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A solid body in a viscous fluid undergoing oscillatory motion naturally produces a steady
secondary flow due to convective inertia. This phenomenon is embodied in the streaming
flow generated by a sphere in an unbounded fluid executing rectilinear oscillations. We
review the considerable literature on this canonical problem and summarise exact and
asymptotic formulas in the small-amplitude limit. These analytical formulas are used to
explore the characteristic flow structure of this problem and clarify previously unreported
features. A single, toroidal-shaped vortex exists in each hemisphere regardless of the
oscillation frequency, which can drive a counter-flow away from the sphere. The vortex
centre moves monotonically away from the sphere with decreasing oscillation frequency,
and engulfs the entire flow domain for β ≡ ωR2/ν < 16.317, where ω is the angular
oscillation frequency, R the sphere radius, and ν the fluid kinematic viscosity. This
seemingly abrupt change in flow structure at the critical frequency βcritical = 16.317,
and its quantification, appear to have not been reported previously. We perform a direct
numerical simulation of the Navier–Stokes equations, to (1) confirm existence of this
critical frequency at finite amplitude, and (2) examine its variation with amplitude. This
reveals a universal relationship between the critical frequency and oscillation amplitude,
clarifying previous reports on the structure of this streaming flow. The critical frequency
is shown to be identical for the streaming flow and the cycle-averaged particle paths,
establishing that the critical frequency is accessible directly using standard measurements.
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1. Introduction

The oscillatory motion of solid bodies in viscous fluids has been studied widely since the
time of Stokes, who explored how such fluids affect the motion of pendulums (Stokes
1851). By assuming a small oscillation amplitude, Stokes ignored the effects of convective
inertia and linearised the equations of motion. This greatly simplified the analysis, which
enabled analytical solutions to be developed. Stokes (1851) reported formulas for several
canonical flow problems, including the inertialess drag on a sphere and the unsteady
force experienced by a sphere executing small rectilinear oscillations, that now form the
foundations for a multitude of applications.

It is recognised widely that oscillatory motion of a solid body can generate a steady
flow due to nonlinear effects. This ‘acoustic streaming’ phenomenon was first explained
theoretically by Rayleigh (1884). In his analysis of the circulation of air in Kundt’s tubes,
Lord Rayleigh showed that a confluence of (nonlinear) convective inertia and viscosity
near a solid boundary is required to drive the steady circulatory flow. By continuity,
this near surface flow generates a counter-flow away from the surface. This double flow
structure has since been examined under different flow conditions and geometries, and is
a characteristic feature of streaming flows (Riley 2001).

The oscillatory motion of a sphere in a viscous fluid is a canonical problem that has
received considerable attention. Its steady streaming flow was first studied theoretically
by Lane (1955), who analysed small-amplitude oscillations at small Reynolds number
and derived an analytical solution for arbitrary oscillation frequency. This theory was
compared to measurements on spheres, where significant differences were noted, in
contrast to the good agreement found previously for cylinders (Raney, Corelli & Westervelt
1954). A decade later, Riley (1966) reported a landmark study on the small-amplitude
oscillatory flow about a sphere, where an asymptotic analysis of its streaming flow
was provided in the small- and large-frequency limits. Riley (1966) showed that the
above-mentioned counter-flow structure is present around a sphere at large frequency, but
vanishes in the small-frequency limit where the near-surface circulatory cell occupies
the entire flow domain; intermediate finite frequencies were not studied. Increasing
the oscillation frequency in the large-frequency limit decreases the thickness of the
near-surface circulatory cell – consistent with a decrease in the viscous penetration depth
of the linear oscillatory flow driving the streaming flow. However, these circulatory cells
near the surface do not appear around soft bubbles. Later works, for example by Davidson
& Riley (1971), Wu & Du (1997) and Longuet-Higgins (1998), study the flow around
a bubble performing small-amplitude oscillations. The streaming flow at large frequency
was observed to consist of only one region with velocity vectors in the opposite direction to
the outer flow of a solid sphere. There is no (inner) circulation cell near the bubble surface
at large frequency (Davidson & Riley 1971). More recently, Dōhara (1982) reported an
alternative analytical solution for the small-amplitude streaming flow generated by a
sphere at arbitrary frequency, with the aim of obtaining ‘more exact results for the steady
streaming than Lane and Riley’s’. The relative merits of the complementary analytical
solutions of Lane (1955) and Dōhara (1982) were not reported at the time, which we now
clarify.

The theory of Lane (1955) for a sphere is based on an extension of that author’s
analytical solution for a cylinder (Raney et al. 1954). However, Lane (1955) makes an
error that invalidates the analysis, by choosing

[(∇ × u) · ∇] u = 0, (1.1)
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Streaming flow generated by an oscillating sphere

where u is the velocity field. While (1.1) holds for the two-dimensional flow generated by
a cylinder (the origin of this identity), the same is not true for the axisymmetric flow about
a sphere, i.e. [(∇ × u) · ∇]u /= 0. Specifically, while the vorticity lies in the azimuthal
direction, the directional derivative of the velocity in this direction is not zero because
the basis vectors in the radial and polar directions depend on the azimuthal coordinate.
It appears this error is responsible for the disagreement observed between theory and
measurements (Lane 1955), mentioned above. The theory of Dōhara (1982) does not
employ the erroneous vector identity in (1.1). However, the analytical solution of Dōhara
(1982) is yet to be validated against asymptotic solutions (e.g. Wang 1965; Riley 1966) or
independent numerical results, and its validity remains unconfirmed.

Asymptotic analysis has been reported on the streaming flow in the large (convective)
Reynolds number limit, at small oscillation amplitude. Wang (1965) performed an
asymptotic analysis on the boundary layer equations for such an oscillatory flow past
a sphere. The resulting streaming flow exhibits a qualitatively similar structure to the
large-frequency limit at small convective Reynolds number. Stuart (1966) studied the
small-amplitude oscillatory flow past a two-dimensional cylinder, and identified the
following condition for existence of a ‘double boundary layer’ in the streaming flow:

Res ≡ U2

ων
� 1, (1.2)

where U is a characteristic flow speed of the oscillatory flow, ω is the angular oscillation
frequency, and ν is the fluid kinematic viscosity. More specifically, the thicknesses of both
inner and outer boundary layers are small compared to the cylinder radius.

Considerable effort has also focused on computing numerically the streaming flows
generated by oscillating spheres. Chang & Maxey (1994) performed direct numerical
simulations (DNS) of the Navier–Stokes equations and determined the streaming flow
generated by an oscillating sphere in quiescent fluid under a wide range of conditions.
This was not restricted to the small-amplitude limit discussed above. By the nature of their
numerical approach, Chang & Maxey (1994) were able to study amplitudes that greatly
exceed the sphere radius. The above-mentioned counter-flow structure of the streaming
flow was not always observed. This was compared to the condition of Stuart (1966) in
(1.2), which was observed not to apply to larger amplitude oscillations. Chang & Maxey
(1994) comment: ‘There do not appear to be any generalisations that can be made for
the existence of inner and outer streaming regions for flows of all amplitudes.’ Here, we
explore the structure of the streaming flow and provide the generalisation sought by Chang
& Maxey (1994).

Mei (1994) also analysed both the steady and unsteady flow around a sphere using
DNS. In the large-frequency and small-amplitude limit, their simulations showed good
agreement with the asymptotic solution of Riley (1966), while discrepancy grew with
increasing amplitude. Flows at large frequency contained two cells; see figure 6 of Mei
(1994). In the small-frequency and large-amplitude limit, ε−1 � Re � 1, where ε is the
dimensionless Lagrangian amplitude defined by

ε ≡ U
ωR
, (1.3)

and the (convective) Reynolds number is Re ≡ εβ, where

β ≡ ωR2

ν
, (1.4)
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and R is the sphere radius. Mei (1994) identified several length scales (non-dimensionalised
by the sphere radius) for the unsteady flow field: (1) r = O(1) for the inner region near the
sphere; (2) r = O(Re−1) and r = O(β−1/2) for the intermediate region away from the
sphere; and (3) r = O(ε) for the transverse and streamwise flow direction far from the
sphere. However, there was no discussion pertaining to how the flow structure relates to
these length scales.

The (incompressible) streaming flow is fully characterised by two independent
dimensionless groups (Blackburn 2002), which we choose here to be the dimensionless
frequency β and the Lagrangian oscillation amplitude ε. All other dimensionless
parameters reported in the literature are derivatives of these two groups, including (1.2).
This relationship between the dimensionless groups, together with the observation in (1.4),
suggests a universality in the counter-flow structure – contrary to the assertion of Chang
& Maxey (1994) mentioned above – which we explore in this study.

Blackburn (2002) also conducted a DNS study and reported that in the Stokes limit, i.e.
at zero frequency, only the inner circulation cell remains – consistent with the asymptotic
analysis of Riley (1966). Alassar (2008) studied the streaming flow for moderate to large
dimensionless frequency, at finite oscillation amplitude, finding that the inner circulatory
cell thickness grows with decreasing oscillatory frequency. An empirical fit formula based
on their DNS numerical data indicates that this thickness varies as a fractional power of
the reciprocal frequency. While this suggests that the inner circulatory flow engulfs the
flow domain in the zero frequency limit only, this conclusion is based on simulations
away from the small-frequency limit. Chan et al. (2022) have also performed numerical
simulations at small amplitude, and find that the counter-flow structure is present only at
larger frequencies, with smaller frequencies exhibiting a single circulation cell. Indeed,
a recent DNS study by Fabre et al. (2017) found that at a small but finite frequency,
the streaming flow around a pair of spheres does not exhibit a counter-flow structure.
This finding is consistent with theoretical studies of other geometries (Kaneko & Honji
1979; Carlsson, Sen & Löfdahl 2004; Bhosale et al. 2022) that show that the characteristic
counter-flow structure of streaming flows exists only above a distinct non-zero frequency
and is geometry dependent.

Experiments have been conducted to explore the counter-flow structure of streaming
flows. Lutz, Chen & Schwartz (2005) compared their measurements for a cylinder to the
theory of Bertelsen, Svardal & Tjøtta (1973). Figure 5 of Lutz et al. (2005) indicates
that the size of the inner circulation cell diverges at finite frequency. That is, the
above-mentioned transition in flow structure occurs for both cylinders and spheres, and
has been observed experimentally for a cylinder. The relationship predicted theoretically
by Bertelsen et al. (1973), between the thickness of the (steady) inner circulatory cell
and that of the (oscillatory) viscous penetration depth, was validated experimentally
for a range of cylinders; the former thickness always exceeds the latter. In a series of
subsequent studies, Kotas, Yoda & Rogers (2006, 2007, 2008) reported measurements
of the streaming flows generated by spheroids. They found that the thickness of the
inner region varies with the reciprocal of the frequency, for which similar behaviour
was noted in the computational study of Alassar (2008) discussed above. This scaling
law for the inner region thickness was verified experimentally by Otto, Riegler & Voth
(2008). However, these experimental studies again did not systematically investigate the
small-frequency limit, and their resulting empirical relations, based on experimental data,
should be considered large-frequency scaling laws only.

The aim of this study is to address the above-mentioned outstanding issues for
streaming flows around a sphere using a combination of analytical and numerical solutions.
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Streaming flow generated by an oscillating sphere

Reference Summary

Raney et al. (1954), Bertelsen et al. (1973) Analytical solution for the streaming flow around a
cylinder at small amplitude and arbitrary frequency.

Lane (1955) Follow up to Raney et al. (1954) for a sphere;
erroneous vector identity used.

Wang (1965), Riley (1966), Stuart (1966) Asymptotic analyses for small-amplitude flow
around a sphere and cylinder at low and high
frequency.

Dōhara (1982) Analytical formula for the streaming flow around a
sphere at small amplitude and arbitrary frequency.

Chang & Maxey (1994), Mei (1994), Blackburn
(2002), Alassar (2008), Parthasarathy, Chan &
Gazzola (2019)

DNS of streaming flow for arbitrary frequency and
amplitude. No general rule for occurrence of one or
two cells.

Present study Validate Dōhara (1982), calculate cycle-averaged
particle path, and report the critical frequency
delineating one or two cells for arbitrary amplitude.

Table 1. Theoretical studies of the steady streaming flow generated by an oscillating sphere/cylinder.

Specifically, we validate the analytical solution of Dōhara (1982) against independent
analytical solutions in the small-amplitude limit. These include analytical solutions for
small and large frequency, and a new analytical solution for arbitrary frequency. We show
that, in this small-amplitude limit, the streaming flow exhibits the usual characteristics
found around other solid bodies: a counter-flow structure at large frequency, while the
inner vortex cell engulfs the entire flow domain below a distinct non-zero frequency

βcritical = 16.317 . . . , (1.5)

a result that does not appear to have been reported previously. The applicability of this
result to streaming flows at finite amplitude is then explored using new DNS solutions of
the Navier–Stokes equations, from which a universal relationship between βcritical and
the oscillation amplitude ε is revealed. While our primary motivation is to unify the
numerous numerical studies on this problem, the intermediate to large amplitude regime is
relevant to biological/artificial swimmers, and may provide insight into the flow structure
around swimmers whose stroke motion is at moderate Reynolds number (Gemmell, Jiang
& Buskey 2015; Mohaghar, Adhikari & Webster 2019; Dombrowski & Klotsa 2020). It
may also find application to cylindrical and spherical bodies in unsteady flows relevant to
oceanographic research, where the flow remains laminar before the onset of instabilities
(Sarpkaya & Storm 1985; Wybrow, Yan & Riley 1996; Ren et al. 2019).

A comparison is also made between the streaming flow and cycle-averaged particle
paths – termed the ‘particle motion’ – which is relevant to experimental measurements
of the streaming flow. Differences are observed, particularly at small frequency and small
amplitude. Even so, the critical frequency is found to be identical for the streaming
flow and particle motion. This guides potential future efforts to measure this frequency
experimentally. Table 1 places the present work in the context of previous studies of this
streaming flow.
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2. Small-amplitude flows

We first study the limiting case of small oscillation amplitude. Analytical formulas
are presented for the streaming flow and particle motion at small, large and arbitrary
frequency. This complements existing literature formulas (Wang 1965; Riley 1966; Dōhara
1982), as discussed in § 1.

2.1. Analytical solution
Consider a stationary sphere in an incompressible, unbounded fluid that far from the sphere
is executing small-amplitude oscillations with velocity Re[U e−iωtk], where Re denotes
the real part of the expression, U is the maximum speed, k is the Cartesian basis vector in
the z-direction, i is the imaginary unit, and t is time. The streaming flow generated by an
oscillating sphere in a quiescent fluid follows directly, if needed (Westervelt 1953a). The
dimensionless governing equation is

β

(
∂

∂t
+ εL2

Ψ

)
D2Ψ = D4Ψ, (2.1)

with Ψ being the Stokes stream function,

D2 ≡ ∂2

∂r2 + sin θ
r2

∂

∂θ

(
1

sin θ
∂

∂θ

)
, (2.2a)

L2
Ψ ≡ 1

r2 sin θ

(
∂Ψ

∂θ

∂

∂r
− ∂Ψ

∂r
∂

∂θ
+ 2 cot θ

∂Ψ

∂r
− 2

r
∂Ψ

∂θ

)
, (2.2b)

where D4 = D2D2, and r and θ are the radial and polar angle spherical coordinates,
respectively, whose origin is at the sphere centre. The radial coordinate is scaled by
the sphere radius R, the stream function by UR2, and time by 1/ω. The dimensionless
oscillation amplitude ε, and dimensionless frequency β, are respectively defined in (1.3)
and (1.4). The corresponding boundary conditions of no-slip at the particle surface and
uniform oscillation of the far field lead to

∂Ψ

∂θ

∣∣∣∣
r=1

= ∂Ψ

∂r

∣∣∣∣
r=1

= 0, Ψ |r→∞ ∼ Re
[

r2

2
sin2 θ e−it

]
, (2.3)

and we choose Ψ = 0 at r = 1 in line with previous literature.
Equations (2.1) and (2.3) are to be solved in the small-amplitude asymptotic limit, ε →

0, for which we accordingly expand the stream function as

Ψ = Ψ (0) + εΨ (1) + o(ε). (2.4)

Substituting (2.4) into (2.1) and (2.3) gives the respective governing equations and
boundary conditions for Ψ (0) and Ψ (1). In Fourier space, the leading-order governing
equation becomes

D2(D2 + iβ)ψ(0) = 0, (2.5)

where Ψ (0)(r, θ, t) = Re[ψ(0)(r, θ) e−it]. The governing equation at O(ε) produces a flow
Ψ (1) with (i) a periodic component at twice the frequency of the boundary condition
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Streaming flow generated by an oscillating sphere

in (2.3), and (ii) a steady component ψ(1), which is the required streaming flow. The
governing equation for the latter is

D4ψ(1) = β

4
(L2
ψ(0)

D2ψ(0)∗ + L2
ψ(0)∗D2ψ(0)), (2.6)

with the starred quantities referring to their complex conjugates.
Because the asymptotic expansion in (2.4) is with respect to ε only, β is implicitly finite.

Consequently, (2.4) gives the solution in the small Reynolds number limit,

Re ≡ εβ → 0, (2.7)

establishing that
Res ≡ ε Re → 0. (2.8)

That is, the steady streaming Reynolds number in (1.2) vanishes, and a double boundary
layer in the streaming flow does not exist. The solution for ψ(0) is well known (Stokes
1851),

ψ(0) =
(

r2

2
− 3

2r

[
1
3

+ 3i
β

+ 1 + i√
2β

]
+ 3

2
e−√

β/2 (1−i)(r−1)
[

1 + i√
2β

+ i
βr

])
sin2 θ,

(2.9)

while we calculate the solution for ψ(1) to be

ψ(1) =
{

f1 + f2
r2 + f3(r)E1(

√
2β r)+ f4(r)E1

(
(1 + i)

√
β

2
r

)

+ f ∗
4 (r)E1

(
(1 − i)

√
β

2
r

)
+ f5(r) e−√

2β (r−1)

+ f6(r) e−(1+i)
√
β/2 (r−1) + f ∗

6 (r) e−(1−i)
√
β/2 (r−1)

}
cos θ sin2 θ, (2.10)

where the constants f1, f2, together with radial functions f3(r), f4(r), f5(r), f6(r), are
defined explicitly in Appendix A, and E1(z) ≡ ∫∞

1 τ−1 e−zτ dτ is the exponential integral
function. Due to the lengthy nature of the fi terms, supplementary material is provided
(available at https://doi.org/10.1017/jfm.2023.758) that implements (2.10).

Figure 1 shows the true flow structure of the steady-streaming flow, illustrated by the
level sets of (2.10), i.e. the streamtubes. Figure 1(a) shows the streaming flow at low
β, where a single toroidal vortex encompasses the entire domain in each hemisphere,
henceforth referred to as the ‘one-cell’ structure. Figure 1(b) shows the streaming flow
at high β, where an inner toroidal vortex occurs in each hemisphere. The outer region
contains open sheets that extend to infinity and do not close. This inner/outer structure is
termed the ‘two-cell’ structure.

2.1.1. Relationship to analytical formula of Dōhara (1982)
Comparison of (2.10) to equation (17) of Dōhara (1982) shows that while they differ
superficially – being expressed in terms of complex and real functions, respectively –
these complementary formulas for the streaming flow are mathematically equivalent; see
the Mathematica notebook in the supplementary material.
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(a) (b) Direction of

imposed flow

Figure 1. Three-dimensional level sets of the stream function for the streaming flow: (a) β = 0.1, (b) β = 20.
The asymptotic formulas in (2.14) and (2.19) for small and large frequency are used. Blue and red surfaces
are used to guide the eye, and the sphere is shaded in grey. The black double arrow gives the direction of the
oscillating far-field velocity.

The primary difference in their application is that equation (17) of Dōhara (1982)
requires evaluation of an indefinite integral of non-standard form, while (2.10) is expressed
in terms of standard mathematical functions. This comparison provides independent
validation of the theory of Dōhara (1982), which is yet to be reported.

2.2. Cycle-averaged particle paths
Because the streaming flow is the steady component of a more general oscillatory flow,
it is often measured experimentally by tracking the long-time motion of small particles
placed in the flow, i.e. the cycle-averaged particle paths. This particle motion naturally
includes the effect of Stokes drift (Longuet-Higgins 1953), which is absent from (2.10).
The required stream function defining the overall particle velocity averaged over one
oscillation cycle is (Longuet-Higgins 1953)

ψ
(1)
particle = ψ(1) + ψD. (2.11)

Following Westervelt (1953b), the Stokes drift contribution is

ψD = −i
4r2 sin θ

(
∂ψ(0)∗

∂θ

∂ψ(0)

∂r
− ∂ψ(0)∗

∂r
∂ψ(0)

∂θ

)
, (2.12)

whose explicit formula is given in Appendix A. Westervelt (1953a) showed that the
cycle-averaged particle motion generated by a stationary sphere in an oscillating fluid (the
present case) is identical to that generated by a sphere oscillating in an otherwise quiescent
fluid. Consequently, (2.11) and (2.12) apply to both situations.

2.3. Asymptotic solutions for small and large frequency β
To validate the analytical solution in (2.10), and (2.11) for the cycle-averaged particle
motion, we derive independently asymptotic solutions in the limits of small and
large β. This is achieved by performing a matched asymptotic expansion of (2.5) and
(2.6), the details of which are given in Appendix B for completeness. These formulas
complement previous asymptotic analyses by Wang (1965) and Riley (1966), who provided
alternative analyses for large frequency and did not report the cycle-averaged particle
paths.
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Streaming flow generated by an oscillating sphere

Importantly, Taylor expansions of (2.10) and (2.11) for small and large β are found to
give formulas identical to the asymptotic results in Appendix B; see the Mathematica
notebook in the supplementary material. This provides independent validation of (2.10)
and (2.11). The resulting asymptotic formulas are summarised below for convenience.

2.3.1. Small oscillation frequency, β � 1
The inner region for the matched asymptotic expansion in small β is r � β−1/2, with
r � β−1/2 being the outer region.

The asymptotic solution for the steady streaming flow in the inner region is (Riley 1966)

ψ(1) = β

(
−3r2

32
− 3

64r2 + 9r
64

+ 3
64r

− 3
64

)
cos θ sin2 θ + o(β), (2.13)

while for the outer region,

ψ̄(1) = 9β
16

(
e−ρ

[(
2
3

+ 1
ρ

)
sin ρ +

(
1
ρ

+ 1
ρ2

)
cos ρ

]
− 1
ρ2

)
cos θ sin2 θ + o(β),

(2.14)

where ρ = √
β/2 r and ψ̄(1) = (β/2) ψ(1).

The corresponding formulas for the stream function defining the cycle-averaged particle
motion in the inner region is

ψ
(1)
particle = −3β

64

(
3r + 3 − 2

r

)(
1 − 1

r

)2

cos θ sin2 θ + o(β), (2.15)

and for the outer region,

ψ̄
(1)
particle = o(β), (2.16)

because the Stokes drift velocity at the outer region is

ψ̄D = −9β
16

(
e−ρ

[(
2
3

+ 1
ρ

)
sin ρ +

(
1
ρ

+ 1
ρ2

)
cos ρ

]
− 1
ρ2

)
cos θ sin2 θ + o(β),

(2.17)

which exactly cancels out the streaming flow in the outer region at O(β).

2.3.2. Large oscillation frequency, β � 1
The inner and outer regions for the matched asymptotic expansion in large β are r − 1 �
β−1/2 and r − 1 � β−1/2, respectively.

The asymptotic solution for the steady streaming flow in the outer region is (Riley 1966)

ψ(1) = 45
32

(
1 − 1

r2

)
cos θ sin2 θ + o(1), (2.18)

and for the inner region,

ψ̄(1) =
(

−189
32

+ 45
16
η + 9

32

[
e−2η + 20e−η cos η + 4e−η(3 + 2η) sin η

])

× cos θ sin2 θ + o(1), (2.19)

where η = √
β/2 (r − 1) and ψ̄(1) = √

β/2ψ(1).
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The corresponding formula for the stream function defining the cycle-averaged particle
motion in the outer region is

ψ
(1)
particle = 45

32

(
1 − 1

r2

)
cos θ sin2 θ + o(1), (2.20)

because the Stokes drift provides no contribution in the outer region at O(β−1), while for
the inner region,

ψ̄
(1)
particle = 9

32

(
10η − 17 + 12e−η[cos η + sin η] + 5e−2η

)
cos θ sin2 θ + o(1). (2.21)

2.4. Results and discussion
We now examine the properties of the streaming flow and cycle-averaged particle motion,
using the above-mentioned formulas.

2.4.1. Implications of asymptotic formulas for small and large β
The simple mathematical forms of the asymptotic formulas for small and large β provide
insight into the underlying structures of the streaming flow and the particle motion.

For small β, the leading-order streaming flow in (2.13) and (2.14) contains periodic
functions in the radial coordinate, for the outer region only, i.e. r � β−1/2. This indicates
that a vortex structure exists in the outer region only, which is highlighted in figures 2(c,d)
for β = 0.001; note that the vortex centre occurs at r = O(β−1/2). In contrast, the
asymptotic analysis shows that the cycle-averaged particle motion in the outer region is
zero at O(β). We note, however, that cycle-averaged particle motion does occur in the outer
region at higher order, which is captured in the arbitrary-β analysis. Moreover, periodic
functions in the radial coordinate do not exist in (2.15), suggesting that particle motion
may not orbit a centre in the inner region at leading order (O(β)). The particle motion
using the exact solution is explored in § 2.4.2.

For large β, we observe that periodic functions in the radial coordinate appear only
in (2.19), indicating that a vortex occurs only in the inner region. Figure 3 shows this
behaviour for β = 500. In contrast to the small β formulas of § 2.3.1, periodic functions
in the radial coordinate persist in the presence of Stokes drift. These periodic functions
occur only in the inner region; see (2.21). We therefore conclude that particles in the outer
region do not orbit a centre, which is evident in the example in figure 3.

Collectively, these asymptotic formulas show that a counter-flow structure does not
occur in the asymptotic limit of small β, but exists at large β. This is identical to the
conclusion of Riley (1966). To explore the nature of its emergence as a function of β, in
the next section we study the analytical solution (2.10), which is valid for all β.

2.4.2. True flow structure from arbitrary-β formula
Figure 4 gives numerical results for the streaming flow and particle motion obtained using
(2.10) and (2.11), respectively, for small and increasing β. Only the first quadrant in the
y–z plane of the flow is shown.

For β = 0.001, the true streaming flow shows identical behaviour to its small β
asymptotic solution, cf. figures 2(a,c) and 4(a). For the particle motion, however, the
arbitrary-β solution agrees with the asymptotic solution only in the inner region, cf.
figures 2(b) and 4(b). The arbitrary-β solution exhibits closed trajectories in the outer
region, with a vortex centre located at r = O(β−1/2). This occurs at higher order in β
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Figure 2. Streamlines in the asymptotic limit of small β, to O(β), of (a,b) inner and (c,d) outer regions of
the streaming flow, using (2.13) and (2.14), respectively, for (a,c), and the cycle-averaged particle motion using
(2.15) and (2.16), respectively, for (b,d). Cycle-averaged particle motion in the outer region is zero to O(β);
however, there is motion at higher order in β. The double arrow gives the direction of flow far from the
stationary sphere. Red streamlines are to guide the eye.

and is thus not captured by the asymptotic solution. This vortex presents a flattened shape
relative to that for the streaming flow. This comparison between the streaming flow and
particle motion also shows that measuring the particle motion may not provide an accurate
representation of the underling streaming flow, with Stokes drift strongly modifying the
particle flow at small β.

Increasing the frequency to β = 1 maintains the same vortex structure and shape as for
β = 0.001, in both the streaming flow and particle motion. A single vortex persists whose
centre moves towards the sphere with increasing β. The radial position of the vortex centre
as a function of β is given in figure 5, along with asymptotic solutions for small and large
β obtained from the formulas in § 2.3. For small β, the corresponding asymptotic formula
for the radial position of the vortex centre is

rvortex =

⎧⎪⎪⎨
⎪⎪⎩

3.018634√
β

+ o
(

1√
β

)
, streaming flow,

2.322261√
β

+ o
(

1√
β

)
, particle motion,

β → 0, (2.22)
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Figure 3. Streamlines in the asymptotic limit of large β, of (a,b) inner and (c,d) outer regions of the streaming
flow, using (2.19) and (2.18), respectively, for (a,c), and the cycle-averaged particle motion using (2.21) and
(2.20), respectively, for (b,d). Results are shown for β = 500. The black solid and dashed lines in (a,b) are the
spherical boundary and the viscous boundary layer, respectively. The double arrow gives the direction of flow
far from the stationary sphere.

whereas for large β,

rvortex =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + 1.489040√
β

+ o
(

1√
β

)
, streaming flow,

1 + 1.045580√
β

+ o
(

1√
β

)
, particle motion.

β → ∞. (2.23)

As the frequency is increased further to β = 16, the vortex – which occurs in the outer
region of the small-β asymptotic flow only, i.e. r � β−1/2 – begins to interact strongly
with the sphere where the inner region resides. This interaction modifies the vortex shape
leading to a blunter face near the sphere, together with a broader width. Further increasing
frequency to β = 20 leads to a seemingly abrupt emergence of a new counter-flow
structure away from the sphere. This counter-flow emerges at an infinite distance from
the sphere at a finite value of β. The radial boundary separating the inner and outer flows
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Figure 4. Streamlines of (a,c,e,g,i,k) the streaming flow and (b,d, f,h, j,l) the particle motion for various β,
using the arbitrary-β formulas, i.e. (2.10) and (2.11). Results for β values (a,b) 0.001, (c,d) 1, (e, f ) 16, (g,h) 20,
(i, j) 100, (k,l) 500. The double arrow gives the direction of flow far from the stationary sphere. Critically, the
particle motion at (a,b) β = 0.001 differs from the asymptotic result in figure 2 because the arbitrary-β formula
is used here.
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Figure 5. Radial distance from the sphere surface to the vortex centre, rvortex − 1, of (a) the streaming flow
and (b) the particle motion, as a function of the dimensionless frequency β. Solutions for arbitrary β are given
by (2.10) and (2.11) (solid line), for small β by (2.22) (dashed line), and for large β by (2.23) (dotted line). The
vortex centre lies along the polar angle θ = 54.7356◦ from the axis aligned with the direction of the imposed
flow; see (2.10).

then approaches the sphere as β increases. Emergence of the radial boundary between
the two flow regions introduces (1) two saddle points where this boundary intersects with
the z-axis, and (2) a ring of saddle points where it intersects with the equatorial plane
(Bhosale et al. 2022; Chan et al. 2022). This new outer flow does not involve closed
streamlines in either the streaming flow or particle motion, i.e. it does not contain an
additional vortex centre. See figures 3 and 4(g–l), whose streamlines do not close in the
outer region regardless the plotting domain size. This flow structure does not change as β
increases further; the only change is that the vortex near the sphere surface narrows. Note
that the flow structure obtained from the exact solution for β = 500 in figures 4(k,l) bears
a close resemblance to the asymptotic solution in figure 3.

2.4.3. Critical frequency for change in flow structure
Next, we determine the critical frequency β ≡ βcritical where the above-mentioned
seemingly abrupt change in flow structure occurs. The separable form of (2.10) shows that
the radial position where the counter-flow emerges coincides with zero radial velocity, at
non-zero angular velocity. This radial position, where the change in flow structure occurs,
emerges far from the sphere and moves towards the sphere as β increases. The radial
component of the streaming flow, u(1), at large r is

u(1) =
{

1
4 r2

(√
β(

√
2β3 − 2β5/2 + 10

√
2β2 − 72β3/2 + 8

√
2β + 72

√
β − 144

√
2)

1280

+
[

A(β)E1

(
[1 + i]

√
β

2

)
+ A∗(β)E1

(
[1 − i]

√
β

2

)]

−3β3

80
e
√

2β E1(
√

2β)

)
+ o

(
1
r2

)}
(1 + 3 cos 2θ) , (2.24)
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Figure 6. Streaming flow structure at (a) β = 16.3 and (b) β = 16.35. No outer region is present in (a),
regardless of the size of the plotted domain. The radius of the boundary between the two regions is r = 49.542
in (b).

where

A(β) = β2

2560
(1 + i)(10 − iβ) e(1+i)

√
β/2([1 − i]β + 3

√
2β + 3[1 + i]). (2.25)

The flow structure changes when this radial velocity changes sign, i.e. (2.24) vanishes,
giving the required critical frequency

βcritical = 16.317, (2.26)

to five significant figures.
The sensitivity of this structural bifurcation near the critical frequency is illustrated

by the streamlines under the selected frequency values of β = 16.3 and β = 16.35 in
figure 6 – which are respectively below and above βcritical. For β ≈ βcritical, the scaling
law between the size of the inner region and β − βcritical is plotted in the insets of figure 7.

As discussed in § 1, this seemingly abrupt change in flow structure also occurs for the
streaming flow generated by an oscillating cylinder, which is inherently two-dimensional,
in contrast to the three-dimensional flow generated by a sphere. This change in flow
structure for a cylinder has been calculated theoretically (Bertelsen et al. 1973), observed
experimentally (Lutz et al. 2005) and computed numerically (Parthasarathy et al. 2019).
Surprisingly, however, precise values for the critical frequency at which this change occurs
for a cylinder have not been reported explicitly.

We define the critical dimensionless frequency for a cylinder to be βcyl
critical ≡ ωR2

cyl/ν,
where Rcyl is the cylinder radius. Using this definition, figure 5 of Lutz et al. (2005) gives
an experimentally measured value βcyl

critical ≈ 1/(0.15)2 ≈ 40 – in contrast to figure 4 of
Raney et al. (1954), which produces a different experimental result, βcyl

critical ≈ 42 ≈ 16 –
while figure 2 of Bertelsen et al. (1973) yields the theoretical prediction βcyl

critical ≈ 50.
The reasons for the substantial difference between the experimental works of Raney et al.
(1954) and Lutz et al. (2005) are unknown. However, the results for βcyl

critical obtained
using Lutz et al. (2005) and Bertelsen et al. (1973) agree, and their published data have
been validated independently by Parthasarathy et al. (2019). These results for βcyl

critical are
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Figure 7. Radial position rchange where the radial component of the velocity is zero as a function of β. The
thickness of the inner region is rchange − 1. (a) Streaming velocity field, and (b) cycle-averaged particle motion.
Solutions for arbitrary β as specified by (2.10) and (2.11) (solid line), and for large β by (2.28) (dashed line).
The red vertical line corresponds to β = βcritical, whose numerical value is given by (2.26). Insets show the
size of the inner region versus β − βcritical.

of similar magnitude to (2.26) for a sphere, with the quantitative difference not being
unexpected given their different geometries.

2.4.4. Critical frequency for streaming flow and particle motion
The radial component of the drift velocity at large r is

u(1)D =
{

9
8
√

2β

(
1 +

√
2
β

)
1
r4 + o

(
1
r4

)}
(1 + 3 cos 2θ), (2.27)

which decays more rapidly with r than the streaming flow u(1) in (2.24). It follows from
(2.11) that the streaming flow and particle motion are identical far from the sphere. This
feature establishes that βcritical in (2.26) holds for both the streaming flow and the particle
motion. That is, the critical frequency βcritical can be determined by observing either flow.

2.4.5. Radial position for emergence of counter-flow
The dependence on β of the radius rchange at which the counter-flow emerges is given in
figure 7 for both the streaming flow and particle motion. These are obtained using (2.10)
and (2.11), respectively. Note that rchange for the particle motion is smaller than that for the
streaming flow. As β approaches βcritical from above, the asymptotic behaviour of the blue
curve in figure 7 specifies a critical transition: the flow changes from a two-cell structure
(figures 4g–l) to a one-cell structure (figures 4a– f ). Asymptotic formulas for large β follow
directly from (2.19) and (2.21),

rchange =

⎧⎪⎪⎨
⎪⎪⎩

1 + 2.3030√
β

+ o
(

1√
β

)
, streaming flow,

1 + 1.6113√
β

+ o
(

1√
β

)
, particle motion,

(2.28)
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Figure 8. Phase diagrams showing the number of cells in the streaming flow. Black asterisks are (a) the critical
oscillation frequency β = βcritical, and (b) the critical Reynolds number Re = Recritical, as a function of the
oscillation amplitude ε obtained using DNS; the black curve is (3.4). Grey-shaded regions (below the black
curve) correspond to one circulatory cell; white regions specify two cells. Red dashed lines are asymptotes
in the small-amplitude limit; see (2.26) and (2.7). Open and solid circles correspond to one and two cells,
respectively, from previous DNS studies: blue squares from table 3 of Chang & Maxey (1994); orange circles
from figure 11 in Blackburn (2002); green triangles from figure 6 of Mei (1994); purple inverted triangles from
figure 2 of Chan et al. (2022); and yellow diamonds from table 1 of Alassar (2008).

and exhibit the same β scaling laws as for the vortex centres; cf. (2.23) and (2.28). The
asymptotic results in (2.28) are also given in figure 7, and display good agreement with
the exact solution for large β.

3. Finite-amplitude flows

To calculate βcritical for finite amplitude, we perform DNS of the Navier–Stokes
equations in the time domain. Specifically, the (time-averaged) streaming flow from these
simulations is calculated for fixed ε, and β is varied to observe the transition from one to
two cells; see Appendix C for details.

3.1. Dependence of βcritical on oscillation amplitude
Numerical results for βcritical as a function of oscillation amplitude ε are given in
figure 8. Figure 8(a) reveals a universal phase space that depends only on β and
ε, as expected from dimensional considerations; see § 1. For small amplitude ε,
finite-amplitude simulations show that βcritical approaches the infinitesimal amplitude
solution in (2.26), i.e. βcritical|ε→0 = 16.317. Increasing ε results in a monotonic decrease
in βcritical, with βcritical → 0 as ε → ∞. Figure 8(b) gives the critical Reynolds number
Recritical ≡ ε βcritical, where the transition from one to two cells occurs. Fitting a cubic
spline to the discrete numerical results gives a maximal value of the critical Reynolds
number, Recritical ≈ 6.4 at a dimensionless amplitude, ε = 0.95; this small Reynolds
number suppresses the onset of flow instabilities. This finding establishes that for the wide
range of oscillation amplitudes studied in figure 8, i.e. 0 < ε ≤ 20, there always exists a
critical value βcritical at which (1) transition between one and two cells occurs, and (2) the
flow is laminar.

Figure 8 also shows previous numerical results for finite amplitude (Chang & Maxey
1994; Mei 1994; Blackburn 2002; Alassar 2008; Chan et al. 2022). Importantly, Chang &
Maxey (1994) note: ‘There do not appear to be any generalizations that can be made for
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Figure 9. Our DNS using parameters in rows 4 and 11 of table 3 of Chang & Maxey (1994), who reported
one cell. In contrast, our simulations recover two cells. Respective streamlines of the streaming flow shown for
(a) ε = 10 and β = 0.5, and (b) ε = 10 and β = 0.837. Emergence of the counter-flow occurs at a distance
approximately 20 sphere radii from the sphere surface. The z-axis is aligned to the direction of oscillation.

the existence of inner and outer streaming regions for flows of all amplitudes.’ This claim
is explored in detail here. Filled symbols indicate two cells while open symbols indicate
one circulation cell, for these previous studies. Our calculated dependence of βcritical on
ε captures correctly all previous numerical results, with the exception of two data points
reported by Chang & Maxey (1994): the two rightmost open-square symbols lying above
the βcritical versus ε curve in figure 8. Specifically, Chang & Maxey (1994) report that these
flows exhibit only one circulation cell, whereas the phase diagram in figure 8 suggests that
two cells should exist.

We perform DNS of the streaming flows for these two anomalous data points, the results
of which are reported in figure 9. These new simulations are converged carefully and
clearly exhibit two cells, in contrast to the data reported by Chang & Maxey (1994).
Because the values of β are close to βcritical (see figure 8) – producing a counter-flow
far from the sphere where the flow speed is small – it appears that numerical issues in the
study of Chang & Maxey (1994) are the cause of the above-mentioned discrepancy. Our
new simulations provide the generalisation sought by Chang & Maxey (1994) (see quote
above) and show that the existence of one or two cells collapses onto a two-dimensional
phase space delineated by a single curve, defined by β and ε.

3.2. Large-amplitude limit, ε � 1
Next, we consider the large-amplitude limit, ε � 1, and examine the behaviour of βcritical
under the condition

β � εβ � 1, (3.1)

which is justified a posteriori. The Navier–Stokes equations are both quasi-steady
and quasi-linear under (3.1), with inertia exerting a small effect; i.e. the overall flow
is approximately harmonic with streaming being a weak secondary flow (as for the
small-amplitude limit). The Navier–Stokes equations then correspond to a weakly
perturbed unsteady version of the Oseen equation for small Reynolds number flow.
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Streaming flow generated by an oscillating sphere

Balancing the linear and convective inertia terms with the diffusive viscous term, gives
two length scales that are large relative to the sphere radius (scaled to unity): (1) the usual
viscous penetration depth due to linear inertia, δlinear = 1/

√
β, and (2) the thickness of the

viscous layer due to convective inertia, δconv = 1/Re = 1/(εβ). The relative magnitude
of these two length scales controls the flow structure. Because the convective inertia
term is much larger than the linear inertia term in the Navier–Stokes equations for this
large-amplitude limit, the flow will resemble predominantly an Oseen flow.

To examine this further, we consider the case of fixed (large) amplitude ε where the
frequency β is varied. In the large-frequency limit, 1/ε2 � β (� 1/ε, see (3.1)), where
δlinear � δconv , i.e. the streaming flow will closely resemble the Oseen flow except at
distances r ≥ O(δlinear), where the streaming flow is small. This allows the linear inertia
term in the Navier–Stokes equations to exert a significant effect. Therefore, the flow will
be approximately steady close to the sphere, with unsteadiness manifesting far from the
sphere, i.e. the flow will exhibit different physics near and far from the sphere. Numerical
simulations support this conclusion and show two cells in this large-frequency limit; see
figure 8. In the opposite limit of small frequency, β � 1/ε2, where the linear viscous
penetration depth is δlinear � δconv , the linear inertia term exerts a (weak) effect precisely
in the region where the streaming flow is dominated by convective inertia. Thus the flow
physics is uniform through the domain and the streaming flow remains unchanged from
the Oseen flow – it does not have a two-cell structure.

From these conclusions for small and large frequency, it then follows that the streaming
flow must transition in its structure from one to two cells when δlinear ∼ δconv , which gives

βcritical ∼ 1
ε2 , ε � 1. (3.2)

Such a monotonic decrease in βcritical with increasing ε, in the large-amplitude limit, is
observed in the numerical results reported in figure 8. Equation (3.2) evidently satisfies
the condition of its derivation in (3.1), as required.

The linear and convective inertia terms of the Navier–Stokes equations balance when
the (dimensionless) length scale of the flow field is ε. From the above discussion, it then
follows that the inner and outer cells (when they exist) meet at a dimensionless distance
from the sphere

r ∼ ε, (3.3)

in this large-amplitude and small-Reynolds-number limit. This establishes that increasing
the oscillation amplitude ε increases the distance from the sphere at which the outer cell
occurs. This theoretical prediction is borne out in numerical simulations at finite and large
oscillation amplitude; see § C.1.

Finally, we note that the governing streaming flow equations in the small-amplitude
limit, ε � 1, contain only one length scale (in addition to the sphere radius): the viscous
penetration depth δlinear. The Reynolds number Re ≡ εβ merely dictates the strength
of the streaming flow, rather than controlling its structure. Thus the above analysis for
large-amplitude flows does not apply in the small-amplitude limit.

3.3. Composite arbitrary amplitude formula, βcritical

Combining the small-amplitude asymptotic solution for βcritical in (2.26) with the
large-amplitude scaling law in (3.2), using a Padé approximant, and performing a nonlinear

974 A37-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.758


P. Li, J.F. Collis, D.R. Brumley, L. Schneiders and J.E. Sader

least squares fit to the numerical data in figure 8, gives

βcritical ≈ 16.317
1 + 0.73ε + 0.86ε2 , (3.4)

which exhibits maximum error 5 % over the full range studied, 0 < ε ≤ 20.
This approximate formula can be used to determine the existence of one or two cells in

the streaming flow, for finite amplitude ε. Namely, β < βcritical gives one circulation cell,
whereas β > βcritical gives two cells. It provides the generalisation sought by Chang &
Maxey (1994) for the existence of one or two cells.

4. Conclusions

We have examined the secondary streaming flow generated by a stationary solid sphere
immersed in an unbounded viscous fluid that is undergoing harmonic oscillation. This
included formulation of an exact analytical solution in the limit of small oscillation
amplitude and DNS of the Navier–Stokes equations for finite (and large) amplitude. This
showed that the streaming flow exhibits two distinct topologies that depend only on the
oscillation frequency β and flow amplitude ε.

In the small-amplitude limit, ε � 1, one cell exists for frequencies β < βcritical =
16.317, while two cells occur at larger frequency. This critical frequency, βcritical, decreases
monotonically with increasing amplitude ε, and was shown to vary as ε−2 in the
large-amplitude limit, ε � 1. The conclusion of Chang & Maxey (1994) that there ‘[does]
not appear to be any generalisations that can be made for the existence of inner and
outer streaming regions for flows of all amplitudes’ was shown to be due to numerical
issues. Instead, the flow topology was found to collapse onto the β–ε phase space, with
the existence of one or two cells being delineated by a single curve; see (3.4). Flow at
the transition frequency βcritical was found to always occur at small Reynolds number
Re < 6.5, mitigating the effect of flow instabilities and ensuring laminar flow for any
oscillation amplitude.

This analytical and numerical study motivates experiments to observe this phase space
dependence of the flow topology, which may have implications for inertial particle trapping
and transport, and the autonomous propulsion of small swimmers that are driven by
secondary streaming flows (Nadal & Lauga 2014; Collis, Chakraborty & Sader 2017; Zhou
et al. 2017; Ren, Wang & Mallouk 2018; Lippera et al. 2019; Mohanty, Khalil & Misra
2020; Nadal & Michelin 2020; Valdez-Garduño et al. 2020; Bhosale et al. 2022; Collis,
Chakraborty & Sader 2022; Li et al. 2022).
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Streaming flow generated by an oscillating sphere

Appendix A. Analytical details of the streaming flow solution

In this appendix, we summarise briefly the derivation of ψ(1), and provide the definitions
of the coefficient and functions in (2.10) and (2.12). Substituting

ψ(1)(r, θ) = ξ(r) cos θ sin2 θ, ψ(0)(r, θ) = χ(r) sin2 θ (A1)

into (2.6), where χ(r) is the radial function of (2.9), gives the ordinary differential equation

ξ (4)(r)− 12ξ ′′(r)
r2 + 24ξ ′(r)

r3 = κ(r)+ κ∗(r), (A2)

where

κ(r) = β

(
4χ(r)χ∗(r)

r5 − χ∗(r) χ ′(r)
r4 − χ∗(r) χ ′′(r)

r3 + χ∗(r)χ ′′′(r)
2r2

)
. (A3)

The corresponding boundary conditions are

ξ(1) = ξ ′(1) = 0, lim
r→∞

(
ξ(r)
r2

)
= lim

r→∞

(
ξ ′(r)

r

)
= 0. (A4)

The solution to (A2)–(A4) is then

ξ(r) = f1 + f2
r2 + f3(r)E1(

√
2β r)+ f4(r)E1

(
(1 + i)

√
β

2
r

)
+ f ∗

4 (r)E1

(
(1 − i)

√
β

2
r

)

+ f5(r) e−√
2β(r−1) + f6(r) e−(1+i)

√
β/2(r−1) + f ∗

6 (r) e−(1−i)
√
β/2(r−1). (A5)

The constants and functions in (2.10) and (A5) are

f1 =
√
β(

√
2β3 − 2β5/2 + 10

√
2β2 − 72β3/2 + 8

√
2β + 72

√
β − 144

√
2)

2560

+
[

A(β)
2

E1

(
[1 + i]

√
β

2

)
+ A∗(β)

2
E1

(
[1 − i]

√
β

2

)]

− 3β3

160
e
√

2β E1(
√

2β), (A6a)

f2 = 1
17 920β

(720
√

2β3/2 − 24
√

2β5/2 − 408β2 − 6048β − 23 184
√

2β − 40 320

− 58
√

2β7/2 − 5
√

2β9/2 + 10β4 + 312β3 + 240 e
√

2ββ4 E1(
√

2β))

+
[

B(β)E1

(
[1 + i]

√
β

2

)
+ B∗(β)E1

(
[1 − i]

√
β

2

)]
, (A6b)
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f3(r) = 3
560

e
√

2ββ3r5, (A6c)

f4(r) = 1 + i
17 920

e(1+i)
√
β/2β2((1 + i)β + 3i

√
2β + (−3 + 3i))r3(βr2 + 14i), (A6d)

f5(r) = 45
√

2/β − 3
√

2β5/2r6 + 3β2r5 − 3
√

2β3/2r4 + 9βr3 − 18
√

2βr2 + 90r
1120r2 ,

(A6e)

f6(r) = 1
17 920βr2 (20 160 + (288 + 288i)

√
2β(35r + 4)+ 24β(280ir2 − 9ir + 96)

+ (12 − 12i)
√

2β3/2(r2 − 9ir + 32)+ (4 + 4i)
√

2β5/2r2(3r + i)2

− 24β2r(2r2 + ir + 3)− (1 + i)
√

2β9/2r6 + 2β4r5(1 − 3ir)

+ (3 + 3i)
√

2β7/2r4(−ir2 + r − 4i)+ 2β3r3(3ir2 + 36r + 8i)), (A6f )

where

A(β) = β2

2560
(1 + i)(10 − iβ) e(1+i)

√
β/2([1 − i]β + 3

√
2β + 3[1 + i]), (A7a)

B(β) = 1 + i
35 840

e(1+i)
√
β/2β2((1 + i)β + 3i

√
2β + (−3 + 3i))(5β + 42i). (A7b)

Evaluation of (2.12) then gives

ψD =
{

9(
√

2β + 2)
8βr2 + 9(

√
2βr + 2)
8βr3 e−√

2β(r−1) + g(r)+ g∗(r)
}

cos θ sin2 θ, (A8)

where

g(r) = −
(−6iβ + (9 − 9i)

√
2β + 6iβr3 + (9 + 9i)

√
2βr2 + 18r + 18

16βr3

)
e−(1+i)

√
β/2(r−1). (A9)

Appendix B. Asymptotic analysis for small and large β

In this appendix, we provide asymptotic solutions for the streaming flow and resulting
cycle-averaged particle velocity in the limits of small and large frequency, i.e. β � 1 and
β � 1, respectively. These are obtained by solving (2.5) and (2.6), which themselves hold
in the asymptotic limit of small oscillation amplitude, i.e. ε → 0. As such, the oscillation
amplitude is always small relative to all flow length scales.

B.1. Small oscillation frequency, β � 1
Inspection of (2.5) for small β reveals that the inertia term balances the viscous term
at large distance, r = O(β−1/2). This singular behaviour at large distance motivates
a matched asymptotic expansion of the stream function Ψ with respect to the radial
coordinate. The corresponding inner and outer regions of this expansion are specified by
r � β−1/2 and r � β−1/2, respectively. The principal aim is to calculate the leading-order
streaming flow for small β.
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Streaming flow generated by an oscillating sphere

B.1.1. Linear oscillatory flow
The governing equation for the linear oscillatory flow, (2.5), and its stream function ψ(0),
use the length scale for the inner region, i.e. the sphere radius. Consequently, we perform
a regular perturbation expansion of the stream function ψ(0) in small β,

ψ(0) = ψ
(0)
in,0 + o(1), (B1)

to determine the leading-order solution in the inner region ψ(0)in,0. The required governing

equation and boundary conditions for ψ(0)in,0 then follow from (2.5) and (2.3):

D4ψ
(0)
in,0 = 0, ψ

(0)
in,0

∣∣∣
r=1

= ∂ψ
(0)
in,0

∂r

∣∣∣∣∣
r=1

= 0. (B2)

The solution in the outer region is obtained by rescaling the spatial variable r as above,

ρ =
√
β

2
r, (B3)

which gives the rescaled stream function

ψ̄(0) = β

2
ψ(0). (B4)

Expanding ψ̄(0) for small β,

ψ̄(0) = ψ̄
(0)
out,0 + β1/2 ψ̄

(0)
out,1 + o(β1/2), (B5)

and substituting (B5) into (2.5) and (2.3) gives the corresponding governing equations and
boundary conditions for ψ̄(0)out,0 and ψ̄(0)out,1,

D4
ρψ̄

(0)
out,0 = −2iD2

ρψ̄
(0)
out,0, D4

ρψ̄
(0)
out,1 = −2iD2

ρψ̄
(0)
out,1, (B6)

where D2
ρ is identical to (2.2a) with r replaced by ρ, and

ψ̄
(0)
out,0

∣∣∣
ρ→∞

∼ ρ2

2
sin2 θ, lim

ρ→∞
1
ρ2 ψ̄

(0)
out,1 = lim

ρ→∞

(
1
ρ

∂ψ̄
(0)
out,1

∂ρ

)
= 0. (B7)

Solving the above governing equations and matching the outer part of the inner solution
(r � 1) to the inner part of the outer solution (ρ � 1) gives the required asymptotic
solutions for the inner and outer regions, respectively:

ψ(0) = 1
4

(
2r2 − 3r + 1

r

)
sin2 θ + o(1), (B8a)

ψ̄(0) =
(
ρ2

2
+ 3

4

√
β

2

[
e−(1−i)ρ

(
1 + i + i

ρ

)
− i
ρ

])
sin2 θ + o(β1/2). (B8b)

The term of O(β1/2) in the outer solution ψ̄(0) drives the leading-order streaming flow, as
is evident in the next subsubsection.
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B.1.2. Steady streaming flow
Accounting for the form of (2.6), we expand the first-order (streaming) flow for the inner
region in small β as

ψ(1) = βψ
(1)
in,0 + o(β), (B9)

Substituting (B1) and (B9) into (2.6) and (2.3) gives the governing equation and boundary
condition for the streaming flow in the inner region:

D4ψ
(1)
in,0 = 9β

8r5 (3r2 − 2r3 − 1) cos θ sin2 θ, ψ
(1)
in,0

∣∣∣
r=1

= ∂ψ
(1)
in,0

∂r

∣∣∣∣∣
r=1

= 0, (B10)

where ψ(0)in,0 is given in (B1) and (B8a).
The radial coordinate and stream function in the outer region are scaled as per (B3) and

(B4), and expanded in small β as

ψ̄(1) = β ψ̄
(1)
out,0 + o(β). (B11)

Substituting (B11) and (B8b) into (2.6) and (2.3) then gives the governing equation for
ψ
(1)
out,0,

D4
ρψ̄

(1)
out,0 = −9

4
e−ρ

[(
2
3

+ 1
ρ

)
sin ρ +

(
1
ρ

+ 1
ρ2

)
cos ρ

]
cos θ sin2 θ, (B12)

and its associated boundary condition,

lim
ρ→∞

1
ρ2 ψ̄

(1)
out,1 = lim

ρ→∞

(
1
ρ

∂ψ̄
(1)
out,1

∂ρ

)
= 0. (B13)

Solving these governing equations for the inner and outer regions, and matching their
solutions, gives the following respective results in the inner and outer regions:

ψ(1) = β

(
−3r2

32
− 3

64r2 + 9r
64

+ 3
64r

− 3
64

)
cos θ sin2 θ + o(β), (B14a)

ψ̄(1) = 9β
16

(
e−ρ

[(
2
3

+ 1
ρ

)
sin ρ +

(
1
ρ

+ 1
ρ2

)
cos ρ

]
− 1
ρ2

)

× cos θ sin2 θ + o(β). (B14b)

B.1.3. Cycle-averaged particle velocity
As discussed in § 2.2, the stream function defining the (steady) cycle-averaged particle
velocity includes the effects of Stokes drift. The latter follows directly from the linear
oscillatory flow. In this subsubsection, we provide this leading-order stream function
defining the particle motion in small β, for the inner and outer regions.

For the inner region, this particle stream function follows from (B14a), (2.11) and (2.12),
giving

ψ
(1)
particle = −3β

64

(
3r + 3 − 2

r

)(
1 − 1

r

)2

cos θ sin2 θ + o(β), (B15)

establishing that particle motion vanishes in the outer part of the inner region at O(β). For
the outer region, the Stokes drift contribution cancels (B14b) precisely to leading order in

974 A37-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.758


Streaming flow generated by an oscillating sphere

β, giving

ψ̄
(1)
particle = o(β). (B16)

B.2. Large oscillation frequency, β � 1
Next, we consider the complementary limit of large β, where the highest spatial derivative
(viscous term) in (2.5) is seen to vanish. This leads to a predominantly inviscid flow
everywhere, except near the sphere surface where the viscous term balances the inertia
term to match the no-slip condition. This balance occurs for r − 1 = O(β−1/2), which
defines the length scale for the viscous boundary layer near the sphere surface.

B.2.1. Linear oscillatory flow
Equation (2.5) uses the length scale for the outer region, and we expand its stream function
in the small parameter β−1,

ψ(0) = ψ
(0)
out,0 + o(1), (B17)

whose governing equation and boundary conditions follow from (2.5) and (2.3):

D2ψ
(0)
out,0 = 0, ψ

(0)
out,0

∣∣
r→∞ ∼ r2

2
sin2 θ. (B18)

The inner region uses the above-mentioned scaling for the radial coordinate, i.e.

η =
√
β

2
(r − 1), (B19)

which gives the rescaled stream function for the inner region,

ψ̄(0) =
√
β

2
ψ(0). (B20)

Expanding ψ̄(0) for large β,

ψ̄(0) = ψ̄
(0)
in,0 + o(1), (B21)

and substituting (B21) into (2.5) and (2.3), gives

∂4ψ̄
(0)
in,0

∂η4 − 2i
∂2ψ̄

(0)
in,0

∂η2 = 0, ψ̄
(0)
in,0

∣∣
η=0 = ∂ψ̄

(0)
in,0

∂η

∣∣∣∣∣
η=0

= 0. (B22)

Solving the above system of equations, matching the inner and outer solutions, gives the
required results for the inner and outer regions, respectively:

ψ̄(0) = 3
2

(
1 + i

2

[
e(i−1)η − 1

]
+ η

)
sin2 θ + o(1), (B23a)

ψ(0) = 1
2

(
r2 − 1

r

)
sin2 θ + o(1). (B23b)
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B.2.2. Steady streaming flow
The first-order (streaming) flow for the outer region is expanded in the small parameter,
β−1 as

ψ(1) = ψ
(1)
out,0 + o(1), (B24)

for which the governing equation and boundary condition follow from (2.6) and (2.3),
giving

D4ψ
(1)
out,0 = 0, lim

r→∞
1
r2 ψ

(1)
out,0 = lim

r→∞

(
1
r

∂ψ
(1)
out,0

∂r

)
= 0. (B25)

Scaling the radial coordinate and stream function in the inner region according to (B19)
and (B20), and expanding in β−1/2, gives

ψ̄(1) = ψ̄
(1)
in,0 + o(1), (B26)

which from (2.6) and (2.3) gives the required governing equation

∂4ψ̄
(1)
in,0

∂η4 = 9
2
(−e−2η + e−η cos η + e−η[2η − 1] sin η) cos θ sin2 θ, (B27)

and the no-slip boundary condition,

ψ̄
(1)
in,0

∣∣
η=0 = ∂ψ̄

(1)
in,0

∂η

∣∣∣∣∣
η=0

= 0. (B28)

Solving these equations and matching their results gives the following stream functions
for the outer and inner regions, respectively:

ψ(1) = 45
32

(
1 − 1

r2

)
cos θ sin2 θ + o(1), (B29a)

ψ̄(1) =
(

−189
32

+ 45
16
η + 9

32

[
e−2η + 20e−η cos η + 4e−η(3 + 2η) sin η

])

× cos θ sin2 θ + o(1). (B29b)

B.2.3. Cycle-averaged particle velocity
The contribution from Stokes drift is now included to determine the stream function
defining the cycle-averaged particle velocity. There is no contribution from Stokes drift
to the outer region at leading order at O(β−1), giving the particle stream function

ψ
(1)
particle = 45

32

(
1 − 1

r2

)
cos θ sin2 θ + o(1), (B30)

while Stokes drift is non-zero for the inner region, giving

ψ̄
(1)
particle = 9

32
(10η − 17 + 12e−η[cos η + sin η] + 5e−2η) cos θ sin2 θ + o(1). (B31)
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Appendix C. Numerical simulations

Finite-amplitude simulations are performed with the finite element analysis software
COMSOL Multiphysics, using the incompressible Navier–Stokes equations. An
axisymmetric geometry is used with a half-circle of unitary radius representing the solid
sphere and a half-circle of radius, R∞ representing the far-field condition. The solid sphere
is held stationary with surface velocity u = 0, while the uniform velocity u = ε cos t k,
is prescribed to the outer sphere of radius R∞. Setting the shear viscosity to unity then
enables the fluid density to act as a proxy for the dimensionless frequency parameter β;
see (1.4).

To obtain the time-averaged solution, i.e. the secondary streaming flow, simulations are
run for multiple periods and then time averaged over the final period. Because the radius
of the inner circulation cell approaches infinity as β → βcritical, it is important to check
for convergence in the time-averaged solution. It can be small because the magnitude of
this flow varies with the amplitude squared. Where only one cell is present, the location of
the vortex centre is monitored to attain convergence. Where two cells exist, we monitor (i)
the vortex centre of the inner cell, and (ii) the location of the zeros along the z- and r-axes,
i.e. the boundary of the inner and outer cells. All simulations leading to the calculation of
βcritical are converged to at least 95 % with respect to these criteria.

Triangular mesh elements are used throughout the domain, with thin rectangular
‘boundary layer’ elements applied immediately adjacent to the stationary solid sphere.
A maximum element side length 0.1 is used in the vicinity of the solid sphere, and
maximum side length 5 far from the sphere. This gives approximately 8000 to 15 000
elements in total, depending on the domain size. Increasing the level of discretisation
to approximately double the total number of elements demonstrates convergence in the
above cell parameters to at least 95 %. This is checked for a small value, ε = 0.1, i.e.
where convergence is most challenging due to the small magnitude of the time-averaged
solution, and also a large value, ε = 100. Note that in both cases, mesh convergence is
checked for β above and below βcritical.

Convergence is also checked for the number of time-steps per period, and the total
number of periods. Using 100 time steps per period and 40 total periods results in
convergence of the above cell parameters to at least 95 %. This number of periods and
time steps per period is used for all reported simulations. Even so, larger values of ε attain
convergence before 40 periods due to the smaller value of βcritical. A relative tolerance
10−4 in the time stepping is specified, which again results in convergence of the cell
parameters to at least 95 %.

Zeroes of the radial component of the fluid velocity along the r-axis, and those of the
axial component of the velocity along the z-axis, are examined to determine βcritical. A zero
indicates the occurrence of two cells; otherwise, there is only one cell. The zero search is
conducted for radii between 1 and R∞/2 because the finite computational domain can
and does introduce spurious (small-amplitude) circulation cells in the neighbourhood of
R∞ (data not shown). Determination of βcritical for each fixed ε is conducted as follows.
An initial value of β is chosen such that two cells occur, and a second (smaller) value
of β is selected that generates only one cell. The midpoint of these two values is then
simulated, generating a new range that contains βcritical; the midpoint of this new region is
then simulated. This procedure is repeated until βcritical is determined to achieve accuracy
at least 95 %. The radius at which two cells meet for β > βcritical increases as β approaches
βcritical. Use of a finite flow domain then ensures that numerical values for βcritical strictly
represent an upper bound (albeit accurate) estimate on the true value of βcritical.
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Figure 10. Numerical simulations performed for the large amplitude: (a–c) ε = 10, (d– f ) ε = 32, and (g–i)
ε = 100, where the dimensionless frequency, β, increases from left to right; (b,c) are identical to figure 9. All
simulations are performed for β > βcritical as per (3.4), to generate two cells. Plot regions are scaled to be of
length 5ε, e.g. in (g–i), the plot axes span the range x, y ∈ [0, 500], highlighting the boundary between the cells
that occurs at a distance O(ε) from the sphere.

Convergence in βcritical additionally requires a check on the domain size; i.e. enlarging
the domain should not result in a change to the minimum upper bound estimate of βcritical
of more than 5 %. A domain size R∞ = 200 for ε < 5, and R∞ = 400 for ε ≥ 5, gives the
required convergence in βcritical to at least 95 %.

C.1. Large-amplitude numerical simulations
Figure 10 shows simulations performed at large amplitude. In this limit, balancing the
linear and convective inertia terms of the Navier–Stokes equations reveals a characteristic
length scale of order ε; see details in § 3.2. Provided that β is larger than but not too close
to βcritical, i.e. where the size of the inner region becomes unbounded, the size of the inner
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region observed in the large-amplitude simulations is of O(ε), which is in agreement with
the scaling analysis in § 3.2.

C.2. Small-amplitude numerical simulations
The small-amplitude asymptotic solution shows that while two cells exist above the critical
frequency, only one set of streamlines close, i.e. only one vortex exists in the immediate
vicinity of the sphere (see figure 4). In contrast, our large-amplitude numerical simulations
give two vortices (with closed streamlines) above the critical frequency (see figure 10).
The large-amplitude simulations are fully converged with respect to domain size and
discretisation.

However, application of our numerical scheme to the small-amplitude regime also
gives two vortices above the critical frequency; in contradiction with the small-amplitude
asymptotic theory. Convergence of these small-amplitude simulations with respect to
domain size is problematic. Thus care should be taken when interpreting the results
of full Navier–Stokes simulations in the small-amplitude limit. This is particularly true
for streamlines away from the sphere where the fluid speed is small; streamlines and
velocity fields in the vicinity of the sphere, including the transition between cells, are
fully converged.
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DŌHARA, N. 1982 The unsteady flow around an oscillating sphere in a viscous fluid. J. Phys. Soc. Japan

51 (12), 4095–4103.
DOMBROWSKI, T. & KLOTSA, D. 2020 Kinematics of a simple reciprocal model swimmer at intermediate

Reynolds numbers. Phys. Rev. Fluids 5 (6), 063103.
FABRE, D., JALAL, J., LEONTINI, J.S. & MANASSEH, R. 2017 Acoustic streaming and the induced forces

between two spheres. J. Fluid Mech. 810, 378–391.
GEMMELL, B.J., JIANG, H. & BUSKEY, E.J. 2015 A tale of the ciliate tail: investigation into the adaptive

significance of this sub-cellular structure. Proc. R. Soc. B 282 (1812), 20150770.
KANEKO, A. & HONJI, H. 1979 Double structures of steady streaming in the oscillatory viscous flow over a

wavy wall. J. Fluid Mech. 93 (4), 727–736.
KOTAS, C.W., YODA, M. & ROGERS, P.H. 2006 Visualizations of steady streaming at moderate Reynolds

numbers. Phys. Fluids 18 (9), 091102.
KOTAS, C.W., YODA, M. & ROGERS, P.H. 2007 Visualization of steady streaming near oscillating spheroids.

Exp. Fluids 42 (1), 111–121.

974 A37-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.758


P. Li, J.F. Collis, D.R. Brumley, L. Schneiders and J.E. Sader

KOTAS, C.W., YODA, M. & ROGERS, P.H. 2008 Steady streaming flows near spheroids oscillated at multiple
frequencies. Exp. Fluids 45 (2), 295–307.

LANE, C.A. 1955 Acoustical streaming in the vicinity of a sphere. J. Acoust. Soc. Am. 27 (6), 1082–1086.
LI, J., MAYORGA-MARTINEZ, C.C., OHL, C.-D. & PUMERA, M. 2022 Ultrasonically propelled micro- and

nanorobots. Adv. Funct. Mater. 32 (5), 2102265.
LIPPERA, K., DAUCHOT, O., MICHELIN, S. & BENZAQUEN, M. 2019 No net motion for oscillating

near-spheres at low Reynolds numbers. J. Fluid Mech. 866, R1.
LONGUET-HIGGINS, M.S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245 (903),

535–581.
LONGUET-HIGGINS, M.S. 1998 Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond.

A 454 (1970), 725–742.
LUTZ, B.R., CHEN, J. & SCHWARTZ, D.T. 2005 Microscopic steady streaming eddies created around short

cylinders in a channel: flow visualization and Stokes layer scaling. Phys. Fluids 17 (2), 023601.
MEI, R. 1994 Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite

Reynolds number. J. Fluid Mech. 270, 133–174.
MOHAGHAR, M., ADHIKARI, D. & WEBSTER, D.R. 2019 Characteristics of swimming shelled Antarctic

pteropods (Limacina helicina antarctica) at intermediate Reynolds number regime. Phys. Rev. Fluids 4,
111101.

MOHANTY, S., KHALIL, I.S.M. & MISRA, S. 2020 Contactless acoustic micro/nano manipulation: a
paradigm for next generation applications in life sciences. Proc. R. Soc. A 476 (2243), 20200621.

NADAL, F. & LAUGA, E. 2014 Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid
bodies. Phys. Fluids 26 (8), 082001.

NADAL, F. & MICHELIN, S. 2020 Acoustic propulsion of a small, bottom-heavy sphere. J. Fluid Mech. 898,
A10.

OTTO, F., RIEGLER, E.K. & VOTH, G.A. 2008 Measurements of the steady streaming flow around oscillating
spheres using three dimensional particle tracking velocimetry. Phys. Fluids 20 (9), 093304.

PARTHASARATHY, T., CHAN, F.K. & GAZZOLA, M. 2019 Streaming-enhanced flow-mediated transport.
J. Fluid Mech. 878, 647–662.

RANEY, W.P., CORELLI, J.C. & WESTERVELT, P.J. 1954 Acoustical streaming in the vicinity of a cylinder.
J. Acoust. Soc. Am. 26 (6), 1006–1014.

RAYLEIGH, LORD 1884 On the circulation of air observed in Kundt’s tubes, and on some allied acoustical
problems. Phil. Trans. R. Soc. Lond. 175, 1–21.

REN, C., CHENG, L., TONG, F., XIONG, C. & CHEN, T. 2019 Oscillatory flow regimes around four cylinders
in a diamond arrangement. J. Fluid Mech. 877, 955–1006.

REN, L., WANG, W. & MALLOUK, T.E. 2018 Two forces are better than one: combining chemical and acoustic
propulsion for enhanced micromotor functionality. Acc. Chem. Res. 51 (9), 1948–1956.

RILEY, N. 1966 On a sphere oscillating in a viscous fluid. Q. J. Mech. Appl. Maths 19 (4), 461–472.
RILEY, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 43–65.
SARPKAYA, T. & STORM, M. 1985 In-line force on a cylinder translating in oscillatory flow. Appl. Ocean Res.

7 (4), 188–196.
STOKES, G.G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb.

Phil. Soc. 9, 8–106.
STUART, J.T. 1966 Double boundary layers in oscillatory viscous flow. J. Fluid Mech. 24 (4), 673–687.
VALDEZ-GARDUÑO, M., LEAL-ESTRADA, M., OLIVEROS-MATA, E.S., SANDOVAL-BOJORQUEZ, D.I.,

SOTO, F., WANG, J. & GARCIA-GRADILLA, V. 2020 Density asymmetry driven propulsion of
ultrasound-powered Janus micromotors. Adv. Funct. Mater. 30 (50), 2004043.

WANG, C.-Y. 1965 The flow field induced by an oscillating sphere. J. Sound Vib. 2 (3), 257–269.
WESTERVELT, P.J. 1953a Acoustic streaming near a small obstacle. J. Acoust. Soc. Am. 25, 1123.
WESTERVELT, P.J. 1953b Hydrodynamic flow and Oseen’s approximation. J. Acoust. Soc. Am. 25 (5),

951–953.
WU, J. & DU, G. 1997 Streaming generated by a bubble in an ultrasound field. J. Acoust. Soc. Am. 101 (4),

1899–1907.
WYBROW, M.F., YAN, B. & RILEY, N. 1996 Oscillatory flow over a circular cylinder close to a plane

boundary. Fluid Dyn. Res. 18 (5), 269–288.
ZHOU, C., ZHAO, L., WEI, M. & WANG, W. 2017 Twists and turns of orbiting and spinning metallic

microparticles powered by megahertz ultrasound. ACS Nano 11 (12), 12668–12676.

974 A37-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.758

	1 Introduction
	2 Small-amplitude flows
	2.1 Analytical solution
	2.1.1 Relationship to analytical formula of Dohara (1982)

	2.2 Cycle-averaged particle paths
	2.3 Asymptotic solutions for small and large frequency 
	2.3.1 Small oscillation frequency, 1
	2.3.2 Large oscillation frequency, 1

	2.4 Results and discussion
	2.4.1 Implications of asymptotic formulas for small and large 
	2.4.2 True flow structure from arbitrary- formula
	2.4.3 Critical frequency for change in flow structure
	2.4.4 Critical frequency for streaming flow and particle motion
	2.4.5 Radial position for emergence of counter-flow


	3 Finite-amplitude flows
	3.1 Dependence of critical on oscillation amplitude
	3.2 Large-amplitude limit, 1
	3.3 Composite arbitrary amplitude formula, critical

	4 Conclusions
	Appendix A. Analytical details of the streaming flow solution
	B.1 Small oscillation frequency, 1
	B.1.1 Linear oscillatory flow
	B.1.2 Steady streaming flow
	B.1.3 Cycle-averaged particle velocity

	B.2 Large oscillation frequency, 1
	B.2.1 Linear oscillatory flow
	B.2.2 Steady streaming flow
	B.2.3 Cycle-averaged particle velocity


	Appendix C. Numerical simulations
	C.1 Large-amplitude numerical simulations
	C.2 Small-amplitude numerical simulations

	References

