Most integers are not a sum of two palindromes†

BY DMITRII ZAKHAROV

Department of Mathematics, Massachusetts Institute of Technology, 77 *Massachsetts Ave, Cambridge, MA* 02139*, U.S.A. e-mail*: zakhdm@mit.edu

(*Received* 20 *May* 2024*; accepted* 15 *July* 2024)

Abstract

For $g \ge 2$, we show that the number of positive integers at most *X* which can be written as sum of two base g palindromes is at most $X/\log^{c} X$. This answers a question of Baxter, Cilleruelo and Luca.

2020 Mathematics Subject Classification: 11B13, 11A63 (Primary)

Fix an integer $g \ge 2$. Every positive integer $a \in \mathbb{N}$ has a base g representation, i.e. it can be uniquely written as

$$
a = \overline{a_n a_{n-1} \dots a_0} = \sum_{i=0}^{n} g^i a_i, \text{ where } a_i \in \{0, 1, \dots, g-1\} \text{ and } a_n \neq 0.
$$
 (1)

A number *a* ∈ N with representation [\(1\)](#page-0-1) is called *a base g palindrome* if $a_i = a_{n-i}$ holds for all $i = 0, \ldots, n$. Baxter, Cilleruelo and Luca [[3](#page-3-0)] studied additive properties of the set of base *g* palindromes. Improving on a result of Banks [**[2](#page-3-1)**], they showed that every positive integer can be written as a sum of three palindromes, provided that $g \ge 5$. The cases $g = 2, 3, 4$ were later covered by Rajasekaran, Shallit and Smith [**[4](#page-3-2)**, **[5](#page-3-3)**]. Baxter, Cilleruelo and Luca also showed that the number of integers at most *X* which are sums of two palindromes is at least $Xe^{-c_1\sqrt{\log X}}$ and at most c_2X , for some constants $c_1 > 0$ and $c_2 < 1$ depending on at least $Xe^{-c_1\sqrt{\log X}}$ and at most c_2X , for some constants $c_1 > 0$ and $c_2 < 1$ depending on *g*, and asked whether a positive fraction of integers can be written as a sum of two base *g* palindromes. This was later reiterated by Green in his list of open problems as Problem 95. We answer this question negatively:

THEOREM 1. *For any integer g* \geqslant 2 *there exists a constant c* $>$ 0 *such that*

$$
\# \{ n < X : n \text{ is a sum of two base } g \text{ palindromes} \} \leqslant \frac{X}{\log^c X},
$$

for all large enough X.

It is an interesting open problem to close the gap between this result and the lower bound of Baxter, Cilleruelo and Luca [**[3](#page-3-0)**]. We now proceed to the proof.

† This research was supported by the Jane Street Graduate Fellowship.

^C The Author(s), 2024. Published by Cambridge University Press on behalf of Cambridge Philosophical Society.

364 D. ZAKHAROV

For $n \ge 1$, let P_n be the set of base *g* palindromes with exactly *n* digits and $P = \bigcup_{n \ge 1} P_n$ be the set of all base *g* palindromes. Note that

$$
|P_n| = \begin{cases} g^{n/2} - g^{n/2 - 1}, & n \text{ is even,} \\ g^{(n+1)/2} - g^{(n-1)/2}, & n \text{ is odd.} \end{cases}
$$

For an integer $N \ge 1$, we write $[N] = \{0, 1, \ldots, N-1\}$. For $A, B \subset \mathbb{Z}$ we let $A + B = \{a +$ *b*, *a* ∈ *A*, *b* ∈ *B*} denote the sumset of *A* and *B*. Let *k* ≥ 1 be sufficiently large and let *X* = *g^k*, it is enough to consider numbers *X* of this form only. With this notation, our goal is to upper bound the size of the intersection $(P + P) \cap [X]$. We have

$$
(P+P)\cap [X] = \bigcup_{k\geq n\geq m\geq 1} (P_n + P_m) \cap [X]
$$

and so we can estimate

$$
|(P+P) \cap [X]| \leqslant \sum_{k \geqslant n \geqslant m \geqslant 1} |P_n + P_m|.
$$
 (2)

We have $|P_n| \leq g^{(n+1)/2}$, $|P_m| \leq g^{(m+1)/2}$ so using the trivial bound $|P_n + P_m| \leq |P_n||P_m|$ we can immediately get rid of the terms where *m* is small:

$$
\sum_{\substack{k \ge n \ge m \ge 1\\ m \le k-\gamma \log k}} |P_n + P_m| \le \sum_{k \ge n \ge 1} |P_n| \cdot \sum_{m \le k-\gamma \log k} |P_m|
$$
\n
$$
\le \sum_{k \ge n \ge 1} |P_n| \cdot 4g^{(k+1)/2 - \gamma \log k/2}
$$
\n
$$
\le 16g^{k+1-\gamma \log k/2} \le \frac{X}{k^{\gamma \log g/2}} \sim \frac{X}{(\log X)^{\gamma \log g/2}},
$$
\n(3)

where $\gamma > 0$ is a small constant which we will choose. Now we focus on a particular sumset $P_n + P_m$ from the remaining range. Write $m = n - d$ for some $d \ge 0$.

For an integer $a = \overline{a_n \dots a_0}$ let $r(a) = \overline{a_0 \dots a_n}$ be the integer with the reversed digit order in base *g* (we allow some leading zeros here). For $d \ge 0$ define

$$
a = \overline{1\underbrace{0\ldots 0}_{d} 1}, \ b = \overline{0\underbrace{0\ldots 0}_{d} 0}, \ a' = \overline{0\underbrace{\ell\ldots \ell}_{d} 0}, \ b' = \overline{0\ldots 0\ 11},
$$

where we denoted $\ell = g - 1$. These strings are designed to satisfy the following:

$$
a + b = a' + b' \text{ and } g^d r(a) + r(b) = g^d r(a') + r(b').
$$
 (4)

Indeed, note that

$$
a' = \sum_{i=1}^{d} g^{i} \ell = g^{d+1} - g = (g^{d+1} + 1) + 0 - (g+1) = a + b - b'
$$

and

$$
g^d r(a') = g^d a' = g^{2d+1} - g^{d+1} = g^d (g^{d+1} + 1) + 0 - (g^{d+1} + g^d) = g^d r(a) + r(b) - r(b').
$$

We claim that the fact that [\(4\)](#page-1-0) holds for some *a*, *b*, *a*['], *b*['] forces the sumset $P_n + P_{n-d}$ to be small. Roughly speaking, whenever palindromes $p \in P_n$ and $q \in P_{n-d}$ contain strings *a*

and *b* on the corresponding positions, we can swap *a* with a' and *b* with b' to obtain a new pair of palindromes $p' \in P_n$ and $q' \in P_{n-d}$ with the same sum $p' + q' = p + q$. A typical pair (p, q) will have $\geq C^{-d}n$ disjoint substrings (a, b) and so we can do the swapping in exp (*C*[−]*dn*) different ways. So a typical sum *p* + *q* ∈ *Pn* + *Pn*[−]*^d* has lots of representations and this means that the sumset has to be small.

Denote *t* = $[n/3(d+2)]$. For $p = \overline{p_0 p_1 \dots p_1 p_0}$ ∈ P_n and $q = \overline{q_0 q_1 \dots q_1 q_0}$ ∈ P_{n-d} let *S*(*p*, *q*) denote the number of indices $1 \leq j \leq t$ such that

$$
\overline{p_{(d+2)j+d+1}p_{(d+2)j+d} \cdots p_{(d+2)j+1}p_{(d+2)j}} = a,
$$
\n(5)

$$
\overline{q_{(d+2)j+d+1}q_{(d+2)j+d} \dots q_{(d+2)j+1}q_{(d+2)j}} = b,
$$
\n(6)

i.e. the segments of digits of *p* and *q* in the interval $[(d+2)j, (d+2)j + d + 1]$ are precisely *a* and *b*.

PROPOSITION 1. *The number of pairs* $(p, q) \in P_n \times P_{n-d}$ *such that* $S(p, q) \leq t/2g^{2d+4}$ *is at* $most \exp(-t/8g^{2d+4}) |P_n||P_{n-d}|.$

Proof. Draw (*p*, *q*) uniformly at random from $P_n \times P_{n-d}$. Then $S(p, q)$ is a sum of *t* i.i.d Bernoulli random variables with mean $g^{-2(d+2)}$. So the expectation $\mathbb{E}_{p,q}S(p,q)$ is given by $\mu = t g^{-2(d+2)}$ and by Chernoff bound (see e.g. [[1](#page-3-4), appendix A]),

$$
Pr[S(p, q) \leq \mu/2] \leq exp(-\mu/8) = exp\left(-\frac{t}{8g^{2d+4}}\right).
$$

Now we observe that for any $p = \overline{p_0 p_1 \dots p_1 p_0} \in P_n$, $q = \overline{q_0 q_1 \dots q_1 q_0} \in P_{n-d}$, the sum $s = p + q$ has at least $2^{S(p,q)}$ distinct representations $s = p' + q'$ for $(p', q') \in P_n \times P_{n-d}$. Indeed, let $j_1 < \ldots < j_u$ be an arbitrary collection of indices such that [\(5\)](#page-2-0) and [\(6\)](#page-2-1) hold for $j = j_1, \ldots, j_u$. Let p' and q' be obtained from p and q by replacing the a and b -segments on positions j_1, \ldots, j_u by *a*^{\prime} and *b*^{\prime} and replacing *r*(*a*) and *r*(*b*)-segments on the symmetric positions by $r(a')$ and $r(b')$, respectively. Then we claim that $p' \in P_n$, $q' \in P_{n-d}$ and $p' + q' = p + q$. Indeed, more formally, we can write

$$
p' = p + \sum_{i=1}^{u} g^{(d+2)j_i}(a'-a) + g^{n-(d+2)j_i-d-1}(r(a') - r(a)),
$$

$$
q' = q + \sum_{i=1}^{u} g^{(d+2)j_i}(b'-b) + g^{(n-d)-(d+2)j_i-d-1}(r(b') - r(b)),
$$

and so [\(4\)](#page-1-0) implies that $p + q = p' + q'$. Since we can choose $j_1 < \cdots < j_u$ to be an arbitrary subset of *S*(*p*,*q*) indices, we get $2^{S(p,q)}$ different representations $p + q = p' + q'$.

Using this and Proposition [1](#page-2-2) we get

$$
|P_n + P_{n-d}| \leq \#\left\{p+q \mid S(p,q) \geq \frac{t}{2g^{2d+4}}\right\} + \#\left\{p+q \mid S(p,q) \leq \frac{t}{2g^{2d+4}}\right\}
$$

$$
\leq 2^{-\frac{t}{2g^{2d+4}}} |P_n||P_{n-d}| + \exp\left(-\frac{t}{8g^{2d+4}}\right) |P_n||P_{n-d}|
$$

$$
\leq 2 \exp\left(-\frac{n}{30(d+2)g^{2d+4}}\right) |P_n||P_{n-d}|.
$$

366 D. ZAKHAROV

Using this bound we can estimate the part of (2) which was not covered by (3) :

$$
\sum_{k \ge n \ge m \ge k-\gamma} |P_n + P_m| \le \sum_{k \ge n \ge k-\gamma} \sum_{\log k}^{\gamma \log k} \frac{|P_n + P_{n-d}|}{d=0}
$$
\n
$$
\le \sum_{k \ge n \ge k-\gamma} \sum_{\log k}^{\gamma \log k} \frac{2 \exp\left(-\frac{n}{30(d+2)g^{2d+4}}\right) |P_n||P_{n-d}|}{\sum_{k \ge n \ge k-\gamma}^{\gamma \log k} \frac{2 \exp\left(-\frac{n}{k^{3\gamma \log g}}\right) g^{k+1}}
$$

so if we take, say, $\gamma = 1/4 \log g$ then this expression is less than, say, $k^{-1}g^k \le X/\log X$ provided that *k* is large enough. Combining this with [\(3\)](#page-1-2) gives $|(P+P) \cap [X]| \leq X/(\log X)^{0.1}$ for large enough *X* (the proof actually gives $1/4 - \varepsilon$ instead of 0.1 here).

REFERENCES

- [1] N. ALON and J.H. SPENCER. *The Probabilistic Method* (John Wiley & Sons, 2016).
- [2] W. D. BANKS. Every natural number is the sum of forty-nine palindromes. *Integers*. **16**(A3, 9) (2016) i.e (2016).
- [3] J. CILLERUELO, F. LUCA and L. BAXTER. Every positive integer is a sum of three palindromes. *Math. Comp.* **87** (2018), 3023–3055.
- [4] A. RAJASEKARAN, J. SHALLIT and T. SMITH. *Sums of palindromes: an approach via automata*, (35th Symposium on Theoretical Aspects of Computer Science, 2018).
- [5] A. RAJASEKARAN, J. SHALLIT and T. SMITH. Additive number theory via automata theory. *Theory Comput. Syst.* **64** (2020), 542–567.