp)⊗Zp W (C�). We conclude that the Z/pn-action on the target is
trivial by comparison to the topological situation. �

Therefore, the second page, which is the starting page, of the above spectral sequence is as
follows:

S{−1}





















 0 S{−1}/pn · · ·

H1
Δ(EOK

/S)
d2























0 H1

Δ(EOK
/S)/pn · · ·

S 0 S/pn · · ·

( )

Of interest to us is the differential

d2 : E0,1
2 = H1

Δ(EOK
/S) −→ E2,0

2
∼= S/pn.

Using the multiplicative structure of the spectral sequence, this arrow determines the rest of the
arrows; by degree reason the spectral sequence degenerates on the third page Ei,j3 = Ei,j∞ .

Lemma 6.6. The differential d2 is divisible by u. In other words, it is zero after reduction
modulo u.

Proof. Let us consider the reduction modulo u of the spectral sequence ( ), which com-
putes the crystalline cohomology of X/W by the crystalline comparison. Using the fact that
H2

crys(B(Z/pn)/W ) ∼= W/pn (see, for instance, [Mon21, Theorem 1.2]), we see that d2 modulo u
must be zero. �
Lemma 6.7. We have d2(e1) = 0.

Proof. This is because d2 is Frobenius equivariant. Now Proposition 6.4(3) implies e1 ∈
H1

Δ(EOK
/S) is fixed by Frobenius, yet Lemma 6.6 says its image under d2 is divisible by u.

So its image is divisible by arbitrary powers of u, hence must be zero. �
Lemma 6.8. After scaling e2 by a unit in Z

×
p we have d2(e2) = (u+ 1)p

n−1 − 1.

Proof. Note that ϕ(e2) ≡ d · e2 (modulo e1) by Proposition 6.4(3), so Lemma 6.7 implies that
d2(e2) ∈ S/pn must satisfy the same Frobenius eigenclass condition. The next lemma guarantees
that d2(e2) = b · ((u+ 1)p

n−1 − 1) for some b ∈ Z/pn. Étale comparison for prismatic cohomology
says that base-changing the spectral sequence ( ) along S ↪→W (C�) gives a spectral sequence
computing the étale cohomology of XC (base-changed along Zp ↪→W (C�)). Since XC is an elliptic
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curve, its second étale cohomology has no torsion, hence the base-changed d2 must be surjective.
In particular, we see that b �∈ p · Z/pn, hence b must be a unit in (Z/pn)×. �

In the proof above, we have utilized the following lemma.

Lemma 6.9. For any m ≤ n, we have an exact sequence

0→ Z/pm · ((u+ 1)p
n−1 − 1)→ S/pm

ϕ−d−−−→ S/pm.

Proof. First of all, let us check that (u+ 1)p
n−1 − 1 does satisfy the Frobenius action condition.

Recalling that

d =
(u+ 1)p

n − 1
(u+ 1)pn−1 − 1

,

it suffices to know that (u+ 1)p
n ≡ (up + 1)p

n−1
modulo pn. When n = 1 this is well known;

induction on n proves the statement.
Next we verify this exact sequence form = 1. In that situation S/p ∼= k[[u]], and the Frobenius

condition becomes fp = up
n−1(p−1) · f . One immediately verifies that f ∈ Fp · upn−1

.
Finally, we finish the proof by induction on m and applying the snake lemma to the following

diagram:

0 �� S/pm
·p

��

ϕ−d
��

S/pm+1 ��

ϕ−d
��

S/p ��

ϕ−d
��

0

0 �� S/pm
·p

�� S/pm+1 �� S/p �� 0

Notice that we have verified that the kernel of the middle vertical arrow surjects onto the kernel
of the right vertical arrow, thanks to the previous two paragraphs. The snake lemma tells us
that the kernel of the middle vertical arrow has length m+ 1, but we also know that Z/pm+1 ·(
(u+ 1)p

n−1 − 1
)

sits inside the kernel. �

From now on let us scale e2 by the p-adic unit such that d2(e2) = (u+ 1)p
n−1 − 1. Using the

multiplicativity of the spectral sequence ( ), we can compute the prismatic cohomology of X .
Let us record the result below.

Corollary 6.10. The prismatic cohomology ring of X/S is

H∗
Δ(X/S) ∼= S〈e, f〉[g]/((u+ 1)p

n−1 − 1 · g, pn · g, f · g),
where e and f have degree 1 and are pulled back to e1 and pn · e2 respectively inside H1

Δ(EOK
/S),

and g has degree 2, being the generator of E2,0
3 = E2,0∞ . Moreover, the Frobenius action is

given by

ϕ(e) = e, ϕ(f) = pna′ · e+ d · f, and ϕ(g) = g.

In particular, we see that

H2
Δ(X/S)[u∞] ∼= S/((u+ 1)p

n−1 − 1, pn) · g
and

H�
Δ(X/S) � S/((u+ 1)p

n−1 − 1, pn)

for all � ≥ 3 generated by either g�/2 or e · g(�−1)/2 depending on the parity of �.
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Here a′ is a p-adic unit (which we used to scale e2) times the constant a from
Proposition 6.4(3). We remark that g can be taken as a generator of the group cohomology
H2(Z/pn,Zp).

Later on we will produce a schematic example using approximations of B(Z/pn), but before
that let us observe that our stacky example matches some predictions made in the following
remark.

Remark 6.11. The discussion in § 4.1 extends to smooth proper Deligne–Mumford stacks, such as
our X . Since the generic fiber of X is

(E/μpn

)
K

, the map g : X → Néron model of XK becomes
the natural map [E/(Z/pn)]→ E/μpn . Taking the special fiber and factoring through Alb(X0) =
E0, we see the map f becomes the natural quotient map E0 → E0/μpn which has kernel μpn . Note
that when n = 1, we have e = p− 1, and our Corollary 4.6(3) indeed predicts that ker(f) can be
at worst a form of several copies of μp.

Since X0
∼= E0 ×B(Z/pn), we know its π1 is abelian with torsion given by Z/pn. Consequently,

the torsion part in H2
ét(X0,Zp) is also given by Z/pn. Since XC is an elliptic curve, its étale

cohomology is torsion-free. Hence, the specialization map in degree 2 for p-adic étale cohomology
has kernel given by Z/pn. This matches up with what Theorem 4.14 predicts. Indeed, since
ϕ(g) = g, we see that(

H2
Δ(X/S)[u∞]

)ϕ=1 =
(
H2

Δ(X/S)[u∞]/u
)ϕ=1 =

(
W/pn · g)ϕ=1 = Z/pn · g.

Here in the second identification we have used the fact that u divides (u+ 1)p
n−1 − 1.

The above stacky example can be turned into a scheme example, by the procedure of
approximation explained below.

Construction 6.12. Choose a representation V of Z/pn over Zp, such that inside P(V ) one
can find a Z/pn-stable complete intersection 3-fold Y with no fixed point and smooth proper over
Zp (see [BMS18, 2.7–2.9]). We now form Z := (E ×Zp Y)OK

/(Z/pn), which is a smooth proper
relative 4-fold over OK . Here the action of Z/pn is the diagonal action.

Let us show that the prismatic cohomology of Z/S approximates that of X/S in degrees
≤ 2 in a suitable sense.

Proposition 6.13. The natural Z/pn-equivariant projection (E ×Zp Y)OK
→ EOK

gives rise to
a map Z → X , which induces isomorphisms

H0
Δ(X/S)

∼=−→ H0
Δ(Z/S) and H1

Δ(X/S)
∼=−→ H1

Δ(Z/S).

Together with the similarly defined map Z → YOK
/(Z/pn), we have

H2
Δ(X/S)⊕S{−1} ∼=−→ H2

Δ(Z/S).

Proof. We want to apply the Leray spectral sequence to the finite étale cover (E ×Zp Y)OK
→ Z.

First we claim the natural embedding YOK
→ P(V )OK

induces an isomorphism of prismatic
cohomology in degrees ≤ 2. It suffices to show the same for the Hodge–Tate cohomology, which
in turn reduces us to showing it for the Hodge cohomology. This follows from Y being a smooth
complete intersection inside P(V ) (see [ABM21, Proposition 5.3]). Finally, it is well known that
H2

Δ(P(V )OK
/S) ∼= S{−1} (see, for instance, [BL22, 10.1.6]).

Since H1
Δ(YOK

/S) = 0, the Leray spectral sequence in degrees ≤ 2 is the direct sum of the
spectral sequences for X and Y/(Z/pn), respectively. This gives the statement for cohomological
degrees ≤ 1. Looking at the shape of the Leray spectral sequence for Y/(Z/pn), one easily sees
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that the E0,2
2 term (

H2
Δ(YOK

/S)
)Z/pn ∼= H2

Δ(YOK
/S) ∼= S{−1}

survives, hence proving the statement in cohomological degree 2. �
Remark 6.14. (1) Since H2

Δ(X/S)⊕S{−1} ∼= H2
Δ(Z/S) we know that H2

Δ(Z/S)[u∞] ∼=
S/((u+ 1)p

n−1 − 1, pn). In particular, its annihilator ideal is ((u+ 1)p
n−1 − 1, pn) ∈ S,

congruent to (up
n−1

) modulo (p). The ramification index is pn−1(p− 1), hence these examples
demonstrate that the bound in Corollary 3.4 is sharp.

(2) Now assume p ≥ 3; then p− 2 + 1 ≥ 2. Our previous result [LL20, Theorem 7.22] together
with the fact that H2

Δ(Z/S) contains u-torsion implies that Breuil’s first crystalline cohomology
of Z, with mod pm coefficient for any m, together with Frobenius action and filtration is not a
Breuil module. When n = 1, we have e = p− 1, which shows that our result [LL20, Corollary 7.25]
is sharp. Below we shall see that the first crystalline cohomology cannot even support a strongly
divisible lattice structure because it is torsion-free but not free.

(3) The same reasoning as in Remark 6.11 shows that the map f : Alb(Z0)→ Alb(Z)0 is
given by the quotient map E0 → E0/μpn .

(4) The special fiber Z0 = E0 × (Y0/(Z/pn)) has abelian π1, with its torsion part being
Z/pn. Here we used the fact that complete intersections of dimension ≥ 3 are simply con-
nected (see [Sta21, Tag 0ELE]). On the other hand, the same argument as in [BMS18, proof of
Proposition 2.2(i)] shows that π1(ZC) ∼= Ẑ

⊕2. Hence, we see again the specialization map
H2

ét(Z0)→ H2
ét(ZC) has kernel given by Z/pn (cf. [BMS18, Remarks 2.3–2.4]).

In fact it was the desire to find examples with non-trivial kernel under specialization, together
with inspiring discussions with Bhatt and Petrov separately, that lead us to analyze and gener-
alize the example in [BMS18, § 2.1]. The Enriques surface used there turns out to be something
of a red herring; the actual purpose it serves is just as an approximation of the classifying stack
of Z/2, like our (Y/(Z/pn)) here.

Finally, let us explain why our example negates a prediction of Breuil [Bre02, Question 4.1].
Let S denote the p-adic PD envelope of S � OK .

Proposition 6.15. There is an exact sequence

0→ H1
crys(Z/S) ↪→ S · {e1, e2} d2−→ S/pn,

where d2(e1) = 0 and d2(e2) = (u+ 1)p
n − 1. In particular, H1

crys(Z/S) is torsion-free of rank 2
but not free unless (n, p) = (1, 2).

Proof. In Proposition 6.13 we see that the map Z → X induces isomorphism in the degree 1 pris-
matic cohomology and u∞-torsion in the degree 2 prismatic cohomology. The comparison between
prismatic and crystalline cohomology [LL20, Theorem 1.5] (see also [BS22, Theorem 5.2]) tells
us that H1

crys(X/S)
∼=−→ H1

crys(Z/S). The same comparison result implies that after applying
−⊗S ϕ∗S to the spectral sequence ( ), one calculates the crystalline cohomology of Z/S.
Therefore, the first statement follows from Lemmas 6.7 and 6.8. Note that ϕ

(
(u+ 1)p

n−1 − 1
) ≡

(u+ 1)p
n − 1 modulo pn.

To see the second assertion, note that H1
crys(Z/S) ∼= S · e1 ⊕ J · e2 where J is the ideal

{x ∈ S | pn divides x · ((u+ 1)p
n − 1)}.

If J were free, then it would be generated by a particular such element, denoted below
by g. Let g =

∑∞
i=0 ai(u

i/e(i)!) with ai ∈W (k) approaching 0 and e(i) = �i/e� where
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e = pn−1 · (p− 1); note that every element in S can be uniquely expressed in this form. Since
pn trivially lies in J , it must also be divisible by this g. Therefore, there exists h1 ∈ S such that
gh1 = pn. Write qn = (u+ 1)p

n − 1.

Claim 6.16. a0 is non-zero and divisible by p.

Proof. The fact that a0 is non-zero follows from gh1 = pn. If a0 is a unit in W (k) then g ∈ S×

is a unit, which implies qn ∈ pnS. But this is equivalent to n = 1 and p = 2. �
So now we can assume that a0 = pa′0 with a′0 �= 0. Pick um/e(m)! such that um/e(m)!qn ∈ pnS

(select m = pne− 1, for example). Then we have gh2 = um/e(m)! for some h2 ∈ S. The above
equation implies that h2 =

∑∞
i=m bi(u

i/e(i)!). But comparing um terms on both sides, we have
a0bm = 1 which contradicts a0 = pa′0. This finishes the proof. �
Remark 6.17. In Breuil’s terminology, this shows that the first crystalline cohomologies of our
examples are not strongly divisible lattices [Bre02, Definition 2.2.1]. This contradicts the claimed
[Bre02, Theorem 4.2(2)], in the proof of which one is led to Faltings’s paper [Fal99]. However,
Faltings was treating the case of p-divisible groups, hence Breuil’s theorem/proof should only be
applied to abelian schemes. Now it is tempting to say that smooth proper schemes over OK and
their Albanese should share the same H1 for whatever cohomology theory.12 But our example
clearly negates this philosophy: the stacky example is squeezed between two abelian schemes and
neither should really be the ‘mixed characteristic 1-motive’ of our stack (even though sometimes
these two abelian schemes are abstractly isomorphic). Indeed, the sequence EOK

→ X → E ′OK
has

the property that the first map only induces an isomorphism of the first crystalline cohomology
of the special fiber (relative to W ) and the second map only induces an isomorphism of the first
étale cohomology of the (geometric) generic fiber.

6.1 Raynaud’s theorem on prolongations
Finally, we give a geometric proof of Raynaud’s theorem [Ray74, Théorème 3.3.3] on
the uniqueness of prolongations of finite flat commutative group schemes over a mildly
ramified OK .

LetGK be a finite flat commutative group scheme overK. A prolongation ofGK is a finite flat
commutative group scheme G over OK together with an isomorphism of its generic fiber with GK
(as finite flat commutative group schemes). Once GK is fixed, its prolongations form a category
with homomorphisms given by maps of group schemes compatible with the isomorphisms of their
generic fiber.

Recall [Ray74, Corollaire 2.2.3] that the (possibly empty) category of prolongations of a finite
flat group scheme G over K has an initial Gmin and a terminal object Gmax. Moreover, these
two are interchanged under Cartier duality.

Theorem 6.18 (cf. [Ray74, Théorème 3.3.3]). Assume GK is a finite flat commutative group
scheme which has a prolongation over OK .

(1) If e < p− 1, then the prolongation is unique.
(2) If e < 2(p− 1), then the reduction of the canonical map Gmin → Gmax has kernel and

cokernel annihilated by p.
(3) If e = p− 1, then the reduction of the above map has étale kernel and multiplicative type

cokernel.

12 To quote Sir Humphrey Appleby: ‘It is not for a humble mortal such as I to speculate on the complex and
elevated deliberations of the mighty.’ But we suspect this is what Breuil had in mind when he claimed that his
conjecture holds for H1.
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Proof. To ease the notation, let us denote G1 := Gmin and G2 := Gmax. Denote the canoni-
cal map by ρ : G1 → G2. Choose a group scheme embedding G2 → A of G2 into an abelian
scheme A over OK , which is guaranteed by yet another theorem of Raynaud (see [BBM82,
Théorème 3.1.1]).

We shall consider the quotient stack [A/G1], which is a smooth proper Artin stack. Similar
to Construction 6.12, let us pick a smooth complete intersection Y with a fixed-point-free action
by G1, let Z := (A×OK

Y)/G1, which is a smooth projective scheme over OK , thanks to the
second factor. Moreover, Z is pointed because it admits a map from A, which has a canonical
point given by the identity section.

Let H be the image group scheme of the map ρk : G1,k → G2,k. Applying the same reasoning
as in Remark 6.11 shows us that the canonical map f : Alb(Z0)→ Alb(Z)0 is identified with
A0/H → A0/G2,k, whose kernel group scheme is given by G2,k/H, which is none other than the
cokernel of ρ0. Now our statements on coker(ρ0) follow directly from applying Corollary 4.6 to
our Z. The statements on ker(ρ0) follows from Cartier duality. �

Remark 6.19. Note that Raynaud first proved his theorem on prolongations, then used it to
prove statements concerning Thu Picard scheme of a p-adic integral scheme, which is directly
related to statements concerning natural map between Albanese of reduction and reduction of
Albanese (see Remark 4.8). Our roadmap is the exact opposite.

One can reduce Raynaud’s theorem to a question about Breuil–Kisin modules more directly,
for instance by using Kisin’s result [Kis06, Theorem 0.5]. Our proof is rather a geometrization
of the same approach.

Finally, we remark that the estimate of s such that ps kills the corkernel of Gmin → Gmax

has been studied before (see, for example, [VZ12] and [Bon06] and the references therein). Note
that an affirmative answer to our Question 3.10 for i = 2, when specialized to the construction
made in the above proof, agrees with Bondako’s sharp estimate.
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